1
|
Austria ES, Akhavan B. Polymeric nanoparticle synthesis for biomedical applications: advancing from wet chemistry methods to dry plasma technologies. NANOSCALE 2025. [PMID: 40391562 DOI: 10.1039/d5nr00436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Nanotechnology has introduced a transformative leap in healthcare over recent decades, particularly through nanoparticle-based drug delivery systems. Among these, polymeric nanoparticles (NPs) have gained significant attention due to their tuneable physicochemical properties for overcoming biological barriers. Their surfaces can be engineered with chemical functional groups and biomolecules for a wide range of biomedical applications, ranging from drug delivery to diagnostics. However, despite these advancements, the clinical translation and large-scale commercialization of polymeric NPs face significant challenges. This review uncovers these challenges by examining the interplay between structural design and payload interaction mode. It provides a critical evaluation of the current synthesis methods, beginning with conventional wet chemical techniques, and progressing to emerging dry plasma technologies, such as plasma polymerization. Special attention is given to plasma polymerized nanoparticles (PPNs), highlighting their potential as paradigm-shifting platforms for biomedical applications while identifying key areas for improvement. The review concludes with a forward-looking discussion on strategies to address key challenges, such as achieving regulatory approval and advancing clinical translation of polymeric NP-based therapies, offering unprecedented opportunities for next-generation nanomedicine.
Collapse
Affiliation(s)
- Elmer S Austria
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Behnam Akhavan
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Abbaspour S, Mohamadzadeh M, Shojaosadati SA. Protein-based nanocarriers for paclitaxel (PTX) delivery in cancer treatment: A review. Int J Biol Macromol 2025; 310:143068. [PMID: 40220831 DOI: 10.1016/j.ijbiomac.2025.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Paclitaxel (PTX) is recognized as one of the most potent chemotherapy agents and is widely used to treat various cancers, including ovarian, lung, breast, head, and neck cancer. Due to the limited solubility and high toxicity of PTX, its use in cancer treatment is challenging and limited. Hence, strategies have been devised to improve the solubility and bioavailability of paclitaxel. In recent years, biocompatible nanocarriers have garnered attention due to their desirable properties, including increased permeability, targeted delivery, extended circulatory half-life, and biological drug delivery for the delivery of chemotherapeutic drugs. Protein nanostructures have been widely studied for the delivery of paclitaxel due to their significant advantages, such as safety, low toxicity, availability, and relatively easy preparation. This review article reviews recent advances in the development of protein-based drug delivery systems for loading and releasing paclitaxel. These nanocarriers have great potential to improve paclitaxel's antitumor properties and efficacy. Therefore, in the future, the integration of the pharmaceutical industry and artificial intelligence techniques will provide more opportunities for research and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Jha S, Hegde M, Banerjee R, Alqahtani MS, Abbas M, Fardoun HM, Unnikrishnan J, Sethi G, Kunnumakkara AB. Nanoformulations: Reforming treatment for non-small cell lung cancer metastasis. Biochem Pharmacol 2025; 238:116928. [PMID: 40288544 DOI: 10.1016/j.bcp.2025.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Non-small cell lung cancer (NSCLC) is frequently diagnosed at an advanced stage, with 20 % of cases presenting as localized disease, 25 % with regional metastasis, and 55 % with distant metastasis, contributing significantly to increased morbidity and mortality rates. Current treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, have shown therapeutic efficacy but are limited by issues such as lack of specificity, cytotoxicity, and therapeutic resistance. Nanoparticles (NPs) offer promising solutions to these challenges by enhancing drug penetration and retention, improving biocompatibility and stability, and achieving greater precision in targeting cancer cells. This review provides insights into various types of NPs utilized in anti-metastatic drug delivery, emphasizing their ability to enhance the efficacy of existing chemotherapeutics for the prophylaxis of metastatic NSCLC. The usage of NPs as carriers of synthetic and natural compounds aimed at inhibiting cancer cell migration and invasion have also been reviewed. Special attention has been given to biomimetic nanomaterials including extracellular vesicles and engineered exosomes, that are capable of targeting molecular pathways such as EMT, p53 and PI3K/Akt to treat metastatic NSCLC. Additionally, emphasis has been given to clinical trials of these nanoformulations and their efficacy. Although therapeutic outcomes have demonstrated certain improvements, challenges related to toxicity persist, highlighting the need for further optimization of these formulations to enhance safety and efficacy. Finally, we discuss the current limitations and future perspectives for integrating NPs into clinical settings as novel therapeutic agents for lung cancer metastasis.
Collapse
Affiliation(s)
- Shristy Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ruchira Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Habib M Fardoun
- Research Department, Canadian University Dubai, Dubai 117781, United Arab Emirates
| | - Jyothsna Unnikrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600 Singapore.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Liu N, Wang X, Wang Z, Kan Y, Fang Y, Gao J, Kong X, Wang J. Nanomaterials-driven in situ vaccination: a novel frontier in tumor immunotherapy. J Hematol Oncol 2025; 18:45. [PMID: 40247328 PMCID: PMC12007348 DOI: 10.1186/s13045-025-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
In situ vaccination (ISV) has emerged as a promising strategy in cancer immunotherapy, offering a targeted approach that uses the tumor microenvironment (TME) to stimulate an immune response directly at the tumor site. This method minimizes systemic exposure while maintaining therapeutic efficacy and enhancing safety. Recent advances in nanotechnology have enabled new approaches to ISV by utilizing nanomaterials with unique properties, including enhanced permeability, retention, and controlled drug release. ISV employing nanomaterials can induce immunogenic cell death and reverse the immunosuppressive and hypoxic TME, thereby converting a "cold" tumor into a "hot" tumor and facilitating a more robust immune response. This review examines the mechanisms through which nanomaterials-based ISV enhances anti-tumor immunity, summarizes clinical applications of these strategies, and evaluates its capacity to serve as a neoadjuvant therapy for eliminating micrometastases in early-stage cancer patients. Challenges associated with the clinical translation of nanomaterials-based ISV, including nanomaterial metabolism, optimization of treatment protocols, and integration with other therapies such as radiotherapy, chemotherapy, and photothermal therapy, are also discussed. Advances in nanotechnology and immunotherapy continue to expand the possible applications of ISV, potentially leading to improved outcomes across a broad range of cancer types.
Collapse
Affiliation(s)
- Naimeng Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yonemori Kan
- Department of Medical Oncology, National Cancer Center Hospital (NCCH), 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518127, China.
