1
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
2
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
3
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
4
|
Ding J, Zhang Y, Che Y. Ovarian cancer stem cells: Critical roles in anti-tumor immunity. Front Genet 2022; 13:998220. [PMID: 36437919 PMCID: PMC9685611 DOI: 10.3389/fgene.2022.998220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer is a significant cause of cancer-related mortality in women. Over the past 3 decades, there has been a high incidence of recurrent chemoresistant disease, despite the relative effectiveness of current treatment strategies. This is partly attributed to cancer stem cells (CSC), a subpopulation that has acquired stem cell properties that allow these cells to evade standard chemotherapy and cause disease recurrence. Therefore, there is an urgent need for basic knowledge about CSC to develop innovative therapeutic approaches for ovarian cancer. These CSC subpopulations have been identified in ovarian cancer cell lines, tumors or ascites, and findings suggest that ovarian CSCs may be as heterogeneous as the disease itself. CSCs regulate the phenotype and function of immune cells involved in antitumor immunity, so a better understanding of the signaling pathways that interact between CSCs, immune cells and tumor cells will pave the way for the clinical application of CS in cancer immunotherapy. This review will focus on the markers currently used to identify and isolate these cells summarize current knowledge on the molecular and cellular mechanisms responsible for CSC-dependent regulation of antitumor immune responses. We will discuss the signaling pathways involved in CSC survival, replication, and differentiation as well as potential therapeutic targeting strategies.
Collapse
|
5
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
6
|
Ovarian Cancer Stem Cells: Characterization and Role in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:151-169. [PMID: 34339036 DOI: 10.1007/978-3-030-73359-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is a heterogenous disease with variable clinicopathological and molecular mechanisms being responsible for tumorigenesis. Despite substantial technological improvement, lack of early diagnosis contributes to its highest mortality. Ovarian cancer is considered to be the most lethal female gynaecological cancer across the world. Conventional treatment modules with platinum- and Taxane-based chemotherapy can cause an initial satisfactory improvement in ovarian cancer patients. However, approximately 75-80% patients of advanced stage ovarian cancer, experience relapse and nearly 40% have overall poor survival rate. It has been observed that a subpopulation of cells referred as cancer stem cells (CSCs), having self renewal property, escape the conventional chemotherapy because of their quiescent nature. Later, these CSCs following its interaction with microenvironment and release of various inflammatory cytokines, chemokines and matrix metalloproteinases, induce invasion and propagation to distant organs of the body mainly peritoneal cavity. These CSCs can be enriched by their specific surface markers such as CD44, CD117, CD133 and intracellular enzyme such as aldehyde dehydrogenase. This tumorigenicity is further aggravated by the epithelial to mesenchymal transition of CSCs and neovascularisation via epigenetic reprogramming and over-expression of various signalling cascades such as Wnt/β-catenin, NOTCH, Hedgehog, etc. to name a few. Hence, a comprehensive understanding of various cellular events involving interaction between cancer cells and cancer stem cells as well as its surrounding micro environmental components would be of unmet need to achieve the ultimate goal of better management of ovarian cancer patients. This chapter deals with the impact of ovarian cancer stem cells in tumorigenesis which would help in the implementation of basic research into the clinical field in the form of translational research in order to reduce the morbidity and mortality in ovarian cancer patients through amelioration of diagnosis and impoverishment of therapeutic resistance.
Collapse
|
7
|
Tomizawa F, Jang MK, Mashima T, Seimiya H. c-KIT regulates stability of cancer stemness in CD44-positive colorectal cancer cells. Biochem Biophys Res Commun 2020; 527:1014-1020. [PMID: 32439168 DOI: 10.1016/j.bbrc.2020.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells with high self-renewal potential that are involved in tumor progression and recurrence. It has been postulated that CSCs and non-stem cancer cells are inter-convertible. However, precise mechanisms for the plasticity and stability of cancer stemness remain elusive. Here, we demonstrate that CD44-positive colorectal CSC fractions contain two types of cancer cells: "CD44-stable" cells, in which CD44 expression is stably sustained, and "CD44-trasnsient" cells, which are rapidly converted to CD44-negative cells. CD44-stable cells expressed higher levels of c-KIT tyrosine kinase than CD44-transient cells. c-KIT knockdown by siRNAs converted the CD44-positive cells to CD44-negative cells, which expressed lower levels of stem cell markers such as ASCL2 and EPCAM. In the CD44-positive cells, c-KIT phosphorylation level was very low whereas stem cell factor, a c-KIT ligand, elevated c-KIT phosphorylation without affecting stem cell marker expression. CRISPR-Cas9-mediated knockout of the c-KIT gene in CD44 stable cells attenuated the CSC properties including expression of CD44 and other stem cell markers, clonogenicity and in vivo tumorigenic potential in a mouse xenograft model. These observations suggest that the colorectal CSC fractions contain cancer cells with differential plasticity, which is determined by c-KIT.
