1
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Liu D, Mao W, Hu B, Li X, Zhao Q, Zhang L, Hu J. A real-world pharmacovigilance study of polatuzumab vedotin based on the FDA adverse event reporting system (FAERS). Front Pharmacol 2024; 15:1405023. [PMID: 38983914 PMCID: PMC11231375 DOI: 10.3389/fphar.2024.1405023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Polatuzumab vedotin, the first FDA-approved antibody-drug conjugate (ADC) targeting CD79b, is utilized in the treatment of previously untreated diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBL), as well as relapsed or refractory (R/R) DLBCL. Despite its approval, concerns persist regarding the long-term safety profile of polatuzumab vedotin. This study aims to evaluate the adverse events (AEs) associated with polatuzumab vedotin since its approval in 2019, utilizing data mining strategies applied to the FDA Adverse Event Reporting System (FAERS). Methods Signal detection employed four methodologies, including reporting odds ratio (ROR), proportional reporting ratio (PRR), bayesian confidence propagation neural network (BCPNN), and multi-item gamma poisson shrinker (MGPS), to evaluate and quantify the signals of polatuzumab vedotin-associated AEs. Additionally, subgroup analyses based on patients age, gender, and fatal cases were conducted to investigate AEs occurrences in specific subpopulations. Results A total of 1,521 reports listing polatuzumab vedotin as a "principal suspect (PS)" drug were collected from the FAERS database. Through concurrent compliance with four algorithms, 19 significant Standardized MedDRA Query (SMQ) AEs and 92 significant Preferred Term (PT) AEs were detected. Subgroup analyses revealed a higher incidence of PTs in male patients compared to female patients, increased likelihood of polatuzumab vedotin-associated AEs in elder patients (>65 years), and AEs with a high risk of fatal cases include: blood lactate dehydrogenase increased, cytopenia, and hydronephrosis. The median time to AEs occurrence following polatuzumab vedotin initiation was 18.5 (5∼57.75) days, with 95% of AEs occurred within 162 days. Conclusion This study identified various AEs associated with polatuzumab vedotin, offering critical insights for clinical monitoring and risk identification in patients receiving polatuzumab vedotin therapy.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Mao
- Department of Pharmacy, Nanan People's Hospital of Chongqing, Chongqing, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingxing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Quanfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
4
|
Hayashi S, Imoto S. HLA Typing and Mutation Calling from Normal and Tumor Whole Genome Sequencing Data with ALPHLARD-NT. Methods Mol Biol 2024; 2809:101-113. [PMID: 38907893 DOI: 10.1007/978-1-0716-3874-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
HLA somatic mutations can alter the expression and function of HLA molecules, which in turn affect the ability of the immune system to recognize and respond to cancer cells. Therefore, it is crucial to accurately identify HLA somatic mutations to enhance our understanding of the interaction between cancer and the immune system and improve cancer treatment strategies. ALPHLARD-NT is a reliable tool that can accurately identify HLA somatic mutations as well as HLA genotypes from whole genome sequencing data of paired normal and tumor samples. Here, we provide a comprehensive guide on how to use ALPHLARD-NT and interpret the results.
Collapse
Affiliation(s)
- Shuto Hayashi
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Huo Z, Chen F, Zhao J, Liu P, Chao Z, Liu K, Zhou J, Zhou D, Zhang L, Zhen H, Yang W, Tan Z, Zhu K, Luo Z. Prognostic impact of absolute peripheral blood NK cell count after four cycles of R-CHOP-like regimen treatment in patients with diffuse large B cell lymphoma. Clin Exp Med 2023; 23:4665-4672. [PMID: 37938466 PMCID: PMC10725372 DOI: 10.1007/s10238-023-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
As a subtype of lymphocyte, natural killer (NK) cell is the first line of defense that shows a strong function in tumor immunotherapy response and clinical outcomes. The current study aims to investigate the prognostic influence of peripheral blood absolute NK cell count after four cycles of rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) treatment (NKCC4) in diffuse large B cell lymphoma (DLBCL) patients. A total of 261 DLBCL patients treated with R-CHOP from January 2018 to September 2022 were enrolled. The low NKCC4 was observed in patients who died during the study period compared with survival individuals. A NKCC4 < 135 cells/μl had a remarkable negative influence in overall survival and progression-free survival (PFS) compared to a NKCC4 ≥ 135 cells/μl (p < 0.0001 and p < 0.0004, respectively). In addition, the OS and PFS were synergistically lower in a NKCC4 < 135 cells/μl group among DLBCL patients with GCB type or high IPI. In conclusion, this study indicates NCKK4 as a valuable marker in clinical practice and provides an insight for combination treatment of R-CHOP to improve outcomes of DLBCL patients.
Collapse
Affiliation(s)
- Zhongjun Huo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Fang Chen
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Jiajia Zhao
- Department of Reproductive and Genetic Center, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Ping Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zhi Chao
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Kang Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Ji Zhou
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Dan Zhou
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Lu Zhang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Haifeng Zhen
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Wenqun Yang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zhenqing Tan
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Kaibo Zhu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zimian Luo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China.
