1
|
Diallo I, Allodji RS, Veres C, Bolle S, Llanas D, Ezzouhri S, Zrafi W, Debiche G, Souchard V, Fauchery R, Haddy N, Journy N, Demoor-Goldschmidt C, Winter DL, Hjorth L, Wiebe T, Haupt R, Robert C, Kremer L, Bardi E, Sacerdote C, Terenziani M, Kuehni CE, Schindera C, Skinner R, Winther JF, Lähteenmäki P, Byrn J, Jakab Z, Cardis E, Pasqual E, Tapio S, Baatout S, Atkinson M, Benotmane MA, Sugden E, Zaletel LZ, Ronckers C, Reulen RC, Hawkins MM, de Vathaire F. Radiation Doses Received by Major Organs at Risk in Children and Young Adolescents Treated for Cancer with External Beam Radiation Therapy: A Large-scale Study from 12 European Countries. Int J Radiat Oncol Biol Phys 2024; 120:439-453. [PMID: 38582233 DOI: 10.1016/j.ijrobp.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE Childhood cancer survivors, in particular those treated with radiation therapy, are at high risk of long-term iatrogenic events. The prediction of risk of such events is mainly based on the knowledge of the radiation dose received to healthy organs and tissues during treatment of childhood cancer diagnosed decades ago. We aimed to set up a standardized organ dose table to help former patients and clinicians in charge of long-term follow-up clinics. METHODS AND MATERIALS We performed whole body dosimetric reconstruction for 2646 patients from 12 European countries treated between 1941 and 2006 (median, 1976). Most plannings were 2- or 3-dimensional. A total of 46% of patients were treated using Cobalt 60, and 41%, using a linear accelerator. The median prescribed dose was 27.2 Gy (IQ1-IQ3, 17.6-40.0 Gy). A patient-specific voxel-based anthropomorphic phantom with more than 200 anatomic structures or substructures delineated as a surrogate of each subject's anatomy was used. The radiation therapy was simulated with a treatment planning system based on available treatment information. The radiation dose received by any organ of the body was estimated by extending the treatment planning system dose calculation to the whole body, by type and localization of childhood cancer. RESULTS The integral dose and normal tissue doses to most of the 23 considered organs increased between the 1950s and 1970s and decreased or plateaued thereafter. Whatever the organ considered, the type of childhood cancer explained most of the variability in organ dose. The country of treatment explained only a small part of the variability. CONCLUSIONS The detailed dose estimates provide very useful information for former patients or clinicians who have only limited knowledge about radiation therapy protocols or techniques, but who know the type and site of childhood cancer, sex, age, and year of treatment. This will allow better prediction of the long-term risk of iatrogenic events and better referral to long-term follow-up clinics.
Collapse
Affiliation(s)
- Ibrahima Diallo
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France; Inserm, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Rodrigue S Allodji
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Cristina Veres
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France; Inserm, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | | | - Damien Llanas
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Safaa Ezzouhri
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Wael Zrafi
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Ghazi Debiche
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Vincent Souchard
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Romain Fauchery
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France
| | - Nadia Haddy
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Neige Journy
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Charlotte Demoor-Goldschmidt
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Pediatric Oncology Department, University Hospital, Angers, France; Department of Radiotherapy and Protontherapy, Centre François Baclesse, Caen, France
| | - David L Winter
- Centre for Childhood Cancer Survivor Studies, Institute of Applied Health Research, Robert Aitken Building, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lars Hjorth
- Lund University, Skane University Hospital, Department of Clinical Sciences, Paediatrics, Lund, Sweden
| | - Thomas Wiebe
- Lund University, Skane University Hospital, Department of Clinical Sciences, Paediatrics, Lund, Sweden
| | - Riccardo Haupt
- DOPO Clinic - Department of Pediatric Hematology/Oncology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genova, Italy
| | - Charlotte Robert
- Gustave Roussy, Villejuif, France; Université Paris-Saclay, France
| | - Leontien Kremer
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center Amsterdam, Amsterdam, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Edit Bardi
- St Anna Children's Hospital, Vienna, Austria, and Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria
| | - Carlotta Sacerdote
- Childhood Cancer Registry of Piedmont, Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Monica Terenziani
- Pediatric Unit, Department of Onco-Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia E Kuehni
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christina Schindera
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Division of Paediatric Oncology/Haematology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Roderick Skinner
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | | | - Päivi Lähteenmäki
- Department of Pediatric and Adolescent Medicine, Fican-West, Turku University Hospital, Turku, Finland
| | | | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Elisa Pasqual
- Barcelona Institute of Global Health (ISGlobal), University Pompeu Fabra, Barcelona, Spain
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen-German Research Centre for Environmental Health, Neuherberg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Mike Atkinson
- Deutsches Konsortium für Translationale Krebsforschung, Partner Site Munich, Munich, Germany
| | | | - Elaine Sugden
- Centre for Childhood Cancer Survivor Studies, Institute of Applied Health Research, Robert Aitken Building, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - Raoul C Reulen
- Centre for Childhood Cancer Survivor Studies, Institute of Applied Health Research, Robert Aitken Building, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mike M Hawkins
- Centre for Childhood Cancer Survivor Studies, Institute of Applied Health Research, Robert Aitken Building, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Florent de Vathaire
- Inserm, Radiation Epidemiology Team, Centre for Epidemiology and Population Health, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris-Saclay, France.
| |
Collapse
|
2
|
Maharaj KD, Dass J, Ibrahim M, Mahmood T, Rowshanfarzad P. Peripheral Doses Beyond Electron Applicators in Conventional C-Arm Linear Accelerators: A Systematic Literature Review. Technol Cancer Res Treat 2024; 23:15330338241239144. [PMID: 38515394 PMCID: PMC10958816 DOI: 10.1177/15330338241239144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Background: This review investigates peripheral dose levels in electron beam treatments, comparing different manufacturers including Varian, Elekta, and Siemens. Accurate measurement of peripheral dose is vital for patient safety and precise radiation delivery in radiation therapy. Methods: This review followed PRISMA standards, conducting a comprehensive literature search from 1978 to July 2023. Emphasis was on identifying studies analyzing peripheral doses related to various electron beam energies, beam angle, field sizes, cutouts, and applicator combinations. Three major databases including PubMed, Web of Science, and Scopus were searched. Results: A total of 7 articles were included in this review. Strategies such as bolus materials, personalized cutouts, and optimal treatment procedures have all been developed to reduce peripheral radiation exposure and enhance patient safety. Ongoing research in this field is focused on further minimizing the risks associated with out-of-field radiation by improving dose delivery systems. Conclusion: The literature emphasizes importance of precision in electron beam radiation therapy, highlighting the critical need for managing peripheral doses and optimizing hardware to ensure patient safety. It advocates for the use of advanced tools and protocols to maintain a balance between effective treatment while protecting healthy tissues. Continuous research, careful treatment planning, and effective management of peripheral doses are essential.
