1
|
Chen N, Qi Y, Ma X, Xiao X, Liu Q, Xia T, Xiang J, Zeng J, Tang J. Rediscovery of Traditional Plant Medicine: An Underestimated Anticancer Drug of Chelerythrine. Front Pharmacol 2022; 13:906301. [PMID: 35721116 PMCID: PMC9198297 DOI: 10.3389/fphar.2022.906301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
In many studies, the extensive and significant anticancer activity of chelerythrine (CHE) was identified, which is the primary natural active compound in four traditional botanical drugs and can be applied as a promising treatment in various solid tumors. So this review aimed to summarize the anticancer capacities and the antitumor mechanism of CHE. The literature searches revolving around CHE have been carried out on PubMed, Web of Science, ScienceDirect, and MEDLINE databases. Increasing evidence indicates that CHE, as a benzophenanthridine alkaloid, exhibits its excellent anticancer activity as CHE can intervene in tumor progression and inhibit tumor growth in multiple ways, such as induction of cancer cell apoptosis, cell cycle arrest, prevention of tumor invasion and metastasis, autophagy-mediated cell death, bind selectively to telomeric G-quadruplex and strongly inhibit the telomerase activity through G-quadruplex stabilization, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and PKC. The role of CHE against diverse types of cancers has been investigated in many studies and has been identified as the main antitumor drug candidate in drug discovery programs. The current complex data suggest the potential value in clinical application and the future direction of CHE as a therapeutic drug in cancer. Furthermore, the limitations and the present problems are also highlighted in this review. Despite the unclearly delineated molecular targets of CHE, extensive research in this area provided continuously fresh data exploitable in the clinic while addressing the present requirement for further studies such as toxicological studies, combination medication, and the development of novel chemical methods or biomaterials to extend the effects of CHE or the development of its derivatives and analogs, contributing to the effective transformation of this underestimated anticancer drug into clinical practice. We believe that this review can provide support for the clinical application of a new anticancer drug in the future.
Collapse
Affiliation(s)
- Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juyi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13111748. [PMID: 34834162 PMCID: PMC8621927 DOI: 10.3390/pharmaceutics13111748] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinase, is classed into three subfamilies based on their structural and activation characteristics: conventional or classic PKC isozymes (cPKCs; α, βI, βII, and γ), novel or non-classic PKC isozymes (nPKCs; δ, ε, η, and θ), and atypical PKC isozymes (aPKCs; ζ, ι, and λ). PKC inhibitors and activators are used to understand PKC-mediated intracellular signaling pathways and for the diagnosis and treatment of various PKC-associated diseases, such as cancers, neurological diseases, cardiovascular diseases, and infections. Many clinical trials of PKC inhibitors in cancers showed no significant clinical benefits, meaning that there is a limitation to design a cancer therapeutic strategy targeting PKC alone. This review will focus on the activators and inhibitors of PKC and their applications in clinical trials.
Collapse
|
3
|
Kawahara N, Yamada Y, Kobayashi H. CCNE1 Is a Putative Therapeutic Target for ARID1A-Mutated Ovarian Clear Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22115869. [PMID: 34070839 PMCID: PMC8198755 DOI: 10.3390/ijms22115869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Ovarian clear cell carcinoma (OCCC) is resistant to platinum chemotherapy and is characterized by poor prognosis. Today, the use of poly (ADP-ribose) polymerase (PARP) inhibitor, which is based on synthetic lethality strategy and characterized by cancer selectivity, is widely used for new types of molecular-targeted treatment of relapsed platinum-sensitive ovarian cancer. However, it is less effective against OCCC. Methods: We conducted siRNA screening to identify synthetic lethal candidates for the ARID1A mutation; as a result, we identified Cyclin-E1 (CCNE1) as a potential target that affects cell viability. To further clarify the effects of CCNE1, human OCCC cell lines, namely TOV-21G and KOC7c (ARID1A mutant lines), and RMG-I and ES2 (ARID1A wild type lines) were transfected with siRNA targeting CCNE1 or a control vector. Results: Loss of CCNE1 reduced proliferation of the TOV-21G and KOC7c cells but not of the RMG-I and ES2 cells. Furthermore, in vivo interference of CCNE1 effectively inhibited tumor cell proliferation in a xenograft mouse model. Conclusion: This study showed for the first time that CCNE1 is a synthetic lethal target gene to ARID1A-mutated OCCC. Targeting this gene may represent a putative, novel, anticancer strategy in OCCC treatment.
Collapse
Affiliation(s)
- Naoki Kawahara
- Correspondence: ; Tel.: +81-744-29-8877; Fax: +81-(744)-23-6557
| | | | | |
Collapse
|
4
|
Adverse Cerebral Cardiovascular Events Associated With Checkpoint Kinase 1 Inhibitors: A Systemic Review. J Cardiovasc Pharmacol 2021; 77:549-556. [PMID: 33951693 DOI: 10.1097/fjc.0000000000000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/31/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Checkpoint kinase 1 (CHK1) plays a broad role in regulating the cell cycle process and is involved in the pathogenesis of various malignant tumors. Preclinical and animal studies have shown that CHK1 inhibitors can enhance the cytotoxic effects of radiotherapy and chemotherapy. Currently, CHK1 inhibitors are actively tested in clinical trials. Nonspecific adverse cerebral cardiovascular events were reported after CHK1 inhibitor use; these events need to be monitored and managed carefully during the clinical application of CHK1 inhibitors. To get a better understanding of these, noteworthy adverse cardiovascular events, we systemically searched the PubMed, Cochrane databases, and clinicaltrials.gov, for relevant clinical trials and case reports. A total of 19 studies were identified and included in this review. Among the reported cerebral cardiovascular events, the most common is incident abnormal blood pressure fluctuations (n = 35), followed by incident QTcF prolongation (n = 15), arrhythmia (n = 13, 3 atrial fibrillation and 10 bradycardia), thromboembolic events (n = 9, 6 pulmonary embolisms, 2 stroke, and 1 cerebrovascular event), cardiac troponin T elevation (n = 2), and ischemic chest pain (n = 2). Besides, the estimated incidence for overall cardiovascular events based on the available data is 0.292 (95% confidence interval: 0.096-0.488). CHK1 inhibitors administered in tumor patients on top of conventional therapies can not only enhance the antitumor effects, but also induce adverse cerebral cardiovascular events. It is, therefore, of importance to carefully monitor and manage the CHK1 inhibitor-induced adverse effects on the cerebral cardiovascular system while applying CHK1 inhibitors to tumor patients.