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Nevala WK, Geng L, Xie H, Stueven NA, Markovic SN. PD-L1-Targeting Nanoparticles for the Treatment of Triple-Negative Breast Cancer: A Preclinical Model. Int J Mol Sci 2025; 26:3295. [PMID: 40244130 PMCID: PMC11989481 DOI: 10.3390/ijms26073295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed nano-immune conjugates (NIC) in which hydrophobic chemotherapy drugs like paclitaxel (PTX) and SN38, the active metabolite of irinotecan, are made water soluble by formulating them into albumin-based nanoparticles (nab) that are hydrophobically linked to various IgG1 monoclonal antibodies, creating an antigen-targetable nano-immune conjugate. To date, we have successfully tested PTX containing NICs linked to either VEGF- or CD20-targeted antibodies in two phase I clinical trials against multiple relapsed ovarian/uterine cancer or non-Hodgkin's lymphoma, respectively. Herein, we describe a novel NIC created with either PTX or SN38 that is coated with anti-PD-L1-targeting antibodies for the treatment of a preclinical model of TNBC. In vitro testing suggests that the chemotherapy drug and antibody retain their toxicity and ligand binding capability in the context of the NIC. Furthermore, both the PTX and SN-38 NIC demonstrate superior anti-tumor efficacy relative to antibody and chemotherapy drugs alone in a PD-L1 + MDA-MB-231 human TNBC xenograft model, which could translate clinically to patients with TNBC.
Collapse
Affiliation(s)
- Wendy K. Nevala
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Liyi Geng
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Hui Xie
- Vivasor, 9380 Judicial Dr., San Diego, CA 92121, USA;
| | - Noah A. Stueven
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Svetomir N. Markovic
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| |
Collapse
|
6
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
7
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
9
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
10
|
Zhou Z, Feng Y, Jiang M, Yao Z, Wang J, Pan F, Feng R, Zhao C, Ma Y, Zhou J, Sun L, Sun X, Zhan C, He X, Jiang K, Yu J, Yan Z. Ionizable polymeric micelles (IPMs) for efficient siRNA delivery. Nat Commun 2025; 16:360. [PMID: 39753560 PMCID: PMC11699125 DOI: 10.1038/s41467-024-55721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene. A fibroblast activation protein inhibitor modified IPMs (FAPi-IPMs) show higher targeting for activated hepatic stellate cells (HSCs) compared to that for hepatocytes, silencing both HSP47 and HMGB1, reducing collagen secretion and liver inflammation, thereby treating fibrosis. Moreover, IPMs and FAPi-IPMs mitigate ABC effect and produce fewer PEG antibodies than LNPs, and show minimal apolipoprotein adsorption in vivo compared with LNPs, differentiating their targeting effects from LNPs. In conclusion, IPMs represent a nucleic acid delivery system with alternative targeting ability and reduced ABC effect.
Collapse
Affiliation(s)
- Ziyu Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
- School of Pharmacy, East China Normal University, Shanghai, PR China
| | - Yu Feng
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Mingzhou Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Zijun Yao
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Feng Pan
- Ministry of Education & Department of Pharmacy, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Shanghai Fudan University, Shanghai, PR China
| | - Rulan Feng
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Chong Zhao
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Yinyu Ma
- Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Jinge Zhou
- Institute of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Lei Sun
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Changyou Zhan
- Ministry of Education & Department of Pharmacy, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Shanghai Fudan University, Shanghai, PR China
- Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Xiao He
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
| | - Kuan Jiang
- Department of Pharmacology School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China.
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, PR China.
| | - Jiahui Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
| |
Collapse
|
11
|
Chauhan P, Pandey P, Ramniwas S, Khan F. Review Deciphering the Potential of Nanotherapeutics in Lung Cancer Management. Curr Cancer Drug Targets 2025; 25:539-554. [PMID: 38561624 DOI: 10.2174/0115680096302203240308104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Lung cancer remains a formidable challenge in oncology, necessitating the development of more effective prognostic and diagnostic techniques due to inefficient conventional therapeutic approaches and inadequate methods for early lung cancer diagnosis. Despite immense progress in the development of innovative strategies to alleviate the impact of this devastating disease, the outcomes, unfortunately, remain unsatisfactory, particularly in targeted drug delivery methods. Consequently, nanotechnology has emerged as a revolutionary force in cancer research to develop more effective targeted drug delivery tools due to its extraordinary capacity at the atomic and molecular levels. It has appeared as a beacon of hope in this area of unmet need, providing innovative ways for the prognosis and diagnosis of lung carcinoma. Therefore, this comprehensive review delves into the evolving field of nano-based therapeutics, shedding light on their potential to transform lung cancer treatment. This study meticulously explores the most promising nano-based strategies that have been extensively linked with the treatment of lung carcinoma and mainly emphasizes targeted drug delivery methods and therapies. Additionally, this review encapsulates the favorable results of clinical trials, which support the potential pathways for further development of nanotherapeutics in lung cancer management.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
13
|
Younis MA, Alsogaihi MA, Abdellatif AAH, Saleem I. Nanoformulations in the treatment of lung cancer: current status and clinical potential. Drug Dev Ind Pharm 2024:1-17. [PMID: 39629952 DOI: 10.1080/03639045.2024.2437562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE Recent developments in nanotechnology have regained hope in enabling the eradication of lung cancer, while overcoming the drawbacks of the classic therapeutics. Nevertheless, there are still formidable obstacles that hinder the translation of such platforms from the bench into the clinic. Herein, we shed light on the clinical potential of these formulations and discuss their future directions. SIGNIFICANCE OF REVIEW The current article sheds light on the recent advancements in the recruitment of nanoformulations against lung cancer, focusing on their unique features, merits, and demerits. Moreover, inorganic nanoparticles, including gold, silver, magnetic, and carbon nanotubes are highlighted as emerging drug delivery technologies. Furthermore, the clinical status of these formulations is discussed, with particular attention on the challenges that they encounter in their clinical translation. Lastly, the future perspectives in this promising area are inspired. KEY FINDINGS Nanoformulations have a promising potential in improving the physico-chemical properties, pharmacokinetics, delivery efficiency, and selectivity of lung cancer therapeutics. The key challenges that encounter their clinical translation include their structural intricacy, high production cost, scale-up issues, and unclear toxicity profiles. The application of biodegradable platforms improves the biosafety of lung cancer-targeted nanomedicine. Moreover, the design of novel targeting strategies that apply a lower number of components can promote their industrial scalability and deliver them to the market at affordable prices. CONCLUSIONS Nanomedicines have opened up new possibilities for treating lung cancer. Focusing on tackling the challenges that hinder their clinical translation will promote the future of this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohammad A Alsogaihi
- Pharma D Student, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Imran Saleem
- Nanomedicine, Formulation & Delivery Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
14
|
Elsayed N. Selective imaging, gene, and therapeutic delivery using PEGylated and pH-Sensitive nanoparticles for enhanced lung disorder treatment. Int J Pharm 2024; 666:124819. [PMID: 39424084 DOI: 10.1016/j.ijpharm.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Lung inflammation involves the activation of immune cells and inflammatory mediators in response to injury and infection. When inflammation persists, fibroblasts, which are resident lung cells, become activated, leading to pulmonary fibrosis (PF), abnormal wound healing, and long-term damage to the alveolar epithelium. This persistent inflammation and fibrosis can also elevate the risk of lung cancer, emphasizing the need for innovative treatments. Current therapies, such as inhaled corticosteroids (ICS) and chemotherapy, have significant limitations. Although conventional nanoparticles (NPs) provide a promising avenue for treating lung disorders, they have limited selectivity and stability. Polyethylene glycol (PEG) grafting can prevent NP aggregation and phagocytosis, thus prolonging their circulation time. When combined with targeting ligands, PEGylated NPs can deliver drugs precisely to specific cells or tissues. Moreover, pH-sensitive NPs offer the advantage of selective drug delivery to inflammatory or tumor-acidic environments, reducing side effects. These NPs can change their size, shape, or surface charge in response to pH variations, improving drug delivery efficiency. This review examines the techniques of PEGylation, the polymers used in pH-sensitive NPs, and their therapeutic applications for lung inflammation, fibrosis, and cancer. By harnessing innovative NP technologies, researchers can develop effective therapies for respiratory conditions, addressing unmet medical needs and enhancing patient outcomes.