Collapse
Affiliation(s)
- Kapil Dev Maharaj
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Western Australia, Australia
| | - Joshua Dass
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Mounir Ibrahim
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Talat Mahmood
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, Western Australia, Australia
| |
Collapse
|
3
|
Chargari C, Tanderup K, Planchamp F, Chiva L, Humphrey P, Sturdza A, Tan LT, van der Steen-Banasik E, Zapardiel I, Nout RA, Fotopoulou C. ESGO/ESTRO quality indicators for radiation therapy of cervical cancer. Int J Gynecol Cancer 2023; 33:862-875. [PMID: 37258414 PMCID: PMC10313976 DOI: 10.1136/ijgc-2022-004180] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The European Society of Gynaecological Oncology (ESGO) has previously defined and established a list of quality indicators for the surgical treatment of cervical cancer. As a continuation of this effort to improve overall quality of care for cervical cancer patients across all aspects, ESGO and the European SocieTy for Radiotherapy and Oncology (ESTRO) initiated the development of quality indicators for radiation therapy of cervical cancer. OBJECTIVE To develop a list of quality indicators for radiation therapy of cervical cancer that can be used to audit and improve clinical practice by giving to practitioners and administrators a quantitative basis to improve care and organizational processes, notably for recognition of the increased complexity of modern external radiotherapy and brachytherapy techniques. METHODS Quality indicators were based on scientific evidence and/or expert consensus. The development process included a systematic literature search for identification of potential quality indicators and documentation of scientific evidence, consensus meetings of a group of international experts, an internal validation process, and external review by a large international panel of clinicians (n=99). RESULTS Using a structured format, each quality indicator has a description specifying what the indicator is measuring. Measurability specifications are detailed to define how the quality indicators will be measured in practice. Targets were also defined for specifying the level which each unit or center should be aiming to achieve. Nineteen structural, process, and outcome indicators were defined. Quality indicators 1-6 are general requirements related to pretreatment workup, time to treatment, upfront radiation therapy, and overall management, including active participation in clinical research and the decision making process within a structured multidisciplinary team. Quality indicators 7-17 are related to treatment indicators. Quality indicators 18 and 19 are related to patient outcomes. DISCUSSION This set of quality indicators is a major instrument to standardize the quality of radiation therapy in cervical cancer. A scoring system combining surgical and radiotherapeutic quality indicators will be developed within an envisaged future ESGO accreditation process for the overall management of cervical cancer, in an effort to support institutional and governmental quality assurance programs.
Collapse
Affiliation(s)
| | | | | | - Luis Chiva
- Obstetrics and Gynecology, Clinica Universidad de Navarra, Madrid, Spain
| | - Pauline Humphrey
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Alina Sturdza
- Department of Radiation Oncology, Comprehensive Cancer Center, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Wien, Austria
| | - Li T Tan
- Addenbrooke's Hospital, Cambridge, UK
| | | | | | - Remi A Nout
- Radiotherapy, Erasmus MC Cancer Centre, Rotterdam, Netherlands
| | | |
Collapse
|
4
|
Chargari C, Tanderup K, Planchamp F, Chiva L, Humphrey P, Sturdza A, Tan LT, van der Steen-Banasik E, Zapardiel I, Nout RA, Fotopoulou C. ESGO/ESTRO quality indicators for radiation therapy of cervical cancer. Radiother Oncol 2023; 183:109589. [PMID: 37268359 DOI: 10.1016/j.radonc.2023.109589] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The European Society of Gynaecological Oncology (ESGO) has previously defined and established a list of quality indicators for the surgical treatment of cervical cancer. As a continuation of this effort to improve overall quality of care for cervical cancer patients across all aspects, ESGO and the European SocieTy for Radiotherapy and Oncology (ESTRO) initiated the development of quality indicators for radiation therapy of cervical cancer. OBJECTIVE To develop a list of quality indicators for radiation therapy of cervical cancer that can be used to audit and improve clinical practice by giving to practitioners and administrators a quantitative basis to improve care and organizational processes, notably for recognition of the increased complexity of modern external radiotherapy and brachytherapy techniques. METHODS Quality indicators were based on scientific evidence and/or expert consensus. The development process included a systematic literature search for identification of potential quality indicators and documentation of scientific evidence, consensus meetings of a group of international experts, an internal validation process, and external review by a large international panel of clinicians (n = 99). RESULTS Using a structured format, each quality indicator has a description specifying what the indicator is measuring. Measurability specifications are detailed to define how the quality indicators will be measured in practice. Targets were also defined for specifying the level which each unit or center should be aiming to achieve. Nineteen structural, process, and outcome indicators were defined. Quality indicators 1-6 are general requirements related to pretreatment workup, time to treatment, upfront radiation therapy, and overall management, including active participation in clinical research and the decision making process within a structured multidisciplinary team. Quality indicators 7-17 are related to treatment indicators. Quality indicators 18 and 19 are related to patient outcomes. DISCUSSION This set of quality indicators is a major instrument to standardize the quality of radiation therapy in cervical cancer. A scoring system combining surgical and radiotherapeutic quality indicators will be developed within an envisaged future ESGO accreditation process for the overall management of cervical cancer, in an effort to support institutional and governmental quality assurance programs.