Collapse
Affiliation(s)
- Fumiya Tomizawa
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Myung-Kyu Jang
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Fang CH, Lin YT, Liang CM, Liang SM. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and β-catenin-ABCG2 signaling. J Biomed Sci 2020; 27:42. [PMID: 32169072 PMCID: PMC7071647 DOI: 10.1186/s12929-020-00638-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background The underlying mechanism involved in ovarian cancer stemness and chemoresistance remains largely unknown. Here, we explored whether the regulation of c-Kit and plasma membrane prohibitin (PHB) affects ovarian cancer stemness and chemotherapy resistance. Methods Mass spectrum analysis and an in vitro kinase assay were conducted to examine the phosphorylation of PHB at tyrosine 259 by c-Kit. The in vitro effects of c-Kit on membrane raft-PHB in ovarian cancer were determined using tissue microarray (TMA)-based immunofluorescence, western blotting, immunoprecipitation, colony and spheroid formation, cell migration and cell viability assays. In vivo tumor initiation and carboplatin treatment were conducted in nude mice. Results We found that c-Kit and PHB colocalized in the raft domain and were positively correlated in human ovarian serous carcinoma. c-Kit interacted with PHB and facilitated the phosphorylation of PHB at tyrosine 259 (phospho-PHBY259) in the membrane raft to enhance ovarian cancer cell motility. The generation of SKOV3GL-G4, a metastatic phenotype of SKOV3 green fluorescent protein and luciferase (GL) ovarian cancer cells, in xenograft murine ascites showed a correlation between metastatic potential and stem cell characteristics, as indicated by the expression of c-Kit, Notch3, Oct4, Nanog and SOX2. Further study revealed that after activation by c-Kit, raft-phospho-PHBY259 interacted with Notch3 to stabilize Notch3 and increase the downstream target PBX1. Downregulation of raft-phospho-PHBY259 increased the protein degradation of Notch3 through a lysosomal pathway and inhibited the β-catenin—ABCG2 signaling pathway. Moreover, raft-phospho-PHBY259 played an important role in ovarian cancer stemness and tumorigenicity as well as resistance to platinum drug treatment in vitro and in vivo. Conclusions These findings thus reveal a hitherto unreported interrelationship between c-Kit and PHB as well as the effects of raft-phospho-PHBY259 on ovarian cancer stemness and tumorigenicity mediated by the Notch3 and β-catenin signaling pathways. Targeting the c-Kit/raft-phospho-PHBY259 axis may provide a new therapeutic strategy for treating patients with ovarian cancer.
Collapse
Affiliation(s)
- Chia-Hsun Fang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei, 10672, Taiwan
| | - Yi-Te Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan
| | - Chi-Ming Liang
- Genomics Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan. .,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei, 10672, Taiwan.
| |
Collapse
|
9
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
10
|
Zhang L, Zhang X, Fan S, Zhang Z. Identification of modules and hub genes associated with platinum-based chemotherapy resistance and treatment response in ovarian cancer by weighted gene co-expression network analysis. Medicine (Baltimore) 2019; 98:e17803. [PMID: 31689861 PMCID: PMC6946301 DOI: 10.1097/md.0000000000017803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most prevalent and malignant ovarian tumor.To identify co-expression modules and hub genes correlated with platinum-based chemotherapy resistant and sensitive HGSOC, we performed weighted gene co-expression network analysis (WGCNA) on microarray data of HGSOC with 12 resistant samples and 16 sensitive samples of GSE51373 dataset.A total of 5122 genes were included in WGCNA, and 16 modules were identified. Module-trait analysis identified that the module salmon (cor = 0.50), magenta (cor = 0.49), and black (cor = 0.45) were discovered associated with chemotherapy resistant, and the significance for these platinum-resistant modules were validated in the GSE63885 dataset. Given that the black module was validated to be the most related one, hub genes of this module, alcohol dehydrogenase 1B, cadherin 11, and vestigial like family member 3were revealed to be expressional related with platinum resistance, and could serve as prognostic markers for ovarian cancer.Our analysis might provide insight for molecular mechanisms of platinum-based chemotherapy resistance and treatment response in ovarian cancer.
Collapse
Affiliation(s)
- Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
11
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
13
|
Li SS, Ma J, Wong AST. Chemoresistance in ovarian cancer: exploiting cancer stem cell metabolism. J Gynecol Oncol 2019; 29:e32. [PMID: 29468856 PMCID: PMC5823988 DOI: 10.3802/jgo.2018.29.e32] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is most deadly gynecologic malignancies worldwide. Chemotherapy is the mainstay treatment for ovarian cancer. Despite the initial response is promising, frequent recurrence in patients with advanced diseases remains a therapeutic challenge. Thus, understanding the biology of chemoresistance is of great importance to overcome this challenge and will conceivably benefit the survival of ovarian cancer patients. Although mechanisms underlying the development of chemoresistance are still ambiguous, accumulating evidence has supported an integral role of cancer stem cells (CSCs) in recurrence following chemotherapy. Recently, tumor metabolism has gained interest as a reason of chemoresistance in tumors and chemotherapeutic drugs in combination with metabolism targeting approaches has been found promising in overcoming therapeutic resistance. In this review, we will summarize recent studies on CSCs and metabolism in ovarian cancer and discuss possible role of CSCs metabolism in chemoresistance.
Collapse
Affiliation(s)
- Shan Shan Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jing Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alice S T Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Al-Alem LF, Pandya UM, Baker AT, Bellio C, Zarrella BD, Clark J, DiGloria CM, Rueda BR. Ovarian cancer stem cells: What progress have we made? Int J Biochem Cell Biol 2018; 107:92-103. [PMID: 30572025 DOI: 10.1016/j.biocel.2018.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OvCa) is the most lethal gynecological malignancy in the United States primarily due to lack of a reliable early diagnostic, high incidence of chemo-resistant recurrent disease as well as profuse tumor heterogeneity. Cancer stem cells (CSCs) continue to gain attention, as they are known to resist chemotherapy, self-renew and re-populate the bulk tumor with undifferentiated and differentiated cells. Moreover, CSCs appear to readily adapt to environmental, immunologic and pharmacologic cues. The plasticity and ability to inactivate or activate signaling pathways promoting their longevity has been, and continues to be, the challenge faced in developing successful CSC targeted therapies. Identifying and understanding unique ovarian CSC markers and the pathways they utilize could reveal new therapeutic opportunities that may offer alternative adjuvant treatment options. Herein, we will discuss the current state of ovarian CSC characterization, their contribution to disease resistance, recurrence and shed light on clinical trials that may target the CSC population.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca D Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Celeste M DiGloria
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Pieterse Z, Amaya-Padilla MA, Singomat T, Binju M, Madjid BD, Yu Y, Kaur P. Ovarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol 2018; 106:117-126. [PMID: 30508594 DOI: 10.1016/j.biocel.2018.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is typically diagnosed at advanced stages (III or IV), with metastasis ensuing at stage III. Complete remission is infrequent and is not achieved in almost half of the women diagnosed with ovarian cancer. Consequently, management and treatment of this disease is challenging as many patients are faced with tumour recurrence disseminating to surrounding organs further complicated with acquired chemo-resistance. The cancer stem cell theory proposes the idea that a drug resistant subset of tumour cells drive tumour progression, metastasis and ultimately, recurrent disease. In the ovarian cancer field, cancer stem cells remain elusive with significant gaps in our knowledge. The characteristics and specific role of ovarian cancer stem cells in recurrence still requires further research since different studies often arrive at contradictory conclusions. Here we present a review and critical analysis of current research conducted in the field of ovarian cancer stem cells and their potential role in drug resistance including several signalling pathways within these cells that affect the viability of targeted therapies.