| |
Collapse
|
6
|
Salwa A, Ferraresi A, Secomandi E, Vallino L, Moia R, Patriarca A, Garavaglia B, Gaidano G, Isidoro C. High BECN1 Expression Negatively Correlates with BCL2 Expression and Predicts Better Prognosis in Diffuse Large B-Cell Lymphoma: Role of Autophagy. Cells 2023; 12:1924. [PMID: 37566004 PMCID: PMC10417641 DOI: 10.3390/cells12151924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by high molecular and clinical heterogeneity. Autophagy, a lysosome-driven catabolic process devoted to macromolecular turnover, is fundamental in maintaining normal hematopoietic stem cells and progenitors homeostasis, and its dysregulation plays a critical role in the initiation and progression of hematological malignancies. One main regulator of autophagy is BECLIN-1, which may interact alternatively with either BCL-2, thus allowing apoptosis, or PI3KC3, thus promoting autophagy. The altered expression of BCL2 and BECN1 correlates with lymphoma outcomes, but whether this is associated with dysregulated cross-talk between autophagy and apoptosis remains to be elucidated. Analysis of the TCGA database revealed that BCL2 and BECN1 mRNA expression were inversely correlated in DLBCL patients. In representative DLBCL cell lines exposed to doxorubicin, the cells highly expressing BCL-2 were resistant, while the ones highly expressing BECLIN-1 were sensitive, and this correlated with low and high autophagy flux, respectively. Venetoclax targeting of BCL-2 increased while the spautin-1-mediated inhibition of BECLIN-1-dependent autophagy reversed doxorubicin sensitivity in the former and in the latter, respectively. By interrogating the TCGA DLBCL dataset, we found that BCL2 and BECN1 acted as negative and positive prognostic markers for DLBCL, respectively. The differentially expressed gene analysis in the respective cohorts revealed that BCL2 positively correlated with oncogenic pathways (e.g., glucose transport, HIF1A signaling, JAK-STAT signaling, PI3K-AKT-mTOR pathway) and negatively correlated with autophagy-related transcripts, while BECN1 showed the opposite trend. Notably, patients with high BECN1 expression displayed longer survival. Our data reveal, for the first time, that the modulation of BECLIN-1-dependent autophagy influences the prognosis of DLBCL patients and provide a mechanistic explanation supporting the therapeutic use of drugs that, by stimulating autophagy, can sensitize lymphoma cells to chemotherapy.
Collapse
Affiliation(s)
- Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (R.M.); (A.P.)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (A.S.); (A.F.); (E.S.); (L.V.); (B.G.)
| |
Collapse
|
7
|
Dharanipragada P, Parekh N. In Silico Identification and Functional Characterization of Genetic Variations across DLBCL Cell Lines. Cells 2023; 12:cells12040596. [PMID: 36831263 PMCID: PMC9954129 DOI: 10.3390/cells12040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma and frequently develops through the accumulation of several genetic variations. With the advancement in high-throughput techniques, in addition to mutations and copy number variations, structural variations have gained importance for their role in genome instability leading to tumorigenesis. In this study, in order to understand the genetics of DLBCL pathogenesis, we carried out a whole-genome mutation profile analysis of eleven human cell lines from germinal-center B-cell-like (GCB-7) and activated B-cell-like (ABC-4) subtypes of DLBCL. Analysis of genetic variations including small sequence variants and large structural variations across the cell lines revealed distinct variation profiles indicating the heterogeneous nature of DLBCL and the need for novel patient stratification methods to design potential intervention strategies. Validation and prognostic significance of the variants was assessed using annotations provided for DLBCL samples in cBioPortal for Cancer Genomics. Combining genetic variations revealed new subgroups between the subtypes and associated enriched pathways, viz., PI3K-AKT signaling, cell cycle, TGF-beta signaling, and WNT signaling. Mutation landscape analysis also revealed drug-variant associations and possible effectiveness of known and novel DLBCL treatments. From the whole-genome-based mutation analysis, our findings suggest putative molecular genetics of DLBCL lymphomagenesis and potential genomics-driven precision treatments.
Collapse
|
8
|
Coombes C, Horikawa K, Jain S, Jiang S, Lim JH, Saxena K, Shadbolt B, Smyth L, Tobin J, Talaulikar D. Diffuse large B-cell lymphoma and red cell autoimmunity: clinical role and pathogenesis. Pathology 2023; 55:104-112. [PMID: 36420560 DOI: 10.1016/j.pathol.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of B-cell non-Hodgkin lymphoma (B-NHL) with significant morbidity and mortality despite advancements in treatment. Lymphoma and autoimmune disease both result from breakdowns in normal cell regulatory pathways, and epidemiological studies have confirmed both that B-NHL is more likely to develop in the setting of autoimmune diseases and vice versa. Red cell immunity, as evidenced by direct antiglobulin test (DAT) positivity, has been linked to DLBCL and more recently the pathogenic causes of this association have begun to be better understood using molecular techniques. This project aimed to explore the relationship between red cell autoimmunity and DLBCL. DAT positivity was more common in DLBCL as compared to healthy controls (20.4% vs 3.7%, p=0.0005). Univariate analysis found a non-significant trend towards poorer overall survival in the DAT positive (DAT+) compared to the DAT negative (DAT-) groups (p=0.087). High throughput sequencing was used to compare mutations in DLBCL from DAT+ and DAT- patients. The most frequently mutated genes in 15 patient samples were KMT2D (n=13), MYOM2 (n=9), EP300 (n=8), SPEN (n=7), and ADAMTSL3 (n=7), which were mutated in both DAT+ and DAT- groups. BIRC3 (n=3), FOXO1 (n=3) and CARD11 (n=2) were found to be mutated only in samples from the DAT+ group. These gene mutations may be involved in disease development and progression, and potentially represent targets for future therapy. The immunoglobulin genotype IGHV4-34 is seen more frequently in DLBCL clones than in normal B cells and has intrinsic autoreactivity to self-antigens on red cells, which is largely mediated by two motifs within the first framework region (FR1); Q6W7 and A24V25Y.26 These motifs form a hydrophobic patch which determines red cell antigen binding and are frequently mutated away from self-reactivity in normal B cells. If this does not occur this may provide constant B cell receptor signalling which encourages lymphoma development, a theory known as antigen driven lymphomagenesis. As with previous studies, IGHV4-34 was over-represented (15.6%) in our DLBCL cohort. Furthermore, of 6 IGHV4-34-expressing DLBCL samples five had unmutated hydrophobic patch mutations providing further evidence for antigen-driven lymphomagenesis. Mutation analysis of these five samples demonstrated high frequency of mutations in several genes, including CREBBP and NCOR2. Further research could explore if mutations in CREBBP and NCOR2 work in conjunction with the preserved QW and AVY motifs to promote lymphomagenesis in IGHV4-34-expressing B cells, and if so, could guide future targeted therapy.