Collapse
Affiliation(s)
| | | | | | - Luis Chiva
- Obstetrics and Gynecology, Clinica Universidad de Navarra, Madrid, Spain
| | - Pauline Humphrey
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Alina Sturdza
- Department of Radiation Oncology, Comprehensive Cancer Center, Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Wien, Austria
| | - Li T Tan
- Addenbrooke's Hospital, Cambridge, UK
| | | | | | - Remi A Nout
- Radiotherapy, Erasmus MC Cancer Centre, Rotterdam, the Netherlands
| | | |
Collapse
|
5
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
6
|
Zhang CH, Jiang ZL, Meng Y, Yang WY, Zhang XY, Zhang YX, Khattak S, Ji XY, Wu DD. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic agents for liver cancer. Cell Signal 2023; 106:110628. [PMID: 36774973 DOI: 10.1016/j.cellsig.2023.110628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most frequent human cancer and the world's third most significant cause of cancer mortality. HCC treatment has recently improved, but its mortality continues to increase worldwide due to its extremely complicated and heterogeneous genetic abnormalities. After nitric oxide (NO) and carbon monoxide (CO), the third gas signaling molecule discovered is hydrogen sulfide (H2S), which has long been thought to be a toxic gas. However, numerous studies have proven that H2S plays many pathophysiological roles in mammals. Endogenous or exogenous H2S can decrease cell proliferation, promote apoptosis, block cell cycle, invasion and migration through various cellular signaling pathways. This review analyzes and discusses the recent literature on the function and molecular mechanism of H2S and H2S donors in HCC, so as to provide convenience for the scientific research and clinical application of H2S in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yuan Meng
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Wen-Yan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yu Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China; School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
7
|
Yang Y, Zhao Y, Sun G, Zuo S, Chai J, Xu T, Liu J, Li L, Song J, Qian S, Kang Y, Sui F, Li M, Jia Q. FBXO39 predicts poor prognosis and correlates with tumor progression in cervical squamous cell carcinoma. Pathol Res Pract 2022; 238:154090. [PMID: 36049441 DOI: 10.1016/j.prp.2022.154090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cancer/testis antigen (CTA) is a class of antigen molecules mainly expressed in the germinal epithelium of testis and some tumor tissues. FBXO39, also known as F-box protein 39, is a crucial CTA molecule. F-box protein 39 (FBXO39) is overexpressed in cervical squamous cell carcinomas (CESCs), however its function in cancer development and clinical significance are still unknown. METHODS We used paraffin-embedded tumor tissues from 124 patients and fresh-harvested and paired adjacent normal esophageal tissues from 15 CESC patients who underwent primary surgical resection in Xijing Hospital between 2015 and 2020. The expression level of FBXO39 was evaluated through immunohistochemistry, Western Blot and q-PCR. Prognostic and survival analyses were conducted using univariate/multivariate analysis and log-rank analysis with SPSS 23.0. CCK-8, wound-healing and Transwell assays were applied to demonstrate that FBXO39 promoted the proliferation, migration and invasion. Finally, we constructed a xenografts model of the C-33A cell lines to observe the effect of FBXO39 on tumorigenesis in vivo. RESULTS Immunohistochemical results showed that FBXO39 was highly expressed in cancer tissues than in corresponding non-cancer tissues. Similarly, we proved this result at protein and mRNA level by Western-Blotting and q-PCR. Prognostic and OS analyses showed that the FBXO39 expression level was an individual prognostic factor in CESC patients. CCK-8, wound-healing and Transwell assays proved that the overexpression of FBXO39 in Si-Ha cells promoted the proliferation, migration and invasion of the cells. Knocking down FBXO39 in C-33A cells inhibited the proliferation, migration and invasion of cells. The experimental results of xenografts model in nude mice showed that the knockdown of FBXO39 in C-33A cells slowed down the growth of tumor. CONCLUSION FBXO39 is a poor prognostic factor of cervical squamous cell carcinoma, which may provide a novel therapeutic target for CESC.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yun Zhao
- Military medicine and special subject, No. 971 hospital of the PLA Navy, Qingdao, China
| | - Guorui Sun
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Saijie Zuo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lingfei Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Junyang Song
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shoubin Qian
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research academy of Environmental Sciences, Beijing, China.
| | - Fang Sui
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center, Northwest University, Xi'an, China.
| |
Collapse
|
8
|
Meirovitz A, Gross M, Cohen S, Popovtzer A, Barak V. Effect of irradiation on cytokine production in cancer patients. Int J Biol Markers 2022; 37:360-367. [PMID: 35929109 DOI: 10.1177/03936155221116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Irradiation, which affects cytokine secretion, is used to treat cancer patients. Cytokine levels have correlations to disease parameters, serving as biomarkers for patients. We aim to explore the effect of irradiation on cytokine production both in vitro (using lymphocytes from healthy donors) and in vivo (using serum levels of head and neck cancer patients following irradiation) and correlating them to mucositis severity/need for percutaneous endoscopic gastroscopy (PEG) tube installation. METHODS Cytokine production by cultured lymphocytes from healthy donors, in vitro, following irradiation of 5 or 10 Gy. In addition, blood from 23 patients with head and neck cancers, irradiated by 60-72G in vivo, were assessed for inflammatory cytokines (tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-8, IL-18), the anti-inflammatory cytokine IL-10, and the general marker sIL-2R. Following radiation, selected patients who were developing mucositis were treated by PEG tube installation. Changes in cytokine levels were studied as predictive biomarkers of response to therapy/PEG tube installation. Cytokine production levels were measured using ELISAs kits. RESULTS Irradiation decreased the levels of all tested cytokines, most notably IL-6 and IL-8, proportional to irradiation dose. In patients, increases in cytokine levels, correlated with mucositis severity and potentially the need for PEG tube installation. CONCLUSIONS Irradiation decreased the levels of all cytokines of healthy lymphocytes in a dose-dependent manner, especially those of IL-6 and IL-8. This study shows a correlation between high and increasing levels of inflammatory cytokines, sIL-2R, plus radiation toxicity and the need for PEG. The reduction of cytokine levels after radiotherapy predicts that PEG will not be required. Thus, our study shows that cytokine changes are predictive biomarkers in head and neck cancer patients.
Collapse
Affiliation(s)
- Amichay Meirovitz
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Gross
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Cohen
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aron Popovtzer
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vivian Barak
- Oncology and Head and Neck Departments, 58884Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Zhou Y, Espenel S, Achkar S, Leary A, Gouy S, Chargari C. Combined modality including novel sensitizers in gynecological cancers. Int J Gynecol Cancer 2022; 32:389-401. [DOI: 10.1136/ijgc-2021-002529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
Standard treatment of locally advanced gynecological cancers relies mainly on platinum-based concurrent chemoradiotherapy followed by brachytherapy. Current chemotherapeutic drugs are only transiently effective and patients with advanced disease often develop resistance and subsequently, distant metastases despite significant initial responses of the primary tumor. In addition, some patients still develop local failure or progression, suggesting that there is still a place for increasing the anti-tumor radiation effect. Several strategies are being developed to increase the probability of curing patients. Vaginal cancer and vulva cancer are rare diseases, which resemble cervical cancer in their histology and pathogenesis. These gynecological cancers are predominantly associated with human papilloma virus infection. Treatment strategies in other unresectable gynecologic cancers are usually derived from evidence in locally advanced cervical cancers. In this review, we discuss mechanisms by which novel therapies could work synergistically with conventional chemoradiotherapy, from pre-clinical and ongoing clinical data. Trimodal, even quadrimodal treatment are currently being tested in clinical trials. Novel combinations derived from a metastatic setting, and being tested in locally advanced tumors, include anti-angiogenic agents, immunotherapy, tumor-infiltrating lymphocytes therapy, adoptive T-cell therapy and apoptosis inducers to enhance chemoradiotherapy efficacy through complementary molecular pathways. In parallel, radiosensitizers, such as nanoparticles and radiosensitizers of hypoxia aim to maximize the effect of radiotherapy locally.