Collapse
Affiliation(s)
- Zalitha Pieterse
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | | | - Terence Singomat
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Mudra Binju
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Bau Dilam Madjid
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Yu Yu
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Pritinder Kaur
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia.
| |
Collapse
|
16
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us? Cancer Lett 2017; 405:10-21. [DOI: 10.1016/j.canlet.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
|
17
|
Palmirotta R, Silvestris E, D'Oronzo S, Cardascia A, Silvestris F. Ovarian cancer: Novel molecular aspects for clinical assessment. Crit Rev Oncol Hematol 2017; 117:12-29. [PMID: 28807232 DOI: 10.1016/j.critrevonc.2017.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/13/2017] [Accepted: 06/15/2017] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is a very heterogeneous tumor which has been traditionally characterized according to the different histological subtypes and differentiation degree. In recent years, innovative molecular screening biotechnologies have allowed to identify further subtypes of this cancer based on gene expression profiles, mutational features, and epigenetic factors. These novel classification systems emphasizing the molecular signatures within the broad spectrum of ovarian cancer have not only allowed a more precise prognostic prediction, but also proper therapeutic strategies for specific subgroups of patients. The bulk of available scientific data and the high refinement of molecular classifications of ovarian cancers can today address the research towards innovative drugs with the adoption of targeted therapies tailored for single molecular profiles leading to a better prediction of therapeutic response. Here, we summarize the current state of knowledge on the molecular bases of ovarian cancer, from the description of its molecular subtypes derived from wide high-throughput analyses to the latest discoveries of the ovarian cancer stem cells. The latest personalized treatment options are also presented with recent advances in using PARP inhibitors, anti-angiogenic, anti-folate receptor and anti-cancer stem cells treatment approaches.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Erica Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Angela Cardascia
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy.
| |
Collapse
|
18
|
Stemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress. Sci Rep 2016; 6:26788. [PMID: 27245437 PMCID: PMC4887794 DOI: 10.1038/srep26788] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
One of greatest challenges to the successful treatment of cancer is drug resistance. An exciting approach is the eradication of cancer stem cells (CSCs). However, little is known about key signals regulating the formation and expansion of CSCs. Moreover, lack of a reliable predictive preclinical model has been a major obstacle to discover new cancer drugs and predict their clinical activity. Here, in ovarian cancer, a highly chemoresistant tumor that is rapidly fatal, we provide the first evidence demonstrating the causal involvement of mechanical stimulus in the CSC phenotype using a customizable microfluidic platform and three-dimensional spheroids, which most closely mimic tumor behavior. We found that ovarian cancer cells significantly acquired the expression of epithelial-to-mesenchymal transition and CSC markers and a remarkable chemoresistance to clinically relevant doses of frontline chemotherapeutic drugs cisplatin and paclitaxel when grown under fluid shear stress, which corroborates with the physiological attainable levels in the malignant ascites, but not under static condition. Furthermore, we uncovered a new link of microRNA-199a-3p, phosphatidylinositol 3-kinase/Akt, and multidrug transporter activation in shear stress-induced CSC enrichment. Our findings shed new light on the significance of hydrodynamics in cancer progression, emphasizing the need of a flow-informed framework in the development of therapeutics.
Collapse
|
19
|
Tomao F, Papa A, Strudel M, Rossi L, Lo Russo G, Benedetti Panici P, Ciabatta FR, Tomao S. Investigating molecular profiles of ovarian cancer: an update on cancer stem cells. J Cancer 2014; 5:301-10. [PMID: 24723972 PMCID: PMC3982176 DOI: 10.7150/jca.8610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently we are more and more improving our knowledge about the characteristics and the role of cancer stem cells in human cancer. Particularly we have realized that self-renewing ovarian cancer stem cells (CSCs) or ovarian cancer-initiating cells, and mesenchymal stem cells (SCs) too, are probably implicated in the etiopathogenesis of epithelial ovarian cancer (EOC). There is clear evidence that these cells are also involved in its intra- and extra-peritoneal diffusion and in the occurrence of chemo-resistance. In assessing the molecular characteristics of ovarian CSCs, we have to take note that these cellular populations are rare and the absence of specific cell surface markers represents a challenge to isolate and identify pure SC populations. In our review, we focused our attention on the molecular characteristics of epithelial ovarian CSCs and on the methods to detect them starting from their biological features. The study of ovarian CSCs is taking on an increasingly important strategic role, mostly for the potential therapeutic application in the next future.
Collapse
Affiliation(s)
- Federica Tomao
- 1. Department of Gynecology and Obstetrics, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Anselmo Papa
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Martina Strudel
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Luigi Rossi
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Giuseppe Lo Russo
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | | | | | - Silverio Tomao
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| |
Collapse
|
20
|
El-Nagdy S, Salama NM, Mourad MI. Immunohistochemical clue for the histological overlap of salivary adenoid cystic carcinoma and polymorphous low-grade adenocarcinoma. Interv Med Appl Sci 2013; 5:131-9. [PMID: 24265903 DOI: 10.1556/imas.5.2013.3.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
It remains difficult to distinguish adenoid cystic carcinoma (ACC) from polymorphous low-grade adenocarcinoma (PLGA). Although these neoplasms exhibit nearly similar histologic patterns, their biologic behavior is significantly different. This study was carried out in an attempt to overcome the histological overlap between these tumors using immunohistochemical method for c-kit and galectin-3 proteins on twenty cases of salivary gland tumors including twelve ACC and eight PLGA. Results revealed positive cytoplasmic reactivity for c-kit in 100% of ACC cases and only in 25% of PLGA. On the other hand, galectin-3 expression was observed in 100% of both ACC and PLGA cases. Moreover, solid variant of ACC showed overexpression of both proteins than cribriform and tubular subtypes. Significant positive correlation between the two studied proteins in ACC and PLGA was also observed (p < 0.05). Upon these results, over expression of c-kit and galectin-3 in ACC cases supports the concept of solid variant as a high-grade tumor. Moreover, c-kit may be used as a helpful marker to distinguish ACC from PLGA in cases where the diagnosis can be challenging.