Collapse
Affiliation(s)
- Caitlin Coombes
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Haematology Translational Research Unit, Haematology Department, Canberra Health Services, Canberra, ACT, Australia
| | - Keisuke Horikawa
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Sanjiv Jain
- Anatomical Pathology Department, Canberra Health Services, Canberra, ACT, Australia
| | - Simon Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; Renal Medicine Department, Canberra Health Services, Canberra, ACT, Australia
| | - Jun Hee Lim
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Kartik Saxena
- Haematology Translational Research Unit, Haematology Department, Canberra Health Services, Canberra, ACT, Australia
| | - Bruce Shadbolt
- Centre for Advances in Epidemiology and IT, Canberra Health Services, Canberra, ACT, Australia
| | - Lillian Smyth
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Joshua Tobin
- Princess Alexandra Hospital, Brisbane, Qld, Australia; Diamantina Institute, University of Queensland, Brisbane, Qld, Australia
| | - Dipti Talaulikar
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Haematology Translational Research Unit, Haematology Department, Canberra Health Services, Canberra, ACT, Australia; Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
9
|
Filho EHCN, Zancheta SB, de Barros Silva PG, Rodríguez Burbano RM, Rabenhorst SHB. Prognostic impact of miR-125b and miR-155b and their relationship with MYC and TP53 in diffuse large B-cell lymphoma: cell-of-origin classification matters. J Clin Exp Hematop 2023; 63:164-172. [PMID: 37766562 PMCID: PMC10628825 DOI: 10.3960/jslrt.23009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tumoral microRNAs, such as miR-125b and miR-155b, are important gene expression regulators with complex pathogenetic mechanisms. However, their role in DLBCL, especially when cell-of-origin classification is considered, are still to be elucidated. In a series of 139 DLBCL cases considering germinal center (GC) versus nonGC subtypes, we investigated miR-125b and miR-155b expression by in situ hibridization and their association with some immunophenotypic presentations, including MYC, BCL2 and TP53 expression, MYC, BCL2 and BCL6 translocation status, as well as clinicopathological features and outcomes. miR-125b detection was positively correlated to the Ki-67 index (P = 0.035) in the nGC. Considering the GC subgroup, the percentage of miR-125b positive cells was also correlated to either MYC and MYC/BCL2 double expression (P = 0.047 and P = 0.049, respectively). When it comes to nGC patients, miR-155b percentage and intensity, as well as Allred score, were positively correlated to disease progression (P = 0.038, P = 0.057 and P = 0.039, respectively). In a multivariate analysis, GC phenotype was a significant independent factor associated with higher OS (P = 0.007) and, considering the nGC group, although not significant, the expression of TP53, miR-125b and miR-155b seems to be potential prognostic biomarkers in these tumors. This study demonstrated different pathways based on cell-of-origin classification and highlighted different clinical outcomes. miR-125b, miR-155b and TP53 expression may also represent potential prognostic factors in nGC-DLBCL.
Collapse
Affiliation(s)
| | - Stella Barbanti Zancheta
- LABGEM, Departamento de Patologia e Medicina Legal, Universidade Federal Do Ceará, Fortaleza, Brazil
| | | | | | | |
Collapse
|
10
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Ding Z, Quast I, Yan F, Liao Y, Pitt C, O-Donnell K, Robinson MJ, Shi W, Kallies A, Zotos D, Tarlinton DM. CD137L and CD4 T cells limit BCL6-expressing pre-germinal center B cell expansion and BCL6-driven B cell malignancy. Immunol Cell Biol 2022; 100:705-717. [PMID: 35916066 DOI: 10.1111/imcb.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/07/2023]
Abstract
Aberrant expression of the proto-oncogene BCL6 is a driver of tumorigenesis in diffuse large B cell lymphoma (DLBCL). Mice overexpressing BCL6 from the B cell-specific immunoglobulin heavy chain μ intron promoter (Iμ-Bcl6Tg/+ ) develop B cell lymphomas with features typical of human DLBCL. While the development of B cell lymphoma in these mice is tightly controlled by T cells, the mechanisms of this immune surveillance are poorly understood. Here we show that CD4 T cells contribute to the control of lymphoproliferative disease in lymphoma-prone Iμ-Bcl6Tg/+ mice. We reveal that this CD4 T cell immuno-surveillance requires signaling by the co-stimulatory molecule CD137 ligand (CD137L; also known as 4-1BBL), which may promote the transition of pre-malignant B cells with an activated phenotype into the germinal center stage via reverse signaling, preventing their hazardous accumulation. Thus, CD137L-mediated CD4 T cell immuno-surveillance adds another layer of protection against B cell malignancy to that provided by CD8 T cell cytotoxicity.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yang Liao
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Kristy O-Donnell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Wei Shi
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia.,School of Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Axel Kallies
- The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Zhao Q, Hu W, Xu J, Zeng S, Xi X, Chen J, Wu X, Hu S, Zhong T. Comprehensive Pan-Cancer Analysis of Senescence With Cancer Prognosis and Immunotherapy. Front Mol Biosci 2022; 9:919274. [PMID: 35911954 PMCID: PMC9334796 DOI: 10.3389/fmolb.2022.919274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Senescence is a double-edged sword in tumorigenesis and affects the immunotherapy response through the modulation of the host’s immune system. However, there is currently a lack of comprehensive analysis of the senescence-related genes (SRGs) in human cancers, and the predictive role of senescence in cancer immunotherapy response has not been explored. The multi-omics approaches were performed in this article to conduct a systematic pan-cancer genomic analysis of SRGs in cancer. In addition, we calculated the generic senescence score (SS) to quantify the senescence levels in cancers and explored the correlations of SS with cancer prognosis, biological processes, and tumor microenvironment (TME). The gene signatures were deregulated in multiple cancers and indicated a context-dependent correlation with prognosis, tumor-immune evasion, and response to therapy across various tumor types. Further analysis disclosed that SS was positively associated with the infiltration levels of immune suppressive cells, including induced Tregs (iTregs), central memory Ts (Tcms), and natural Tregs (nTregs), and negatively associated with immune killer cells, including natural killers (NKs) and mucosal-associated invariant Ts (MAITs). Moreover, the SS was significantly correlated with tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), immune-related genes, and immune checkpoints and had a predictive value of immunotherapy response. Thus, the expression of SRGs was involved in resistance to several anticancer drugs. Our work illustrates the characterization of senescence across various malignancies and highlights the potential of senescence as a biomarker of the response to immunotherapy.