Collapse
|
5
|
Li M, Rehman AU, Liu Y, Chen K, Lu S. Dual roles of ATP-binding site in protein kinases: Orthosteric inhibition and allosteric regulation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:87-119. [PMID: 33632471 DOI: 10.1016/bs.apcsb.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases use ATP to phosphorylate other proteins. Phosphorylation (p) universally orchestrates a fine-tuned network modulating a multitude of biological processes. Moreover, the start of networks, ATP-binding site, has been recognized dual roles to impact protein kinases function: (i) orthosteric inhibition, via being blocked to interference ATP occupying and (ii) allosteric regulation, via being altered first to induce further conformational changes. The above two terminologies are widely used in drug design, which has acquired quite a significant progress in the protein kinases field over the past 2 decades. Most small molecular inhibitors directly compete with ATP to implement orthosteric inhibition, still exhibiting irreplaceable and promising therapeutic effects. Additionally, numerous inhibitors can paradoxically lead protein kinases to hyperphosphorylation, even activation, indicative of the allosteric regulation role of the ATP-binding site. Here, we review the quintessential examples that apply for the dual roles in diverse ways. Our work provides an insight into the molecular mechanisms under the dual roles and will be promisingly instructive for future drug development.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kai Chen
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Huang Z, Kondoh E, Visco ZR, Baba T, Matsumura N, Dolan E, Whitaker RS, Konishi I, Fujii S, Berchuck A, Murphy SK. Targeting Dormant Ovarian Cancer Cells In Vitro and in an In Vivo Mouse Model of Platinum Resistance. Mol Cancer Ther 2021; 20:85-95. [PMID: 33037137 DOI: 10.1158/1535-7163.mct-20-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Spheroids exhibit drug resistance and slow proliferation, suggesting involvement in cancer recurrence. The protein kinase C inhibitor UCN-01 (7-hydroxystaurosporine) has shown higher efficacy against slow proliferating and/or quiescent ovarian cancer cells. In this study, tumorigenic potential was assessed using anchorage-independent growth assays and spheroid-forming capacity, which was determined with ovarian cancer cell lines as well as primary ovarian cancers. Of 12 cell lines with increased anchorage-independent growth, 8 formed spheroids under serum-free culture conditions. Spheroids showed reduced proliferation (P < 0.0001) and Ki-67 immunostaining (8% vs. 87%) relative to monolayer cells. Spheroid formation was associated with increased expression of mitochondrial pathway genes (P ≤ 0.001) from Affymetrix HT U133A gene expression data. UCN-01, a kinase inhibitor/mitochondrial uncoupler that has been shown to lead to Puma-induced mitochondrial apoptosis as well as ATP synthase inhibitor oligomycin, demonstrated effectiveness against spheroids, whereas spheroids were refractory to cisplatin and paclitaxel. By live in vivo imaging, ovarian cancer xenograft tumors were reduced after primary treatment with carboplatin. Continued treatment with carboplatin was accompanied by an increase in tumor signal, whereas there was little or no increase in tumor signal observed with subsequent treatment with UCN-01 or oltipraz. Taken together, our findings suggest that genes involved in mitochondrial function in spheroids may be an important therapeutic target in preventing disease recurrence.
Collapse
Affiliation(s)
- Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Zachary R Visco
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- Iwate Medical University, Morioka Iwate, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- Department of Obstetrics and Gynecology, Kindai University, Higashiosaka, Japan
| | - Emma Dolan
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina
| | - Regina S Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Shingo Fujii
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
- Kyoto Okamoto Memorial Hospital, Kyoto, Japan
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina.
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
7
|
Tyagi K, Roy A. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188496. [PMID: 33383102 DOI: 10.1016/j.bbcan.2020.188496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Ovarian cancer, especially high grade serous ovarian cancer is one of the most lethal gynaecological malignancies with high relapse rate and patient death. Notwithstanding development of several targeted treatment and immunotherapeutic approaches, researchers fail to turn ovarian cancer into a manageable disease. Protein kinase C (PKC) and protein kinase D (PKD) are families of evolutionarily conserved serine/threonine kinases that can be activated by a plethora of extracellular stimuli such as hormones, growth factors and G-protein coupled receptor agonists. Recent literature suggests that a signalling cascade initiated by these two protein kinases regulates a battery of cellular and physiological processes involved in tumorigenesis including cell proliferation, migration, invasion and angiogenesis. In an urgent need to discover novel therapeutic interventions against a deadly pathology like ovarian cancer, we have discussed the status quo of PKC/PKD signalling axis in context of this disease. Additionally, apart from discussing the structural properties and activation mechanisms of PKC/PKD, we have provided a comprehensive review of the recent reports on tumor promoting functions of PKC isoforms and discussed the potential of PKC/PKD signalling axis as a novel target in this lethal pathology. Furthermore, in this review, we have discussed the significance of several recent clinical trials and development of small molecule inhibitors that target PKC/PKD signalling axis in ovarian cancer.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
8
|
Deka SJ, Trivedi V. Potentials of PKC in Cancer Progression and Anticancer Drug Development. Curr Drug Discov Technol 2020; 16:135-147. [PMID: 29468974 DOI: 10.2174/1570163815666180219113614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
PKC is a family of serine-threonine kinases which play crucial roles in the regulation of important signal transduction pathways in mammalian cell-biology. These enzymes are themselves regulated by various molecules that can serve as ligands to the regulatory domains and translocate PKC to membrane for activity. The role of PKC in the modulation of both proliferative and apoptotic signaling in cancer has become a subject of immense interest after it was discovered that PKC regulates a myriad of enzymes and transcription factors involved in carcinogenic signaling. Therefore, PKC has served as an attractive target for the development of newer generation of anti-cancer drugs. The following review discusses the potential of PKC to be regarded as a target for anti-cancer therapy. We also review all the molecules that have been discovered so far to be regulators/activators/inhibitors of PKC and also how far these molecules can be considered as potential candidates for anti-cancer drug development based on PKC.
Collapse
Affiliation(s)
- Suman J Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
9
|
Zhao WL, Xing Y, Ye C, Qiu YH, Li Y, Liu XJ, Wang MY, Bi CW, Song DQ, Shao RG. The novel quinolizidine derivate IMB-HDC inhibits STAT5a phosphorylation at 694 and 780 and promotes DNA breakage and cell apoptosis via blocking STAT5a nuclear translocation. Acta Pharmacol Sin 2020; 41:686-697. [PMID: 31932645 PMCID: PMC7471404 DOI: 10.1038/s41401-019-0333-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 01/31/2023] Open
Abstract
Sophoridine is a quinolizidine natural product and the exploration of its derivatives has been carried out, and the potent anticancer compound IMB-HDC was acquired. Although previous studies have revealed that some sophoridine derivatives could induce DNA breakage, the underlying mechanisms of inhibition of DNA damage repair (ATR inactivation) and the apoptosis independent of p53, have not been elucidated. Our research reveals a novel DNA response mechanism different from general DNA-damaging agents, and that sophoridine derivate inhibits the phosphorylation of Tyr694 and Ser780 of STAT5a to induce the lessened shuttle from the cytoplasm to the nucleus, and leads to the decreased nuclear STAT5a and subsequently inhibits the expression of STAT5a target gene RAD51 that contributes to the checkpoint activation, thus inhibiting ATR activation. Meanwhile, IMB-HDC that induced the diminished expression of STAT5a target gene contributes to proliferation and leads to apoptosis. More importantly, we give the first evidence that promoting the effect of Tyr694 phosphorylation on nuclear location and subsequent STAT5a target gene transcription depends on Ser780 increased or unchanged phosphorylation and was not correlated with Ser726 phosphorylation.
Collapse
|
10
|
Ye N, Xu Q, Li W, Wang P, Zhou J. Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors. Curr Top Med Chem 2019; 19:2114-2127. [PMID: 31475899 DOI: 10.2174/1568026619666190902145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Qingfeng Xu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wanwan Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
11
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Review of Chromatographic Bioanalytical Assays for the Quantitative Determination of Marine-Derived Drugs for Cancer Treatment. Mar Drugs 2018; 16:md16070246. [PMID: 30041477 PMCID: PMC6071085 DOI: 10.3390/md16070246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The discovery of marine-derived compounds for the treatment of cancer has seen a vast increase over the last few decades. Bioanalytical assays are pivotal for the quantification of drug levels in various matrices to construct pharmacokinetic profiles and to link drug concentrations to clinical outcomes. This review outlines the different analytical methods that have been described for marine-derived drugs in cancer treatment hitherto. It focuses on the major parts of the bioanalytical technology, including sample type, sample pre-treatment, separation, detection, and quantification.