Collapse
Affiliation(s)
- Sherif El-Nagdy
- Oral Pathology Department, Faculty of Dentistry, Mansoura University Mansoura Egypt
| | | | | |
Collapse
|
21
|
Tomao F, Papa A, Rossi L, Strudel M, Vici P, Lo Russo G, Tomao S. Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:48. [PMID: 23902592 PMCID: PMC3734167 DOI: 10.1186/1756-9966-32-48] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
In 2013 there will be an estimated 22,240 new diagnoses and 14,030 deaths from ovarian cancer in the United States. Despite the improved surgical approach and the novel active drugs that are available today in clinical practice, about 80% of women presenting with late-stage disease have a 5-year survival rate of only 30%. In the last years a growing scientific knowledge about the molecular pathways involved in ovarian carcinogenesis has led to the discovery and evaluation of several novel molecular targeted agents, with the aim to test alternative models of treatment in order to overcome the clinical problem of resistance. Cancer stem cells tend to be more resistant to chemotherapeutic agents and radiation than more differentiated cellular subtypes from the same tissue. In this context the study of ovarian cancer stem cells is taking on an increasingly important strategic role, mostly for the potential therapeutic application in the next future. In our review, we focused our attention on the molecular characteristics of epithelial ovarian cancer stem cells, in particular on possible targets to hit with targeted therapies.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Gynaecology and Obstetrics, University of Rome, Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Fan H, Yuan Y, Wang J, Zhou F, Zhang M, Giercksky KE, Nesland JM, Suo Z. CD117 expression in operable oesophageal squamous cell carcinomas predicts worse clinical outcome. Histopathology 2013; 62:1028-37. [PMID: 23570416 PMCID: PMC3712472 DOI: 10.1111/his.12111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/06/2013] [Indexed: 12/11/2022]
Abstract
Aims To investigate the aberrant expression of CD117 in oesophageal squamous cell carcinoma (SCC) and its prognostic significance. Methods and results Immunohistochemical staining for CD117 was performed on tissue microarray and routine tissue sections from 157 oesophageal SCC patients and 10 normal oesophageal epithelia adjacent to tumour. The positive rate of CD117 expression was 29.9% in oesophageal SCC tissues, whereas no CD117 expression was detected in the 10 normal oesophageal epithelia. CD117 expression was significantly associated with T stage (P < 0.001), distant metastasis (P = 0.015), lymph node metastasis (P = 0.019), and clinical stage (P = 0.021). Progression-free survival in the patients with CD117-positive tumours was shorter than that in the patients with CD117-negative tumours (P = 0.010). In univariate analyses, CD117 expression was the most significant factor for overall survival of oesophageal SCC patients (P < 0.001), followed by lymph node metastasis (P = 0.001), T stage (P = 0.002), clinical stage (P = 0.006), distant metastasis (P = 0.020), and histological grade (P = 0.027). Multivariate analyses verified that CD117 expression was an independent prognostic marker for oesophageal SCC patients (P = 0.002). In addition, CD117 expression predicted poorer survival in patients without distant metastases. Conclusions CD117 expression in operable oesophageal SCC may be a valuable prognostic marker, and detection of its expression in clinical samples may be useful in defining a subclass of oesophageal SCCs with extremely poor clinical outcome, which may require a specially targeted treatment modality.
Collapse
Affiliation(s)
- Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jiang LY, Zhang XL, Du P, Zheng JH. γ-Secretase Inhibitor, DAPT Inhibits Self-renewal and Stemness Maintenance of Ovarian Cancer Stem-like Cells In Vitro. Chin J Cancer Res 2013; 23:140-6. [PMID: 23482909 DOI: 10.1007/s11670-011-0140-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/25/2011] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The Notch signaling pathway plays an important role in the stem cell signaling network and contributes to tumorigenesis. However, the functions of Notch signaling in ovarian cancer stem cells (OCSCs) are not well understood. We aimed to investigate the effects of Notch blockade on self-renewal and stemness maintenance of OCSCs. METHODS Ovarian cancer stem-like cells were enriched from ovarian cancer cell lines in serum-free medium. A γ-secretase inhibitor, (DAPT), was used to block Notch signaling. MTT assays were performed to assess self-renewal and proliferation inhibition, flow cytometry was performed to analyze cell surface marker and immunofluorescence, Western Blot and Real-time RT-PCR assays were performed to detect Oct4 and Sox2 protein and mRNA expression of the Ovarian cancer stem-like cells treated with DAPT. RESULTS Notch blockade markedly inhibits self-renewal and proliferation of ovarian cancer stem-like cells, significantly downregulates the expression of OCSCs-specific surface markers, and reduces protein and mRNA expression of Oct4 and Sox2 in OCSC-like cells. CONCLUSION Our results suggest that Notch signaling is not only critical for the self-renewal and proliferation of OCSCs, but also for the stemness maintenance of OCSCs. The γ-secretase inhibitor is a promising treatment targeting OCSCs.