Collapse
Affiliation(s)
- Qinfei Zhao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weiquan Hu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Jing Xu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaoying Zeng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jing Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangsheng Wu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Suping Hu
- Department of Emergency, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
13
|
Dreyling M, André M, Gökbuget N, Tilly H, Jerkeman M, Gribben J, Ferreri A, Morel P, Stilgenbauer S, Fox C, Maria Ribera J, Zweegman S, Aurer I, Bödör C, Burkhardt B, Buske C, Dollores Caballero M, Campo E, Chapuy B, Davies A, de Leval L, Doorduijn J, Federico M, Gaulard P, Gay F, Ghia P, Grønbæk K, Goldschmidt H, Kersten MJ, Kiesewetter B, Landman-Parker J, Le Gouill S, Lenz G, Leppä S, Lopez-Guillermo A, Macintyre E, Mantega MVM, Moreau P, Moreno C, Nadel B, Okosun J, Owen R, Pospisilova S, Pott C, Robak T, Spina M, Stamatopoulos K, Stary J, Tarte K, Tedeschi A, Thieblemont C, Trappe RU, Trümper LH, Salles G. The EHA Research Roadmap: Malignant Lymphoid Diseases. Hemasphere 2022; 6:e726. [PMID: 35620592 PMCID: PMC9126526 DOI: 10.1097/hs9.0000000000000726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Marc André
- Université Catholique de Louvain, CHU UcL Namur, Yvoir, Belgium
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Hervé Tilly
- INSERM U1245, Department of Hematology, Centre Henri Becquerel and Université de Rouen, France
| | | | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Andrés Ferreri
- Lymphoma Unit, Department of Onco-hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Pierre Morel
- Service Hematologie Clinique Therapie Cellulaire, CHU Amiens Picardie, Amiens, France
| | - Stephan Stilgenbauer
- Comprehensive Cancer Center Ulm (CCCU), Sektion CLL Klinik für Innere Medizin III, Universität Ulm, Germany
| | - Christopher Fox
- School of Medicine, University of Nottingham, United Kingdom
| | - José Maria Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Sonja Zweegman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Igor Aurer
- University Hospital Centre Zagreb and Medical School, University of Zagreb, Croatia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Birgit Burkhardt
- Experimentelle und Translationale päd. Hämatologie u Onkologie, Leitung der Bereiche Lymphome und Stammzelltransplantation, Universitätsklinikum Münster (UKM), Klinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und Onkologie, Munich, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, CCC Ulm, University Hospital Ulm, Germany
| | - Maria Dollores Caballero
- Clinical and Transplant Unit, University Hospital of Salamanca, Spain
- Department of Medicine at the University of Salamanca, Spain
- El Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bjoern Chapuy
- Department of Hematology, Oncology and Tumor Immunology, Charité, University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Andrew Davies
- Southampton NCRI/UK Experimental Cancer Medicines Centre, Faculty of Medicine, University of Southampton, United Kingdom
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jeanette Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Philippe Gaulard
- Département de Pathologie, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Francesca Gay
- Clinical Trial Unit, Division of Hematology 1, AOU Città Della Salute e Della Scienza, University of Torino, Italy
| | - Paolo Ghia
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Hartmut Goldschmidt
- University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marie-Jose Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, the Netherlands
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Judith Landman-Parker
- Pediatric Hematology Oncology, Sorbonne Université APHP/hôpital A Trousseau, Paris, France
| | - Steven Le Gouill
- Service d’Hématologie, Clinique du Centre Hospitalier Universitaire (CHU) de Nantes, France
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Germany
| | - Sirpa Leppä
- University of Helsinki and Helsinki University Hospital Comprehensive Cancer Centre, Helsinki, Finland
| | | | - Elizabeth Macintyre
- Onco-hematology, Université de Paris and Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, France
| | | | - Philippe Moreau
- Hematology Department, University Hospital Hotel-Dieu, Nantes, France
| | - Carol Moreno
- Hospital de la Santa Creu I Sant Pau, Autonomous University of Barcelona, Spain
| | - Bertrand Nadel
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Roger Owen
- St James’s Institute of Oncology, Leeds, United Kingdom
| | - Sarka Pospisilova
- Department of Internal Medicine—Hematology and Oncology and Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Christiane Pott
- Klinisch-experimentelle Hämatologie, Medizinische Klinik II, Hämatologie und Internistische Onkologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | | | - Michelle Spina
- Division of Medical Oncology and Immune-related Tumors, National Cancer Institute, Aviano, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Jan Stary
- Department of Pediatric Hematology and Oncology 2nd Faculty of Medicine, Charles University Prague University Hospital, Prague, Czech Republic
| | - Karin Tarte
- Immunology and Cell Therapy Lab at Rennes University Hospital, Rennes, France
| | | | - Catherine Thieblemont
- Department of Hemato-Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ralf Ulrich Trappe
- Department of Internal Medicine II: Haematology and Oncology, DIAKO Hospital Bremen, Germany
| | - Lorenz H. Trümper
- Hematology and Medical Oncology, University Medicine Goettingen, Germany