Collapse
Affiliation(s)
- Nourhan Elsayed
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
15
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
16
|
Liu S. Self-assembled lipid-based nanoparticles for chemotherapy against breast cancer. Front Bioeng Biotechnol 2024; 12:1482637. [PMID: 39534673 PMCID: PMC11555772 DOI: 10.3389/fbioe.2024.1482637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembled lipid-based nanoparticles have been shown to have improved therapeutic efficacy and lower toxic side effects. Breast cancer is a common type of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This paper surveys research on self-assembled lipid-based nanoparticles by categorizing them under three groups: self-assembled liposomal nanostructures, self-assembled niosomes, and self-assembled lipid-polymer hybrid nanoparticles. Subsequently, the structural features and operating mechanisms of each group are summarized individually along with examples of representative drugs from each group.
Collapse
Affiliation(s)
- Shan Liu
- Department of Oncology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Alexandru I, Davidescu L, Motofelea AC, Ciocarlie T, Motofelea N, Costachescu D, Marc MS, Suppini N, Șovrea AS, Coșeriu RL, Bondor DA, Bobeică LG, Crintea A. Emerging Nanomedicine Approaches in Targeted Lung Cancer Treatment. Int J Mol Sci 2024; 25:11235. [PMID: 39457017 PMCID: PMC11508987 DOI: 10.3390/ijms252011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is characterized by its aggressive nature and poor prognosis. As traditional chemotherapy has the disadvantage of non-specificity, nanomedicine offers innovative approaches for targeted therapy, particularly through the development of nanoparticles that can deliver therapeutic agents directly to cancer cells, minimizing systemic toxicity and enhancing treatment efficacy. VEGF and VEGFR are shown to be responsible for activating different signaling cascades, which will ultimately enhance tumor development, angiogenesis, and metastasis. By inhibiting VEGF and VEGFR signaling pathways, these nanotherapeutics can effectively disrupt tumor angiogenesis and proliferation. This review highlights recent advancements in nanoparticle design, including lipid-based, polymeric, and inorganic nanoparticles, and their clinical implications in improving lung cancer outcomes, exploring the role of nanomedicine in lung cancer diagnoses and treatment.
Collapse
Affiliation(s)
- Isaic Alexandru
- Department X of General Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Lavinia Davidescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Tudor Ciocarlie
- Department VII Internal Medicine II, Discipline of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Nadica Motofelea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Dan Costachescu
- Radiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Steluta Marc
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Noemi Suppini
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Alina Simona Șovrea
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Răzvan-Lucian Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mures, Romania;
| | - Daniela-Andreea Bondor
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Laura-Gabriela Bobeică
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Andreea Crintea
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| |
Collapse
|
18
|
Leng G, Duan B, Liu J, Li S, Zhao W, Wang S, Hou G, Qu J. The advancements and prospective developments in anti-tumor targeted therapy. Neoplasia 2024; 56:101024. [PMID: 39047659 PMCID: PMC11318541 DOI: 10.1016/j.neo.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Cancer poses a major threat to human health worldwide. The development of anti-tumor materials provides new modalities for cancer diagnosis and treatment. In this review, we comprehensively summarize the research progress and clinical applications of anti-tumor materials. First, we introduce the etiology and pathogenesis of cancer, and the significance and challenges of anti-tumor materials research. Then, we classify anti-tumor materials and discuss their mechanisms of action. After that, we elaborate the research advances and clinical applications of anti-tumor materials, including those targeting tumor cells and therapeutic instruments. Finally, we discuss the future perspectives and challenges in the field of anti-tumor materials. This review aims to provide an overview of the current status of anti-tumor materials research and application, and to offer insights into future directions in this rapidly evolving field, which holds promise for more precise, efficient and customized treatment of cancer.