Collapse
|
13
|
Kim SY, Nair DM, Romero M, Serna VA, Koleske AJ, Woodruff TK, Kurita T. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ 2018; 26:502-515. [PMID: 29988075 DOI: 10.1038/s41418-018-0151-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Platinum-based chemotherapies can result in ovarian insufficiency by reducing the ovarian reserve, a reduction believed to result from apoptosis of immature oocytes via activation/phosphorylation of TAp63α by multiple kinases including CHEK2, CK1, and ABL1. Here we demonstrate that cisplatin (CDDP) induces oocyte apoptosis through a novel pathway and that temporary repression of this pathway fully preserves ovarian function in vivo. Although ABL kinase inhibitors effectively block CDDP-induced apoptosis of oocytes, oocytic ABL1, and ABL2 are dispensable for damage-induced apoptosis. Instead, CDDP activates TAp63α through the ATR > CHEK1 pathway independent of TAp63α hyper-phosphorylation, whereas X-irradiation activates the ATM > CHEK2 > TAp63α-hyper-phosphorylation pathway. Furthermore, oocyte-specific deletion of Trp73 partially protects oocytes from CDDP but not from X-ray, highlighting the fundamental differences of two pathways. Nevertheless, temporary repression of DNA damage response by a kinase inhibitor that attenuates phosphorylation of ATM, ATR, CHEK1, and CHEK2 fully preserves fertility in female mice against CDDP as well as X-ray. Our current study establishes the molecular basis and feasibility of adjuvant therapies to protect ovarian function against two distinctive gonadotoxic therapeutics, CDDP, and ionizing radiation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Devi M Nair
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vanida A Serna
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Zhao W, Liu H, Wang J, Wang M, Shao R. Cyclizing-berberine A35 induces G2/M arrest and apoptosis by activating YAP phosphorylation (Ser127). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:98. [PMID: 29728107 PMCID: PMC5935996 DOI: 10.1186/s13046-018-0759-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND A35 is a novel synthetic cyclizing-berberine recently patented as an antitumor compound. Based on its dual targeting topoisomerase (top) activity, A35 might overcome the resistance of single-target top inhibitors and has no cardiac toxicity for not targeting top2β. In this study we further explored the biological effects and mechanisms of A35. METHODS Antitumor activity of A35 was evaluated by SRB and colony formation assay. G2/M phase arrest (especially M) and first damage of M-phase cells were investigated by flow cytometry, cytogenetic analysis, immunofluorescence, co-immunoprecipitation and WB. The key role of phospho-YAP (Ser127) in decreasing YAP nuclear localization, subsequent G2/M arrest and proliferation inhibition were explored by YAP1-/- cells, mutated Ser127 YAP construct (Ser127A) and TUNEL. RESULTS G2/M arrest induced by A35 was independent of p53. M phase cells at low dose were firstly damaged and most damaged-cells accumulated in M phase, and that was a result of preferring targeting top2α by A35, as top2α is essential to push M phase into next phase, and targeting top2α induced cells arrested at M phase. A35 decreased YAP1 nuclear localization by activating YAP phosphorylation (Ser127) which subsequently regulated the transcription of YAP target genes associated with growth and cycle regulation to induce G2/M arrest and growth inhibition. CONCLUSIONS Our studies suggested the mechanism of G2/M arrest induced by A35 and a novel role of YAP1 (Ser127) in G2/M arrest. As a dual topoisomerase inhibitor characterized by no cardiac toxicity, A35 is a promising topoisomerase anticancer agent and worthy of further development in future.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China
| | - Hong Liu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China
| | - Junxia Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China
| | | | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
15
|
Signore M, Buccarelli M, Pilozzi E, De Luca G, Cappellari M, Fanciulli M, Goeman F, Melucci E, Biffoni M, Ricci-Vitiani L. UCN-01 enhances cytotoxicity of irinotecan in colorectal cancer stem-like cells by impairing DNA damage response. Oncotarget 2018; 7:44113-44128. [PMID: 27286453 PMCID: PMC5190083 DOI: 10.18632/oncotarget.9859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal cancers worldwide. Despite recent progress, the prognosis of advanced stage CRC remains poor, mainly because of cancer recurrence and metastasis. The high morbidity and mortality of CRC has been recently ascribed to a small population of tumor cells that hold the potential of tumor initiation, i.e. cancer stem cells (CSCs), which play a pivotal role in cancer recurrence and metastasis and are not eradicated by current therapy. We screened CRC-SCs in vitro with a library of protein kinase inhibitors and showed that CRC-SCs are resistant to specific inhibition of the major signaling pathways involved in cell survival and proliferation. Nonetheless, broad-spectrum inhibition by the staurosporin derivative UCN-01 blocks CRC-SC growth and potentiates the activity of irinotecan in vitro and in vivo CRC-SC-derived models. Reverse-Phase Protein Microarrays (RPPA) revealed that, albeit CRC-SCs display individual phospho-proteomic profiles, sensitivity of CRC-SCs to UCN-01 relies on the interference with the DNA damage response mediated by Chk1. Combination of LY2603618, a specific Chk1/2 inhibitor, with irinotecan resulted in a significant reduction of CRC-SC growth in vivo, confirming that irinotecan treatment coupled to inhibition of Chk1 represents a potentially effective therapeutic approach for CRC treatment.
Collapse
Affiliation(s)
- Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Gabriele De Luca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marianna Cappellari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Fanciulli
- Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Melucci
- Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Mauro Biffoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:1-111. [PMID: 28097641 PMCID: PMC5315671 DOI: 10.1007/s13659-016-0115-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994-2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from <3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11-12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized.
Collapse
Affiliation(s)
- Satheesh Kumar Palanisamy
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy.
| | - N M Rajendran
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166, Messina, Italy
| |
Collapse
|
17
|
Hussain I, Bania KK, Gour NK, Deka RC. Application of Physicochemical and DFT Based Descriptors for QSAR Study of Camptothecin Derivatives. ChemistrySelect 2016. [DOI: 10.1002/slct.201600609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iftikar Hussain
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| | - Kusum K. Bania
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| | - N. K. Gour
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| | - Ramesh C. Deka
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| |
Collapse
|
18
|
Roskoski R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 2016; 107:249-275. [DOI: 10.1016/j.phrs.2016.03.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
|
19
|
Manic G, Obrist F, Sistigu A, Vitale I. Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2015; 2:e1012976. [PMID: 27308506 PMCID: PMC4905354 DOI: 10.1080/23723556.2015.1012976] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR-CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM-CHK2 and ATR-CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR-CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “TorVergata”; Rome, Italy
| |
Collapse
|
20
|
Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, Venook AP, Loechner S, Rosen LS, Shanahan F, Parry D, Shumway S, Grabowsky JA, Freshwater T, Sorge C, Kang SP, Isaacs R, Munster PN. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol 2015; 33:1060-6. [PMID: 25605849 DOI: 10.1200/jco.2014.57.5027] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics, and recommended phase II dose of MK-8776 (SCH 900776), a potent, selective checkpoint kinase 1 (Chk1) inhibitor, as monotherapy and in combination with gemcitabine in a first-in-human phase I clinical trial in patients with advanced solid tumor malignancies. PATIENTS AND METHODS Forty-three patients were treated by intravenous infusion with MK-8776 at seven dose levels ranging from 10 to 150 mg/m(2) as monotherapy and then in combination with gemcitabine 800 mg/m(2) (part A, n = 26) or gemcitabine 1,000 mg/m(2) (part B, n = 17). Forty percent of patients had three or more prior treatment regimens, and one third of patients had previously received gemcitabine. RESULTS As monotherapy, MK-8776 was well tolerated, with QTc prolongation (19%), nausea (16%), fatigue (14%), and constipation (14%) as the most frequent adverse effects. Combination therapy demonstrated a higher frequency of adverse effects, predominantly fatigue (63%), nausea (44%), decreased appetite (37%), thrombocytopenia (32%), and neutropenia (24%), as well as dose-related, transient QTc prolongation (17%). The median number of doses of MK-8776 administered was five doses, with relative dose-intensity of 0.96. Bioactivity was assessed by γ-H2AX ex vivo assay. Of 30 patients evaluable for response, two showed partial response, and 13 exhibited stable disease. CONCLUSION MK-8776 was well tolerated as monotherapy and in combination with gemcitabine. Early evidence of clinical efficacy was observed. The recommended phase II dose is MK-8776 200 mg plus gemcitabine 1,000 mg/m(2) on days 1 and 8 of a 21-day cycle.
