1
|
Liu G, Zhang S, Mo Z, Huang T, Yu Q, Lu X, He P. Association of thrombocytopenia with immune checkpoint inhibitors: a large-scale pharmacovigilance analysis based on the data from FDA adverse event reporting system database. Front Pharmacol 2024; 15:1407894. [PMID: 38953101 PMCID: PMC11215080 DOI: 10.3389/fphar.2024.1407894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction: An increasing number of immune-related adverse events (irAEs) induced by immune checkpoint inhibitors (ICIs) have been reported during clinical treatment. We aimed to explore the clinical characteristics of patients with ICIs-induced ITP under different therapeutic strategies based on the FAERS database and explore the potential biological mechanisms in combination with TCGA pan-cancer data. Methods: Data from FAERS were collected for ICIs adverse reactions between January 2012 and December 2022. Disproportionality analysis identified ICIs-induced ITP in the FAERS database using the reporting odds ratio (ROR), proportional reporting ratio (PRP), Bayesian confidence propagation neural network (BCPNN), and multi-item gamma Poisson shrinker algorithms (MGPS). The potential biological mechanisms underlying ITP induced by ICIs were examined using TCGA transcriptome data on cancers. Results: In the FAERS, 345 ICIs-induced ITP reports were retrieved, wherein 290 (84.06%) and 55 (15.94%) were reported as monotherapy and combination therapy, respectively. The median age of the reported patients with ICIs-induced ITP was 69 years (IQR 60-76), of which 62 (18%) died and 47 (13.6%) had a life-threatening outcome. The majority of reported indications were lung, skin, and bladder cancers, and the median time to ITP after dosing was 42 days (IQR 17-135), with 64 patients (43.5%) experiencing ITP within 30 days of dosing and 88 patients experiencing ITP in less than 2 months (59.9%). The occurrence of ICIs-induced ITP may be associated with ICIs-induced dysregulation of the mTORC1 signaling pathway and megakaryocyte dysfunction. Conclusion: There were significant reporting signals for ITP with nivolumab, pembrolizumab, cemiplimab, atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab/ipilimumab, and pembrolizumab/ipilimumab. Patients treated with anti-PD-1 in combination with anti-CTLA-4 are more likely to have an increased risk of ICIs-induced ITP. Patients with melanoma are at a higher risk of developing ITP when treated with ICI and should be closely monitored for this risk within 60 days of treatment. The potential biological mechanism of ICIs-induced ITP may be related to the dysfunction of megakaryocyte autophagy through the overactivation of the mTOR-related signaling pathway. This study provides a comprehensive understanding of ICIs-induced ITP. Clinicians should pay attention to this potentially fatal adverse reaction.
Collapse
Affiliation(s)
- Geliang Liu
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Shuxian Zhang
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Zhuang Mo
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Tai Huang
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Xuechun Lu
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Hematology, The Second Medical Center of the China PLA General Hospital and National Center for Clinical Medicine of Geriatric Diseases, Beijing, China
| | - Peifeng He
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Sciences, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Li M, Xu F, Liu Z, Wang C, Zhao Y, Zhu G, Shen X. TNF Signaling Acts Downstream of MiR-322/-503 in Regulating DM1 Myogenesis. Front Endocrinol (Lausanne) 2022; 13:843202. [PMID: 35464065 PMCID: PMC9021394 DOI: 10.3389/fendo.2022.843202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expanded CUG repeats and usually displays defective myogenesis. Although we previously reported that ectopic miR-322/-503 expression improved myogenesis in DM1 by targeting the toxic RNA, the underlying pathways regulating myogenesis that were aberrantly altered in DM1 and rescued by miR-322/-503 were still unknown. Here, we constructed DM1 and miR-322/-503 overexpressing DM1 myoblast models, which were subjected to in vitro myoblast differentiation along with their corresponding controls. Agreeing with previous findings, DM1 myoblast showed remarkable myogenesis defects, while miR-322/-503 overexpression successfully rescued the defects. By RNA sequencing, we noticed that Tumor necrosis factor (TNF) signaling was the only pathway that was significantly and oppositely altered in these two experimental sets, with it upregulated in DM1 and inhibited by miR-322/-503 overexpression. Consistently, hyperactivity of TNF signaling was detected in two DM1 mouse models. Blocking TNF signaling significantly rescued the myogenesis defects in DM1. On the contrary, TNF-α treatment abolished the rescue effect of miR-322/-503 on DM1 myogenesis. Taking together, these results implied that TNF signaling mediated the myogenesis defects in DM1 and might act downstream of miR-322/-503 in regulating the myogenesis in DM1. Moreover, the inhibition of TNF signaling benefiting myogenesis in DM1 provided us with a novel therapeutic strategy for DM1.
Collapse
Affiliation(s)
- Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yun Zhao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- *Correspondence: Xiaopeng Shen, ; Guoping Zhu,
| | - Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- *Correspondence: Xiaopeng Shen, ; Guoping Zhu,
| |
Collapse
|
3
|
Zhang HQ, Zhou JM, Zhang SH, Bian L, Xiao JY, Hao XP, Jiang ZF, Wang T. Efficacy and safety of low-dose everolimus combined with endocrine drugs for patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1493. [PMID: 34805355 PMCID: PMC8573446 DOI: 10.21037/atm-21-4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/18/2021] [Indexed: 11/09/2022]
Abstract
Background To analyze the efficacy and safety of everolimus 5 mg/day in combination with endocrine drugs in the treatment of hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer using real-world clinical data. Methods Clinical data of hormone receptor (HR)-positive and HER2-negative patients with advanced breast cancer treated with everolimus combined with endocrine drugs in our center between August 2012 and May 2017 were retrospectively analyzed. Curative effect and adverse reactions were evaluated. Results A total of 110 patients were enrolled in this study, and 87.3% received salvage chemotherapy. The median number of salvage treatment lines was 5 (range: 1–19). The median follow-up duration was 12 months (range: 1–56.3 months), the overall response rate (ORR) was 6.4%, the clinical benefit rate (CBR) was 31.8%, the median progression-free survival (mPFS) was 4.0 months (95% CI: 2.9–5.1 months), and the median overall survival (OS) was 17 months (95% CI: 12.1–21.9 months). The mPFS for patients who received ≤2 treatment line was 11.8 months (95% CI: 4.3–19.3 months). Univariate and multivariate analyses suggested that absence of liver metastases, secondary endocrine resistance, and number of metastasis sites <3 were the main factors influencing the benefit of everolimus combined with endocrine therapy. The most common adverse events of grade 3 were: stomatitis (5.5%), non-infectious pneumonia (1.8%), and erythra (1.8%). No grade 4 adverse reactions were observed. Conclusions Our results showed that everolimus (5 mg/day) combined with endocrine therapy was effective and relatively safe for patients with hormone receptor-positive, HER2-negative metastatic breast cancer.
Collapse
Affiliation(s)
- Hui-Qiang Zhang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Mei Zhou
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shao-Hua Zhang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Bian
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Yi Xiao
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Peng Hao
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze-Fei Jiang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Melendez B, Shah S, Jiang Y, Dottino J, Watson E, Pearce H, Borthwick M, Schmandt RE, Zhang Q, Cumpian K, Celestino J, Fellman B, Yuan Y, Lu KH, Mikos AG, Yates MS. Novel polymer-based system for intrauterine delivery of everolimus for anti-cancer applications. J Control Release 2021; 339:521-530. [PMID: 34648891 DOI: 10.1016/j.jconrel.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Non-surgical treatment options for low-grade endometrial cancer and precancerous lesions are a critical unmet need for women who wish to preserve fertility or are unable to undergo hysterectomy. The PI3K/AKT/mTOR pathway is frequently activated in endometrial cancers and has been associated with resistance to endocrine therapy, making it a compelling target for early stage disease. Oral everolimus, an inhibitor against mTORC1, has shown clinical benefit in advanced or recurrent disease but has severe adverse effects that may lead to treatment interruption or dose reduction. To overcome this, we developed a polymer-based intrauterine delivery system to achieve persistent, local delivery of everolimus without systemic exposure. In vivo studies, using a rat model, showed that a poly(propylene fumarate)-based rod loaded with everolimus achieved everolimus delivery to the endometrium with levels similar to oral administration, but with limited systemic exposure and up to 84 days of release. Biological activity of everolimus delivered with this system was confirmed, measured by reduced lumen epithelial cell height and PI3K pathway biomarkers. This study shows a promising new delivery approach for anti-cancer drugs for non-surgical treatment of low-grade endometrial cancer.
Collapse
Affiliation(s)
- Brenda Melendez
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Sarita Shah
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, United States of America
| | - Yunyun Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Joseph Dottino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Emma Watson
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, United States of America
| | - Hannah Pearce
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, United States of America
| | - Mikayla Borthwick
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Rosemarie E Schmandt
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Qian Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Kayleah Cumpian
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030, United States of America
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030, United States of America
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, United States of America
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX 77030, United States of America.
| |
Collapse
|
5
|
Sun G, Rong D, Li Z, Sun G, Wu F, Li X, Cao H, Cheng Y, Tang W, Sun Y. Role of Small Molecule Targeted Compounds in Cancer: Progress, Opportunities, and Challenges. Front Cell Dev Biol 2021; 9:694363. [PMID: 34568317 PMCID: PMC8455877 DOI: 10.3389/fcell.2021.694363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Research on molecular targeted therapy of tumors is booming, and novel targeted therapy drugs are constantly emerging. Small molecule targeted compounds, novel targeted therapy drugs, can be administered orally as tablets among other methods, and do not draw upon genes, causing no immune response. It is easily structurally modified to make it more applicable to clinical needs, and convenient to promote due to low cost. It refers to a hotspot in the research of tumor molecular targeted therapy. In the present study, we review the current Food and Drug Administration (FDA)-approved use of small molecule targeted compounds in tumors, summarize the clinical drug resistance problems and mechanisms facing the use of small molecule targeted compounds, and predict the future directions of the evolving field.