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Serrano López J, Jiménez-Jiménez C, Chutipongtanate S, Serrano J, Rodríguez-Moreno M, Jiménez Á, Jiménez Y, G Pedrero S, Laínez D, Alonso-Domínguez JM, Llamas Sillero P, Piris MÁ, Sánchez-García J. High-throughput RNA sequencing transcriptome analysis of ABC-DLBCL reveals several tumor evasion strategies. Leuk Lymphoma 2022; 63:1861-1870. [PMID: 35379068 DOI: 10.1080/10428194.2022.2056173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activated B-cell (ABC) lymphoma, a distinct molecular entity within diffuse large B-cell lymphoma (DLBCL), remains highly incurable, showing a worse response to standard immunochemotherapy. The discouraging results obtained in several clinical trials using proteasome inhibitors, tyrosine kinase inhibitors, or immunomodulators, lead to an intense search for new, potentially druggable biomarkers in DLBCL. In this study, we designed an experimental strategy for DLBCL to discover high- and low-abundance RNA-seq-derived transcripts involved in the oncogenic phenotype in patients diagnosed with ABC-DLBCL. Based on the results of a comparative analysis, 79 DE genes and two enriched gene sets related to metabolism and immunity were selected. Genes related to drug resistance, anti-inflammatory response, and tumor-cell dissemination were found to be up-regulated, while tumor suppressor genes were down-regulated. Then, we searched for the perturbagens most suitable for gene expression profiling (GEP) by iLINCS-CMap. Herein, we present a novel experimental approach that connects the omics signature of DLBCL with potential drugs for more accurate treatments.
Collapse
Affiliation(s)
| | - Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,CIBER-BBN, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Somchai Chutipongtanate
- Departments of Pediatrics, Clinical Epidemiology and Biostatistics, Chakri Naruebodindra Medical Institute, Bangkok, Thailand.,Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Josefina Serrano
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba, Spain
| | | | - Álvaro Jiménez
- Genomics Unit, IMIBIC (Maimonides Biomedicas Research Institute of Cordoba), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Yesenia Jiménez
- Immunology Department, IIS Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Sara G Pedrero
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Daniel Laínez
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Juan Manuel Alonso-Domínguez
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain.,Hematology, Hospital Universitario Fundación Jimenez Díaz, Madrid, Spain
| | - Pilar Llamas Sillero
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain.,Hematology, Hospital Universitario Fundación Jimenez Díaz, Madrid, Spain
| | | | - Joaquín Sánchez-García
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba, Spain
| |
Collapse
|
15
|
Huo YJ, Xu PP, Fu D, Yi HM, Huang YH, Wang L, Wang N, Ji MM, Liu QX, Shi Q, Wang S, Cheng S, Feng Y, Zhao WL. Molecular heterogeneity of CD30+ diffuse large B-cell lymphoma with prognostic significance and therapeutic implication. Blood Cancer J 2022; 12:48. [PMID: 35351868 PMCID: PMC8964673 DOI: 10.1038/s41408-022-00644-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yu-Jia Huo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Hui Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Nan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Meng Ji
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Xiao Liu
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
16
|
Bouzidi A, Labreche K, Baron M, Veyri M, Denis JA, Touat M, Sanson M, Davi F, Guillerm E, Jouannet S, Charlotte F, Bielle F, Choquet S, Boëlle PY, Cadranel J, Leblond V, Autran B, Lacorte JM, Spano JP, Coulet F. Low-Coverage Whole Genome Sequencing of Cell-Free DNA From Immunosuppressed Cancer Patients Enables Tumor Fraction Determination and Reveals Relevant Copy Number Alterations. Front Cell Dev Biol 2021; 9:661272. [PMID: 34710202 PMCID: PMC8369887 DOI: 10.3389/fcell.2021.661272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-free DNA (cfDNA) analysis is a minimally invasive method that can be used to detect genomic abnormalities by directly testing a blood sample. This method is particularly useful for immunosuppressed patients, who are at high risk of complications from tissue biopsy. The cfDNA tumor fraction (TF) varies greatly across cancer type and between patients. Thus, the detection of molecular alterations is highly dependent on the circulating TF. In our study, we aimed to calculate the TF and characterize the copy number aberration (CNA) profile of cfDNA from patients with rare malignancies occurring in immunosuppressed environments or immune-privileged sites. To accomplish this, we recruited 36 patients: 19 patients with non-Hodgkin lymphoma (NHL) who were either human immunodeficiency virus (HIV)-positive or organ transplant recipients, 5 HIV-positive lung cancer patients, and 12 patients with glioma. cfDNA was extracted from the patients' plasma and sequenced using low-coverage whole genome sequencing (LC-WGS). The cfDNA TF was then calculated using the ichorCNA bioinformatic algorithm, based on the CNA profile. In parallel, we performed whole exome sequencing of patient tumor tissue and cfDNA samples with detectable TFs. We detected a cfDNA TF in 29% of immune-suppressed patients (one patient with lung cancer and six with systemic NHL), with a TF range from 8 to 70%. In these patients, the events detected in the CNA profile of cfDNA are well-known events associated with NHL and lung cancer. Moreover, cfDNA CNA profile correlated with the CNA profile of matched tumor tissue. No tumor-derived cfDNA was detected in the glioma patients. Our study shows that tumor genetic content is detectable in cfDNA from immunosuppressed patients with advanced NHL or lung cancer. LC-WGS is a time- and cost-effective method that can help select an appropriate strategy for performing extensive molecular analysis of cfDNA. This technique also enables characterization of CNAs in cfDNA when sufficient tumor content is available. Hence, this approach can be used to collect useful molecular information that is relevant to patient care.