Collapse
|
10
|
Xing C, Yin H, Yao ZY, Xing XL. Prognostic Signatures Based on Ferroptosis- and Immune-Related Genes for Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Front Oncol 2022; 11:774558. [PMID: 35087751 PMCID: PMC8787259 DOI: 10.3389/fonc.2021.774558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are among the most common malignancies of the female genital tract. Ferroptosis and immunity regulate each other and play important roles in the progression of CESC. The present study aimed to screen ferroptosis- and immune-related differentially expressed genes (FI-DEGs) to identify suitable prognostic signatures for patients with CESC. We downloaded the RNAseq count data and corresponding clinical information of CESC patients from The Cancer Genome Atlas database; obtained recognized ferroptosis- and immune-related genes from the FerrDb and ImmPort databases, respectively; and screened for suitable prognostic signatures using a series of bioinformatics analyses. We identified eight FI-DEGs (CALCRL, CHIT1, DES, DUOX1, FLT1, HELLS, SCD, and SDC1) that were independently correlated with the overall survival of patients with CESC. The prediction model constructed using these eight FI-DEGs was also independently correlated with overall survival. Both the sensitivity and specificity of the prediction model constructed using these eight signatures were over 60%. The comprehensive index of ferroptosis and immune status was significantly correlated with the immunity of patients with CESC. In conclusion, the risk assessment model constructed with these eight FI-DEGs predicted the CESC outcomes. Therefore, these eight FI-DEGs could serve as prognostic signatures for CESC.
Collapse
Affiliation(s)
- Chaoqun Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Huiming Yin
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Zhi-Yong Yao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Xiao-Liang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
11
|
Cihoric N, Badra EV, Stenger-Weisser A, Aebersold DM, Pavic M. Toward Data-Driven Radiation Oncology Using Standardized Terminology as a Starting Point: Cross-sectional Study. JMIR Form Res 2022; 6:e27550. [PMID: 35044315 PMCID: PMC8811690 DOI: 10.2196/27550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background The inability to seamlessly exchange information across radiation therapy ecosystems is a limiting factor in the pursuit of data-driven clinical practice. The implementation of semantic interoperability is a prerequisite for achieving the full capacity of the latest developments in personalized and precision medicine, such as mathematical modeling, advanced algorithmic information processing, and artificial intelligence approaches. Objective This study aims to evaluate the state of terminology resources (TRs) dedicated to radiation oncology as a prerequisite for an oncology semantic ecosystem. The goal of this cross-sectional analysis is to quantify the state of the art in radiation therapy specific terminology. Methods The Unified Medical Language System (UMLS) was searched for the following terms: radio oncology, radiation oncology, radiation therapy, and radiotherapy. We extracted 6509 unique concepts for further analysis. We conducted a quantitative analysis of available source vocabularies (SVs) and analyzed all UMLS SVs according to the route source, number, author, location of authors, license type, the lexical density of TR, and semantic types. Descriptive data are presented as numbers and percentages. Results The concepts were distributed across 35 SVs. The median number of unique concepts per SV was 5 (range 1-5479), with 14% (5/35) of SVs containing 94.59% (6157/6509) of the concepts. The SVs were created by 29 authors, predominantly legal entities registered in the United States (25/35, 71%), followed by international organizations (6/35, 17%), legal entities registered in Australia (2/35, 6%), and the Netherlands and the United Kingdom with 3% (1/35) of authors each. Of the total 35 SVs, 16 (46%) did not have any restrictions on use, whereas for 19 (54%) of SVs, some level of restriction was required. Overall, 57% (20/35) of SVs were updated within the last 5 years. All concepts found within radiation therapy SVs were labeled with one of the 29 semantic types represented within UMLS. After removing the stop words, the total number of words for all SVs together was 56,219, with a median of 25 unique words per SV (range 3-50,682). The total number of unique words in all SVs was 1048, with a median of 19 unique words per vocabulary (range 3-406). The lexical density for all concepts within all SVs was 0 (0.02 rounded to 2 decimals). Median lexical density per unique SV was 0.7 (range 0.0-1.0). There were no dedicated radiation therapy SVs. Conclusions We did not identify any dedicated TRs for radiation oncology. Current terminologies are not sufficient to cover the need of modern radiation oncology practice and research. To achieve a sufficient level of interoperability, of the creation of a new, standardized, universally accepted TR dedicated to modern radiation therapy is required.
Collapse
Affiliation(s)
- Nikola Cihoric
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eugenia Vlaskou Badra
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Stenger-Weisser
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Luzerner Kantonsspital, Luzern, Switzerland
| | - Daniel M Aebersold
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Magné N, Bouleftour W, Daguenet E, Natier E, Maison M, Tinquaut F, Suchaud JP, Rancoule C, Guy JB. Assessing toxicities of curative radiotherapy combined with concomitant non anti-cancer drugs: A sub-analysis of the prospective epidemiological RIT trial. Radiother Oncol 2022; 168:23-27. [DOI: 10.1016/j.radonc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
|
13
|
Chargari C, Rassy E, Helissey C, Achkar S, Francois S, Deutsch E. Impact of radiation therapy on healthy tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 376:69-98. [PMID: 36997270 DOI: 10.1016/bs.ircmb.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiation therapy has a fundamental role in the management of cancers. However, despite a constant improvement in radiotherapy techniques, the issue of radiation-induced side effects remains clinically relevant. Mechanisms of acute toxicity and late fibrosis are therefore important topics for translational research to improve the quality of life of patients treated with ionizing radiations. Tissue changes observed after radiotherapy are consequences of complex pathophysiology, involving macrophage activation, cytokine cascade, fibrotic changes, vascularization disorders, hypoxia, tissue destruction and subsequent chronic wound healing. Moreover, numerous data show the impact of these changes in the irradiated stroma on the oncogenic process, with interplays between tumor radiation response and pathways involved in the fibrotic process. The mechanisms of radiation-induced normal tissue inflammation are reviewed, with a focus on the impact of the inflammatory process on the onset of treatment-related toxicities and the oncogenic process. Possible targets for pharmacomodulation are also discussed.