Collapse
Affiliation(s)
- Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
6
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
7
|
Burguin A, Diorio C, Durocher F. Breast Cancer Treatments: Updates and New Challenges. J Pers Med 2021; 11:808. [PMID: 34442452 PMCID: PMC8399130 DOI: 10.3390/jpm11080808] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer diagnosed in women worldwide. This heterogeneous disease can be classified into four molecular subtypes (luminal A, luminal B, HER2 and triple-negative breast cancer (TNBC)) according to the expression of the estrogen receptor (ER) and the progesterone receptor (PR), and the overexpression of the human epidermal growth factor receptor 2 (HER2). Current BC treatments target these receptors (endocrine and anti-HER2 therapies) as a personalized treatment. Along with chemotherapy and radiotherapy, these therapies can have severe adverse effects and patients can develop resistance to these agents. Moreover, TNBC do not have standardized treatments. Hence, a deeper understanding of the development of new treatments that are more specific and effective in treating each BC subgroup is key. New approaches have recently emerged such as immunotherapy, conjugated antibodies, and targeting other metabolic pathways. This review summarizes current BC treatments and explores the new treatment strategies from a personalized therapy perspective and the resulting challenges.
Collapse
Affiliation(s)
- Anna Burguin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
8
|
Gandhi N, Oturkar CC, Das GM. Estrogen Receptor-Alpha and p53 Status as Regulators of AMPK and mTOR in Luminal Breast Cancer. Cancers (Basel) 2021; 13:3612. [PMID: 34298826 PMCID: PMC8306694 DOI: 10.3390/cancers13143612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Luminal breast cancer (LBC) driven by dysregulated estrogen receptor-alpha (ERα) signaling accounts for 70% of the breast cancer cases diagnosed. Although endocrine therapy (ET) is effective against LBC, about one-third of these patients fail to respond to therapy owing to acquired or inherent resistance mechanisms. Aberrant signaling via ERα, oncogenes, growth factor receptors, and mutations in tumor suppressors such as p53 impinge on downstream regulators such as AMPK and mTOR. While both AMPK and mTOR have been reported to play important roles in determining sensitivity of LBC to ET, how the ERα-p53 crosstalk impinges on regulation of AMPK and mTOR, thereby influencing therapeutic efficacy remains unknown. Here, we have addressed this important issue using isogenic breast cancer cell lines, siRNA-mediated RNA knockdown, and different modes of drug treatments. Interaction of p53 with ERα and AMPK was determined by in situ proximity ligation assay (PLA), and endogenous gene transcripts were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Further, the effect of concurrent and sequential administration of Fulvestrant-Everolimus combination on colony formation was determined. The studies showed that in cells expressing wild type p53, as well as in cells devoid of p53, ERα represses AMPK, whereas in cells harboring mutant p53, repression of AMPK is sustained even in the absence of ERα. AMPK is a major negative regulator of mTOR, and to our knowledge, this is the first study on the contribution of AMPK-dependent regulation of mTOR by ERα. Furthermore, the studies revealed that independent of the p53 mutation status, combination of Fulvestrant and Everolimus may be a viable first line therapeutic strategy for potentially delaying resistance of ERα+/HER2- LBC to ET.
Collapse
Affiliation(s)
| | | | - Gokul M. Das
- Center for Genetics & Pharmacology, Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.G.); (C.C.O.)
| |
Collapse
|
9
|
Yoshida K, Wilkins J, Winkler J, Wade JR, Kotani N, Wang N, Sane R, Chanu P. Population Pharmacokinetics of Ipatasertib and Its Metabolite in Cancer Patients. J Clin Pharmacol 2021; 61:1579-1591. [PMID: 34273118 DOI: 10.1002/jcph.1942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 11/07/2022]
Abstract
Ipatasertib is a selective AKT kinase inhibitor currently in development for the treatment of several solid tumors, including breast and prostate cancers. This study was undertaken to characterize pharmacokinetic profiles of ipatasertib and its metabolite M1 (G-037720) and to understand the sources of variability. Population pharmacokinetic models of ipatasertib and M1 were developed separately using data from 342 individuals with cancer from 5 phase 1 and 2 studies. The final population pharmacokinetic models for ipatasertib and M1 were 3-compartmental, with first-order elimination and sequential zero- and first-order absorption. Ipatasertib bioavailability and M1 formation increased after multiple dosing, resulting in an increase in exposure beyond that expected from accumulation alone. Covariate effects of ipatasertib include decreased oral clearance with increasing age and with coadministration of abiraterone, as well as decreased bioavailability with increasing weight. For ages 37 and 80 years, steady-state area under the curve (AUCss ) was predicted to be 81% and 109%, respectively, of the typical population value (64 years). For body weight of 49 and 111 kg, AUCss was predicted to be 132% and 78%, respectively, of the typical population value (75 kg). The small magnitude of change in ipatasertib exposure is not likely to be clinically relevant. For M1, the peripheral distribution volume and intercompartmental clearance increased with increasing weight. Coadministration of abiraterone was estimated to increase M1 exposure by 61% at steady state. Mild and moderate renal impairment, mild hepatic impairment, and race were not identified as significant covariates in the final models for ipatasertib and M1.
Collapse
Affiliation(s)
- Kenta Yoshida
- Department of Clinical Pharmacology, Genentech, Inc., a member of the Roche Group, South San Francisco, California, USA
| | | | | | | | - Naoki Kotani
- Department of Clinical Pharmacology, Genentech, Inc., a member of the Roche Group, South San Francisco, California, USA
- Pharmaceutical Science Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Nina Wang
- Department of Clinical Pharmacology, Genentech, Inc., a member of the Roche Group, South San Francisco, California, USA
| | - Rucha Sane
- Department of Clinical Pharmacology, Genentech, Inc., a member of the Roche Group, South San Francisco, California, USA
| | - Pascal Chanu
- Department of Clinical Pharmacology, Genentech/Roche, Lyon, France
| |
Collapse
|
10
|
Dai YH, Chen GY, Tang CH, Huang WC, Yang JC, Wu YC. Drug Screening of Potential Multiple Target Inhibitors for Estrogen Receptor-α-positive Breast Cancer. In Vivo 2021; 35:761-777. [PMID: 33622869 DOI: 10.21873/invivo.12317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Estrogen receptor α (ERα) antagonist is the most common treatment for ERα-positive breast cancer. However, compensatory signaling contributes to resistance to ERα antagonists. Thus, to explore the potential agents for targeting compensatory signaling, we screened multiple target inhibitors for breast cancer treatment. MATERIALS AND METHODS We attempted to build a structure-based virtual screening model that can find potential compounds and assay the anticancer ability of these drugs by overall cell survival assay. The downstream compensatory phosphorylated signaling was measured by immunoblotting. RESULTS Hamamelitannin and glucocheirolin were hits for ERα, phosphoinositide 3-kinase (PI3K), and KRAS proto-oncogene, GTPase (KRAS), which were active against estrogen and epidermal growth factor-triggered proliferation. Additionally, we select aminopterin as a hit for ERα, PI3K, KRAS, and SRC proto-oncogene, non-receptor tyrosine kinase (SRC) with inhibitory activities toward AKT serine/threonine kinase 1 (AKT) and mitogen-activated protein kinase kinase (MEK) signaling. CONCLUSION Our structure-based virtual screening model selected hamamelitannin, glucocheirolin, aminopterin, and pemetrexed as compounds that may act as potential inhibitors for improving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Yun-Hao Dai
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan, R.O.C.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C
| | - Wei-Chien Huang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.; .,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan, R.O.C.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
11
|
Xu T, Liu P, Li Q, Shi C, Wang X. Inhibitory effects of everolimus in combination with paclitaxel on adriamycin-resistant breast cancer cell line MDA-MB-231. Taiwan J Obstet Gynecol 2020; 59:828-834. [PMID: 33218396 DOI: 10.1016/j.tjog.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the therapeutic effects of paclitaxel in combination with mTOR inhibitor everolimus on adriamycin-resistant breast cancer cell line MDA-MB-231 (MDA-MB-231/ADR). MATERIALS AND METHODS MDA-MB-231/ADR cells were treated with different concentrations of paclitaxel and everolimus. The IC50 values after 48 h of treatment were measured by the MTT assay. The apoptosis rate and cell cycle were detected by flow cytometry. The protein expressions of Akt, PI3K, mTOR, p-pI3K, p-AKT and p-mTOR were detected by Western blot. RESULTS When paclitaxel at ≥1.56 μg/ml was used, the growth of MDA-MB-231/ADR cells was inhibited more significantly than that of control group (P < 0.05). After treatment with ≥6.25 μg/ml everolimus, the cell growth was also suppressed more significantly (P < 0.05). The IC50 values of everolimus and paclitaxel were 32.50 μg/ml and 7.80 μg/ml, respectively. The inhibition rate of paclitaxel plus everolimus was significantly enhanced with increasing paclitaxel concentration (P < 0.001). After treatment with 7.80 μg/ml paclitaxel, the two drugs had best synergistic inhibitory effects on proliferation. Compared with drugs alone, the combination significantly promoted apoptosis (P < 0.001). The paclitaxel + everolimus group had significantly more cells in the G0-G1 phase than those of control and individual drug groups (P < 0.001). Everolimus significantly decreased mTOR and p-mTOR expressions compared with those of control group (P < 0.001). Compared with everolimus alone, the combination reduced the expressions more significantly (P < 0.05). Paclitaxel decreased the expression levels of PI3K, p-PI3K and p-AKT. Compared with paclitaxel alone, the combination significantly promoted the reduction of PI3K, p-PI3K and p-AKT expressions (P < 0.05). CONCLUSION Everolimus can enhance the effect of paclitaxel on MDA-MB-231/ADR cells, inhibit cell proliferation, induce apoptosis and arrest cell cycle in the G1 phase mainly by down-regulating the expressions of key proteins in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Tinghua Xu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Pengxi Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qingming Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Changbin Shi
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xinjie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
12
|
Everolimus plus exemestane in hormone-receptor-positive, HER2-negative locally advanced or metastatic breast cancer: incidence and time course of adverse events in the phase IIIb BALLET population. Clin Transl Oncol 2020; 22:1857-1866. [PMID: 32170637 DOI: 10.1007/s12094-020-02327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The addition of everolimus to exemestane therapy significantly improves progression-free survival in postmenopausal patients with hormone-receptor (HR)-positive HER2-negative endocrine-resistant breast cancer. However, the safety profile of this schedule still might be optimized. METHODS Patients included in the BALLET trial were assessed. The objectives of this analysis were to provide additional information on the safety profile of this schedule depending on prior anticancer therapies and to characterize the time course of adverse events (AEs) and serious AEs (SAEs) of clinical interest throughout the study period. Non-infectious pneumonitis (NIP), stomatitis, asthenia and weight loss were selected as AEs of clinical interest. RESULTS The safety population of this analysis comprised 2131 patients. There were similar incidences of AEs and SAEs of clinical interest regardless of previous anticancer therapies. Most stomatitis and asthenia events occurred within the first three months. Incidence of weight loss appeared to plateau except in the case of grade 3-4 events, which occurred rarely. The incidence of any grade NIP (between 2 to 6%) and grade 3-4 NIP (between 0 to 1%) was low across the study, but steady. CONCLUSIONS Everolimus plus exemestane is a well-known therapeutic option for aromatase inhibitor pretreated advanced breast cancer patients, and its toxicity profile is similar to that described in previous studies. Close monitoring, especially within the first three months, early intervention with preventive measures and patient education to help recognize the first signs and symptoms of AEs, will help to reduce their incidence and severity.