Collapse
Affiliation(s)
- Li-Yu Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | | | | | | |
Collapse
|
24
|
Radhakrishnan P, Baraneedharan U, Veluchamy S, Dhandapani M, Pinto DD, Thiyagarajan S, Thayakumar A, Prasath A, A K, Velu A, Jain M, Brijwani N, Narayanan P, Kekatpure VD, Majumder B, Majumder PK. Inhibition of Rapamycin-Induced AKT Activation Elicits Differential Antitumor Response in Head and Neck Cancers. Cancer Res 2013; 73:1118-27. [DOI: 10.1158/0008-5472.can-12-2545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Ovarian cancer stem cells: a new target for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916819. [PMID: 23509802 PMCID: PMC3581273 DOI: 10.1155/2013/916819] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is a highly lethal disease among all gynecologic malignancies and is the fifth leading cause of cancer-related death in women. Although the standard combination of surgery and chemotherapy was initially effective in patients with ovarian cancer, disease relapse commonly occurred due to the generation of chemoresistance. It has been reported that cancer stem cells (CSCs) are involved in drug resistance and cancer recurrence. Over the past decades, increasing studies have been done to identify CSCs from human ovarian cancer cells. The present paper will summarize different investigations on ovarian CSCs, including isolation, mechanisms of chemoresistance, and therapeutic approaches. Although there are still numerous challenges to translate basic research to clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent ovarian cancer and its recurrence.
Collapse
|
26
|
Chau WK, Ip CK, Mak ASC, Lai HC, Wong AST. c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 2012; 32:2767-81. [PMID: 22797058 DOI: 10.1038/onc.2012.290] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cisplatin and paclitaxel are standard chemotherapy for metastatic ovarian cancer, but with limited efficacy. Cancer stem/progenitor cells (or tumor-initiating cells, TICs) are hypothesized to be chemoresistant, and the existence of TICs in ovarian cancer has been previously demonstrated. However, the key signals and molecular events regulating the formation and expansion of ovarian tumor-initiating cells (OTICs) remain elusive. Here, we show that c-Kit is not just a marker of OTICs, but also a critical mediator of the phenotype that can be a viable target for the treatment of ovarian cancer. In contrast to non-OICs, c-Kit was overexpressed in OTICs. Moreover, the use of small interfering RNA to inhibit c-Kit expression markedly attenuated the number and size of OTIC subpopulations, inhibited the expression of stem cell markers and decreased the tumorigenic capabilities of OTICs. Imatinib (Gleevec), a clinical drug that blocks c-Kit kinase activity, also demonstrated its inhibition potency on OTICs. In addition, cisplatin/paclitaxel, which killed non-OTICs, with c-Kit knockdown or imatinib revealed that this was critically required for intervening ovarian cancer progression and recurrence in vitro and in xenograft tumors in vivo. Similar results were obtained with OTICs derived from ovarian carcinoma patients. Studies into the mechanisms suggest an important role for the activation of Wnt/β-catenin and ATP-binding cassette G2 downstream of c-Kit. The tumor-promoting microenvironment, such as hypoxia, could promote OTICs via upregulation of c-Kit expression. These results unravel an integral role for c-Kit in ovarian neoplastic processes and shed light on its mechanisms of action.
Collapse
Affiliation(s)
- W K Chau
- School of Biological Sciences, University of Hong Kong, HK, Hong Kong
| | | | | | | | | |
Collapse
|
27
|
Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, Kumar J, Thompson EW, Quinn MA, Findlay JK, Ahmed N. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 2012; 112:2850-64. [PMID: 21618587 DOI: 10.1002/jcb.23199] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.
Collapse
Affiliation(s)
- Ardian Latifi
- Women's Cancer Research Centre, Royal Women's Hospital, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J, Shen K. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol 2011; 91:596-602. [PMID: 21787767 DOI: 10.1016/j.yexmp.2011.06.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/24/2011] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) play an important role in the recurrence and drug resistance of cancer. Isolation and characterization of CSCs from ovarian cancer samples may help to provide novel diagnostic and therapeutic targets in the management of recurrent disease and drug resistance in ovarian cancer. Here, we developed a xenograft model in which cells from 14 samples of human ovarian serous adenocarcinoma tissue or ascites were implanted in immunodeficient mice to test the tumorigenic potential of different populations of ovarian cancer cells. We identified and isolated the tumorigenic cells as CD117(+)Lineage(-) from three different xenografts. As few as 10(3) cells with the CD117(+)Lineage(-) phenotype, which comprise <2% of the xenograft tumor cells, were able to regenerate tumors in a mouse model, a 100-fold increase in tumorigenic potential compared to CD117(-)Lineage(-) cells. The tumors that arose from purified CD117(+)Lineage(-) cells reproduced the original tumor heterogeneity and could be serially generated, demonstrating the ability to self-renew and to differentiate, two defining properties of stem cells. Furthermore, immunohistochemistry analysis of 25 patients with advanced ovarian serous adenocarcinoma revealed positive immunostaining for CD117 in 40% (10 of 25) of patients. CD117 expression was statistically correlated with resistance to conventional chemotherapy (P=0.027). In conclusion, our study demonstrates that human ovarian cancer cells with the CD117(+) phenotype possess the unique properties of CSCs, including self-renewal, differentiation, a high tumorigenic potential, and chemoresistance. Future studies designed to target CD117(+) cancer cells may identify more attractive and effective therapies for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lijing Luo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chao SY, Chiang JH, Huang AM, Chang WS. An integrative approach to identifying cancer chemoresistance-associated pathways. BMC Med Genomics 2011; 4:23. [PMID: 21429228 PMCID: PMC3070611 DOI: 10.1186/1755-8794-4-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 03/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to chemotherapy severely limits the effectiveness of chemotherapy drugs in treating cancer. Still, the mechanisms and critical pathways that contribute to chemotherapy resistance are relatively unknown. This study elucidates the chemoresistance-associated pathways retrieved from the integrated biological interaction networks and identifies signature genes relevant for chemotherapy resistance. Methods An integrated network was constructed by collecting multiple metabolic interactions from public databases and the k-shortest path algorithm was implemented to identify chemoresistant related pathways. The identified pathways were then scored using differential expression values from microarray data in chemosensitive and chemoresistant ovarian and lung cancers. Finally, another pathway database, Reactome, was used to evaluate the significance of genes within each filtered pathway based on topological characteristics. Results By this method, we discovered pathways specific to chemoresistance. Many of these pathways were consistent with or supported by known involvement in chemotherapy. Experimental results also indicated that integration of pathway structure information with gene differential expression analysis can identify dissimilar modes of gene reactions between chemosensitivity and chemoresistance. Several identified pathways can increase the development of chemotherapeutic resistance and the predicted signature genes are involved in drug resistant during chemotherapy. In particular, we observed that some genes were key factors for joining two or more metabolic pathways and passing down signals, which may be potential key targets for treatment. Conclusions This study is expected to identify targets for chemoresistant issues and highlights the interconnectivity of chemoresistant mechanisms. The experimental results not only offer insights into the mode of biological action of drug resistance but also provide information on potential key targets (new biological hypothesis) for further drug-development efforts.