Collapse
Affiliation(s)
- Adil I Daud
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ.
| | - Michelle T Ashworth
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jonathan Strosberg
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jonathan W Goldman
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - David Mendelson
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Gregory Springett
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Alan P Venook
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Sabine Loechner
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Lee S Rosen
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Frances Shanahan
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - David Parry
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Stuart Shumway
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Jennifer A Grabowsky
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Tomoko Freshwater
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Christopher Sorge
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Soonmo Peter Kang
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Randi Isaacs
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| | - Pamela N Munster
- Adil I. Daud, Michelle T. Ashworth, Alan P. Venook, Jennifer A. Grabowsky, and Pamela N. Munster, University of California, San Francisco, San Francisco; Jonathan W. Goldman and Lee S. Rosen, University of California, Los Angeles, Santa Monica, CA; Jonathan Strosberg and Gregory Springett, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; David Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ; and Sabine Loechner, Frances Shanahan, David Parry, Stuart Shumway, Tomoko Freshwater, Christopher Sorge, Soonmo Peter Kang, and Randi Isaacs, Merck, Whitehouse Station, NJ
| |
Collapse
|
21
|
Chinen Y, Kuroda J, Shimura Y, Nagoshi H, Kiyota M, Yamamoto-Sugitani M, Mizutani S, Sakamoto N, Ri M, Kawata E, Kobayashi T, Matsumoto Y, Horiike S, Iida S, Taniwaki M. Phosphoinositide Protein Kinase PDPK1 Is a Crucial Cell Signaling Mediator in Multiple Myeloma. Cancer Res 2014; 74:7418-29. [DOI: 10.1158/0008-5472.can-14-1420] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:257-65. [PMID: 24581946 DOI: 10.1016/j.clon.2014.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Despite tremendous advances in radiotherapy techniques, allowing dose escalation to tumour tissues and sparing of organs at risk, cure rates from radiotherapy or chemoradiotherapy remain suboptimal for most cancers. In tandem with our growing understanding of tumour biology, we are beginning to appreciate that targeting the molecular response to radiation-induced DNA damage holds great promise for selective tumour radiosensitisation. In particular, approaches that inhibit cell cycle checkpoint controls offer a means of exploiting molecular differences between tumour and normal cells, thereby inducing so-called cancer-specific synthetic lethality. In this overview, we discuss cellular responses to radiation-induced damage and discuss the potential of using G2/M cell cycle checkpoint inhibitors as a means of enhancing tumour control rates.
Collapse
Affiliation(s)
- M T Dillon
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK
| | - J S Good
- The Royal Marsden Hospital, London, UK
| | - K J Harrington
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK.
| |
Collapse
|
23
|
Al Nakouzi N, Cotteret S, Commo F, Gaudin C, Rajpar S, Dessen P, Vielh P, Fizazi K, Chauchereau A. Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer. Oncotarget 2014; 5:667-78. [PMID: 24525428 PMCID: PMC3996665 DOI: 10.18632/oncotarget.1574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022] Open
Abstract
Docetaxel is used as a standard treatment in patients with metastatic castration-resistant prostate cancer. However, a large subset of patients develops resistance. Understanding resistance mechanisms, which are largely unknown, will allow identification of predictive biomarkers and therapeutic targets. We established resistant IGR-CaP1 prostate cancer cell lines for different doses of Docetaxel. We investigated gene expression profiles by microarray analyses in these cell lines and generated a signature of 99 highly differentially expressed genes potentially implicated in chemoresistance. We focused on the role of the cell cycle regulator LZTS1, which was under-expressed in the Docetaxel-resistant cell lines, its inhibition resulting from the promoter methylation. Knockdown of LZTS1 in parental cells with siRNA showed that LZTS1 plays a role in the acquisition of the resistant phenotype. Furthermore, we observed that targeting CDC25C, a partner of LZTS1, with the NSC663284 inhibitor specifically killed the Docetaxel-resistant cells. To further investigate the role of CDC25C, we used inhibitors of the mitotic kinases that regulate CDC25C. Inhibition of CHEK1 and PLK1 induced growth arrest and cell death in the resistant cells. Our findings identify an important role of LZTS1 through its regulation of CDC25C in Docetaxel resistance in prostate cancer and suggest that CDC25C, or the mitotic kinases CHEK1 and PLK1, could be efficient therapeutic targets to overcome Docetaxel resistance.
Collapse
Affiliation(s)
- Nader Al Nakouzi
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Sophie Cotteret
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Frédéric Commo
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Catherine Gaudin
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Shanna Rajpar
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | | | - Philippe Vielh
- INSERM U981, LabEx LERMIT, Gustave Roussy
- Department of Pathology, HistoCytoPathology Unit, Translational Research Laboratory and Biobank, Gustave Roussy
- University Paris-Sud 11, France
| | - Karim Fizazi
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- Department of Medicine, Gustave Roussy
- University Paris-Sud 11, France
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| |
Collapse
|
24
|
Fokas E, Prevo R, Hammond EM, Brunner TB, McKenna WG, Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat Rev 2014; 40:109-17. [PMID: 23583268 DOI: 10.1016/j.ctrv.2013.03.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
Abstract
The ataxia telangiectasia and Rad3-related (ATR) plays an important role in maintaining genome integrity during DNA replication through the phosphorylation and activation of Chk1 and regulation of the DNA damage response. Preclinical studies have shown that disruption of ATR pathway can exacerbate the levels of replication stress in oncogene-driven murine tumors to promote cell killing. Additionally, inhibition of ATR can sensitise tumor cells to radiation or chemotherapy. Accumulating evidence suggests that targeting ATR can selectively sensitize cancer cells but not normal cells to DNA damage. Furthermore, in hypoxic conditions, ATR blockade results in overloading replication stress and DNA damage response causing cell death. Despite the attractiveness of ATR inhibition in the treatment of cancer, specific ATR inhibitors have remained elusive. In the last two years however, selective ATR inhibitors suitable for in vitro and - most recently - in vivo studies have been identified. In this article, we will review the literature on ATR function, its role in DDR and the potential of ATR inhibition to enhance the efficacy of radiation and chemotherapy.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, Oxford University, Oxford, United Kingdom; Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
DNA repair inhibition in anti-cancer therapeutics. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Shukla P, Solanki A, Ghosh K, Vundinti BR. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications. Eur J Haematol 2013; 91:381-93. [DOI: 10.1111/ejh.12169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Pallavi Shukla
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| | - Avani Solanki
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| | - Kanjaksha Ghosh
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| | - Babu Rao Vundinti
- Department of Cytogenetics; National Institute of Immunohaematology (NIIH); Mumbai India