Collapse
Affiliation(s)
- Amira Bouzidi
- Sorbonne University, INSERM, Research Unit on Cardiovascular and Metabolic Disease UMR ICAN, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Karim Labreche
- Sorbonne University, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Paris, France
| | - Marine Baron
- Sorbonne University, Center for Immunology and Infectious Diseases (CIMI-Paris), Department of Hematology, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Marianne Veyri
- Sorbonne University, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Theravir Team, Medical Oncology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérôme Alexandre Denis
- Sorbonne University, INSERM, Saint-Antoine Research Center, Cancer Biology and Therapeutics, CRSA, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Mehdi Touat
- Sorbonne University, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Marc Sanson
- Sorbonne University, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Frédéric Davi
- Sorbonne University, INSERM, Centre de Recherche des Cordeliers, Department of Biological Hematology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Erell Guillerm
- Sorbonne University, INSERM, Saint-Antoine Research Center, Microsatellites Instability and Cancer, CRSA, Genetics Department, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Jouannet
- Sorbonne University, Neurosurgery Department, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Frédéric Charlotte
- Sorbonne University, Anatomy and Pathologic Cytology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Franck Bielle
- Sorbonne University, Neuropathology Department, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Sylvain Choquet
- Sorbonne University, Center for Immunology and Infectious Diseases (CIMI-Paris), Department of Hematology, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Pierre-Yves Boëlle
- Sorbonne University, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Paris, France
| | - Jacques Cadranel
- Sorbonne University, Chest Department and Thoracic Oncology, GRC 04, Theranoscan, AP-HP, Hôpital Tenon, Paris, France
| | - Véronique Leblond
- Sorbonne University, Center for Immunology and Infectious Diseases (CIMI-Paris), Department of Hematology, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Brigitte Autran
- Sorbonne University, INSERM, CNRS, Center for Immunology and Infectious Diseases (CIMI-Paris), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Jean-Marc Lacorte
- Sorbonne University, INSERM, Research Unit on Cardiovascular and Metabolic Disease UMR ICAN, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jean-Philippe Spano
- Sorbonne University, INSERM, Research Unit on Cardiovascular and Metabolic Disease UMR ICAN, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Florence Coulet
- Sorbonne University, INSERM, Research Unit on Cardiovascular and Metabolic Disease UMR ICAN, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | | |
Collapse
|
17
|
Primary diffuse large B-cell lymphoma of the sigmoid colon. Int J Surg Case Rep 2021; 87:106454. [PMID: 34600235 PMCID: PMC8488484 DOI: 10.1016/j.ijscr.2021.106454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Extranodal lymphomas are commonly encountered in the gastrointestinal tract but lymphomas of colon and rectum are rare. Non-Hodgkin lymphoma is the most common type of colonic lymphoma and represents less than 0.5% of colorectal neoplasms. Chemotherapeutical agents are gateway to disease remission and sometimes cure in most patients but surgery may be necessary in emergent situations. Case presentation A 77-year-old male patient presented with abdominal discomfort, constipation, and obstructive defecation symptoms. Radiological imaging revealed a mass in the sigmoid colon extending towards the rectum. Colonoscopy was performed and biopsy of a nearly 10 cm ulcerovegetative lesion was obtained. Histological examination following biopsy revealed it to be a diffuse large B-cell lymphoma of the sigmoid colon. There was no indication for surgery and the patient was referred to medical oncology clinic for chemotherapy treatment. Discussion Non-Hodgkin lymphoma is a lymphoproliferative disorder with the diffuse large B cell lymphoma (DLBCL) being the most common subtype. The DLBCL subtype is rarely observed in the colon and rectum. Chromosomal abnormalities are involved in the pathophysiology and gene rearrangements lead to adjustments in lymphocyte function and differentiation. Conclusion In this case report, we present a rare presentation of a Non-Hodgkin lymphoma presenting in the sigmoid colon. The disease can present with nonspecific symptoms and various imaging modalities along with histopathological evaluation is necessary for the correct subtyping of lymphoma. Chemoradiotherapy is key for treatment, and surgery is usually reserved for cases of obstruction, perforation, or bleeding. Non-Hodgkin lymphoma is the most common type of colonic lymphoma. Extranodal lymphomas of the colon and rectum are rare. Histopathological evaluation is important for subtyping of lymphoma. Chemotherapy is the main form of treatment but sometimes surgery is required.
Collapse
|
18
|
Istiadi H, Sadhana U, Puspasari D, Miranti IP, Karlowee V, Listiana DE, Prasetyo A. Role of Cell-Origin Profiling Using Immunohistochemistry to Predict the Survival of Patients with Diffuse Large B-Cell Lymphoma in Indonesia. Yonago Acta Med 2021; 64:200-206. [PMID: 34025195 DOI: 10.33160/yam.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/26/2021] [Indexed: 11/05/2022]
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma in Asia and Indonesia. DLBCL could be further classified according to cell of origin as the germinal center B-cell (GCB) subtype or the non-germinal center B-cell (non-GCB) subtypes; of these, the non-GCB subtype usually has poorer prognosis. The purpose of this study is to determine the relationship between the cell-origin subtype and 3-year overall survival of patients with DLBCL at Kariadi General Hospital Semarang. Methods This research represents an observational analytical study of 36 patients with DLBCL who visited Kariadi General Hospital between January and August 2017. Data on age of diagnosis, tumor location, disease stage, and 3-year overall survival were collected. DLBCL subtype was determined via immunohistochemical examination of CD10, BCL6, and MUM1 protein expression. Data analyses, including the chi squared test and Kaplan-Meier curves, were conducted. Results The study population included 18 patients with GCB-subtype DLBCL and 18 patients with non-GCB-subtype DLBCL. No significant difference (P = 0.171) between disease stage and cell-origin subtype was noted between groups. Patients with the non-GCB subtype had a 3-year overall survival that was significantly worse than that of patients with the GCB subtype (P = 0.026). Moreover, the 3-year survival rate of patients with the non-GCB subtype of the disease was 38.9% while that of patients with the GCB subtype was 77.8%. Patients with advanced stages of DLBCL also had a 3-year overall survival that was significantly worse than those of patients with early stages of the disease (P < 0.001), with the 3-year survival rate of patients with advanced stage was 14.3%. Conclusion Patients with non-GCB-subtype DLBCL or advanced stages of the disease have a lower 3-year overall survival rate and poorer prognosis compared with those with other subtypes or earlier stages of the disease.