Collapse
|
13
|
Aggelis V, Johnston SRD. Advances in Endocrine-Based Therapies for Estrogen Receptor-Positive Metastatic Breast Cancer. Drugs 2019; 79:1849-1866. [DOI: 10.1007/s40265-019-01208-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Soleja M, Raj GV, Unni N. An evaluation of fulvestrant for the treatment of metastatic breast cancer. Expert Opin Pharmacother 2019; 20:1819-1829. [DOI: 10.1080/14656566.2019.1651293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohsin Soleja
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh V. Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nisha Unni
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Kaklamani VG, Richardson AL, Arteaga CL. Exploring Biomarkers of Phosphoinositide 3-Kinase Pathway Activation in the Treatment of Hormone Receptor Positive, Human Epidermal Growth Receptor 2 Negative Advanced Breast Cancer. Oncologist 2019; 24:305-312. [PMID: 30651399 PMCID: PMC6519770 DOI: 10.1634/theoncologist.2018-0314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022] Open
Abstract
Resistance to endocrine therapy (ET) is common in patients with hormone receptor positive (HR+) advanced breast cancer (ABC). Consequently, new targeted treatment options are needed in the post-ET setting, with validated biomarkers to inform treatment decisions. Hyperactivation of the phosphoinositide 3-kinase (PI3K) signaling pathway is common in ABC and is implicated in resistance to ET. The most frequent mechanism of PI3K pathway activation is activating mutations or amplification of PIK3CA, which encodes the α-isoform of the catalytic subunit of PI3K. Combining buparlisib, a pan-PI3K-targeted agent, with ET demonstrated modest clinical benefits in patients with aromatase inhibitor-resistant, HR+, human epidermal growth receptor 2 negative (HER2-) ABC in two phase III trials. Importantly, greater efficacy gains were observed in individuals with PIK3CA-mutated disease versus PIK3CA-wild-type tumors. Although the challenging safety profile did not support widespread use of this treatment combination, isoform-selective PI3K inhibitors may improve tolerability. In early clinical trials, promising disease control benefits were demonstrated with the PI3K isoform-selective inhibitors alpelisib and taselisib in patients with PIK3CA-mutated HR+, HER2- ABC. Ongoing biomarker-guided phase II/III studies may provide further opportunities to identify patients most likely to benefit from treatment with PI3K inhibitors and provide insight into optimizing the therapeutic index of PI3K inhibitors. Challenges facing the implementation of routine PIK3CA mutation testing must be addressed promptly so robust and reproducible genotyping can be obtained with liquid and tumor biopsies in a timely and cost-effective manner. IMPLICATIONS FOR PRACTICE: The development of phosphoinositide 3-kinase (PI3K) inhibitors, especially those that selectively target isoforms, may be an effective strategy for overcoming endocrine therapy resistance in hormone receptor positive, human epidermal growth receptor 2 negative advanced breast cancer. Early-phase studies have confirmed that patients with PIK3CA mutations respond best to PI3Kα-isoform inhibition. Ongoing phase III trials will provide further data regarding the efficacy and safety of PI3K inhibitors in patients with different biomarker profiles.
Collapse
Affiliation(s)
| | | | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Sammons S, Kornblum NS, Blackwell KL. Fulvestrant-Based Combination Therapy for Second-Line Treatment of Hormone Receptor-Positive Advanced Breast Cancer. Target Oncol 2019; 14:1-12. [PMID: 30136059 PMCID: PMC6407749 DOI: 10.1007/s11523-018-0587-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fulvestrant is recommended for patients with hormone receptor-positive (HR+) advanced breast cancer (ABC) who progress after aromatase inhibitor therapy. As most patients in this setting have already developed mechanisms of resistance to endocrine therapy, targeting biological pathways associated with endocrine resistance in combination with fulvestrant may improve outcomes. Therefore, evidence supporting a combinatorial treatment approach in the second-line setting was investigated based on a search of PubMed and ClinicalTrials.gov . Twenty-eight studies of targeted therapies plus fulvestrant as second-line treatment for HR+ ABC were identified, including three and six key randomized trials exploring cyclin-dependent kinase 4/6 (CDK4/6) inhibitors and phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors plus fulvestrant respectively. Additional combinations with fulvestrant included inhibitors of epidermal growth factor receptors, androgen receptor, and the bromodomain and extra-terminal family of proteins. Across the studies reviewed with available data, the addition of targeted therapies to fulvestrant resulted in clinically meaningful improvements in progression-free survival compared with fulvestrant alone. While some challenging toxicities were observed, most adverse events could be effectively managed. Selection of second-line targeted therapy for use with fulvestrant should consider prior treatment as well as the mutation status of the tumor. In conclusion, available data indicate that fulvestrant combined with agents targeting mechanisms of endocrine resistance is a promising approach. The ongoing trials identified in this review will help further inform the selection of combination treatments with fulvestrant for HR+ ABC.
Collapse
Affiliation(s)
| | | | - Kimberly L. Blackwell
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
- Present Address: Eli Lilly and Company, Indianapolis, IN 46285 USA
| |
Collapse
|
17
|
Abstract
Precision medicine approaches have found applications in the treatment of several tumor types and have led to rapid advancement in the number of available therapies for some difficult-to-treat diseases. In comparison to tumors like EGFR-mutated lung cancer, and BRAF-mutated melanoma for example, precision medicine in breast cancer is still in its infancy despite the much earlier identification of targets like ER and HER2. Though significant progress has been made in new therapies for hormone-receptor-positive and HER2-positive breast cancers, identification of molecular heterogeneity and lack of other valid reproducible targets in triple-negative breast cancer remain a challenge. In this chapter, we outline the recent advances in technology and targeted treatments for breast cancer, the remaining challenges and ongoing efforts to address these to make precision medicine a reality for all breast cancer patients.
Collapse
Affiliation(s)
- Jasgit C Sachdev
- HonorHealth Research Institute, Scottsdale, AZ, USA. .,Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
| | - Ana C Sandoval
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mohammad Jahanzeb
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Jacquier M, Kuriakose S, Bhardwaj A, Zhang Y, Shrivastav A, Portet S, Varma Shrivastav S. Investigation of Novel Regulation of N-myristoyltransferase by Mammalian Target of Rapamycin in Breast Cancer Cells. Sci Rep 2018; 8:12969. [PMID: 30154572 PMCID: PMC6113272 DOI: 10.1038/s41598-018-30447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Hormone receptor breast cancers are the most common ones and, about 2 out of every 3 cases of breast cancer are estrogen receptor (ER) positive. Selective ER modulators, such as tamoxifen, are the first line of endocrine treatment of breast cancer. Despite the expression of hormone receptors some patients develop tamoxifen resistance and 50% present de novo tamoxifen resistance. Recently, we have demonstrated that activated mammalian target of rapamycin (mTOR) is positively associated with overall survival and recurrence free survival in ER positive breast cancer patients who were later treated with tamoxifen. Since altered expression of protein kinase B (PKB)/Akt in breast cancer cells affect N-myristoyltransferase 1 (NMT1) expression and activity, we investigated whether mTOR, a downstream target of PKB/Akt, regulates NMT1 in ER positive breast cancer cells (MCF7 cells). We inhibited mTOR by treating MCF7 cells with rapamycin and observed that the expression of NMT1 increased with rapamycin treatment over the period of time with a concomitant decrease in mTOR phosphorylation. We further employed mathematical modelling to investigate hitherto not known relationship of mTOR with NMT1. We report here for the first time a collection of models and data validating regulation of NMT1 by mTOR.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Shiby Kuriakose
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Yang Zhang
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada.,Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
19
|
Khalid S, Hanif R, Jabeen I, Mansoor Q, Ismail M. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor. PLoS One 2018; 13:e0196312. [PMID: 29787591 PMCID: PMC5963753 DOI: 10.1371/journal.pone.0196312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.
Collapse
Affiliation(s)
- Samra Khalid
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- * E-mail:
| | - Ishrat Jabeen
- Research Center for Modeling & Simulation (RCMS), National University of Sciences and Technology, Islamabad, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan
| |
Collapse
|
20
|
Alvarez RH, Bechara RI, Naughton MJ, Adachi JA, Reuben JM. Emerging Perspectives on mTOR Inhibitor-Associated Pneumonitis in Breast Cancer. Oncologist 2018; 23:660-669. [PMID: 29487226 DOI: 10.1634/theoncologist.2017-0343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
Substantial improvements in the early detection and treatment of breast cancer have led to improvements in survival, but breast cancer remains a significant cause of morbidity and mortality in women. In 2012, the mammalian target of rapamycin (mTOR) inhibitor everolimus was approved by the U.S. Food and Drug Administration for the treatment of advanced breast cancer in patients resistant to endocrine therapy. Although everolimus is generally well tolerated, mTOR inhibitor-associated pneumonitis is one of the most common adverse drug events leading to treatment discontinuation. To date, the underlying pathophysiology of this toxicity is unclear, and this uncertainty may hinder the optimization of management strategies. However, experiences from breast cancer and renal cell carcinoma clinical trials indicate that mTOR inhibitor-associated pneumonitis can be effectively managed by early detection, accurate diagnosis, and prompt intervention that generally involves everolimus dose reductions, interruptions, or discontinuation. Management can be achieved by a multidisciplinary approach that involves the collaborative efforts of nurses, oncologists, radiologists, infectious disease specialists, pulmonologists, clinical pharmacists, and pathologists. Comprehensive education must be provided to all health care professionals involved in managing patients receiving everolimus therapy. Although general recommendations on the management of mTOR inhibitor-associated pneumonitis have been published, there is a lack of consensus on the optimal management of this potentially serious complication. This article provides an overview of mTOR inhibitor-associated pneumonitis, with a focus on the detection, accurate diagnosis, and optimal management of this class-related complication of mTOR inhibitor therapy. IMPLICATIONS FOR PRACTICE This article summarizes the pathogenesis, clinical presentation, incidence, detection, and optimal management of everolimus-related noninfectious pneumonitis in breast cancer. In particular, this article provides a detailed overview of the important aspects of the detection, accurate diagnosis, and appropriate management of mammalian target of rapamycin inhibitor-associated pneumonitis. In addition, this article emphasizes that effective management of this adverse drug event in patients with breast cancer will require a multidisciplinary approach and collaboration among various health care professionals.