| |
Collapse
|
27
|
Abstract
Oncogenic mutant K-Ras is highly prevalent in multiple human tumors. Despite significant efforts to directly target Ras activity, no K-Ras-specific inhibitors have been developed and taken into the clinic. Since Ras proteins must be anchored to the inner leaflet of the plasma membrane (PM) for full biological activity, we devised a high-content screen to identify molecules with ability to displace K-Ras from the PM. Here we summarize the biochemistry and biology of three classes of compound identified by this screening method that inhibit K-Ras PM targeting: staurosporine and analogs, fendiline, and metformin. All three classes of compound significantly abrogate cell proliferation and Ras signaling in K-Ras-transformed cancer cells. Taken together, these studies provide an important proof of concept that blocking PM localization of K-Ras is a tractable therapeutic target.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
28
|
Raleigh DR, Haas-Kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 2013; 9:219-33. [PMID: 23414472 DOI: 10.2217/fon.12.185] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular reaction to genomic instability includes a network of signal transduction pathways collectively referred to as the DNA damage response (DDR). Activated by a variety of DNA lesions, the DDR orchestrates cell cycle arrest and DNA repair, and initiates apoptosis in instances where damage cannot be repaired. As such, disruption of the DDR increases the prevalence of DNA damage secondary to incomplete repair, and in doing so, enhances radiation-induced cytotoxicity. This article describes the molecular agents and their targets within DDR pathways that sensitize cells to radiation. Moreover, it reviews the therapeutic implications of these compounds, provides an overview of relevant clinical trials and offers a viewpoint on the evolution of the field in the years to come.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
29
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
30
|
Cho KJ, Park JH, Hancock JF. Staurosporine: A new tool for studying phosphatidylserine trafficking. Commun Integr Biol 2013; 6:e24746. [PMID: 23986809 PMCID: PMC3737755 DOI: 10.4161/cib.24746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022] Open
Abstract
The Ras GTPases comprising three main isoforms H-, N- and K-Ras operate at the plasma membrane as molecular switches in essential signaling pathways. Active concentration of the minor phospholipid phosphatidylserine in the inner leaflet of the plasma membrane contributes to the electrostatic potential that is required for K-Ras anchoring to the plasma membrane. We recently observed that staurosporine and related analogs: 7-oxostaurosporine, UCN-01 and UCN-02, long known as relatively non-specific protein kinase inhibitors, block endosomal sorting and recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine to endosomes and endomembranes with concomitant mislocalization of K-Ras. Staurosporines are therefore a new tool to study phosphatidylserine trafficking. We discuss whether the mechanism of action of UCN-01, an FDA-approved staurosporine analog used as an anti-cancer therapeutic, is related to effects on phosphatidylserine subcellular distribution. Given the high prevalence of expression of constitutively active K-Ras in human cancers, we ask whether inhibitors of phosphatidylserine trafficking may have important therapeutic applications.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology; The University of Texas Medical School at Houston; Houston, TX USA
| | | | | |
Collapse
|
31
|
Kamachi H, Tanaka K, Yanagita RC, Murakami A, Murakami K, Tokuda H, Suzuki N, Nakagawa Y, Irie K. Structure–activity studies on the side chain of a simplified analog of aplysiatoxin (aplog-1) with anti-proliferative activity. Bioorg Med Chem 2013; 21:2695-702. [DOI: 10.1016/j.bmc.2013.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/25/2022]
|
32
|
Yap TA, Molife LR, Blagden SP, de Bono S. Targeting cell cycle kinases and kinesins in anticancer drug development. Expert Opin Drug Discov 2013; 2:539-60. [PMID: 23484760 DOI: 10.1517/17460441.2.4.539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cell cycle is regulated by kinases such as the cyclin-dependent kinases (CDKs) and non-CDKs, which include Aurora and polo-like kinases, as well as checkpoint proteins. Mitotic kinesins are involved in the establishment of the mitotic spindle formation and function, and also play a role in cell cycle control. The disruption of the cell cycle is a hallmark of malignancy. Genetic or epigenetic events result in the upregulation of these kinases and mitotic kinesins in a myriad of tumour types, suggesting that their inhibition could result in preferential targeting of malignant cells. Such findings make the development of these inhibitors a rational and attractive new area for cancer therapeutics. Although challenges of potency and non-specificity have hampered their progress through the clinic, several novel compounds are presently in various phases of clinical trial evaluation.
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | | | | | | |
Collapse
|
33
|
Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D'Incalci M, Piccolo S, Veronesi A, Zambelli A, Del Sal G, Di Leo A. Targeting triple negative breast cancer: is p53 the answer? Cancer Treat Rev 2013; 39:541-50. [PMID: 23321033 DOI: 10.1016/j.ctrv.2012.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 01/15/2023]
Abstract
Triple negative breast cancers, which are defined by lack of expression of estrogen, progesterone, or HER2 receptors, represent approximately 15% of all breast cancers, although they account for a much higher proportional of breast cancer mortality. This is due both to their innate aggressive biological characteristics, but also to lack of effective therapies. Conventional chemotherapy is currently the only treatment option, thus there is a critical need to find new and effective targeted therapies in this disease. While investigation of agents such as poly (ADP-ribose) polymerase (PARP) inhibitors and EGFR inhibitors continues, results from recent clinical trials indicate that these therapies are not as active in sporadic triple negative breast cancers as initially hoped. It is important therefore to consider other emerging therapeutic agents. Mutation in p53 is found in the vast majority of triple negative breast cancers, and as such is a target of particular interest. Within this review, several agents with potential activity against aberrant p53 signaling have been considered, as a novel approach to finding an effective targeted therapy for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Natalie Turner
- Sandro Pitigliani Medical Oncology Unit, Department of Oncology, Hospital of Prato, Prato, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Derijks-Engwegen JY, Cats A, Smits ME, Schellens JH, Beijnen JH. Improving colorectal cancer management: the potential of proteomics. Biomark Med 2012; 2:253-89. [PMID: 20477414 DOI: 10.2217/17520363.2.3.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Successful treatment is heavily dependent on tumor stage at the time of detection, but unfortunately CRC is often only detected in advanced stages. New biomarkers in the form of genes or proteins that can be used for diagnosis, prognostication, follow-up, and treatment selection and monitoring could be of great benefit for the management of CRC. Furthermore, proteins could prove valuable new targets for therapy. Therefore, clinical proteomics has gained a lot of scientific interest in this regard. To get an overall insight into the extent to which this research has contributed to a better management of CRC, we give a comprehensive overview of the results of proteomics research on CRC, focusing on expression proteomics, in other words, protein profiling studies. Furthermore, we evaluate the potential of the discriminating proteins identified in this research for clinical use as biomarkers for (early) diagnosis, prognosis and follow-up of CRC or as targets for new therapeutic regimens.