Collapse
Affiliation(s)
- Hermawan Istiadi
- Anatomical Pathology Department, Faculty of Medicine, Diponegoro University, Semarang 50244, Indonesia
| | - Udadi Sadhana
- Anatomical Pathology Department, Faculty of Medicine, Diponegoro University, Semarang 50244, Indonesia
| | - Dik Puspasari
- Anatomical Pathology Laboratory, Kariadi General Hospital, Semarang 50244, Indonesia
| | - Ika Pawitra Miranti
- Anatomical Pathology Department, Faculty of Medicine, Diponegoro University, Semarang 50244, Indonesia
| | - Vega Karlowee
- Anatomical Pathology Department, Faculty of Medicine, Diponegoro University, Semarang 50244, Indonesia
| | - Devia Eka Listiana
- Anatomical Pathology Laboratory, Kariadi General Hospital, Semarang 50244, Indonesia
| | - Awal Prasetyo
- Anatomical Pathology Department, Faculty of Medicine, Diponegoro University, Semarang 50244, Indonesia
| |
Collapse
|
19
|
Cold agglutinin-associated B-cell lymphoproliferative disease shows highly recurrent gains of chromosome 3 and 12 or 18. Blood Adv 2021; 4:993-996. [PMID: 32168377 DOI: 10.1182/bloodadvances.2020001608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
|
20
|
Abstract
Diffuse large B-cell lymphomas (DLBCL)s, the most common type of Non-Hodgkin’s Lymphoma, constitute a heterogeneous group of disorders including different disease sites, strikingly diverse molecular features and a profound variability in the clinical behavior. Molecular studies and clinical trials have partially revealed the underlying causes for this variability and have made possible the recognition of some molecular variants susceptible of specific therapeutic approaches. The main histogenetic groups include the germinal center, activated B cells, thymic B cells and terminally differentiated B cells, a basic scheme where the large majority of DLBCL cases can be ascribed. The nodal/extranodal origin, specific mutational changes and microenvironment peculiarities provide additional layers of complexity. Here, we summarize the status of the knowledge and make some specific proposals for addressing the future development of targeted therapy for DLBC cases.
Collapse
|
21
|
de Carvalho PS, Leal FE, Soares MA. Clinical and Molecular Properties of Human Immunodeficiency Virus-Related Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:675353. [PMID: 33996608 PMCID: PMC8117347 DOI: 10.3389/fonc.2021.675353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphoma is the most common malignancy affecting people living with HIV (PLWH). Among its several subtypes, diffuse large B-cell lymphoma (DLBCL) is an important manifestation within the HIV-infected compartment of the population. Since HIV is able to modulate B cells and promote lymphomagenesis through direct and indirect mechanisms, HIV-related DLBCL has specific characteristics. In this review, we address the clinical and molecular properties of DLBCL disease in the context of HIV infection, as well as the mechanisms by which HIV is able to modulate B lymphocytes and induce their transformation into lymphoma.
Collapse
Affiliation(s)
- Pedro S de Carvalho
- Programa de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro, Brazil.,Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Sun J, Zhu X, Zhao Y, Zhou Q, Qi R, Liu H. CHN1 is a Novel Prognostic Marker for Diffuse Large B-Cell Lymphoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:397-408. [PMID: 33833551 PMCID: PMC8021264 DOI: 10.2147/pgpm.s301718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Purpose Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy. Thirty to forty percent of DLBCL patients still experience relapse or develop refractory disease even with standard immunochemotherapy, leading to a poor prognosis. Currently, although several gene-based classification methods can be used to predict the prognosis of DLBCL, some patients are still unable to be classified. This study was performed to identify a novel prognostic biomarker for DLBCL. Patients and Methods A total of 1850 B-cell non-Hodgkin lymphoma (B-NHL) patients in 8 independent datasets with microarray gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database and Lymphoma/Leukemia Molecular Profiling Project (LLMPP). The candidate genes were selected through three filters in a strict pipeline. Survival analysis was performed in two independent datasets of patients with both gene expression data and clinical information. Gene set enrichment analysis (GSEA) and the CIBERSORT algorithm were used to explore the biological functions of the genes. Results We identified 6 candidate genes associated with the clinical outcome of DLBCL patients: CHN1, CD3D, CLU, ICOS, KLRB1 and LAT. Unlike the other five genes, CHN1 has not been previously reported to be implicated in lymphoma. We also observed that CHN1 had prognostic significance in important clinical subgroups; in particular, high CHN1 expression was significantly related to good outcomes in DLBCL patients with the germinal center B-cell-like (GCB) subtype, stage III–IV, or an International Prognostic Index (IPI) score > 2. Multivariate Cox regression analysis of the two datasets showed that CHN1 was an independent prognostic factor for DLBCL. Additionally, GSEA and CIBERSORT indicated that CHN1 was correlated with cell adhesion and T cell immune infiltration. Conclusion Our data indicate for the first time that high CHN1 expression is associated with favorable outcomes in DLBCL patients, suggesting its potential utility as a prognostic marker in DLBCL.