Collapse
Affiliation(s)
- Guorui Leng
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Baorong Duan
- Research Center for Leather and Protein of College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Liu
- Department of Physics, Binzhou Medical University, Yantai 264003, China
| | - Song Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Wenwen Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Shanshan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Jiale Qu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
19
|
Wang FY, Huang XM, Cao YQ, Cao J, Ni J, Li K, Lu M, Huang XE. Nanoparticle Polymeric Micellar Paclitaxel Versus Paclitaxel for Patients with Advanced Gastric Cancer. J Gastrointest Cancer 2024; 55:1105-1110. [PMID: 38668776 PMCID: PMC11347489 DOI: 10.1007/s12029-024-01058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Nanoparticle polymeric micellar paclitaxel (NPMP) is a novel Cremophor EL (CrEL)-free nanoparticle micellar formulation of paclitaxel. This study evaluated the efficacy and toxicity of NPMP in the treatment of patients with advanced gastric cancer (AGC). METHODS Patients with histologically confirmed AGC in Jiangsu Cancer Hospital were retrospectively collected and divided into two groups. Patients in group A received NPMP at a total dose of 360 mg/m2 each cycle, and patients in group B were given paclitaxel at a dose of 210 mg/m2 each cycle. In addition, all patients received 5-fluorouracil at a dose of 0.75 g/m2 on days 1-4 and leucovorin at a dose of 200 mg/m2 on days 1-4 for at least 2 cycles. RESULTS From January 2021 to May 2023, 63 patients (32 in group A and 31 in group B) could be evaluated for treatment response. A marked disparity in the overall response was observed between groups A and B, indicating statistical significance. The overall response rate was 31% in group A (10/32) and 10% in group B (3/31) (P = 0.034). Disease control rate was 91% in group A (29/32) and 81% in group B (25/31) (P = 0.440). No statistically significant difference in adverse reactions was observed between the two groups. However, the incidence of anemia, leucopenia, nausea, vomiting, diarrhea, liver dysfunction, and allergy in group A was notably lower than that in group B. CONCLUSIONS NPMP combined chemotherapy offers a new, active, and safe treatment for patients with AGC.
Collapse
Affiliation(s)
- Fei-Yu Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting , Jiangsu, 210009, China
| | - Xiang-Ming Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Qing Cao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting , Jiangsu, 210009, China
| | - Jie Cao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting , Jiangsu, 210009, China
| | - Jie Ni
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting , Jiangsu, 210009, China
| | - Ke Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting , Jiangsu, 210009, China
| | - Min Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin-En Huang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University& Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting , Jiangsu, 210009, China.
| |
Collapse
|
20
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
21
|
R. LOKESHVAR, VELMURUGAN RAMAIYAN. A REVIEW OF NANOPARTICLE INNOVATIONS IN CANCER THERAPY: IMPLICATIONS, TARGETING MECHANISMS AND CLINICAL PROSPECTS. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:43-55. [DOI: 10.22159/ijap.2024v16i3.49358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
The main reason for morbidity and death globally is cancer, which has a complex pathophysiology. There are several traditional treatments for cancer, including chemotherapy, radiation therapy, targeted therapies, and immunotherapies. Multiple drug resistance, cytotoxicity, and lack of specificity pose significant challenges to cancer treatments. Molecular diagnostics and cancer treatment have been transformed by nanotechnology. For cancer treatment, nanoparticles (1–100 nm) are ideal because they are biocompatible, have low toxicity, excellent stability, high permeability, are precise and stable, and can deliver clear and accurate results. There are several main categories of nanoparticles. When it comes to the delivery of nanoparticle drugs, tumour characteristics and the tumour environment are considered. As well as providing advantages over conventional cancer treatments, nanoparticles prevent multidrug resistance, further overcoming their limitations. As new mechanisms are unravelled in studying multidrug resistance, nanoparticles are becoming more critical. Nano formulations have gained a new perspective on cancer treatment due to their many therapeutic applications. The number of approved nanodrugs has not increased significantly despite most research being conducted in vivo and in vitro. A review of nanoparticle oncological implications, targeting mechanisms, and approved nanotherapeutics is presented here. A current perspective on clinical translation is also provided, highlighting its advantages and challenges.
Collapse
|
22
|
Zhang L, Yang J, Huang J, Yu Y, Ding J, Karges J, Xiao H. Development of tumor-evolution-targeted anticancer therapeutic nanomedicineEVT. Chem 2024; 10:1337-1356. [DOI: 10.1016/j.chempr.2023.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
23
|
Wileński S, Koper A, Śledzińska P, Bebyn M, Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. J Oncol Pharm Pract 2024; 30:367-384. [PMID: 38204196 DOI: 10.1177/10781552231208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against a variety of cancer types. However, the clinical utility of paclitaxel is restricted by its poor solubility in water and high toxicity, resulting in low drug tolerance. These difficulties could be resolved by using suitable pharmacological carriers. Hence, it is essential to determine innovative methods of administering this effective medication to overcome paclitaxel's inherent limitations. METHODS An extensive literature search was conducted using multiple electronic databases to identify relevant studies published. RESULTS In this comprehensive analysis, many different paclitaxel delivery systems are covered and discussed, such as albumin-bound paclitaxel, polymeric micelles, paclitaxel-loaded liposomes, prodrugs, cyclodextrins, and peptide-taxane conjugates. Moreover, the review also covers various delivery routes of conventional paclitaxel or novel paclitaxel formulations, such as oral administration, local applications, and intraperitoneal delivery. CONCLUSION In addition to albumin-bound paclitaxel, polymeric micelles appear to be the most promising formulations for innovative drug delivery systems at present. A variety of variants of polymeric micelles are currently undergoing advanced phases of clinical trials.