Collapse
|
14
|
Liu X, Liu X, Han X. FANCI may serve as a prognostic biomarker for cervical cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27690. [PMID: 34941027 PMCID: PMC8702066 DOI: 10.1097/md.0000000000027690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA damage is a fundamental process that plays a considerable role in generating protein diversity. FANCI, loaded on the altered chromatin, plays a vital role in DNA damage. Abnormal FANCI expression is potentially associated with carcinogenesis.However, the biological role of FANCI in cervical cancer is yet to be determined. METHODS We analyzed FANCI expression via multiple gene expression databases. Genes co-expressed with FANCI and its regulators were identified using LinkedOmics. The correlations between FANCI and cancer immune infiltrates were investigated via Tumor Immune Estimation Resource (TIMER). RESULTS FANCI was found upregulated with amplification in tumor tissues of multiple cervical cancer cohorts. High FANCI expression was associated with poorer overall survival (OS). Functional network analysis suggested that FANCI regulates spliceosome, DNA replication, and cell cycle signaling via pathways involving several cancer-related kinases and the E2F family. In additional, FANCI expression was positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, and neutrophils. FANCI expression also showed strong correlations with diverse immune marker sets in cervical cancer. CONCLUSION These findings suggested that FANCI is correlated with prognosis of and immune infiltration in cervical cancer, laying a foundation for further study of the immune regulatory role of FANCI in cervical cancer.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiqin Liu
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xia Han
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Ouyang D, Yang P, Cai J, Sun S, Wang Z. Comprehensive analysis of prognostic alternative splicing signature in cervical cancer. Cancer Cell Int 2020; 20:221. [PMID: 32528230 PMCID: PMC7282181 DOI: 10.1186/s12935-020-01299-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Alternative splicing (AS) is a key factor in protein-coding gene diversity, and is associated with the development and progression of malignant tumours. However, the role of AS in cervical cancer is unclear. Methods The AS data for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq website. Few prognostic AS events were identified through univariate Cox analysis. We further identified the prognostic prediction models of the seven subtypes of AS events and assessed their predictive power. We constructed a clinical prediction model through global analysis of prognostic AS events and established a nomogram using the risk score calculated from the prognostic model and relevant clinical information. Unsupervised cluster analysis was used to explore the relationship between prognostic AS events in the model and clinical features. Results A total of 2860 prognostic AS events in cervical cancer were identified. The best predictive effect was shown by a single alternate acceptor subtype with an area under the curve of 0.96. Our clinical prognostic model included a nine-AS event signature, and the c-index of the predicted nomogram model was 0.764. SNRPA and CCDC12 were hub genes for prognosis-associated splicing factors. Unsupervised cluster analysis through the nine prognostic AS events revealed three clusters with different survival patterns. Conclusions AS events affect the prognosis and biological progression of cervical cancer. The identified prognostic AS events and splicing regulatory networks can increase our understanding of the underlying mechanisms of cervical cancer, providing new therapeutic strategies.
Collapse
Affiliation(s)
- Dong Ouyang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China.,Department of Obstetrics and Gynecology, Akesu Hospital of Traditional Chinese Medicine, Akesu, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
16
|
Chargari C, Levy A, Paoletti X, Soria JC, Massard C, Weichselbaum RR, Deutsch E. Methodological Development of Combination Drug and Radiotherapy in Basic and Clinical Research. Clin Cancer Res 2020; 26:4723-4736. [PMID: 32409306 DOI: 10.1158/1078-0432.ccr-19-4155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Newer technical improvements in radiation oncology have been rapidly implemented in recent decades, allowing an improved therapeutic ratio. The development of strategies using local and systemic treatments concurrently, mainly targeted therapies, has however plateaued. Targeted molecular compounds and immunotherapy are increasingly being incorporated as the new standard of care for a wide array of cancers. A better understanding of possible prior methodology issues is therefore required and should be integrated into upcoming early clinical trials including individualized radiotherapy-drug combinations. The outcome of clinical trials is influenced by the validity of the preclinical proofs of concept, the impact on normal tissue, the robustness of biomarkers and the quality of the delivery of radiation. Herein, key methodological aspects are discussed with the aim of optimizing the design and implementation of future precision drug-radiotherapy trials.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xavier Paoletti
- University of Versailles St. Quentin, France
- Institut Curie INSERM U900, Biostatistics for Personalized Medicine Team, St. Cloud, France
| | | | - Christophe Massard
- Université Paris-Sud, Orsay, France
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
17
|
Annede P, Cosset JM, Van Limbergen E, Deutsch E, Haie-Meder C, Chargari C. Radiobiology: Foundation and New Insights in Modeling Brachytherapy Effects. Semin Radiat Oncol 2020; 30:4-15. [DOI: 10.1016/j.semradonc.2019.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kim J, Jo YH, Jang M, Nguyen NNY, Yun HR, Ko SH, Shin Y, Lee JS, Kang I, Ha J, Choi TG, Kim SS. PAC-5 Gene Expression Signature for Predicting Prognosis of Patients with Pancreatic Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11111749. [PMID: 31703415 PMCID: PMC6896100 DOI: 10.3390/cancers11111749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PAC) is one of the most aggressive malignancies. Intratumoural molecular heterogeneity impedes improvement of the overall survival rate. Current pathological staging system is not sufficient to accurately predict prognostic outcomes. Thus, accurate prognostic model for patient survival and treatment decision is demanded. Using differentially expressed gene analysis between normal pancreas and PAC tissues, the cancer-specific genes were identified. A prognostic gene expression model was computed by LASSO regression analysis. The PAC-5 signature (LAMA3, E2F7, IFI44, SLC12A2, and LRIG1) that had significant prognostic value in the overall dataset was established, independently of the pathological stage. We provided evidence that the PAC-5 signature further refined the selection of the PAC patients who might benefit from postoperative therapies. SLC12A2 and LRIG1 interacted with the proteins that were implicated in resistance of EGFR kinase inhibitor. DNA methylation was significantly involved in the gene regulations of the PAC-5 signature. The PAC-5 signature provides new possibilities for improving the personalised therapeutic strategies. We suggest that the PAC-5 genes might be potential drug targets for PAC.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Miran Jang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Hyeong Rok Yun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Seok Hoon Ko
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-961-028-7 (T.G.C.); +82-961-052-4 (S.S.K.)