Collapse
Affiliation(s)
| | | | - Michael J Naughton
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Javier A Adachi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Reuben
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J, Schneider RJ. Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev 2017; 31:2235-2249. [PMID: 29269484 PMCID: PMC5769768 DOI: 10.1101/gad.305631.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Geter et al. show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. The majority of breast cancers expresses the estrogen receptor (ER+) and is treated with anti-estrogen therapies, particularly tamoxifen in premenopausal women. However, tamoxifen resistance is responsible for a large proportion of breast cancer deaths. Using small molecule inhibitors, phospho-mimetic proteins, tamoxifen-sensitive and tamoxifen-resistant breast cancer cells, a tamoxifen-resistant patient-derived xenograft model, patient tumor tissues, and genome-wide transcription and translation studies, we show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. Resensitization to tamoxifen is restored only by reducing eIF4E expression or mTOR activity and also blocking MNK1 phosphorylation of eIF4E. mRNAs specifically translationally up-regulated with tamoxifen resistance include Runx2, which inhibits ER signaling and estrogen responses and promotes breast cancer metastasis. Silencing Runx2 significantly restores tamoxifen sensitivity. Tamoxifen-resistant but not tamoxifen-sensitive patient ER+ breast cancer specimens also demonstrate strongly increased MNK phosphorylation of eIF4E. eIF4E levels, availability, and phosphorylation therefore promote tamoxifen resistance in ER+ breast cancer through selective mRNA translational reprogramming
Collapse
Affiliation(s)
- Phillip A Geter
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amanda W Ernlund
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Sofia Bakogianni
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amandine Alard
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Rezina Arju
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Shah Giashuddin
- New York Presbyterian-Brooklyn Methodist Hospital, Brooklyn, New York 11215, USA
| | - Abhilash Gadi
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Jacqueline Bromberg
- Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| | - Robert J Schneider
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA.,Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| |
Collapse
|
22
|
Rotundo MS, Galeano T, Tassone P, Tagliaferri P. mTOR inhibitors, a new era for metastatic luminal HER2-negative breast cancer? A systematic review and a meta-analysis of randomized trials. Oncotarget 2017; 7:27055-66. [PMID: 26895472 PMCID: PMC5053632 DOI: 10.18632/oncotarget.7446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
We evaluated if standard hormonal therapy (HT) could be improved by the addition of mammalian target of rapamycin inhibitors (mTOR-I) in metastatic luminal breast cancer. A meta-analysis on 4 phase II-III randomized clinical trials was performed. Pooled hazard ratio (HR) for progression free survival (PFS)/ time to progression (TTP) was 0.62 in favor of mTOR-I+HT arm (95% confidence interval [CI] 0.55-0.70; p<0.0001). There was significant heterogeneity for PFS/TTP (Cochran's Q 32, p<0.0001, I2 index 90.6%). Pooled HR for overall survival (OS) was 0.84 in favor of the combination arm (95% CI 0.71-0.99; p=0.04). Heterogeneity was not significant (Cochran's Q 4.47, p=0.1, I2 index 55.3%). Pooled risk ratio (RR) for objective response rate (ORR) was 0.88 in favor of experimental arm (95% CI 0.85-0.91; p<0.0001). Heterogeneity was not significant (Cochran's Q 2.11, p=0.3, I2 index 5.2%). Adverse events (AEs), in particular those of grade 3-4, mostly occurred in mTOR-I+HT arm. Combination therapy of HT plus mTOR-I improves the outcome of metastatic luminal breast cancer patients. Our results provide evidence of a class-effect of these targeting molecules.
Collapse
Affiliation(s)
- Maria Saveria Rotundo
- Department of Experimental and Clinical Medicine, Medical Oncology, Magna Graecia University, Viale Europa, Catanzaro, Italy
| | - Teresa Galeano
- Department of Experimental and Clinical Medicine, Medical Oncology, Magna Graecia University, Viale Europa, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Translational Medical Oncology, Magna Graecia University, Viale Europa, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Medical Oncology, Magna Graecia University, Viale Europa, Catanzaro, Italy
| |
Collapse
|
23
|
Bilgin B, Sendur MAN, Şener Dede D, Akıncı MB, Yalçın B. A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer. Curr Med Res Opin 2017; 33:1559-1569. [PMID: 28657360 DOI: 10.1080/03007995.2017.1348344] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Resistance to endocrine treatment generally occurs over time, especially in the metastatic stage. In this paper, we aimed to review the mechanisms of cyclin-dependent kinase (CDK) 4/6 inhibition and clinical usage of new agents in the light of recent literature updates. SCOPE A literature search was carried out using PubMed, Medline and ASCO and ESMO annual-meeting abstracts by using the following search keywords; "palbociclib", "abemaciclib", "ribociclib", "cyclin-dependent kinase inhibitors" and "CDK 4/6" in metastatic breast cancer (MBC). The last search was on 10 June 2017. FINDINGS CDKs and cyclins are two molecules that have a key role in cell cycle progression. Today, there are three highly selective CDK4/6 inhibitors in clinical development - palbociclib, ribociclib and abemaciclib. Palbociclib and ribociclib were recently approved by the US FDA in combination with letrozole for the treatment of MBC in a first-line setting, as well as palbociclib in combination with fulvestrant for hormone-receptor (HR)-positive MBC that had progressed while on previous endocrine therapy according to the PALOMA-1, MONALEESA-2 and PALOMA-3 trials, respectively. In the recently published randomized phase III MONARCH 2 trial, abemaciclib plus letrozole had longer progression-free survival and higher objective response rates with less serious adverse events in advanced HR-positive breast cancer previously treated with hormonal treatment. CONCLUSION CDK4/6 inhibition is a new and promising target for patients with hormone-receptor-positive MBC. Both palbociclib and ribociclib showed significant additive benefit for patients receiving first-line treatment for HR-positive, epidermal growth factor receptor-2-negative advanced breast cancer. Palbociclib and abemaciclib also had significant activity in combination with fulvestrant for patients with MBC that progressed on previous endocrine therapy.
Collapse
Affiliation(s)
- Burak Bilgin
- a Ankara Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Mehmet A N Sendur
- a Ankara Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Didem Şener Dede
- a Ankara Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Muhammed Bülent Akıncı
- a Ankara Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| | - Bülent Yalçın
- a Ankara Yıldırım Beyazıt University , Faculty of Medicine, Department of Medical Oncology , Ankara , Turkey
| |
Collapse
|
24
|
Browne AJ, Kubasch ML, Göbel A, Hadji P, Chen D, Rauner M, Stölzel F, Hofbauer LC, Rachner TD. Concurrent antitumor and bone-protective effects of everolimus in osteotropic breast cancer. Breast Cancer Res 2017; 19:92. [PMID: 28793923 PMCID: PMC5551016 DOI: 10.1186/s13058-017-0885-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Background The mammalian target of rapamycin inhibitor everolimus is approved as an antitumor agent in advanced estrogen receptor-positive breast cancer. Surrogate bone marker data from clinical trials suggest effects on bone metabolism, but the mode of action of everolimus in bone biology remains unclear. In this study, we assessed potential bone-protective effects of everolimus in the context of osteotropic tumors. Methods The effects of everolimus on cancer cell viability in vitro and on tumor growth in vivo were assessed. Everolimus-regulated osteoclastogenesis and osteoblastogenesis were also assessed in vitro before we assessed the bone-protective effect of everolimus in a model where bone loss was induced in ovariectomized (OVX) mice. Finally, the role of everolimus in the progression of osteolytic bone disease was assessed in an intracardiac model of breast cancer bone metastases. Results At low concentrations (1 nM) in vitro, everolimus reduced the viability of human and murine cancer cell lines and impaired the osteoclastogenesis of osteoclast progenitors as assessed by quantitative real-time polymerase chain reaction and counting tartrate-resistant acid phosphatase-positive, multinucleated osteoclasts (p < 0.001). Everolimus had little or no deleterious effect on osteoblastogenesis in vitro, with concentrations of 1 and 10 nM increasing the messenger RNA expression of osteoblast marker genes (p ≤ 0.05) and leaving mineralization in differentiated human mesenchymal stem cells unchanged. Everolimus treatment (1 mg/kg body weight/day) prevented the bone loss observed in OVX mice and concurrently inhibited the metastatic growth of MDA-MB-231 cells by 70% (p < 0.002) while preserving bone mass in an intracardiac model of bone metastasis. Conclusions These results underline the antitumor effects of everolimus and highlight its bone-protective efficacy, warranting further research on the potential implications on bone health in populations prone to osteoporosis and bone metastases, such as postmenopausal women with breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0885-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J Browne
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Marie L Kubasch
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Peyman Hadji
- Philipps University of Marburg, Marburg, Germany
| | - David Chen
- Novartis Pharmaceutical Corp., East Hanover, NJ, USA
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Division of Hematology, Department of Medicine I, Technical University Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany.,Center for Healthy Aging, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstraße 74, D-01307, Dresden, Germany. .,Center for Healthy Aging, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
25
|
Pascual T, Apellániz-Ruiz M, Pernaut C, Cueto-Felgueroso C, Villalba P, Álvarez C, Manso L, Inglada-Pérez L, Robledo M, Rodríguez-Antona C, Ciruelos E. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS One 2017; 12:e0180192. [PMID: 28727815 PMCID: PMC5519037 DOI: 10.1371/journal.pone.0180192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Metastatic breast cancer (MBC) progressing after endocrine therapy frequently activates PI3K/AKT/mTOR pathway. The BOLERO-2 trial showed that everolimus-exemestane achieves increased progression free survival (PFS) compared with exemestane. However, there is great inter-patient variability in toxicity and response to exemestane-everolimus treatment. The objective of this study was to perform an exploratory study analyzing the implication of single nucleotide polymorphisms (SNPs) on outcomes from this treatment through a pharmacogenetic analysis. PATIENTS AND METHODS Blood was collected from 90 postmenopausal women with hormone receptor-positive, HER2-negative MBC treated with exemestane-everolimus following progression after prior treatment with a non-steroidal aromatase inhibitor. Everolimus pharmacokinetics was measured in 37 patients. Twelve SNPs in genes involved in everolimus pharmacokinetics and pharmacodynamics were genotyped and associations assessed with drug plasma levels, clinically relevant toxicities (non-infectious pneumonitis, mucositis, hyperglycemia and hematological toxicities), dose reductions or treatment suspensions due to toxicity, progression free survival (PFS) and overall survival. RESULTS We found that CYP3A4 rs35599367 variant (CYP3A4*22 allele) carriers had higher everolimus blood concentration compared to wild type patients (P = 0.019). ABCB1 rs1045642 was associated with risk of mucositis (P = 0.031), while PIK3R1 rs10515074 and RAPTOR rs9906827 were associated with hyperglycemia and non-infectious pneumonitis (P = 0.016 and 0.024, respectively). Furthermore, RAPTOR rs9906827 was associated with PFS (P = 0.006). CONCLUSIONS CYP3A4*22 allele influenced plasma concentration of everolimus and several SNPs in PI3K/AKT/mTOR pathway genes were associated with treatment toxicities and prognosis. These results require replication, but suggest that germline variation could influence everolimus outcomes in MBC.