Collapse
Affiliation(s)
- Shih-Yi Chao
- Department of Computer Science and Information Engineering, Ching Yun University, Jhongli City, Taoyuan County, Taiwan
| | | | | | | |
Collapse
|
30
|
Potala S, Verma RS. A novel fusion protein diphtheria toxin-stem cell factor (DT-SCF)-purification and characterization. Appl Biochem Biotechnol 2010; 162:1258-69. [PMID: 20084469 DOI: 10.1007/s12010-009-8896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 12/21/2009] [Indexed: 01/09/2023]
Abstract
Fusion toxins are an emerging class of targeted therapeutics for the treatment of cancer. Diphtheria toxin-stem cell factor (DT-SCF) is one such novel fusion toxin designed to target malignancies expressing c-kit. Since, c-kit overexpression has been reported on many types of cancers, it appeared to be a reasonably good molecule to target. In the present study, we report construction, expression, purification, and characterization of DT-SCF. DT-SCF gene coding for 1-387 amino acids of diphtheria toxin, His-Ala linker, 2-141 amino acids of SCF was cloned into expression vector with C terminal His tag. The induced DT-SCF protein was exclusively expressed in insoluble fraction. Purification of DT-SCF was achieved by inclusion body isolation and metal affinity chromatography under denaturing and reducing conditions. Purified DT-SCF was renatured partially on-column by gradually reducing denaturant concentration followed by complete refolding through rapid dilution technique. Cell viability assay provided the evidence that DT-SCF is a potent cytotoxic agent selective to cells expressing c-kit. The novelty of this study lies in employing SCF as a ligand in construction of fusion toxin to target wide range of malignancies expressing c-kit. Efficacy of DT-SCF fusion toxin was demonstrated over a range of malignancies such as chronic myeloid leukemia (K562), acute lymphoblastic leukemia (MOLT4), pancreatic carcinoma (PANC-1), and cervical carcinoma (HeLa 229). This is the first study reporting specificity and efficacy of DT-SCF against tumor cells expressing c-kit. There was significant correlation (P = 0.007) between c-kit expression on cells and their sensitivity to DT-SCF fusion toxin.
Collapse
Affiliation(s)
- Sirisha Potala
- Department of Biotechnology, Stem Cell and Molecular Biology Laboratory, Indian Institute of Technology Madras, Bhupat and Jyoti Mehta School of Biosciences, Chennai 600036, India
| | | |
Collapse
|
31
|
Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang THM, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68:4311-20. [PMID: 18519691 DOI: 10.1158/0008-5472.can-08-0364] [Citation(s) in RCA: 984] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this study was to identify and characterize a self-renewing subpopulation of human ovarian tumor cells (ovarian cancer-initiating cells, OCICs) fully capable of serial propagation of their original tumor phenotype in animals. Ovarian serous adenocarcinomas were disaggregated and subjected to growth conditions selective for self-renewing, nonadherent spheroids previously shown to derive from tissue stem cells. To affirm the existence of OCICs, xenoengraftment of as few as 100 dissociated spheroid cells allowed full recapitulation of the original tumor (grade 2/grade 3 serous adenocarcinoma), whereas >10(5) unselected cells remained nontumorigenic. Stemness properties of OCICs (under stem cell-selective conditions) were further established by cell proliferation assays and reverse transcription-PCR, demonstrating enhanced chemoresistance to the ovarian cancer chemotherapeutics cisplatin or paclitaxel and up-regulation of stem cell markers (Bmi-1, stem cell factor, Notch-1, Nanog, nestin, ABCG2, and Oct-4) compared with parental tumor cells or OCICs under differentiating conditions. To identify an OCIC cell surface phenotype, spheroid immunostaining showed significant up-regulation of the hyaluronate receptor CD44 and stem cell factor receptor CD117 (c-kit), a tyrosine kinase oncoprotein. Similar to sphere-forming OCICs, injection of only 100 CD44(+)CD117(+) cells could also serially propagate their original tumors, whereas 10(5) CD44(-)CD117(-) cells remained nontumorigenic. Based on these findings, we assert that epithelial ovarian cancers derive from a subpopulation of CD44(+)CD117(+) cells, thus representing a possible therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Shu Zhang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hassan HT. c-Kit expression in human normal and malignant stem cells prognostic and therapeutic implications. Leuk Res 2008; 33:5-10. [PMID: 18639336 DOI: 10.1016/j.leukres.2008.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
The human stem cell factor/c-Kit signaling pathway is pivotal for the survival of embryonic, foetal and adult stem cells and for their fundamental role in generating healthy functioning cell and tissue types during embryonic, foetal and adult life. Common biological features between human stem cells and cancer cells include (A) self-renewal, (B) extensive capacity of proliferation, (C) migration to and homing at distant sites and (D) resistance to toxic agents. Given these shared attributes, cancer was proposed to originate from transforming mutation(s) in normal stem cells that dysregulate their physiological programs. This theory has been recently supported by the findings that among all malignant cells within a particular tumour, only cell fraction expressing stem cell markers such as c-Kit named 'cancer stem cells' has the exclusive potential to generate tumour cell population. The involvement of c-Kit and its mutation in various haematological malignancies and solid tumours are reviewed. The impacts of dysregulated c-Kit as oncogenic tyrosine kinase on autocrine stimulation and resistance to chemotherapy of cancer stem cells are evaluated. The significance and efficacy of molecular therapeutic targeting of c-Kit signaling pathway in the management of patients with c-Kit-positive malignancies are appraised.