Collapse
|
35
|
|
36
|
Li T, Christensen SD, Frankel PH, Margolin KA, Agarwala SS, Luu T, Mack PC, Lara PN, Gandara DR. A phase II study of cell cycle inhibitor UCN-01 in patients with metastatic melanoma: a California Cancer Consortium trial. Invest New Drugs 2012; 30:741-8. [PMID: 20967484 PMCID: PMC3277821 DOI: 10.1007/s10637-010-9562-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 10/03/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genetic abnormalities in cell cycle control are common in malignant melanoma. UCN-01 (7-hydroxystaurosporine) is an investigational agent that exhibits antitumor activity by perturbing the cancer cell cycle. A patient with advanced melanoma experienced a partial response in a phase I trial of single agent UCN-01. We sought to determine the activity of UCN-01 against refractory metastatic melanoma in a phase II study. Patients and methods Patients with advanced melanoma received UCN-01 at 90 mg/m(2) over 3 h on cycle 1, reduced to 45 mg/m(2) over 3 h for subsequent cycles, every 21 days. Primary endpoint was tumor response. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). A two-stage (17 + 16), single arm phase II design was employed. A true response rate of ≥ 20% (i.e., at least one responder in the first stage, or at least four responders overall) was to be considered promising for further development of UCN-01 in this setting. Results Seventeen patients were accrued in the first stage. One patient was inevaluable for response. Four (24%) patients had stable disease, and 12 (71%) had disease progression. As there were no responders in the first stage, the study was closed to further accrual. Median PFS was 1.3 months (95% CI, 1.2-3.0) while median OS was 7.3 months (95% CI, 3.4-18.4). One-year and two year OS rates were 41% and 12%, respectively. A median of two cycles were delivered (range, 1-18). Grade 3 treatment-related toxicities include hyperglycemia (N = 2), fatigue (N = 1), and diarrhea (N = 1). One patient experienced grade 4 creatinine elevation and grade 4 anemia possibly due to UCN-01. No dose modification was required as these patients had disease progression. Conclusion Although well tolerated, UCN-01 as a single agent did not have sufficient clinical activity to warrant further study in refractory melanoma.
Collapse
Affiliation(s)
- Tianhong Li
- Division of Hematology & Oncology, University of California Davis Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen T, Stephens PA, Middleton FK, Curtin NJ. Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today 2011; 17:194-202. [PMID: 22192883 DOI: 10.1016/j.drudis.2011.12.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 12/16/2022]
Abstract
Cell survival following DNA damage depends on activating checkpoints to arrest proliferation. Most cancer cells have dysregulated G1 checkpoints making them dependent on their S and G2 checkpoints, which are activated by ATR/Chk1 signalling. Thus, inhibiting ATR or Chk1 should selectively sensitise cancer cells to DNA damage. Genetic inactivation of ATR and Chk1 abrogates cell cycle arrest and enhances cytotoxicity following exposure to DNA-damaging agents. Similar effects were seen with small-molecule Chk1 inhibitors in preclinical studies, and clinical trial data are starting to emerge. Recently, potent ATR inhibitors have been identified that also sensitise cancer cells in vitro. ATR and Chk1 inhibitors might also cause 'synthetic lethality' in tumour cells defective in defined DNA repair pathways.
Collapse
Affiliation(s)
- Tao Chen
- Newcastle University, Northern Institute for Cancer Research, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
38
|
Alexander BM, Pinnell N, Wen PY, D'Andrea A. Targeting DNA repair and the cell cycle in glioblastoma. J Neurooncol 2011; 107:463-77. [PMID: 22113697 DOI: 10.1007/s11060-011-0765-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/14/2011] [Indexed: 01/25/2023]
Abstract
Glioblastoma is a disease with poor outcomes despite standard therapy. Specific targeting of the DNA damage response is a strategy that is becoming increasingly employed in oncology and has intriguing potential for improving outcomes in glioblastoma. DNA damage targeting has implications for improving current therapy as well as the potential to leverage inherent differences in glioblastoma cells to widen the therapeutic window.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
39
|
Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2011; 108:19629-34. [PMID: 22106282 DOI: 10.1073/pnas.1117544108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are a new group of anticancer drugs with tumor selective toxicity. Normal cells are relatively resistant to HDACi-induced cell death compared with cancer cells. Previously, we found that vorinostat induces DNA breaks in normal and transformed cells, which normal but not cancer cells can repair. In this study, we found that checkpoint kinase 1 (Chk1), a component of the G2 DNA damage checkpoint, is important in the resistance of normal cells to HDACi in vitro and in vivo. Inhibition of Chk1 activity with Chk1 inhibitor (UCN-01, AZD7762, or CHIR-124) in normal cells increases their sensitivity to HDACi (vorinostat, romidepsin, or entinostat) induced cell death, associated with extensive mitotic disruption. Mitotic abnormalities included loss of sister chromatid cohesion and chromosomal disruption. Inhibition of Chk1 did increase HDACi-induced cell death of transformed cells. Thus, Chk1 is an important factor in the resistance of normal cells, and some transformed cells, to HDACi-induced cell death. Use of Chk1 inhibitors in combination with anticancer agents to treat cancers may be associated with substantial toxicity.
Collapse
|
40
|
Zhang Y, Johansson E, Miller ML, Jänicke RU, Ferguson DJ, Plas D, Meller J, Anderson MW. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS One 2011; 6:e25284. [PMID: 21980415 PMCID: PMC3184134 DOI: 10.1371/journal.pone.0025284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022] Open
Abstract
Here we identified an evolutionarily highly conserved and ubiquitously expressed protein (C9orf82) that shows structural similarities to the death effector domain of apoptosis-related proteins. RNAi knockdown of C9orf82 induced apoptosis in A-549 and MCF7/casp3-10b lung and breast carcinoma cells, respectively, but not in cells lacking caspase-3, caspase-10 or both. Apoptosis was associated with activated caspases-3, -8, -9 and -10, and inactivation of caspases 10 or 3 was sufficient to block apoptosis in this pathway. Apoptosis upon knockdown of C9orf82 was associated with increased caspase-10 expression and activation, which was required for the generation of an 11 kDa tBid fragment and activation of Caspase-9. These data suggest that C9orf82 functions as an anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. We designate this ubiquitously expressed and evolutionarily conserved anti-apoptotic protein Conserved Anti-Apoptotic Protein (CAAP). We also demonstrated that treatment of MCF7/casp3-10b cells with staurosporine and etoposides induced apoptosis and knockdown of CAAP expression. This implies that the CAAP protein could be a target for chemotherapeutic agents.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Elisabet Johansson
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Marian L. Miller
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Clinical Center of the University of Düsseldorf, Düsseldorf, Germany
| | - Donald J. Ferguson
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - David Plas
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jarek Meller
- Division of Biomedical Informatics, Departments of Environmental Health and Biomedical Engineering, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Marshall W. Anderson
- Department of Medicine, Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mitchell C, Hamed HA, Cruickshanks N, Tang Y, Bareford MD, Hubbard N, Tye G, Yacoub A, Dai Y, Grant S, Dent P. Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death. Cancer Biol Ther 2011; 12:215-28. [PMID: 21642769 PMCID: PMC3230482 DOI: 10.4161/cbt.12.3.16218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/06/2011] [Indexed: 02/08/2023] Open
Abstract
The present studies were initiated to determine in greater molecular detail the regulation of CHK1 inhibitor lethality in transfected and infected breast cancer cells and using genetic models of transformed fibrobalsts. Multiple MEK1/2 inhibitors (PD184352, AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01 (7-hydroxystaurosporine), AZD7762) to kill mammary carcinoma cells and transformed fibroblasts. In transformed cells, CHK1 inhibitor -induced activation of ERK1/2 was dependent upon activation of SRC family non-receptor tyrosine kinases as judged by use of multiple SRC kinase inhibitors (PP2, Dasatinib; AZD0530), use of SRC/FYN/YES deleted transformed fibroblasts or by expression of dominant negative SRC. Cell killing by SRC family kinase inhibitors and CHK1 inhibitors was abolished in BAX/BAK -/- transformed fibroblasts and suppressed by over expression of BCL-XL. Treatment of cells with BCL-2/BCL-XL antagonists promoted SRC inhibitor + CHK1 inhibitor -induced lethality in a BAX/BAK-dependent fashion. Treatment of cells with [SRC + CHK1] inhibitors radio-sensitized tumor cells. These findings argue that multiple inhibitors of the SRC-RAS-MEK pathway interact with multiple CHK1 inhibitors to kill transformed cells.