Collapse
Affiliation(s)
- Tomas Pascual
- Medical Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Pernaut
- Medical Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| | | | - Pablo Villalba
- Biochemistry Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Carlos Álvarez
- Biochemistry Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Luis Manso
- Biochemistry Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Lucia Inglada-Pérez
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eva Ciruelos
- Medical Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| |
Collapse
|
26
|
Huang D, Yang F, Wang Y, Guan X. Mechanisms of resistance to selective estrogen receptor down-regulator in metastatic breast cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:148-156. [PMID: 28344099 DOI: 10.1016/j.bbcan.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Based on the prominent role estrogen receptor (ER) plays in breast cancer, endocrine therapy has been developed to block the ER pathway and has shown great effectiveness. Fulvestrant, the first selective ER down-regulator (SERD), was demonstrated to completely suppress ERα and notably efficient. However, resistance to fulvestrant occurs, either intrinsic or acquired during the treatment. Several potential mechanisms inducing fulvestrant resistance have been proposed, composed of activated ERα-independent compensatory growth factor signaling, stimulated downstream kinases, altered cell cycle mediators, etcetera. Experimentally, combinations of fulvestrant with targeted treatments were reported to eliminate the resistance and improve the effect of fulvestrant. Meanwhile, some clinical trials associated with the targeted combination therapies are in progress. This review focuses on the underlying mechanisms that contribute to fulvestrant resistance in ER-positive breast cancer and provides an overview of combined fulvestrant with targeted agents to shed light on optimal therapies for patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yucai Wang
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
27
|
Efficacy and safety of everolimus in Chinese metastatic HR positive, HER2 negative breast cancer patients: a real-world retrospective study. Oncotarget 2017; 8:59810-59822. [PMID: 28938684 PMCID: PMC5601780 DOI: 10.18632/oncotarget.16336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 01/27/2023] Open
Abstract
Background Everolimus combined with endocrine therapy has been proved to be effective among postmenopausal women with hormone receptor-positive human epidermal growth factor receptor-2 negative (HR+/HER2-) metastatic breast cancer (MBC). We aimed to evaluate the efficacy and safety of everolimus plus endocrine therapy in Chinese real-world practice for the first time, and investigate factors associated with efficacy. Methods Seventy-five HR+/HER2- MBC patients were included in this retrospective study who received everolimus plus endocrine therapy after progression on prior endocrine therapy in Fudan University Shanghai Cancer Center (FUSCC) between June 2013 and February 2016. Main outcome measures are progression free survival (PFS), overall survival (OS), objective response rate (ORR), clinical benefit rate (CBR) and safety profile. Results After a median follow up of 10.3 (range: 2.1-32.2) months, median PFS was 5.9 months (95%CI 4.6-7.2), and median OS was not reached. The CBR was 38.8% (95%CI, 26.8-50.8) and ORR was 9.0% (95%CI, 2.0-16.0). Most common all-grade adverse events were stomatitis (57.1%), fatigue (25.7%), infection (24.3%) and hyperglycemia (21.4%). The most common ≥3 grade adverse events were stomatitis (9.3 %) and thrombocytopenia (5.7%). No treatment-related death was documented during and one month after the drug administration. Conclusions The combination of everolimus and endocrine therapy proved to be effective in Chinese population. The safety profiles were similar to previous studies but incidences were lower. In conclusion, everolimus combined with endocrine therapy provides a reasonable option for Chinese HR+/HER2- metastatic breast cancer patients.
Collapse
|
28
|
Mimoto R, Nihira NT, Hirooka S, Takeyama H, Yoshida K. Diminished DYRK2 sensitizes hormone receptor-positive breast cancer to everolimus by the escape from degrading mTOR. Cancer Lett 2017; 384:27-38. [PMID: 27746162 DOI: 10.1016/j.canlet.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) inhibitor, everolimus, provides benefit for metastatic hormone receptor positive breast cancer after failure of the endocrine therapy. The present report highlights Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2 (DYRK2) as a predictive marker for everolimus sensitivity. The key node and KEGG pathway analyses revealed that mTORC1 pathway is activated in DYRK2-depleted cells. Everolimus was more effective in DYRK2-depleted cells compared with control cells. In xenograft model, everolimus treatment significantly inhibited tumor growth compared with vehicle or eribulin treatment. In clinical analysis, patients with low DYRK2 expression acquired longer treatment period and had higher clinical benefit rate than those with high DYRK2 expression (171 vs 82 days; P < 0.05 and 50% vs 12.5%, respectively). We further investigated the underlying mechanism by which DYRK2 regulates mTORC1 pathway. The ectopic expression of DYRK2 promoted phosphorylation of Thr631 for the ubiquitination and degradation of mTOR. DYRK2 expression levels may thus predict clinical responses to everolimus.
Collapse
Affiliation(s)
- Rei Mimoto
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naoe T Nihira
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Shinichi Hirooka
- Department of Pathology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hiroshi Takeyama
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
29
|
Radhi S. Molecular Changes During Breast Cancer and Mechanisms of Endocrine Therapy Resistance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:539-562. [PMID: 27865467 DOI: 10.1016/bs.pmbts.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptors (ERs) are expressed in 75% of breast cancers. ERs and their estrogen ligands play a key role in the development and progression of breast cancer. ERs have a genomic activity involving direct modulation of expression of genes vital to cell growth and survival by their classic nuclear receptors. The nongenomic activity is mediated by membrane receptor tyrosine kinases that activate signaling pathways resulting in activation of ER pathway modulators. Endocrine therapies inhibit the growth promoting activity of estrogen. ERs-positive breast cancers can exhibit de novo or acquired endocrine resistance. The mechanisms of endocrine therapy resistance are complex include deregulation of ER pathway, growth factor receptor signaling, cell cycle machinery, and tumor microenvironment. In this chapter, we will review the literature on the biology of ERs, the postulated mechanisms of endocrine therapy resistance, and their clinical implications.
Collapse
Affiliation(s)
- S Radhi
- Texas Tech University Health Science Center, Lubbock, TX, United States.
| |
Collapse
|
30
|
Kassem L, Abdel-Rahman O. Targeting mTOR pathway in gynecological malignancies: Biological rationale and systematic review of published data. Crit Rev Oncol Hematol 2016; 108:1-12. [PMID: 27931828 DOI: 10.1016/j.critrevonc.2016.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/06/2016] [Accepted: 10/11/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND mTOR inhibitors are widely used in different malignancies with several trials testing their efficacy and safety in gynecological malignancies. We aimed to review the current evidence that support the expansion of using such drugs in the treatment of advanced gynecological cancers. METHODS A comprehensive systematic review of literature has been conducted to include prospective trials that used everolimus, temsirolimus or ridaforolimus in the management of gynecological cancers and have available efficacy and toxicity results. RESULTS A total of 23 studies including 980 patients were considered eligible for our review. Our review included 16 phase II and 7 phase I studies with the majority of patients having uterine cancers. Regarding Endometrial cancer, the CBR ranged from 21% to 60% and median PFS from 2.8 months to 7.3 months. In Ovarian cancers, CBR ranged from 24% to 50% and median PFS from 3.2 months to 5.9 months. In the single phase II study in cervical cancer the CBR was 61% and median PFS was 3.5 months. The toxicity profile was consistent with what was observed previously in other malignancies with fatigue, mucositis, and hematological toxicities being the most common adverse events observed. CONCLUSION mTOR inhibitors seem to be a promising option in the second line management of advanced gynecological cancers with best safety and efficacy outcomes when given as a single agent or in combination with hormonal treatment. More research is needed for better patient selection.