Collapse
|
33
|
Mundinger GS, Espina V, Liotta LA, Petricoin EF, Calvo KR. Clinical phosphoproteomic profiling for personalized targeted medicine using reverse phase protein microarray. Target Oncol 2006. [DOI: 10.1007/s11523-006-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Abstract
Coexpression of Kit ligand and c-kit has been reported in some gynecologic tumors. To determine whether imatinib mesylate is useful in ovarian epithelial tumors, we performed immunohistochemical and mutational analysis. The cases consisted of 33 cases, which included 13 serous cystadenocarcinomas, 1 borderline serous tumor, 8 mucinous cystadenocarcinomas, 6 borderline mucinous tumors and 5 clear cell carcinomas. Five cases of serous cystadenoma and 5 cases of mucinous cystadenoma were also included. In the immunohistochemical study, 3 cases (3/6, 50%) of borderline mucinous cystic tumor and two cases (2/8, 25%) of mucinous cystadenocarcinoma show positive staining for KIT protein. Only one case (1/13, 7.7%) of serous cystadenocarcinoma had positive staining. On mutational analysis, no mutation was identified at exon 11. However, two cases of borderline mucinous tumors and one case of mucinous cystadenocarcinoma had mutations at exon 17. In these cases, the immunohistochemistry also shows focal positive staining at epithelial component. Although, KIT protein expression showed higher incidence in mucinous tumors than serous tumors, they lack KIT-activating mutations in exon 11. Thus, ovarian surface epithelial tumors are unlikely to respond to imatinib mesylate.
Collapse
MESH Headings
- Adult
- Aged
- Cystadenocarcinoma, Mucinous/genetics
- Cystadenocarcinoma, Mucinous/metabolism
- Cystadenocarcinoma, Mucinous/pathology
- Cystadenoma, Mucinous/genetics
- Cystadenoma, Mucinous/metabolism
- Cystadenoma, Mucinous/pathology
- Cystadenoma, Serous/genetics
- Cystadenoma, Serous/metabolism
- Cystadenoma, Serous/pathology
- DNA Mutational Analysis
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Epithelial Cells/chemistry
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Middle Aged
- Mutation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Proto-Oncogene Proteins c-kit/biosynthesis
- Proto-Oncogene Proteins c-kit/genetics
Collapse
Affiliation(s)
- Dong-Ja Kim
- Department of Pathology, Fatima Hospital, Daegu, Korea.
| | | | | | | |
Collapse
|
35
|
Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2006; 13:205-20. [PMID: 16082245 DOI: 10.1097/01.pai.0000173054.83414.22] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD117 (KIT) is a type III receptor tyrosine kinase operating in cell signal transduction in several cell types. Normally KIT is activated (phosphorylated) by binding of its ligand, the stem cell factor. This leads to a phosphorylation cascade ultimately activating various transcription factors in different cell types. Such activation regulates apoptosis, cell differentiation, proliferation, chemotaxis, and cell adhesion. KIT-dependent cell types include mast cells, some hematopoietic stem cells, germ cells, melanocytes, and Cajal cells of the gastrointestinal tract, and neoplasms of these cells are examples of KIT-positive tumors. Other KIT-positive normal cells include epithelial cells in skin adnexa, breast, and subsets of cerebellar neurons. KIT positivity has been variably reported in sarcomas such as angiosarcoma, Ewing sarcoma, synovial sarcoma, leiomyosarcoma, and MFH; results of the last three are controversial. The variations in published data may result from incomplete specificity of some polyclonal antibodies, possibly contributed by too high dilutions. Also, KIT is expressed in pulmonary and other small cell carcinomas, adenoid cystic carcinoma, renal chromophobe carcinoma, thymic, and some ovarian and few breast carcinomas. A good KIT antibody reacts with known KIT positive cells, and smooth muscle cells and fibroblasts are negative. KIT deficiency due to hereditary nonsense/missense mutations leads to disruption of KIT-dependent functions such as erythropoiesis, skin pigmentation, fertility, and gastrointestinal motility. Conversely, pathologic activation of KIT through gain-of-function mutations leads to neoplasia of KIT-dependent and KIT-positive cell types at least in three different systems: mast cells/myeloid cells--mastocytosis/acute myeloid leukemia, germ cells--seminoma, and Cajal cells--gastrointestinal stromal tumors (GISTs). KIT tyrosine kinase inhibitors such as imatinib mesylate are the generally accepted treatment of metastatic GISTs, and their availability has prompted an active search for other treatment targets among KIT-positive tumors such as myeloid leukemias and small cell carcinoma of the lung, with variable and often nonconvincing results.
Collapse
Affiliation(s)
- Markku Miettinen
- Department of Soft Tissue Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA.
| | | |
Collapse
|
36
|
Aslan DL, Oprea GM, Jagush SM, Gulbahce HE, Adams GL, Gaffney PM, Savik K, Pambuccian SE. c-kit expression in adenoid cystic carcinoma does not have an impact on local or distant tumor recurrence. Head Neck 2005; 27:1028-34. [PMID: 16240323 DOI: 10.1002/hed.20306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a neoplasm with unpredictable behavior with frequent late relapses that lacks good prognostic indicators. c-kit tyrosine kinase oncogene has recently been found to be expressed in ACC. The aim of this study is to correlate the expression of c-kit in ACC with clinical follow-up. METHODS Paraffin sections of 45 cases of ACC diagnosed during a 15-year period were immunostained for c-kit. RESULTS Seventy-eight percent of tumors stained positive for c-kit. Mean follow-up time was 6 years. No degree/pattern of c-kit expression correlated to local or distant tumor recurrence. However, there was a significant association between surgical margin involvement by tumor and cell membrane expression of c-kit. Staining quality was not affected by storage time. CONCLUSIONS Our results suggest that expression of c-kit may not serve as a useful marker for predicting outcome in ACC, although they need to be confirmed in a larger patient population with longer clinical follow-up.