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.K.); (N.N.Y.N.); (H.R.Y.); (Y.S.); (I.K.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (Y.H.J.); (M.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-961-028-7 (T.G.C.); +82-961-052-4 (S.S.K.)
| |
Collapse
|
19
|
Shahhoseini E, Feltis BN, Nakayama M, Piva TJ, Pouniotis D, Alghamdi SS, Geso M. Combined Effects of Gold Nanoparticles and Ionizing Radiation on Human Prostate and Lung Cancer Cell Migration. Int J Mol Sci 2019; 20:ijms20184488. [PMID: 31514328 PMCID: PMC6770098 DOI: 10.3390/ijms20184488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
The effect of 15 nm-sized gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the migration and adhesion of human prostate (DU145) and lung (A549) cancer cell lines was investigated. Cell migration was measured by observing the closing of a gap created by a pipette tip on cell monolayers grown in 6-well plates. The ratio of the gap areas at 0 h and 24 h were used to calculate the relative migration. The relative migration of cells irradiated with 5 Gy was found to be 89% and 86% for DU145 and A549 cells respectively. When the cells were treated with 1 mM AuNPs this fell to ~75% for both cell lines. However, when the cells were treated with both AuNPs and IR an additive effect was seen, as the relative migration rate fell to ~60%. Of interest was that when the cells were exposed to either 2 or 5 Gy IR, their ability to adhere to the surface of a polystyrene culture plate was significantly enhanced, unlike that seen for AuNPs. The delays in gap filling (cell migration) in cells treated with IR and/or AuNPs can be attributed to cellular changes which also may have altered cell motility. In addition, changes in the cytoskeleton of the cancer cells may have also affected adhesiveness and thus the cancer cell's motility response to IR.
Collapse
Affiliation(s)
- Elham Shahhoseini
- Discipline of Medical Radiation, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Bryce N Feltis
- Discipline of Human Bioscience, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Masao Nakayama
- Discipline of Medical Radiation, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Terrence J Piva
- Discipline of Human Bioscience, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Dodie Pouniotis
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Salem S Alghamdi
- Department of Radiological Sciences, Collage of Applied Medical Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Moshi Geso
- Discipline of Medical Radiation, School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| |
Collapse
|
20
|
Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 2019; 20:e452-e463. [DOI: 10.1016/s1470-2045(19)30171-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
|
21
|
Schernberg A, Haie-Meder C, Chargari C. Level of Evidence and Ethical Considerations for Locoregional Treatments in Metastatic Cervical Cancer. JAMA Oncol 2019; 5:574-575. [DOI: 10.1001/jamaoncol.2018.5096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Antoine Schernberg
- Department of Radiotherapy, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christine Haie-Meder
- Department of Radiotherapy, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cyrus Chargari
- Department of Radiotherapy, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
22
|
Kunos CA, Coleman CN. Current and Future Initiatives for Radiation Oncology at the National Cancer Institute in the Era of Precision Medicine. Int J Radiat Oncol Biol Phys 2018; 102:18-25. [PMID: 29325810 DOI: 10.1016/j.ijrobp.2017.02.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland.
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
23
|
Bibault JE, Dussart S, Pommier P, Morelle M, Huguet M, Boisselier P, Coche-Dequeant B, Alfonsi M, Bardet E, Rives M, Calugaru V, Chajon E, Noel G, Mecellem H, Servagi Vernat S, Perrier L, Giraud P. Clinical Outcomes of Several IMRT Techniques for Patients With Head and Neck Cancer: A Propensity Score-Weighted Analysis. Int J Radiat Oncol Biol Phys 2017; 99:929-937. [PMID: 28864403 DOI: 10.1016/j.ijrobp.2017.06.2456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/09/2017] [Accepted: 06/19/2017] [Indexed: 11/12/2022]
Abstract
PURPOSE The Advanced Radiotherapy Oto-Rhino-Laryngologie (ART-ORL) study (NCT02024035) was performed to prospectively evaluate the clinical and economic aspects of helical TomoTherapy and volumetric modulated arc therapy (RapidArc, Varian Medical Systems, Palo Alto, CA) for patients with head and neck cancer. METHODS AND MATERIALS Fourteen centers participated in this prospective comparative study. Randomization was not possible based on the availability of equipment. Patients with epidermoid or undifferentiated nasopharyngeal carcinoma or epidermoid carcinoma of the oropharynx and oral cavity (T1-T4, M0, N0-N3) were included between February 2010 and February 2012. Only the results of the clinical study are presented in this report, as the results of the economic assessment have been published previously. Inverse probability of treatment weighting using the propensity score analysis was undertaken in an effort to adjust for potential bias due to nonrandomization. Locoregional control, cancer-specific survival, and overall survival assessed 18 months after treatment, as well as long-term toxicity and salivary function, were evaluated. RESULTS The analysis included 166 patients. The following results are given after inverse probability of treatment weighting adjustment. The locoregional control rate at 18 months was significantly better in the TomoTherapy group: 83.3% (95% confidence interval [CI], 72.5%-90.2%) versus 72.7% (95% CI, 62.1%-80.8%) in the RapidArc group (P=.025). The cancer-specific survival rate was better in the TomoTherapy group: 97.2% (95% CI, 89.3%-99.3%) versus 85.5% (95% CI, 75.8%-91.5%) in the RapidArc group (P=.014). No significant difference was shown in progression-free or overall survival. TomoTherapy induced fewer acute salivary disorders (P=.012). Posttreatment salivary function degradation was worse in the RapidArc group (P=.012). CONCLUSIONS TomoTherapy provided better locoregional control and cancer-specific survival than RapidArc treatment, with fewer salivary disorders. No significant difference was shown in progression-free and overall survival. These results should be explored in a randomized trial.