Collapse
Affiliation(s)
- Loay Kassem
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Mancuso MR, Massarweh SA. Endocrine therapy and strategies to overcome therapeutic resistance in breast cancer. Curr Probl Cancer 2016; 40:95-105. [PMID: 27839747 DOI: 10.1016/j.currproblcancer.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023]
Abstract
Despite the remarkable success of endocrine therapy in the treatment of patients with estrogen receptor (ER)- positive breast cancer, not all patients derive benefit from such therapy, or may benefit only temporarily before disease progression or relapse occurs. The value of endocrine therapy, which blocks ER signaling by a variety of strategies, lies in its simplicity, lower toxicity, and better alignment with preserved quality of life, particularly when compared to chemotherapy, which is more toxic and has only modest benefits for many patients with ER-positive breast cancer. It is therefore critical that we discover ways to extend endocrine therapy benefit in patients and prevent therapeutic resistance whenever possible. The tremendous evolution in our understanding of endocrine resistance mechanisms, coupled with the increasing availability of novel agents that target resistance pathways, has led to enhanced treatment approaches for patients with ER-positive breast cancer, primarily through combinations of endocrine agents with a variety of pathway inhibitors. Despite these treatment advances and our changing view of ER-positive breast cancer, there is much work that needs to be done. It remains a problem that we cannot reliably predict which subsets of patients will experience disease relapse or progression on endocrine therapy, and as such, combination strategies with targeted agents have largely been used in unselected patients with ER-positive breast cancer, including those who continue to have endocrine-sensitive disease. Patient selection is a significant issue since most of the targeted therapeutics that we use with endocrine therapy are expensive and can be toxic, and we may be inadvertently overtreating patients whose disease can still be controlled with endocrine therapy alone. In this article, we will review current and future strategies in the treatment of ER-positive breast cancer, as well as the evolving role of targeted therapy in the management of endocrine-resistance.
Collapse
Affiliation(s)
| | - Suleiman Alfred Massarweh
- Division of Oncology, Stanford University School of Medicine; Stanford Cancer Institute, Stanford, CA, 94305.
| |
Collapse
|
32
|
Sun B, Ding L, Wu S, Meng X, Song S. Combined treatment with everolimus and fulvestrant reversed anti-HER2 resistance in a patient with refractory advanced breast cancer: a case report. Onco Targets Ther 2016; 9:3997-4003. [PMID: 27445490 PMCID: PMC4936809 DOI: 10.2147/ott.s104398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Everolimus, an inhibitor of the mammalian target of rapamycin, shows promising antitumor activity when combined with trastuzumab and chemotherapy for human epidermal growth factor receptor-2 (HER2)-positive breast cancer or when combined with endocrine agents for hormone receptor (HR)-positive tumors. However, data are limited regarding the effect of everolimus in combination with endocrine drugs in HER2-positive advanced breast cancer regardless of the HR status. Case presentation A 44-year-old female was diagnosed with recurrent HER2-positive breast cancer. The primary tumor was HR positive; however, the metastatic tumor was HR negative. The patient was resistant to classical chemotherapeutic agents and anti-HER2 treatment. Thus, the combination of everolimus and fulvestrant, a selective estrogen receptor downregulator, was chosen to reverse the resistance to anti-HER2 therapy. Indeed, the patient experienced long-term disease stabilization. Adverse events associated with the treatment were manageable by dose adjustments. We performed genetic testing of the metastatic tumor, which harbored a PIK3CA gene mutation but was positive for phosphatase and tensin homologue expression, which might result in resistance to the mammalian target of rapamycin inhibitor. Conclusion This case study indicates that combined treatment with everolimus and fulvestrant might be a viable option for the treatment of metastatic breast cancer patients who are HER2 positive and carry a PIK3CA gene mutation but are resistant to anti-HER2 therapy and classical chemotherapeutic agents. Further prospective randomized trials are needed to confirm this finding.
Collapse
Affiliation(s)
| | | | | | | | - Santai Song
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
33
|
Študentová H, Vitásková D, Melichar B. Safety of mTOR inhibitors in breast cancer. Expert Opin Drug Saf 2016; 15:1075-85. [DOI: 10.1080/14740338.2016.1192604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hana Študentová
- Department of Oncology, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
| | - Denisa Vitásková
- Department of Oncology, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Palacký University Medical School & Teaching Hospital, Olomouc, Czech Republic
| |
Collapse
|
34
|
Yardley DA. Pharmacologic management of bone-related complications and bone metastases in postmenopausal women with hormone receptor-positive breast cancer. BREAST CANCER-TARGETS AND THERAPY 2016; 8:73-82. [PMID: 27217795 PMCID: PMC4861000 DOI: 10.2147/bctt.s97963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is a high risk for bone loss and skeletal-related events, including bone metastases, in postmenopausal women with hormone receptor-positive breast cancer. Both the disease itself and its therapeutic treatments can negatively impact bone, resulting in decreases in bone mineral density and increases in bone loss. These negative effects on the bone can significantly impact morbidity and mortality. Effective management and minimization of bone-related complications in postmenopausal women with hormone receptor-positive breast cancer remain essential. This review discusses the current understanding of molecular and biological mechanisms involved in bone turnover and metastases, increased risk for bone-related complications from breast cancer and breast cancer therapy, and current and emerging treatment strategies for managing bone metastases and bone turnover in postmenopausal women with hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Denise A Yardley
- Sarah Cannon Research Institute, Nashville, TN, USA; Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
35
|
Vargo CA, Berger MJ, Phillips G, Mrozek E. Occurrence and characterization of everolimus adverse events during first and subsequent cycles in the treatment of metastatic breast cancer. Support Care Cancer 2016; 24:2913-8. [PMID: 26847349 DOI: 10.1007/s00520-016-3105-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/26/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Endocrine therapy remains the standard therapy for patients with metastatic hormone receptor (HR)-positive breast cancer. The novel combination of everolimus and exemestane has been shown to prolong progression-free survival but with increased adverse events compared to exemestane alone. In this study, we aimed to describe the frequency and timing of everolimus dose reductions and/or interruptions due to adverse events. METHODS This is a single-center retrospective case series including all patients who received everolimus in combination with exemestane from May 1, 2012, through July 31, 2013. The primary objective was to determine the incidence of first-cycle interruptions or dose reductions with everolimus. RESULTS Forty-six patients were included in the analysis. First-cycle dose reductions or interruptions were observed in 21 (45.6 %) patients. The most common adverse events leading to dose reduction or interruption was stomatitis (57.1 %), fatigue (14.3 %), and diarrhea (14.3 %). The median time to dose reduction was 14 days, and the median duration of the interruption was 14 days. The median progression-free survival was 6.2 months, and the median time to treatment failure was 4.4 months. CONCLUSIONS In this case series, almost half of the patients treated with everolimus and exemestane required a dose reduction or interruption of everolimus during the first cycle of treatment. This early onset of adverse events requires thorough patient education and close clinical monitoring during the first 28 days of therapy.
Collapse
Affiliation(s)
- Craig A Vargo
- Department of Pharmacy, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Michael J Berger
- Department of Pharmacy, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gary Phillips
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Ewa Mrozek
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
36
|
Beck JT. Potential role for mammalian target of rapamycin inhibitors as first-line therapy in hormone receptor-positive advanced breast cancer. Onco Targets Ther 2015; 8:3629-38. [PMID: 26675495 PMCID: PMC4676614 DOI: 10.2147/ott.s88037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite advances in cytotoxic chemotherapy and targeted therapies, 5-year survival rates remain low for patients with advanced breast cancer at diagnosis. This highlights the limited effectiveness of current treatment options. An improved understanding of cellular functions associated with the development and progression of breast cancer has resulted in the creation of a number of novel targeted molecular therapies. However, more work is needed to improve outcomes, particularly in the first-line recurrent or metastatic hormone receptor-positive breast cancer setting. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) pathway is a major intracellular signaling pathway that is often upregulated in breast cancer, and overactivation of this pathway has been associated with primary or developed resistance to endocrine treatment. Clinical data from the Phase III Breast Cancer Trials of Oral Everolimus-2 (BOLERO-2) study of the mTOR inhibitor everolimus combined with exemestane in hormone receptor-positive advanced breast cancer were very promising, highlighting the potential role of mTOR inhibitors in combination with endocrine therapies as a first-line treatment option for these patients. It is hoped that the use of mTOR inhibitors combined with current standard-of-care endocrine therapies, such as aromatase inhibitors, in the first-line advanced breast cancer setting may result in greater antitumor effects and also delay or reverse treatment resistance.
Collapse
|
37
|
González Espinoza IR, Villarreal Garza C, Juárez León OA, Adel Álvarez LA, Cruz López JC, Téllez Bernal E. Cáncer de mama con receptores hormonales positivos: tratamiento adyuvante, primera línea en cáncer metastásico y nuevas estrategias (inhibición de mTOR). GACETA MEXICANA DE ONCOLOGÍA 2015. [DOI: 10.1016/j.gamo.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
38
|
Altman MK, Alshamrani AA, Jia W, Nguyen HT, Fambrough JM, Tran SK, Patel MB, Hoseinzadeh P, Beedle AM, Murph MM. Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Cancer Lett 2015; 369:175-83. [PMID: 26319900 DOI: 10.1016/j.canlet.2015.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
The regulator of G protein signaling 10 (RGS10) protein is a GTPase activating protein that accelerates the hydrolysis of GTP and therefore canonically inactivates G proteins, ultimately terminating signaling. Rheb is a small GTPase protein that shuttles between its GDP- and GTP-bound forms to activate mTOR. Since RGS10 suppression augments ovarian cancer cell viability, we sought to elucidate the molecular mechanism. Following RGS10 suppression in serum-free conditions, phosphorylation of mTOR, the eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), p70S6K and S6 Ribosomal Protein appear. Furthermore, suppressing RGS10 increases activated Rheb, suggesting RGS10 antagonizes mTOR signaling via the small G-protein. The effects of RGS10 suppression are enhanced after stimulating cells with the growth factor, lysophosphatidic acid, and reduced with mTOR inhibitors, temsirolimus and INK-128. Suppression of RGS10 leads to an increase in cell proliferation, even in the presence of etoposide. In summary, the RGS10 suppression increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Our results suggest that RGS10 could serve in a novel, and previously unknown, role by accelerating the hydrolysis of GTP from Rheb in ovarian cancer cells.