Collapse
Affiliation(s)
- Deniz L Aslan
- University of Minnesota Medical School, Department of Laboratory Medicine and Pathology, Fairview-UMC Surgical Pathology, C422 MMC76, 420 Delaware St. S.E., Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Richardson A, Kaye SB. Drug resistance in ovarian cancer: The emerging importance of gene transcription and spatio-temporal regulation of resistance. Drug Resist Updat 2005; 8:311-21. [PMID: 16233989 DOI: 10.1016/j.drup.2005.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/12/2005] [Accepted: 09/19/2005] [Indexed: 12/18/2022]
Abstract
Resistance to carboplatin plus paclitaxel, one of the most active drug combinations in ovarian cancer, is the major barrier to the successful long-term treatment of this disease. Understanding the mechanisms involved is a first step towards rational strategies to overcome drug resistance and is an area of intense research effort. Recent work has identified several gene families which appear to contribute to the evolution of drug resistance and which are involved in regulating DNA damage, apoptosis and survival signalling. These genes may be co-ordinately regulated as part of a gene expression program that confers drug resistance through multiple pathways. The subcellular localisation of the gene products and their kinetic regulation following exposure to chemotherapeutic agents may also play a part in the development of drug resistance. This provides a more complex paradigm for drug resistance in which the steady-state expression of a single gene may not be predictive of response to therapy. Nevertheless, the identification of critical genes, most relevant to the development of clinical drug resistance, is now feasible through microarray analysis of tumour samples, and strategies aimed at the circumvention of resistance can be developed using these data.
Collapse
Affiliation(s)
- Alan Richardson
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK.
| | | |
Collapse
|
38
|
Brustmann H. Immunohistochemical detection of human telomerase reverse transcriptase (hTERT) and c-kit in serous ovarian carcinoma: A clinicopathologic study. Gynecol Oncol 2005; 98:396-402. [PMID: 16005054 DOI: 10.1016/j.ygyno.2005.04.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/23/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE This study investigated the expression of human telomerase reverse transcriptase (hTERT) and c-kit in a cohort of serous ovarian carcinomas by immunohistochemistry with regard to outcome and clinicopathologic variables. METHODS Formalin-fixed, paraffin-embedded archival tissue sections of 10 benign serous cystadenomas, 10 serous neoplasms of low malignant potential (LMP), and 41 serous ovarian carcinomas were immunostained with antibodies to hTERT and c-kit. Immunostaining was scored with regard to quantity and intensity of positively stained cells as negative or weak, moderate, and strong. Mitotic activity was determined as mitotic figures per 10 high power fields. RESULTS hTERT expression was negative in serous cystadenomas; 70% of LMP showed strong nuclear immunoreactivity. In serous carcinomas, nuclear and sometimes cytoplasmic immunoreactivity was observed; 14% of cases were scored as negative, 42% as moderate, and 44% as strong. hTERT immunoreactivity increased with grade (P < 0.0192) and mitotic activity (P = 0.0018), but not with FIGO stage (P = 0.2752), and was related with outcome (P = 0.0477). No c-kit immunoreactivity was observed in serous cystadenomas and LMP; 27% of serous carcinomas were negative, 46% showed moderate, and 27% strong immunostaining. c-kit immunoreactivity was positively correlated with grade (P = 0.0008) and FIGO stage (P = 0.0247), but not with mitotic activity (P = 0.1433) and outcome (P = 0.1145); however, c-kit expression was positively related with poor outcome in FIGO II and III stages (P = 0.0105). CONCLUSIONS hTERT and c-kit are frequently up-regulated in serous ovarian carcinomas; c-kit immunoexpression may serve as a marker of aggressive behavior in high stage tumors.
Collapse
Affiliation(s)
- Hermann Brustmann
- Department of Pathology, Thermenklinikum, Sr. Maria Restitutagasse 12, A-2340 Moedling/Vienna, Austria.
| |
Collapse
|
39
|
O'Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An Immunohistochemical Comparison Between Low-Grade and High-Grade Ovarian Serous Carcinomas. Am J Surg Pathol 2005. [DOI: 10.1097/01.pas.0000166367.68459.7d] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, Aquino J, Speer R, Araujo R, Mills GB, Liotta LA, Petricoin EF, Wulfkuhle JD. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 2005; 4:346-55. [PMID: 15671044 DOI: 10.1074/mcp.t500003-mcp200] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.
Collapse
Affiliation(s)
- Katherine M Sheehan
- United States Food and Drug Administration (FDA)-NCI Clinical Proteomics Program, Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as Novel Targets for Cancer Therapy (Part I). ACTA ACUST UNITED AC 2005; 5:173-90. [PMID: 15952871 DOI: 10.2165/00129785-200505030-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past 10 years, progress made in cancer biology, genetics, and biotechnology has led to a major transition in cancer drug design and development. There has been a change from an emphasis on non-specific, cytotoxic agents to specific, molecular-based therapeutics. Mechanism-based therapy is designed to act on cellular and molecular targets that are causally involved in the formation, growth, and progression of human cancers. These agents, which may have greater selectivity for cancer versus normal cells, and which may produce better anti-tumor efficacy and lower host toxicity, can be small molecules, natural or engineered peptides, proteins, antibodies, or synthetic nucleic acids (e.g. antisense oligonucleotides, ribozymes, and siRNAs). Novel targets are identified and validated by state-of-the-art approaches, including high-throughput screening, combinatorial chemistry, and gene expression arrays, which increase the speed and efficiency of drug discovery and development. Examples of oncogene-based, molecular therapeutics that show promising clinical activity include trastuzumab (Herceptin), imatinib (Gleevec), and gefitinib (Iressa). However, the full potential of oncogenes as novel targets for cancer therapy has not been realized and many challenges remain, from the validation of novel targets, to the design of specific agents, to the evaluation of these agents in both preclinical and clinical settings. In maximizing the benefits of molecular therapeutics in monotherapy or combination therapy of cancer, it is necessary to have an understanding of the underlying molecular abnormalities and mechanisms involved. This is the first part of a four-part review in which we discuss progress made in the last decade as it relates to the discovery of novel oncogenes and signal transduction pathways, in the context of their potential as targets for cancer therapy. This part delineates the latest discoveries about the potential use of growth factors and protein tyrosine kinases as targets for therapy. Later parts focus on intermediate signaling pathways, transcription factors, and proteins involved in cell cycle, DNA damage, and apoptotic pathways.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology, and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|