Collapse
Affiliation(s)
- Clint Mitchell
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Hossein A Hamed
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Nichola Cruickshanks
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Yong Tang
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - M. Danielle Bareford
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Nisan Hubbard
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Gary Tye
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Adly Yacoub
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| | - Yun Dai
- Department of Medicine; Virginia Commonwealth University; School of Medicine; Richmond, VA USA
| | - Steven Grant
- Department of Medicine; Virginia Commonwealth University; School of Medicine; Richmond, VA USA
| | - Paul Dent
- Department of Neurosurgery; Virginia commonwealth University; School of Medicine; Richmond, VA USA
| |
Collapse
|
42
|
Marti GE, Stetler-Stevenson M, Grant ND, White T, Figg WD, Tohnya T, Jaffe ES, Dunleavy K, Janik JE, Steinberg SM, Wilson WH. Phase I trial of 7-hydroxystaurosporine and fludararbine phosphate: in vivo evidence of 7-hydroxystaurosporine induced apoptosis in chronic lymphocytic leukemia. Leuk Lymphoma 2011; 52:2284-92. [PMID: 21745173 DOI: 10.3109/10428194.2011.589547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is a phase I study of 7-hydroxystaurosporine (UCN-01) and fludararbine monophosphate (FAMP) in relapsed lymphoma. UCN-01 alone was administered in cycle 1 and with FAMP in cycles 2-6. FAMP was escalated in cohorts from 1 to 5 days. UCN-01 and FAMP pharmacokinetics and apoptosis of malignant lymphocytes was evaluated. Eighteen patients were enrolled. Standard FAMP with UCN-01 was tolerated without dose-limiting toxicity (DLT) and those seen were common to either agent alone. One patient died due to Stevens-Johnson syndrome. Seven of 18 patients responded. No pharmacological effect of UCN-01 by FAMP was noted. Lymphocytosis occurred in 15 of 18 patients following UCN-01 to paradoxically increase circulating tumor cells. UCN-01 induced apoptosis in six of eight patients with chronic lymphocytic leukemia (CLL). UCN-01 does not increase FAMP toxicity. Transient lymphocytosis followed by apoptosis occurs with UCN-01. Mobilization from tissue reservoirs may play a role in the induction of cell death in malignant lymphocytes.
Collapse
Affiliation(s)
- Gerald E Marti
- Laboratory of Stem Cell Biology, Cellular and Tissue Therapy Branch, Division of Cell and Gene Therapies,Office of Cellular, Tissues and Gene Therapies, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baxter BK, DiDone L, Ogu D, Schor S, Krysan DJ. Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules. ACS Chem Biol 2011; 6:502-10. [PMID: 21294551 DOI: 10.1021/cb100399x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although protein kinases have recently emerged as important drug targets, the anti-infective potential of protein kinase inhibitors has not been developed extensively. We identified the mammalian PDK1 inhibitor KP-372-1 as a potent antifungal molecule with activity against yeast and fungal biofilms using a screening strategy for protein kinase inhibitors that block the cell wall stress response in yeast. Genetic and biochemical studies indicate that KP-372-1 inhibits fungal PDK1 orthologs (Pkh kinases) as part of its mode of action and support a role for Pkh kinases in eisosome assembly. Two other structurally distinct molecules that inhibit PDK1, OSU-03012 and UCN-01, also have antifungal activity. Taken together, these data indicate that fungal PDK1 orthologs are promising targets for new antifungal drug development.
Collapse
Affiliation(s)
- Bonnie K. Baxter
- Department of Pediatrics and ‡Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Louis DiDone
- Department of Pediatrics and ‡Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Duana Ogu
- Department of Pediatrics and ‡Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Stanford Schor
- Department of Pediatrics and ‡Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Damian J. Krysan
- Department of Pediatrics and ‡Department of Microbiology/Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
44
|
Connell CM, Shibata A, Tookman LA, Archibald KM, Flak MB, Pirlo KJ, Lockley M, Wheatley SP, McNeish IA. Genomic DNA damage and ATR-Chk1 signaling determine oncolytic adenoviral efficacy in human ovarian cancer cells. J Clin Invest 2011; 121:1283-97. [PMID: 21383502 DOI: 10.1172/jci43976] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/12/2011] [Indexed: 12/22/2022] Open
Abstract
Oncolytic adenoviruses replicate selectively within and lyse malignant cells. As such, they are being developed as anticancer therapeutics. However, the sensitivity of ovarian cancers to adenovirus cytotoxicity varies greatly, even in cells of similar infectivity. Using both the adenovirus E1A-CR2 deletion mutant dl922-947 and WT adenovirus serotype 5 in a panel of human ovarian cancer cell lines that cover a 3-log range of sensitivity, we observed profound overreplication of genomic DNA only in highly sensitive cell lines. This was associated with the presence of extensive genomic DNA damage. Inhibition of ataxia telangiectasia and Rad3-related checkpoint kinase 1 (ATR-Chk1), but not ataxia telangiectasia mutated (ATM), promoted genomic DNA damage and overreplication in resistant and partially sensitive cells. This was accompanied by increased adenovirus cytotoxicity both in vitro and in vivo in tumor-bearing mice. We also demonstrated that Cdc25A was upregulated in highly sensitive ovarian cancer cell lines after adenovirus infection and was stabilized after loss of Chk1 activity. Knockdown of Cdc25A inhibited virus-induced DNA damage in highly sensitive cells and blocked the effects of Chk1 inhibition in resistant cells. Finally, inhibition of Chk1 decreased homologous recombination repair of virus-induced genomic DNA double-strand breaks. Thus, virus-induced host cell DNA damage signaling and repair are key determinants of oncolytic adenoviral activity, and promoting unscheduled DNA synthesis and/or impeding homologous recombination repair could potentiate the effects of oncolytic adenoviruses in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Claire M Connell
- Centre for Molecular Oncology and Imaging, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu J, Dauchy RT, Tirrell PC, Wu SS, Lynch DT, Jitawatanarat P, Burrington CM, Dauchy EM, Blask DE, Greene MW. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts. Cancer Res 2011; 71:2622-31. [PMID: 21310824 DOI: 10.1158/0008-5472.can-10-3837] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of diurnal and circadian rhythms and cell proliferation are coupled in all mammals, including humans. However, the molecular mechanisms by which diurnal and circadian rhythms regulate cell proliferation are relatively poorly understood. In this study, we report that tumor growth in nude rats bearing human steroid receptor-negative MCF-7 breast tumors can be significantly accelerated by exposing the rats to light at night (LAN). Under normal conditions of an alternating light/dark cycle, proliferating cell nuclear antigen (PCNA) levels in tumors were maximal in the early light phase but remained at very low levels throughout the daily 24-hour cycle period monitored. Surprisingly, PCNA was expressed in tumors continually at a high level throughout the entire 24-hour period in LAN-exposed nude rats. Daily fluctuations of Akt and mitogen activated protein kinase activation in tumors were also disrupted by LAN. These fluctuations did not track with PCNA changes, but we found that activation of the Akt stimulatory kinase phosphoinositide-dependent protein kinase 1 (PDK1) directly correlated with PCNA levels. Expression of insulin-like growth factor 1 receptor (IGF-1R), an upstream signaling molecule for PDK1, also correlated with fluctuations of PDK1/PCNA in the LAN group. In addition, circulating IGF-1 concentrations were elevated in LAN-exposed tumor-bearing nude rats. Finally, RNAi-mediated knockdown of PDK1 led to a reduction in PCNA expression and cell proliferation in vitro and tumor growth in vivo, indicating that PDK1 regulates breast cancer growth in a manner correlated with PCNA expression. Taken together, our findings demonstrate that LAN exposure can accelerate tumor growth in vivo, in part through continuous activation of IGF-1R/PDK1 signaling.