Collapse
Affiliation(s)
- Sławomir Wileński
- Department of Pharmaceutical Technology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Central Cytostatic Drug Department, Hospital Pharmacy, The F. Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Clinical Oncology, and Nursing, Department of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
24
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
25
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar V, Kumar V, Kumar H, Parashar J, Bansal N, Kumar M, Pandey P, Mittal V, Kaushik D. Emerging Nanotechnology-based Therapeutics: A New Insight into Promising Drug Delivery System for Lung Cancer Therapy. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:395-414. [PMID: 37537775 DOI: 10.2174/1872210517666230613154847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Lung cancer is a foremost global health issue due to its poor diagnosis. The advancement of novel drug delivery systems and medical devices will aid its therapy. OBJECTIVE In this review, the authors thoroughly introduce the ideas and methods for improving nanomedicine- based approaches for lung cancer therapy. This article provides mechanistic insight into various novel drug delivery systems (DDSs) including nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, niosomes, and nanoemulsions for lung cancer therapy with recent research work. This review provides insights into various patents published for lung cancer therapy based on nanomedicine. This review also highlights the current status of approved and clinically tested nanoformulations for their treatment. METHODOLOGY For finding scholarly related data for the literature search, many search engines were employed including PubMed, Science Direct, Google, Scihub, Google Scholar, Research Gate, Web of Sciences, and several others. Various keywords and phrases were used for the search such as "nanoparticles", "solid lipid nanoparticles", "liposomes", "dendrimers", "niosomes", "nanoemulsions", "lung cancer", "nanomedicine", "nanomaterial", "nanotechnology", "in vivo" and "in vitro". The most innovative and cutting-edge nanotechnology-based approaches that are employed in pre-clinical and clinical studies to address problems associated with lung cancer therapies are also mentioned in future prospects. A variety of problems encountered with current lung cancer therapy techniques that frequently led to inadequate therapeutic success are also discussed in the end. CONCLUSION The development of nanoformulations at the pilot scale still faces some difficulties, but their prospects for treating lung cancer appear to be promising in the future. Future developments and trends are anticipated as the evaluation comes to a close.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Vivek Kumar
- Department of Pharmacy, Shri Ram College of Pharmacy, Karnal, India
| | - Vikram Kumar
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Jatin Parashar
- B.S. Anangpuria Institute of Pharmacy, Faridabad-121004, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
26
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
27
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
29
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
30
|
Qu X, Zhou D, Lu J, Qin D, Zhou J, Liu HJ. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy. Bioact Mater 2023; 24:136-152. [PMID: 36606253 PMCID: PMC9792706 DOI: 10.1016/j.bioactmat.2022.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Surgical resection remains a mainstay in the treatment of malignant solid tumors. However, the use of neoadjuvant treatments, including chemotherapy, radiotherapy, phototherapy, and immunotherapy, either alone or in combination, as a preoperative intervention regimen, have attracted increasing attention in the last decade. Early randomized, controlled trials in some tumor settings have not shown a significant difference between the survival rates in long-term neoadjuvant therapy and adjuvant therapy. However, this has not hampered the increasing use of neoadjuvant treatments in clinical practice, due to its evident downstaging of primary tumors to delineate the surgical margin, tailoring systemic therapy response as a clinical tool to optimize subsequent therapeutic regimens, and decreasing the need for surgery, with its potential for increased morbidity. The recent expansion of nanotechnology-based nanomedicine and related medical technologies provides a new approach to address the current challenges of neoadjuvant therapy for preoperative therapeutics. This review not only summarizes how nanomedicine plays an important role in a range of neoadjuvant therapeutic modalities, but also highlights the potential use of nanomedicine as neoadjuvant therapy in preclinical and clinic settings for tumor management.
Collapse
Affiliation(s)
- Xiaogang Qu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Dong Zhou
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Jianpu Lu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Kitsios K, Sharifi S, Mahmoudi M. Nanomedicine Technologies for Diagnosis and Treatment of Breast Cancer. ACS Pharmacol Transl Sci 2023; 6:671-682. [PMID: 37200812 PMCID: PMC10186357 DOI: 10.1021/acsptsci.3c00044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 05/20/2023]
Abstract
Breast cancer is one of the most common cancers in women worldwide, yet conventional treatments have several shortcomings, including low specificity, systemic toxicity, and drug resistance. Nanomedicine technologies provide a promising alternative while also overcoming the limitations posed by conventional therapies. This mini-Review highlights important signaling pathways related to occurrence and development of breast cancer and current breast cancer therapies, followed by an analysis of various nanomedicine technologies developed for diagnosis and treatment of breast cancers.
Collapse
Affiliation(s)
- Katerina Kitsios
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Shahriar Sharifi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
32
|
Bhargave H, Nijhawan H, Yadav KS. PEGylated Erlotinib HCl Injectable Nanoformulation for Improved Bioavailability. AAPS PharmSciTech 2023; 24:101. [PMID: 37038015 DOI: 10.1208/s12249-023-02560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The present study was undertaken to synthesize PEGylated monomethoxy poly (ethylene glycol)-poly (ε-Caprolactone) (mPEG-PCL) block copolymer and formulate Erlotinib HCl-loaded mPEG-PCL nanoparticles for enhancing the bioavailability of the drug. Using the ring-opening polymerization technique, PEGylated mPEG-PCL block copolymer was synthesized, and the structure of the copolymer was characterized using FTIR, 1H-NMR, and DSC techniques. The solvent evaporation approach was used to effectively encapsulate Erlotinib HCl within block copolymeric nanoparticles. Erlotinib HCl-loaded mPEG-PCL nanoparticles had a mean particle size of 146.5 ± 2.37 nm and a zeta potential of -27.8 ± 2.77 mV. The nanoparticles had a percent entrapment efficiency of 80.78 ± 0.09%. The in vitro drug release of Erlotinib HCl-loaded copolymeric nanoparticles showed a slow and sustained release behavior which could be maintained for up to 72 h. The Korsmeyer-Peppas fitting findings indicated that the drug release process followed a non-Fickian diffusion mechanism. The pharmacokinetic (PK) behavior of the developed nanoformulation was studied in albino Wistar rats, and the relative bioavailability of the optimized NP formulation given by intravenous route was found to be 187.33%. The PK data suggested that Erlotinib HCl-loaded mPEG-PCL copolymeric nanoparticles can dramatically alter the PK behavior of Erlotinib HCl and greatly improve the drug's bioavailability by as much as three times when compared to the oral formulation. As a result, it was established that the block copolymeric nanoparticles have promise for the effective encapsulation of Erlotinib HCL for an injectable formulation with increased bioavailability.
Collapse
Affiliation(s)
- Hardik Bhargave
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India
| | - Harsh Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India.
| |
Collapse
|
33
|
Holder JE, Ferguson C, Oliveira E, Lodeiro C, Trim CM, Byrne LJ, Bertolo E, Wilson CM. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Front Oncol 2023; 13:1154318. [PMID: 36994202 PMCID: PMC10042133 DOI: 10.3389/fonc.2023.1154318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is a global health problem affecting millions of people each year. Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with various conventional treatment available in the clinic. Application of these treatments alone often results in high rates of cancer reoccurrence and metastasis. In addition, they can cause damage to healthy tissues, resulting in many adverse effects. Nanotechnology has emerged as a modality for the treatment of cancer. When used in combination with nanoparticles, it is possible to improve the pharmacokinetic and pharmacodynamic profiles of pre-existing drugs used in cancer treatment. Nanoparticles have physiochemical properties such as small size which allowing passage through challenging areas of the body, and large surface area allows for higher doses of drugs to be brought to the tumor site. Nanoparticles can be functionalized which involves modifying the surface chemistry of the particles and allows for the conjugation of ligands (small molecules, antibodies, and peptides). Ligands can be chosen for their ability to target components that are specific to or are upregulated in cancer cells, such as targeting receptors on the tumor surface that are highly expressed in the cancer. This ability to precisely target the tumor can improve the efficacy of drugs and decrease toxic side effects. This review will discuss approaches used for targeting drugs to tumors using nanoparticles, provide examples of how this has been applied in the clinic and highlight future prospects for this technology.