Collapse
Affiliation(s)
- Molly K Altman
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Ali A Alshamrani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Jada M Fambrough
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Sterling K Tran
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Mihir B Patel
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Pooya Hoseinzadeh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA.
| |
Collapse
|
39
|
Pantano F, Iuliani M, Zoccoli A, Fioramonti M, De Lisi D, Fioroni I, Ribelli G, Santoni M, Vincenzi B, Tonini G, Santini D. Emerging drugs for the treatment of bone metastasis. Expert Opin Emerg Drugs 2015; 20:637-51. [PMID: 26113304 DOI: 10.1517/14728214.2015.1062876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Bone metastases are virtually incurable resulting in significant disease morbidity, reduced quality of life and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Increased understanding of the pathogenesis of bone disease has led to the discovery and clinical utility of bone-targeted agents other than bisphosphonates and denosumab, currently, the standard of care in this setting. AREAS COVERED In this review, we present the recent advances in molecular targeted therapies focusing on therapies that inhibit bone resorption and/or stimulate bone formation and novel anti-tumoral agents that exerts significant effects on skeletal metastases, nowadays available in clinical practice or in phase of development. EXPERT OPINION New emergent bone target therapies radium-223, mTOR inhibitors, anti-androgens have demonstrated the ability to increase overall survival in bone metastatic patients, other compounds, such as ET-1 and SRC inhibitors, up to now failed to clearly confirm in clinical trials their promising preclinical data.
Collapse
Affiliation(s)
- Francesco Pantano
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Michele Iuliani
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Alice Zoccoli
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Marco Fioramonti
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Delia De Lisi
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Iacopo Fioroni
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Giulia Ribelli
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Matteo Santoni
- b 2 Università Politecnica delle Marche, AOU Ospedali Riuniti, Medical Oncology Department , Ancona, Italy
| | - Bruno Vincenzi
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Giuseppe Tonini
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| | - Daniele Santini
- a 1 Campus Bio-Medico University of Rome, Medical Oncology Department , Via Alvaro del Portillo 200, 00128 Rome, Italy +39 062 254 191 17 ; +39 062 254 119 33;
| |
Collapse
|
40
|
In vitro activity of the mTOR inhibitor everolimus, in a large panel of breast cancer cell lines and analysis for predictors of response. Breast Cancer Res Treat 2015; 149:669-80. [DOI: 10.1007/s10549-015-3282-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
|
41
|
Geuna E, Milani A, Martinello R, Aversa C, Valabrega G, Scaltriti M, Montemurro F. Buparlisib , an oral pan-PI3K inhibitor for the treatment of breast cancer. Expert Opin Investig Drugs 2015; 24:421-31. [PMID: 25645727 DOI: 10.1517/13543784.2015.1008132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulation of the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) intracellular signaling pathway is common in breast cancer (BC) and has been found to be potentially implicated in resistance to endocrine and anti-HER2 therapies. Targeting the PI3K/Akt/mTOR pathway may remove this inhibition and restore sensitivity to these compounds. Buparlisib (BKM120) is a potent oral pan-class I PI3K inhibitor that is being extensively evaluated in multiple tumor types. AREAS COVERED This review briefly summarizes the pharmacodynamics and pharmacokinetics of buparlisib, focusing on preclinical and clinical data in BC and on ongoing randomized trials. EXPERT OPINION Overall, buparlisib is a safe and tolerable drug and, despite its peculiar toxicity profile, it is suitable for studies in combination with other anticancer agents in BC. Early-phase clinical trials in BC have provided evidence of antitumor activity. Several trials are being conducted in all the biological subsets of BC, including combinations with endocrine therapy, anti-HER2 agents, PARP-inhibitors and chemotherapy. While clinical results are eagerly awaited, biological material suitable for both genomic and non-genomic analyses is being collected. The authors expect an intense investigation of the potential biomarkers that explain response or resistance to buparlisib and inspire strategies to rationally explore the therapeutic potential of this drug.
Collapse
Affiliation(s)
- Elena Geuna
- Investigative Clinical Oncology (INCO), Fondazione del Piemonte per l'Oncologia (FPO) - Candiolo Cancer Center (IRCCs), Institute for Cancer Research and Treatment of Candiolo , Strada Provinciale 142, Km 3.95, CAP 10060, Candiolo, Turin , Italy +39 0119933958 ; +39 0119621525 ;
| | | | | | | | | | | | | |
Collapse
|
42
|
Bowers LW, Cavazos DA, Maximo IXF, Brenner AJ, Hursting SD, deGraffenried LA. Obesity enhances nongenomic estrogen receptor crosstalk with the PI3K/Akt and MAPK pathways to promote in vitro measures of breast cancer progression. Breast Cancer Res 2014; 15:R59. [PMID: 23880059 PMCID: PMC3978844 DOI: 10.1186/bcr3453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/18/2013] [Accepted: 07/23/2013] [Indexed: 02/03/2023] Open
Abstract
Introduction Epidemiological and clinical studies indicate that obesity is associated with a worse postmenopausal breast cancer prognosis and an increased risk of endocrine therapy resistance. However, the mechanisms mediating these effects remain poorly understood. Here we investigate the molecular pathways by which obesity-associated circulating factors in the blood enhance estrogen receptor alpha (ERα) positive breast cancer cell viability and growth. Methods Blood serum was collected from postmenopausal breast cancer patients and pooled by body mass index (BMI) category (Control: 18.5 to 24.9 kg/m2; Obese: ≥30.0 kg/m2). The effects of patient sera on MCF-7 and T47D breast cancer cell viability and growth were examined by MTT and colony formation assays, respectively. Insulin-like growth factor receptor 1(IGF-1R), Akt, and ERK1/2 activation and genomic ERα activity were assessed to determine their possible contribution to obese patient sera-induced cell viability and growth. To further define the relative contribution of these signaling pathways, cells grown in patient sera were treated with various combinations of ERα, PI3K/Akt and MAPK targeted therapies. Comparisons between cells exposed to different experimental conditions were made using one-way analysis of variance (ANOVA) and Student's t test. Results Cells grown in media supplemented with obese patient sera displayed greater cell viability and growth as well as IGF-1R, Akt and ERK1/2 activation relative to control sera. Despite the lack of a significant difference in genomic ERα activity following growth in obese versus control patient sera, we observed a dramatic reduction in cell viability and growth after concurrent inhibition of the ERα and PI3K/Akt signaling pathways. Further, we demonstrated that ERα inhibition was sufficient to attenuate obese serum-induced Akt and ERK1/2 activation. Together, these data suggest that obesity promotes greater ERα positive breast cancer cell viability and growth through enhanced crosstalk between nongenomic ERα signaling and the PI3K/Akt and MAPK pathways. Conclusions Circulating factors in the serum of obese postmenopausal women stimulate ERα positive breast cancer cell viability and growth by facilitating non-genomic ERα crosstalk with the PI3K/Akt and MAPK signaling pathways. These findings provide valuable insight into one mechanism by which obesity may promote ERα positive postmenopausal breast cancer progression and endocrine therapy resistance.
Collapse
|
43
|
Noguchi S, Masuda N, Iwata H, Mukai H, Horiguchi J, Puttawibul P, Srimuninnimit V, Tokuda Y, Kuroi K, Iwase H, Inaji H, Ohsumi S, Noh WC, Nakayama T, Ohno S, Rai Y, Park BW, Panneerselvam A, El-Hashimy M, Taran T, Sahmoud T, Ito Y. Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2. Breast Cancer 2014; 21:703-14. [PMID: 23404211 PMCID: PMC4210660 DOI: 10.1007/s12282-013-0444-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/08/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The addition of mTOR inhibitor everolimus (EVE) to exemestane (EXE) was evaluated in an international, phase 3 study (BOLERO-2) in patients with hormone-receptor-positive (HR(+)) breast cancer refractory to letrozole or anastrozole. The safety and efficacy of anticancer treatments may be influenced by ethnicity (Sekine et al. in Br J Cancer 99:1757-62, 2008). Safety and efficacy results from Asian versus non-Asian patients in BOLERO-2 are reported. METHODS Patients were randomized (2:1) to 10 mg/day EVE + EXE or placebo (PBO) + EXE. Primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival, response rate, clinical benefit rate, and safety. RESULTS Of 143 Asian patients, 98 received EVE + EXE and 45 received PBO + EXE. Treatment with EVE + EXE significantly improved median PFS versus PBO + EXE among Asian patients by 38 % (HR = 0.62; 95 % CI, 0.41-0.94). Median PFS was also improved among non-Asian patients by 59 % (HR = 0.41; 95 % CI, 0.33-0.50). Median PFS duration among EVE-treated Asian patients was 8.48 versus 4.14 months for PBO + EXE, and 7.33 versus 2.83 months, respectively, in non-Asian patients. The most common grade 3/4 adverse events (stomatitis, anemia, elevated liver enzymes, hyperglycemia, and dyspnea) occurred at similar frequencies in Asian and non-Asian patients. Grade 1/2 interstitial lung disease occurred more frequently in Asian patients. Quality of life was similar between treatment arms in Asian patients. CONCLUSION Adding EVE to EXE provided substantial clinical benefit in both Asian and non-Asian patients with similar safety profiles. This combination represents an improvement in the management of postmenopausal women with HR(+)/HER2(-) advanced breast cancer progressing on nonsteroidal aromatase inhibitors, regardless of ethnicity.
Collapse
Affiliation(s)
- Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University, Osaka, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Eskander RN, Tewari KS. Exploiting the therapeutic potential of the PI3K-AKT-mTOR pathway in enriched populations of gynecologic malignancies. Expert Rev Clin Pharmacol 2014; 7:847-58. [DOI: 10.1586/17512433.2014.968554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Arena F. Clinical implications of recent studies using mTOR inhibitors to treat advanced hormone receptor-positive breast cancer. Cancer Manag Res 2014; 6:389-95. [PMID: 25336989 PMCID: PMC4199833 DOI: 10.2147/cmar.s56802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related death worldwide. Approximately 75% of breast cancer is hormone receptor-positive (HR+) and is managed with endocrine therapies. However, relapse or disease progression caused by primary or acquired endocrine resistance is frequent. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)-mediated signaling is one of the molecular mechanisms leading to endocrine resistance. mTOR inhibitors that target the PI3K/Akt/mTOR pathway are the first of the targeted therapies to be evaluated in clinical trials to overcome endocrine resistance. Although the clinical trial with temsirolimus, an mTOR inhibitor, did not show any benefit when compared with endocrine therapy alone, a Phase II clinical trial with sirolimus has been promising. Recently, everolimus was approved in combination with exemestane by the US Food and Drug Administration for treating postmenopausal women with advanced HR+ breast cancer, based on the results of a Phase III trial. Therefore, everolimus represents the first and only targeted agent approved for combating endocrine resistance.