Collapse
Affiliation(s)
- Jinghai Wu
- Bassett Research Institute and Department of Internal Medicine, Bassett Healthcare Network, Cooperstown, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Protein kinase C: an attractive target for cancer therapy. Cancers (Basel) 2011; 3:531-67. [PMID: 24212628 PMCID: PMC3756376 DOI: 10.3390/cancers3010531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays an important role during all stages of carcinogenesis and the development of chemoresistance in tumor cells may be due to their selective defects in the intracellular signaling proteins, central to apoptotic pathways. Consequently, many studies have focused on rendering the chemotherapy more effective in order to prevent chemoresistance and pre-clinical and clinical data has suggested that protein kinase C (PKC) may represent an attractive target for cancer therapy. Therefore, a complete understanding of how PKC regulates apoptosis and chemoresistance may lead to obtaining a PKC-based therapy that is able to reduce drug dosages and to prevent the development of chemoresistance.
Collapse
|
47
|
Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 2010; 17:88-96. [PMID: 21087899 DOI: 10.1016/j.molmed.2010.10.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 11/23/2022]
Abstract
Defects in p53 function, which occur frequently in human cancers due to mutations in TP53 or disruptions in the p53 regulatory pathway, render cells dependent on CHK1 (Checkpoint Kinase 1) to activate cell cycle checkpoints. In the presence of DNA damage or replication stress, inhibition of CHK1 leads to "mitotic catastrophe" and cell death in p53-deficient tumors while sparing p53-proficient cells. CHK1 inhibitors sensitize tumors to a variety of DNA-damaging agents or antimetabolites in preclinical models and are being evaluated in early phase clinical trials. In this review, we summarize recent advances and controversies in the development and application of CHK1 inhibitors as cancer therapeutics.
Collapse
|
48
|
Mitchell C, Park M, Eulitt P, Yang C, Yacoub A, Dent P. Poly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in carcinoma cells. Mol Pharmacol 2010; 78:909-17. [PMID: 20696794 PMCID: PMC2981366 DOI: 10.1124/mol.110.067199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/09/2010] [Indexed: 01/10/2023] Open
Abstract
Prior studies have demonstrated that inhibition of CHK1 can promote the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and phosphorylation of histone H2AX and that inhibition of poly(ADP-ribose) polymerase 1 (PARP1) can affect growth factor-induced ERK1/2 activation. The present studies were initiated to determine whether CHK1 inhibitors interacted with PARP1 inhibition to facilitate apoptosis. Transient expression of dominant-negative CHK1 raised basal ERK1/2 activity and prevented CHK1 inhibitors from activating ERK1/2. CHK1 inhibitors modestly increased the levels of PARP1 ADP ribosylation and molecular or small-molecule inhibition of PARP1 blocked CHK1 inhibitor-stimulated histone H2AX phosphorylation and activation of ERK1/2. Stimulated histone H2AX phosphorylation was ataxia telangiectasia-mutated protein-dependent. Multiple CHK1 inhibitors interacted in a greater than additive fashion with multiple PARP1 inhibitors to cause transformed cell-killing in short-term viability assays and synergistically killed tumor cells in colony-formation assays. Overexpression of BCL-xL or loss of BAX/BAK function, but not the function of BID, suppressed CHK1 inhibitor + PARP1 inhibitor lethality. Inhibition of BCL-2 family protein function enhanced CHK1 inhibitor + PARP1 inhibitor lethality and restored drug-induced cell-killing in cells overexpressing BCL-xL. Thus, PARP1 plays an important role in regulating the ability of CHK1 inhibitors to activate ERK1/2 and the DNA damage response. An inability of PARP1 to modulate this response results in transformed cell death mediated through the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Clint Mitchell
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | |
Collapse
|
49
|
Stevens JB, Abdallah BY, Regan SM, Liu G, Bremer SW, Ye CJ, Heng HH. Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation. Mol Cytogenet 2010; 3:20. [PMID: 20959006 PMCID: PMC2974731 DOI: 10.1186/1755-8166-3-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/19/2010] [Indexed: 11/17/2022] Open
Abstract
Mitotic cell death is an important form of cell death, particularly in cancer. Chromosome fragmentation is a major form of mitotic cell death which is identifiable during common cytogenetic analysis by its unique phenotype of progressively degraded chromosomes. This morphology however, can appear similar to the morphology of premature chromosome condensation (PCC) and thus, PCC has been at times confused with chromosome fragmentation. In this analysis the phenomena of chromosome fragmentation and PCC are reviewed and their similarities and differences are discussed in order to facilitate differentiation of the similar morphologies. Furthermore, chromosome pulverization, which has been used almost synonymously with PCC, is re-examined. Interestingly, many past reports of chromosome pulverization are identified here as chromosome fragmentation and not PCC. These reports describe broad ranging mechanisms of pulverization induction and agree with recent evidence showing chromosome fragmentation is a cellular response to stress. Finally, biological aspects of chromosome fragmentation are discussed, including its application as one form of non-clonal chromosome aberration (NCCA), the driving force of cancer evolution.
Collapse
Affiliation(s)
- Joshua B Stevens
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Batoul Y Abdallah
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Sarah M Regan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Guo Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Steven W Bremer
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Christine J Ye
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
- Karmanos Cancer Institute, Detroit, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
50
|
The effects of G2-phase enrichment and checkpoint abrogation on low-dose hyper-radiosensitivity. Int J Radiat Oncol Biol Phys 2010; 77:1509-17. [PMID: 20637979 DOI: 10.1016/j.ijrobp.2010.01.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 11/21/2022]
Abstract
PURPOSE An association between low-dose hyper-radiosensitivity (HRS) and the "early" G2/M checkpoint has been established. An improved molecular understanding of the temporal dynamics of this relationship is needed before clinical translation can be considered. This study was conducted to characterize the dose response of the early G2/M checkpoint and then determine whether low-dose radiation sensitivity could be increased by synchronization or chemical inhibition of the cell cycle. METHODS AND MATERIALS Two related cell lines with disparate HRS status were used (MR4 and 3.7 cells). A double-thymidine block technique was developed to enrich the G2-phase population. Clonogenic cell survival, radiation-induced G2-phase cell cycle arrest, and deoxyribonucleic acid double-strand break repair were measured in the presence and absence of inhibitors to G2-phase checkpoint proteins. RESULTS For MR4 cells, the dose required to overcome the HRS response (approximately 0.2 Gy) corresponded with that needed for the activation of the early G2/M checkpoint. As hypothesized, enriching the number of G2-phase cells in the population resulted in an enhanced HRS response, because a greater proportion of radiation-damaged cells evaded the early G2/M checkpoint and entered mitosis with unrepaired deoxyribonucleic acid double-strand breaks. Likewise, abrogation of the checkpoint by inhibition of Chk1 and Chk2 also increased low-dose radiosensitivity. These effects were not evident in 3.7 cells. CONCLUSIONS The data confirm that HRS is linked to the early G2/M checkpoint through the damage response of G2-phase cells. Low-dose radiosensitivity could be increased by manipulating the transition of radiation-damaged G2-phase cells into mitosis. This provides a rationale for combining low-dose radiation therapy with chemical synchronization techniques to improve increased radiosensitivity.
Collapse
|