Collapse
Affiliation(s)
- Jessica E. Holder
- Canterbury Christ Church University, School of Psychology and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Christopher Ferguson
- Canterbury Christ Church University, School of Psychology and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Elisabete Oliveira
- BIOSCOPE Research Group, Laboratório Associado para a Química Verde- Rede de Química e Tecnologia (LAQV- REQUIMTE), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, Laboratório Associado para a Química Verde- Rede de Química e Tecnologia (LAQV- REQUIMTE), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, Caparica, Portugal
| | - Carol M. Trim
- Canterbury Christ Church University, School of Psychology and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Lee J. Byrne
- Canterbury Christ Church University, School of Psychology and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Emilia Bertolo
- Canterbury Christ Church University, School of Psychology and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Cornelia M. Wilson
- Canterbury Christ Church University, School of Psychology and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
- *Correspondence: Cornelia M. Wilson,
| |
Collapse
|
34
|
Jia Y, Jiang Y, He Y, Zhang W, Zou J, Magar KT, Boucetta H, Teng C, He W. Approved Nanomedicine against Diseases. Pharmaceutics 2023; 15:774. [PMID: 36986635 PMCID: PMC10059816 DOI: 10.3390/pharmaceutics15030774] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Nanomedicine is a branch of medicine using nanotechnology to prevent and treat diseases. Nanotechnology represents one of the most effective approaches in elevating a drug's treatment efficacy and reducing toxicity by improving drug solubility, altering biodistribution, and controlling the release. The development of nanotechnology and materials has brought a profound revolution to medicine, significantly affecting the treatment of various major diseases such as cancer, injection, and cardiovascular diseases. Nanomedicine has experienced explosive growth in the past few years. Although the clinical transition of nanomedicine is not very satisfactory, traditional drugs still occupy a dominant position in formulation development, but increasingly active drugs have adopted nanoscale forms to limit side effects and improve efficacy. The review summarized the approved nanomedicine, its indications, and the properties of commonly used nanocarriers and nanotechnology.
Collapse
Affiliation(s)
- Yuanchao Jia
- Nanjing Vtrying Pharmatech Co., Ltd., Nanjing 211122, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | | | - Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
35
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
36
|
Li J, Zhu L, Kwok HF. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resist Updat 2023; 66:100904. [PMID: 36462375 DOI: 10.1016/j.drup.2022.100904] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung cancer continues to be a malignant tumor with high mortality. Two obstacles interfere with curative therapy of lung cancer: (i) poor diagnosis at the early stages, as symptoms are not specific or asymptomatic; and (ii) invariably emerging drug resistance after treatment. Some factors contributing to drug resistance include preexisting genetic/genomic drug-resistant alteration(s); activation of adaptive drug resistance pathways; remodeling of the tumor microenvironment; and pharmacological mechanisms or activation of drug efflux pumps. Despite the mechanisms explored to better understand drug resistance, a gap remains between molecular understanding and clinical application. Therefore, facilitating the translation of basic science into the clinical setting is a great challenge. Nanomedicine has emerged as a promising tool for cancer treatment. Because of their excellent physicochemical properties and enhanced permeability and retention effects, nanoparticles have great potential to revolutionize conventional lung cancer diagnosis and combat drug resistance. Nanoplatforms can be designed as carriers to improve treatment efficacy and deliver multiple drugs in one system, facilitating combination treatment to overcome drug resistance. In this review, we describe the difficulties in lung cancer treatment and review recent research progress on nanoplatforms aimed at early diagnosis and lung cancer treatment. Finally, future perspectives and challenges of nanomedicine are also discussed.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Lipeng Zhu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
37
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Patil SM, Tandon R, Tandon N. Recent developments in silver nanoparticles utilized for cancer treatment and diagnosis: a patent review. Pharm Pat Anal 2022; 11:175-186. [PMID: 36475455 DOI: 10.4155/ppa-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotheranostics is a young but rapidly expanding science that incorporates elements of therapy and diagnostics in a unique and miniscule area of research. The potential to combine diagnostic and therapeutic abilities inside a complete unit opens up interesting possibilities for innovative biomedical research. Silver-based nanoparticles, for instance, are widely utilized as pharmacological and biomedical imaging molecules, and hence offer a lot of potential for the development of versatile targeted therapy compositions. These nanoparticles have been used for cancer diagnosis and cancer treatments recently. We evaluate major innovations based on silver nanotheranostics technologies in this review paper, with an emphasis on cancer treatment implications. The present review covers papers, from 2010 to 2020.
Collapse
Affiliation(s)
- Shripad M Patil
- School of chemical engineering & physical sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Savitribai Phule Pune University, Dada Patil Mahavidyalaya, Karjat, 414401, Maharashtra, India
| | - Runjhun Tandon
- School of chemical engineering & physical sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nitin Tandon
- School of chemical engineering & physical sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
39
|
Yang J, Wang X, Wang B, Park K, Wooley K, Zhang S. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Adv Drug Deliv Rev 2022; 190:114525. [PMID: 36100142 DOI: 10.1016/j.addr.2022.114525] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines for cancer treatment have been studied extensively over the last few decades. Yet, only five anticancer nanomedicines have received approvals from the United States Food and Drug Administration (FDA) for treating solid tumors. This drastic mismatch between effort and return calls into question the basic understanding of this field. Various viewpoints on nanomedicines have been presented regarding their potentials and inefficiencies. However, the underlying logics of nanomedicine research and its inadequate translation to the successful use in the clinic have not been thoroughly examined. Tumor-targeted drug delivery was used to understand the shortfalls of the nanomedicine field in general. The concept of tumor-targeted drug delivery by nanomedicine has been based on two conjectures: (i) increased drug delivery to tumors provides better efficacy, and (ii) decreased drug delivery to healthy organs results in fewer side effects. The clinical evidence gathered from the literature indicates that nanomedicines bearing classic chemotherapeutic drugs, such as Dox, cis-Pt, CPT and PTX, have already reached the maximum drug delivery limit to solid tumors in humans. Still, the anticancer efficacy and safety remain unchanged despite the increased tumor accumulation. Thus, it is understandable to see few nanomedicine-based formulations approved by the FDA. The examination of FDA-approved nanomedicine formulations indicates that their approvals were not based on the improved delivery to tumors but mostly on changes in dose-limiting toxicity unique to each drug. This comprehensive analysis of the fundamentals of anticancer nanomedicines is designed to provide an accurate picture of the field's underlying false conjectures, hopefully, thereby accelerating the future clinical translations of many formulations under research.