Collapse
Affiliation(s)
- Jean-Emmanuel Bibault
- Radiation Oncology Department, Paris Descartes University, Paris Sorbonne Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Sophie Dussart
- Radiation Oncology Department, Leon Berard Cancer Centre, Lyon, France
| | - Pascal Pommier
- Radiation Oncology Department, Leon Berard Cancer Centre, Lyon, France
| | - Magali Morelle
- GATE L-SE UMR 5824, Lyon University, Léon Bérard Cancer Center, F-69008, Lyon, France
| | - Marius Huguet
- GATE L-SE UMR 5824, Lyon University, Lumière Lyon 2 University, F-69130 Écully, France
| | - Pierre Boisselier
- Radiation Oncology Department, Montpellier Cancer Institute, Montpellier, France
| | | | - Marc Alfonsi
- Radiation Oncology Department, Sainte Catherine Institute, Avignon, France
| | - Etienne Bardet
- Radiation Oncology Department, René Gauducheau Cancer Centre, Saint-Herblain, France
| | - Michel Rives
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse, France
| | | | - Enrique Chajon
- Radiation Oncology Department, Eugène Marquis Cancer Centre, Rennes, France
| | - Georges Noel
- Radiation Oncology Department, Paul Strauss Cancer Centre, Strasbourg, France
| | - Hinda Mecellem
- Radiation Oncology Department, Lorraine Institute of Oncology, Vandoeuvre-lès-Nancy, France
| | | | - Lionel Perrier
- GATE L-SE UMR 5824, Lyon University, Léon Bérard Cancer Center, F-69008, Lyon, France
| | - Philippe Giraud
- Radiation Oncology Department, Paris Descartes University, Paris Sorbonne Cité, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
24
|
Clémenson C, Chargari C, Liu W, Mondini M, Ferté C, Burbridge MF, Cattan V, Jacquet-Bescond A, Deutsch E. The MET/AXL/FGFR Inhibitor S49076 Impairs Aurora B Activity and Improves the Antitumor Efficacy of Radiotherapy. Mol Cancer Ther 2017; 16:2107-2119. [PMID: 28619752 DOI: 10.1158/1535-7163.mct-17-0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Several therapeutic agents targeting HGF/MET signaling are under clinical development as single agents or in combination, notably with anti-EGFR therapies in non-small cell lung cancer (NSCLC). However, despite increasing data supporting a link between MET, irradiation, and cancer progression, no data regarding the combination of MET-targeting agents and radiotherapy are available from the clinic. S49076 is an oral ATP-competitive inhibitor of MET, AXL, and FGFR1-3 receptors that is currently in phase I/II clinical trials in combination with gefitinib in NSCLC patients whose tumors show resistance to EGFR inhibitors. Here, we studied the impact of S49076 on MET signaling, cell proliferation, and clonogenic survival in MET-dependent (GTL16 and U87-MG) and MET-independent (H441, H460, and A549) cells. Our data show that S49076 exerts its cytotoxic activity at low doses on MET-dependent cells through MET inhibition, whereas it inhibits growth of MET-independent cells at higher but clinically relevant doses by targeting Aurora B. Furthermore, we found that S49076 improves the antitumor efficacy of radiotherapy in both MET-dependent and MET-independent cell lines in vitro and in subcutaneous and orthotopic tumor models in vivo In conclusion, our study demonstrates that S49076 has dual antitumor activity and can be used in combination with radiotherapy for the treatment of both MET-dependent and MET-independent tumors. These results support the evaluation of combined treatment of S49076 with radiation in clinical trials without patient selection based on the tumor MET dependency status. Mol Cancer Ther; 16(10); 2107-19. ©2017 AACR.
Collapse
Affiliation(s)
- Céline Clémenson
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France
| | - Cyrus Chargari
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France.,Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France.,Institut de Recherche Biomédicale des Armées, Brétigny-Sur-Orge, France
| | - Winchygn Liu
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France
| | - Charles Ferté
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France.,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France.,INSERM, U981, Villejuif, France
| | - Mike F Burbridge
- Oncology Unit, Institut de Recherches Internationales Servier, Suresnes, France
| | - Valérie Cattan
- Oncology Unit, Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, UMR Radiothérapie Moléculaire, Villejuif, France. .,INSERM, U1030, SIRIC Socrates, DHU TORINO, Villejuif, France.,Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
25
|
Yang SH, Guo JC, Yeh KH, Tien YW, Cheng AL, Kuo SH. Association of radiotherapy with favorable prognosis in daily clinical practice for treatment of locally advanced and metastatic pancreatic cancer. J Gastroenterol Hepatol 2016; 31:2004-2012. [PMID: 27059987 DOI: 10.1111/jgh.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Radiotherapy (RT) with or without chemotherapy is currently used in definitive therapy for advanced pancreatic cancer. We sought to evaluate the prognostic significance, pattern of care, and use of RT in locally advanced and metastatic pancreatic cancer. METHODS Between 2002 and 2011, patients with invasive pancreatic carcinoma and prior exposure to systemic chemotherapy were included. We used Cox regression model and propensity score matching for prognostic analyses and logistic regression for analyzing the factors impacting the use of RT. RESULTS We identified 217 pancreatic cancer patients (74 with unresectable stage II or III and 143 with stage IV). Of all patients, 90.8% had adenocarcinoma, and only 19.2% (42/217) received RT with doses ranging from 50 to 55 Gy in 25 to 28 fractions using modern RT techniques. Logistic regression showed stage (P < 0.001) and initial CA 19-9 level (P = 0.026) were significantly predictive of the choice of RT as a first-line treatment, whereas the second-line use of RT was associated with the response to first-line chemotherapy and longer progression-free survival. Patients with RT had a better median survival than those without it (14.6 vs 8.1 months, P < 0.001). In the multivariate analysis and propensity score matching, RT remained a good prognostic factor for overall survival. CONCLUSION The use of RT might be associated with a favorable clinical outcome in patients with locally advanced and metastatic pancreatic cancer. Further exploration of RT as a first-line therapy or second-line therapy for locally advanced or even metastatic pancreatic cancer is warranted.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Oncology, Taipei, Taiwan.,Internal Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan.,Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jhe-Cyuan Guo
- Department of Oncology, Taipei, Taiwan.,Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, Taipei, Taiwan.,Cancer Research Center, Taipei, Taiwan.,Graduate Institute of Oncology, Taipei, Taiwan.,Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ann-Lii Cheng
- Department of Oncology, Taipei, Taiwan.,Internal Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan.,Cancer Research Center, Taipei, Taiwan.,Graduate Institute of Oncology, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, Taipei, Taiwan.,Cancer Research Center, Taipei, Taiwan.,Graduate Institute of Oncology, Taipei, Taiwan
| |
Collapse
|
26
|
Levy A, Chargari C, Marabelle A, Perfettini JL, Magné N, Deutsch E. Can immunostimulatory agents enhance the abscopal effect of radiotherapy? Eur J Cancer 2016; 62:36-45. [DOI: 10.1016/j.ejca.2016.03.067] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
|
27
|
Chuong MD, Hallemeier CL, Jabbour SK, Yu J, Badiyan S, Merrell KW, Mishra MV, Li H, Verma V, Lin SH. Improving Outcomes for Esophageal Cancer using Proton Beam Therapy. Int J Radiat Oncol Biol Phys 2016; 95:488-497. [PMID: 27084662 PMCID: PMC10862360 DOI: 10.1016/j.ijrobp.2015.11.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
Radiation therapy (RT) plays an essential role in the management of esophageal cancer. Because the esophagus is a centrally located thoracic structure there is a need to balance the delivery of appropriately high dose to the target while minimizing dose to nearby critical structures. Radiation dose received by these critical structures, especially the heart and lungs, may lead to clinically significant toxicities, including pneumonitis, pericarditis, and myocardial infarction. Although technological advancements in photon RT delivery like intensity modulated RT have decreased the risk of such toxicities, a growing body of evidence indicates that further risk reductions are achieved with proton beam therapy (PBT). Herein we review the published dosimetric and clinical PBT literature for esophageal cancer, including motion management considerations, the potential for reirradiation, radiation dose escalation, and ongoing esophageal PBT clinical trials. We also consider the potential cost-effectiveness of PBT relative to photon RT.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Jen Yu
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Shahed Badiyan
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Heng Li
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Chargari C, Magne N, Guy JB, Rancoule C, Levy A, Goodman KA, Deutsch E. Optimize and refine therapeutic index in radiation therapy: Overview of a century. Cancer Treat Rev 2016; 45:58-67. [DOI: 10.1016/j.ctrv.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
|
29
|
Pan Y, Zhou C, Yuan D, Zhang J, Shao C. Radiation Exposure Promotes Hepatocarcinoma Cell Invasion through Epithelial Mesenchymal Transition Mediated by H2S/CSE Pathway. Radiat Res 2016; 185:96-105. [PMID: 26727544 DOI: 10.1667/rr14177.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is growing evidence to suggest that radiotherapy can paradoxically promote tumor invasion and metastatic processes, however, the underlying molecular mechanisms remain obscure. In this study, we found that exposure to X rays promoted cell invasion by triggering the epithelial mesenchymal transition (EMT) in two hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. This was made evident by a reduced expression of E-cadherin and enhanced expressions of N-cadherin, Vimentin and Snail. Moreover, exposure to radiation stimulated the signaling of hydrogen sulfide (H2S), a newly found gas transmitter, by upregulating the expressions of H2S-producing proteins of cysthionine-γ-lyase (CSE), cystathionine-β-synthase (CBS). Inhibition of CSE by siRNA or inhibitor not only increased the radiosensitivity but also strongly suppressed radiation-enhanced invasive properties of HCC cells. Interestingly, we found that H2S/CSE inhibition attenuated radiation-enhanced EMT, and the above effect was an end result of blockage of the radiation-activated pathway of p38 mitogen-activated protein kinase (p38MAPK). Collectively, our findings indicate that radiation could promote HCC cell invasion through EMT mediated by endogenous H2S/CSE signaling via the p38MAPK pathway.