Collapse
Affiliation(s)
- Francis Arena
- Clinical Research Alliance, Lake Success, New York, NY, USA
| |
Collapse
|
46
|
Zhao M, Ramaswamy B. Mechanisms and therapeutic advances in the management of endocrine-resistant breast cancer. World J Clin Oncol 2014; 5:248-262. [PMID: 25114842 PMCID: PMC4127598 DOI: 10.5306/wjco.v5.i3.248] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
The estrogen receptor (ER) pathway plays a critical role in breast cancer development and progression. Endocrine therapy targeting estrogen action is the most important systemic therapy for ER positive breast cancer. However its efficacy is limited by intrinsic and acquired resistance. Mechanisms responsible for endocrine resistance include deregulation of the ER pathway itself, including loss of ER expression, post-translational modification of ER, deregulation of ER co-activators; increased receptor tyrosine kinase signaling leading to activation of various intracellular pathways involved in signal transduction, proliferation and cell survival, including growth factor receptor tyrosine kinases human epidermal growth factor receptor-2, epidermal growth factor receptor, PI3K/AKT/mammalian target of rapamycin (mTOR), Mitogen activated kinase (MAPK)/ERK, fibroblast growth factor receptor, insulin-like growth factor-1 receptor; alterations in cell cycle and apoptotic machinery; Epigenetic modification including dysregulation of DNA methylation, histone modification, and nucleosome remodeling; and altered expression of specific microRNAs. Functional genomics has helped us identify a catalog of genetic and epigenetic alterations that may be exploited as potential therapeutic targets and biomarkers of response. New treatment combinations targeting ER and such oncogenic signaling pathways which block the crosstalk between these pathways have been proven effective in preclinical models. Results of recent clinical studies suggest that subsets of patients benefit from the combination of inhibitor targeting certain oncogenic signaling pathway with endocrine therapy. Especially, inhibition of the mTOR signaling pathway, a key component implicated in mediating multiple signaling cascades, offers a promising approach to restore sensitivity to endocrine therapy in breast cancer. We systematically reviewed important publications cited in PubMed, recent abstracts from ASCO annual meetings and San Antonio Breast Cancer Symposium, and relevant trials registered at ClinicalTrials.gov. We present the molecular mechanisms contributing to endocrine resistance, in particular focusing on the biological rationale for the clinical development of novel targeted agents in endocrine resistant breast cancer. We summarize clinical trials utilizing novel strategies to overcome therapeutic resistance, highlighting the need to better identify the appropriate patients whose diseases are most likely to benefit from these specific strategies.
Collapse
|
47
|
Brufsky AM. Managing postmenopausal women with hormone receptor-positive advanced breast cancer who progress on endocrine therapies with inhibitors of the PI3K pathway. Breast J 2014; 20:347-57. [PMID: 24861776 DOI: 10.1111/tbj.12278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although endocrine therapies that interfere with estrogen receptor (ER)-mediated signaling have revolutionized the management of postmenopausal women with hormone receptor-positive (HR+) breast cancer (BC), long-term management of these patients is suboptimal because of the eventual emergence of endocrine resistance. Intense research has elucidated a number of targets that act downstream or upstream of the ER, as well as those that crosstalk with the ER; however, clinical validation of inhibiting specific targets to overcome endocrine resistance has been lacking. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway has been implicated to mediate endocrine resistance, and a number of novel agents that target this pathway are in early- and late-stage clinical trials. Recently, everolimus, an inhibitor of mTOR, a critical component of the PI3K/AKT/mTOR pathway, in combination with endocrine therapy, was shown to prolong progression-free survival with a manageable adverse-event profile in postmenopausal patients with HR+ BC. Bolstered by the safety and efficacy observed with concomitant inhibition of the ER and the PI3K/mTOR pathway and the validation of dual inhibition approach in managing postmenopausal patients with HR+ BC, a number of novel agents that inhibit PI3K (pan-PI3K inhibitors) or PI3K and mTOR (dual PI3K/mTOR) are being evaluated in clinical trials. Thus, mTOR inhibitors have provided the much-needed ammunition to oncologists who manage postmenopausal women with BC and have paved the way for the development of novel therapies that target the PI3K/mTOR pathway. Use of these novel therapies in managing postmenopausal women with BC, in combination with endocrine therapies, is expected to improve overall outcomes by overcoming endocrine resistance.
Collapse
Affiliation(s)
- Adam M Brufsky
- Magee-Women's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Ng VC, Johnson JJ, Cuellar S. Targeting the mammalian target of rapamycin pathway with everolimus: implications for the management of metastatic breast cancer. J Oncol Pharm Pract 2014; 21:433-42. [PMID: 24964967 DOI: 10.1177/1078155214540732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inhibitors of mammalian target of rapamycin (mTOR) have documented antitumor activity via disruption of various signaling pathways leading to impaired cellular growth, proliferation, and survival. In preclinical studies, mTOR inhibitors use in combination with hormonal therapy has shown promising results in overcoming endocrine resistance in breast cancer cells. The role of everolimus in breast cancer was established in the Breast Cancer Trial of Oral Everolimus-2 (BOLERO-2) trial in combination with exemestane for patients with advanced metastatic hormone receptor-positive (HR+) breast cancer, who relapsed after initial hormonal manipulation. The study met its primary endpoint of significant improvement in progression free survival (PFS) with a median time to progression of 6.9 months in the combination group versus 2.8 months in exemestane group. Favorable improvements in PFS were reported across all patient subgroups regardless of age, Eastern Cooperative Oncology Group performance status, number of prior therapies, and presence of visceral metastases. Adverse events were mostly mild to moderate in severity and consistent with the known safety profile of everolimus. Major toxicities reported include stomatitis, non-infectious pneumonitis, and hyperglycemia. The purpose of this review is to discuss the role of everolimus as a valuable component in advanced metastatic breast cancer and delineate current strategies to prevent and manage the most common toxicities associated with this combination regimen.
Collapse
Affiliation(s)
- Vin Cci Ng
- Department of Pharmacy, Singapore General Hospital, Outram Rd Singapore, 169680 Singapore
| | - Jeremy J Johnson
- Department of Pharmacy, Singapore General Hospital, Outram Rd Singapore, 169680 Singapore Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra Cuellar
- Department of Pharmacy, Singapore General Hospital, Outram Rd Singapore, 169680 Singapore Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Gnant M, Greil R, Hubalek M, Steger G. Everolimus in postmenopausal, hormone receptor-positive advanced breast cancer: summary and results of an austrian expert panel discussion. ACTA ACUST UNITED AC 2014; 8:293-9. [PMID: 24415983 DOI: 10.1159/000354121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In patients with hormone receptor-positive advanced breast cancer, response to endocrine therapy is frequently limited by endocrine resistance. One important mechanism of resistance is related to mammalian target of rapamycin (mTOR), a molecule involved in the activation of alternative signaling pathways. Preclinically, resensitization of endocrine resistance can be achieved by the addition of the mTOR inhibitor everolimus to endocrine therapy. Recent results of clinical trials confirmed the clinical activity of combining everolimus and endocrine therapy in neoadjuvant and advanced breast cancer. The BOLERO-2 trial demonstrated significant progression-free survival benefits for the addition of everolimus to exemestane. These data were the basis for the recent approval of everolimus in combination with exemestane for the treatment of advanced hormone r eceptor-positive breast cancer. In clinical practice, the following 3 patient groups are particularly suitable for this treatment: those with progression on aromatase inhibitor therapy, those who respond well to chemotherapy and might benefit from subsequent endocrine therapy, and those with non-aggressive tumor biology. Everolimus treatment requires careful clinical monitoring due to the potentially serious side effects, e.g. stomatitis and pneumonitis. It is also important to educate patients and physicians in order to increase their awareness of side effects. At present, everolimus is investigated in clinical trials.
Collapse
Affiliation(s)
- Michael Gnant
- Comprehensive Cancer Center Vienna MUW/AKH, Universitätsklinik für Chirurgie, Medizinische Universität Wien, Austria
| | - Richard Greil
- Universitätsklinik für Innere Medizin III mit Hämatologie, internistischer Onkologie, Hämostaseologie, Infektiologie, Rheumatologie und Onkologisches Zentrum, Paracelsus Medizinische Privatuniversität Salzburg, Austria
| | - Michael Hubalek
- Universitätsklinik für Frauenheilkunde, Medizinische Universität Innsbruck, Austria
| | - Günther Steger
- Universitätsklinik für Innere Medizin I, Medizinische Universität Wien, Austria
| |
Collapse
|
50
|
Hasson SP, Rubinek T, Ryvo L, Wolf I. Endocrine resistance in breast cancer: focus on the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin signaling pathway. ACTA ACUST UNITED AC 2014; 8:248-55. [PMID: 24415977 DOI: 10.1159/000354757] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer is the most common cancer among women. Up to 75% of breast cancers express the estrogen receptor (ER)α and/or the progesterone receptor (PR). Patients with hormone receptor-positive metastatic breast cancer are typically treated with endocrine therapy. Yet, not all patients with metastatic breast cancer respond to endocrine treatments and are considered to have primary (de novo) resistance. Furthermore, all patients who initially respond to endocrine treatment will eventually develop acquired resistance. Several mechanisms have been linked to the development of endocrine resistance, including reduced expression of ERα, altered regulation of the ER pathway, and activation of various growth factor signaling pathways, among them the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. This pathway is involved in critical processes including cell survival, proliferation, and angiogenesis, and plays a central role in breast cancer development. Recent laboratory and clinical data implicate this pathway as mediating endocrine resistance, and agents directed against critical components of this pathway are either already approved for clinical use in breast cancer patients or are currently being tested in clinical trials. In this review, we describe the interaction between the PI3K/Akt/mTOR pathway and the ER cascade, its role in mediating endocrine resistance, and the clinical implications of this interaction.
Collapse
Affiliation(s)
- Shira Peleg Hasson
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Israel ; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Tami Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Israel
| | - Larysa Ryvo
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Israel
| | - Ido Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Israel ; Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|