Collapse
Affiliation(s)
- Juanjuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaojin Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Bingshun Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Kinam Park
- Weldon School of Biomedical Engineering, and Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907, USA
| | - Karen Wooley
- Departments of Chemistry, Materials Science & Engineering and Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
40
|
S. M. S, Naveen NR, Rao GSNK, Gopan G, Chopra H, Park MN, Alshahrani MM, Jose J, Emran TB, Kim B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front Oncol 2022; 12:994155. [PMID: 36330493 PMCID: PMC9623325 DOI: 10.3389/fonc.2022.994155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 07/30/2023] Open
Abstract
Numerous naturally available phytochemicals have potential anti-cancer activities due to their vast structural diversity. Alkaloids have been extensively used in cancer treatment, especially lung cancers, among the plant-based compounds. However, their utilization is limited by their poor solubility, low bioavailability, and inadequacies such as lack of specificity to cancer cells and indiscriminate distribution in the tissues. Incorporating the alkaloids into nanoformulations can overcome the said limitations paving the way for effective delivery of the alkaloids to the site of action in sufficient concentrations, which is crucial in tumor targeting. Our review attempts to assess whether alkaloid nanoformulation can be an effective tool in lung cancer therapy. The mechanism of action of each alkaloid having potential is explored in great detail in the review. In general, Alkaloids suppress oncogenesis by modulating several signaling pathways involved in multiplication, cell cycle, and metastasis, making them significant component of many clinical anti-cancerous agents. The review also explores the future prospects of alkaloid nanoformulation in lung cancer. So, in conclusion, alkaloid based nanoformulation will emerge as a potential gamechanger in treating lung cancer in the near future.
Collapse
Affiliation(s)
- Sindhoor S. M.
- Department of Pharmaceutics, P.A. College of Pharmacy, Mangalore, Karnataka, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagar, Karnataka, India
| | - GSN Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
41
|
Mercatali L, Vanni S, Miserocchi G, Liverani C, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Fausti V, Riva N, Genovese D, Lucarelli E, Focarete ML, Ibrahim T, Calabrò L, De Vita A. The emerging role of cancer nanotechnology in the panorama of sarcoma. Front Bioeng Biotechnol 2022; 10:953555. [PMID: 36324885 PMCID: PMC9618700 DOI: 10.3389/fbioe.2022.953555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues. The extraordinary diversity and rarity of these mesenchymal tumors is reflected in their classification, grading and management which are still challenging. Although they include more than 70 histologic subtypes, the first line-treatment for advanced and metastatic sarcoma has remained unchanged in the last fifty years, excluding specific histotypes in which targeted therapy has emerged. The role of chemotherapy has not been completely elucidated and the outcomes are still very limited. At the beginning of the century, nano-sized particles clinically approved for other solid lesions were tested in these neoplasms but the results were anecdotal and the clinical benefit was not substantial. Recently, a new nanosystem formulation NBTXR3 for the treatment of sarcoma has landed in a phase 2-3 trial. The preliminary results are encouraging and could open new avenues for research in nanotechnology. This review provides an update on the recent advancements in the field of nanomedicine for sarcoma. In this regard, preclinical evidence especially focusing on the development of smart materials and drug delivery systems will be summarized. Moreover, the sarcoma patient management exploiting nanotechnology products will be summed up. Finally, an overlook on future perspectives will be provided.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Enrico Lucarelli
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncologia, Sarcomi dell’osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luana Calabrò
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Alessandro De Vita,
| |
Collapse
|
42
|
Rasoulianboroujeni M, Repp L, Lee HJ, Kwon GS. Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying. J Control Release 2022; 350:350-359. [PMID: 35988780 PMCID: PMC9841601 DOI: 10.1016/j.jconrel.2022.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
A new approach named PEG-assist is introduced for the production of drug-loaded polymeric micelles. The method is based on the use of PEG as the non-selective solvent for PEG-b-PLA in the fabrication procedure. Both hydration temperature and PEG molecular weight are shown to have a significant effect on the encapsulation efficiency of PTX in PEG4kDa-b-PLA2kDa micelles. The optimal procedure for fabrication includes the use of PEG1kDa as the solvent at 60 °C, cooling the mixture to 40 °C, hydration at 40 °C, freezing at -80 °C and freeze-drying at -35 °C, 15 Pa. No significant difference (p > 0.05) in PTX encapsulation, average particle size and polydispersity index is observed between the samples before freeze-drying and after reconstitution of the freeze-dried cake. The prepared PTX formulations are stable at room temperature for at least 8 h. Scaling the batch size to 25× leads to no significant change (p > 0.05) in PTX encapsulation, average particle size and polydispersity index. PEG-assist method is applicable to other drugs such as 17-AAG, and copolymers of varied molecular weights. The use of no organic solvent, simplicity, cost-effectiveness, and efficiency makes PEG-assist a very promising approach for large scale production of drug-loaded polymeric micelles.
Collapse
|
43
|
Sun X, Zhao R, Zhao E, Wang Q, Lian W, Xiong J. Targeting CD44-positive ovarian cancers via engineered paclitaxel prodrug nanoparticles for enhanced chemotherapeutic efficacy. Biomed Pharmacother 2022; 154:113655. [PMID: 36942600 DOI: 10.1016/j.biopha.2022.113655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Ovarian cancer (OvCa) is currently the fifth most lethal malignancy affecting women health owing to the lack of early diagnosis and treatment choices available before the disease has progressed to a later stage. Paclitaxel (PTX) has shown substantial antineoplastic action against a variety of human cancers, including OvCa, for multiple decades. Despite this, the therapeutic use of this drug is not yet adequate owing to surfactant-related toxicities and off-target effects. In response to these constraints, nanoparticle carriers have evolved as delivery tools for the biocompatible and target delivery of PTX. In this work, a novel polymeric PTX formulation was developed for targeted therapy of OvCa cells, which was achieved by prodrug engineering and HA decoration strategies. Further studies indicated that HA-coated nanodrugs (HA-PLA-PTX NPs) could preferentially accumulate in the CD44-expressing SKOV3 cells, which induced elevated cytotoxicity, reduced cell proliferation, and increased cell apoptosis. In vivo study also demonstrated that equivalent doses of HA-PLA-PTX NPs surpassed the clinical PTX formulation Taxol in a SKOV3 xenograft tumor model. In conclusion, HA-PLA-PTX NPs might be a potentially feasible delivery system for effective OvCa treatment.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Rui Zhao
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Eryong Zhao
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Qing Wang
- Department of Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 Xiang'andong Road, Xiang'an District, Xiamen, 361100, Fujian, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 Xiang'andong Road, Xiang'an District, Xiamen, 361100, Fujian, China.