Collapse
Affiliation(s)
- Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Cuiping Zhou
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Fujita M, Yamada S, Imai T. Irradiation induces diverse changes in invasive potential in cancer cell lines. Semin Cancer Biol 2015; 35:45-52. [DOI: 10.1016/j.semcancer.2015.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
|
31
|
Re-evaluating the optimal radiation dose for definitive chemoradiotherapy for esophageal squamous cell carcinoma. J Thorac Oncol 2015; 9:1398-405. [PMID: 25122435 DOI: 10.1097/jto.0000000000000267] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The optimal radiation dose for treating esophageal squamous cell carcinoma (ESCC) has long been debated. We evaluated if doses greater than 50.4 Gy delivered with modern techniques are beneficial in terms of tumor control, survival, and toxicity. METHODS We included 193 consecutive patients with ESCC treated with definitive concurrent chemoradiotherapy from 1998 to 2012. Patients were treated to a dose of ≤50.4 Gy (low-dose, n = 137) or greater than 50.4 Gy (high-dose, n = 56). Tumor response, local-regional control, survival, and treatment toxicity were compared between groups. RESULTS High-dose group had a significantly lower local failure rate (17.9% versus 34.3%, p = 0.024) and a marginal better 5-year local-regional failure-free survival (68.7% versus 55.9%, p = 0.052) than the low-dose group. No significant differences were found between high- and low-dose groups in tumor complete response rate (p = 0.975), regional failure rate (p = 0.336), distant metastasis rate (p = 0.390), or 5-year overall survival (p = 0.617). No difference in the incidence of toxic effects was observed between the two groups except for grade 3 skin reaction (12.5% [high] versus 2.2% [low], p < 0.001) and grade greater than or equal to 3 esophageal stricture (32.1% [high] versus 18.2% [low], p = 0.037). CONCLUSIONS Local tumor control might be improved by higher dose of greater than 50.4 Gy, when delivered with modern techniques and concurrent chemotherapy, at the consequence of increased toxicity without impact on overall survival.
Collapse
|
32
|
Focal or combined modality for the management of brain metastasis: did high tech radiotherapy superseded drug-radiotherapy combination? Ann Oncol 2014; 25:2293-2294. [DOI: 10.1093/annonc/mdu477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, Alphonse G, Gilormini M, Ardail D, Toillon RA, Rodriguez-Lafrasse C, Magné N. Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol Hematol 2014; 92:133-42. [PMID: 24908570 DOI: 10.1016/j.critrevonc.2014.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/25/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is a keystone treatment in cancer. Photon radiation has proved its benefits in overall survival in many clinical studies. However, some patients present local recurrences or metastases when cancer cells survive to treatment. Metastasis is a process which includes adhesion of the cell to the extracellular matrix, degradation of the matrix by proteases, cell motility, intravasation in blood or lymphatic vessels, extravasation in distant parenchyma and development of cell colonies. Several studies demonstrated that ionizing radiation might promote migration and invasion of tumor cells by intricate implications in the micro-environment, cell-cell junctions, extracellular matrix junctions, proteases secretion, and induction of epithelial-mesenchymal transition. This review reports various cellular pathways involved in the photon-enhanced cell invasion process for which potential therapeutic target may be employed for enhancing antitumor effectiveness. Understanding these mechanisms could lead to therapeutic strategies to counter the highly invasive cell lines via specific inhibitors or carbon-ion therapy.
Collapse
Affiliation(s)
- Coralie Moncharmont
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France; Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France
| | - Antonin Levy
- Department of Radiotherapy, GustaveRoussy, Villejuif, France
| | - Jean-Baptiste Guy
- Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France
| | - Alexander T Falk
- Department of Radiotherapy, Centre Antoine Lacassagne, Nice, France
| | - Matthieu Guilbert
- INSERM U908, Growth Factor Signalling in Breast Cancer, Functional Proteomics, University Lille 1, IFR-147, 59000 Villeneuve d'Ascq, France
| | - Jane-Chloé Trone
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Marion Gilormini
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Dominique Ardail
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Robert-Alain Toillon
- INSERM U908, Growth Factor Signalling in Breast Cancer, Functional Proteomics, University Lille 1, IFR-147, 59000 Villeneuve d'Ascq, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon Sud, 69921 Oullins, France; Department of Radiotherapy, Institut de Cancérologie de la Lucien Neuwirth, St Priest en Jarez, France.
| |
Collapse
|
34
|
Thorax Innovation (TORINO). Presse Med 2013; 42:e301-2. [PMID: 23972546 DOI: 10.1016/j.lpm.2013.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer Metastasis Rev 2013; 32:479-92. [DOI: 10.1007/s10555-013-9419-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|