| | - Jian Xiong
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| |
Collapse
|
44
|
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022; 17:4163-4193. [PMID: 36134202 PMCID: PMC9482958 DOI: 10.2147/ijn.s380697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
45
|
Gao J, Jia Y, Ayijiang T, MarMar T, Hu X, Li L, Li Y, Wang Y. Synthesis and evaluation of a paclitaxel-binding tripeptide micelle for lung cancer therapy. Chem Pharm Bull (Tokyo) 2022; 70:769-781. [PMID: 36002259 DOI: 10.1248/cpb.c22-00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A C10CO-NalLeuVal (C10NLV) tripeptide was synthesized and explored as a carrier for paclitaxel (TAX) delivery. Five types of TAX-loaded micelles were produced by loading TAX with different doses of C10NLV. MTT assay showed that TAX-loaded micelles dramatically reduced TAX IC50 values of TAX-resistant A549 (A549/TAX) and LLC cells in a C10NLV-dose-dependent manner, with micelles 4 and 5 exhibited comparable inhibitory effects on A549/TAX proliferation. Flow cytometry analysis showed that TAX-loaded micelles 4 promoted lung cancer cell apoptosis in a TAX-dose-dependent manner. Immunofluorescent staining and Western blotting revealed that TAX-loaded micelles 4 dramatically reduced the protein levels of F-actin, p53, Bcl-2, and LC3A/B in A549/TAX cells. Wound healing, cell adhesion, migration, and invasion assays demonstrated that TAX-loaded micelles 4 suppressed the metastatic abilities of lung cancer cells. Furthermore, compared with the same dose of free TAX, TAX-loaded micelles 4 significantly reduced the volumes and weights of A549/TAX-generated tumors as well as the numbers of LLC-generated pulmonary metastatic foci in mice, without affecting the organ/body weight ratios, body weights, and blood cell counts. Histological analysis demonstrated that TAX-loaded micelles 4 administration resulted in tubulin and CD206 downregulation as well as cytoplasm disappearance and nuclear shrinkage in xenograft tumors. These data suggest that TAX-loaded micelles 4 inhibits the proliferative and metastatic capacity of lung cancer cells, despite TAX resistance. TAX-loaded micelles 4 suppresses lung tumor growth and metastasis in vivo without inducing systemic toxicity. Thus, the C10NLV-based TAX delivery is effective and safe to combat TAX resistance and metastasis in lung cancer.
Collapse
Affiliation(s)
- Jie Gao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| | - Yijiang Jia
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| | - Taledaohan Ayijiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| | - Tuohan MarMar
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| | - Xi Hu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| | - Li Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| | - Yuanming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences of Capital Medical University.,Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials
| |
Collapse
|
46
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
47
|
Lu J, Gu A, Wang W, Huang A, Han B, Zhong H. Polymeric micellar paclitaxel (Pm-Pac) prolonged overall survival for NSCLC patients without pleural metastasis. Int J Pharm 2022; 623:121961. [PMID: 35764263 DOI: 10.1016/j.ijpharm.2022.121961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023]
Abstract
Nanoparticle polymeric micellar paclitaxel (Pm-Pac) has been demonstrated to have a safety profile and efficacy in advanced non-small cell lung cancer (NSCLC) patients. However, whether Pm-Pac could prolong overall survival (OS) for specific advanced NSCLC patients is still unknown. In the present study, a total of 448 patients were randomly assigned (2:1) by the permuted block algorithm to receive Pm-Pac plus cisplatin or solvent-based paclitaxel (Sb-Pac) plus cisplatin (NCT02667743). We performed subgroup analysis based on metastatic status to identify the potential benefit patients. Our results indicated that the metastatic profiles were similar between the Sb-Pac plus cisplatin cohort and the Pm-Pac plus cisplatin cohort. Several subgroups (Metastases = 2, Bone metastasis, No pleural metastasis, etc.) were observed to have increased progression-free survival (PFS) due to Pm-Pac plus cisplatin. Importantly, we found the first evidence that Pm-Pac potentially prolonged OS with a favourable safety profile in NSCLC patients without pleural metastasis. Collectively, this study provides a novel perspective on the development of nanomedicine to investigate chemotherapeutic efficacy and toxicity and provides the first clinical evidence that Pm-Pac administration not only prolongs PFS but also prolongs OS with a favourable safety profile in advanced NSCLC patients without pleural metastasis.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aiqin Gu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aimi Huang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
48
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
49
|
Fernández Y, Movellan J, Foradada L, Giménez V, García‐Aranda N, Mancilla S, Armiñán A, Borgos SE, Hyldbakk A, Bogdanska A, Gobbo OL, Prina‐Mello A, Ponti J, Calzolai L, Zagorodko O, Gallon E, Niño‐Pariente A, Paul A, Schwartz Jr S, Abasolo I, Vicent MJ. In Vivo Antitumor and Antimetastatic Efficacy of a Polyacetal-Based Paclitaxel Conjugate for Prostate Cancer Therapy. Adv Healthc Mater 2022; 11:e2101544. [PMID: 34706167 DOI: 10.1002/adhm.202101544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, one conjugates PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over 2 weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum versus PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrate IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrate that tert-Ser-PTX significantly reduces the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibits primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, the results suggest the application of tert-Ser-PTX as a robust antitumor/antimetastatic treatment for PCa.
Collapse
Affiliation(s)
- Yolanda Fernández
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Julie Movellan
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Laia Foradada
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Vanessa Giménez
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Natalia García‐Aranda
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Sandra Mancilla
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim NO‐7465 Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim NO‐7465 Norway
| | - Anna Bogdanska
- Laboratory for Biological Characterization of Advanced Materials (LBCAM) Trinity Translational Medicine Institute Trinity College Dublin Dublin D08 W9RT Ireland
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
| | - Oliviero L. Gobbo
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
- School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin D02 R590 Ireland
| | - Adriele Prina‐Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM) Trinity Translational Medicine Institute Trinity College Dublin Dublin D08 W9RT Ireland
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
| | - Jessica Ponti
- European Commission Joint Research Centre (JRC) via Fermi 2749 Ispra 21027 Italy
| | - Luigi Calzolai
- European Commission Joint Research Centre (JRC) via Fermi 2749 Ispra 21027 Italy
| | - Oleksandr Zagorodko
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Elena Gallon
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Amaya Niño‐Pariente
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Alison Paul
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Simó Schwartz Jr
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
50
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|