Collapse
Affiliation(s)
- Jie Sun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Guo J, Cai P, Li P, Cao C, Zhou J, Dong L, Yang Y, Xuan Q, Wang J, Zhang Q. Body Composition as a Predictor of Toxicity and Prognosis in Patients with Diffuse Large B-Cell Lymphoma Receiving R-CHOP Immunochemotherapy. ACTA ACUST UNITED AC 2021; 28:1325-1337. [PMID: 33806839 PMCID: PMC8025815 DOI: 10.3390/curroncol28020126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Our study measured the body composition of Diffuse large B-cell lymphoma (DLBCL) patients receiving rituximab with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) regimen by computed tomographic (CT) and assessed their correlation with treatment-related toxicity and other adverse outcomes. METHODS We retrospectively analyzed 201 DLBCL patients who underwent pre-treatment abdominal CT examination. CT images were used to assess body composition metrics at the third lumbar vertebrae including fat tissues and muscle. Based on the skeletal muscle area (SMA) and density (SMD), skeletal muscle index (SMI), skeletal muscle gauge (SMG = SMI × SMD) and lean body mass (LBM) were calculated. Also analyzed were the toxicity, adverse events and survival. RESULTS We found that SMG, SMD, SMI and LBM were correlated with any grade 3-4 toxicity, dose reduction, hospitalization or termination of the treatment due to immunochemotherapy and worse survival. However, multivariate analysis demonstrated SMG [progression-free survival (PFS): hazard ratio (HR), 2.889; 95% CI, 1.401-5.959; p = 0.004; overall survival (OS): HR, 2.655; 95% CI, 1.218-5.787; p = 0.014] was the best predictor of poor prognosis. CONCLUSIONS SMG, SMD, SMI and LBM were identified as predictors of adverse reactions and poor survival. SMG was an innovative and valuable indicator of immunochemotherapy toxicity and other adverse outcomes. Additionally, it can be used to individualize antineoplastic drug dosing.
Collapse
Affiliation(s)
- Jiaxun Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Panpan Cai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Pengfei Li
- Radiology Department, Harbin Medical University Cancer Hospital, Harbin 150040, China;
| | - Cong Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Jing Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Lina Dong
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Yan Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Qijia Xuan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
- Correspondence: (J.W.); (Q.Z.)
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.G.); (P.C.); (C.C.); (J.Z.); (L.D.); (Y.Y.); (Q.X.)
- Correspondence: (J.W.); (Q.Z.)
| |
Collapse
|
24
|
Yang J, Li Y, Zhang Y, Fang X, Chen N, Zhou X, Wang X. Sirt6 promotes tumorigenesis and drug resistance of diffuse large B-cell lymphoma by mediating PI3K/Akt signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:142. [PMID: 32711549 PMCID: PMC7382040 DOI: 10.1186/s13046-020-01623-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Background Sirtuin 6 (Sirt6) is a highly conserved ADP-ribosylase and NAD+ dependent deacylase, involved in broad cellular processes. This molecule possesses contradictory roles in carcinogenesis, as it has been documented to both suppressing and augmenting tumor growth. This project aimed to explore the expression and functions of Sirt6 in diffuse large B-cell lymphoma (DLBCL), especially with regards to the regulatory role of OSS_128167, a novel small molecular inhibitor targeting Sirt6. Methods Immunohistochemistry (IHC) was conducted to assess the expression of Sirt6 on paraffin-embedded tissues. Microarray dataset GSE32918 and GSE83632 were obtained from Gene Expression Omnibus and survival analysis was performed. Lentivirus vectors either encoding shSirt6, lvSirt6 or empty lentiviral vector were stably transfected into DLBCL cells. LY1 cell transfected with shSirt6 were performed RNA-sequencing (RNA-seq) analysis, functional enrichment analyses of gene ontology (GO) and gene set enrichment analysis (GSEA). DLBCL cells were subcutaneously injected to SCID beige mice to establish xenograft models. Results Sirt6 is found to be overexpressed in DLBCL, and is related to poor prognosis. Sirt6-deprived DLBCL cells displayed augmented sensitivity towards chemotherapy, higher rates of apoptosis, dysfunctional cell proliferation, and arrested cell cycle progression between the G2 and M phases. Selective OSS_128167-mediated Sirt6 blockage resulted in similar anti-lymphoma effects when compared to Sirt6 knocked-down DLBCL cells. PI3K signaling along with phosphorylation of its downstream targets was reduced upon Sirt6 downregulation. Xenograft models subjected to either OSS_128167 treatment or Sirt6-knockdown showed suppressed tumor growth and lower Ki-67 level. Conclusions These findings provide mechanistic insights into the oncogenic activity of Sirt6 in DLBCL for the first time and highlighted the potency of OSS_128167 for novel therapeutic strategies in DLBCL.
Collapse
Affiliation(s)
- Juan Yang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China. .,National clinical research center for hematologic diseases, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong First Medical University, No.324 Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,National clinical research center for hematologic diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
25
|
Schieppati F, Balzarini P, Fisogni S, Re A, Pagani C, Bianchetti N, Micheli L, Passi A, Ferrari S, Maifredi A, Bottelli C, Leopaldo R, Pellegrini V, Facchetti F, Rossi G, Tucci A. An increase in MYC copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens. Haematologica 2020; 105:1369-1378. [PMID: 31399522 PMCID: PMC7193495 DOI: 10.3324/haematol.2019.223891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
MYC translocations, a hallmark of Burkitt lymphoma, occur in 5-15% of diffuse large B-cell lymphoma, and have a negative prognostic impact. Numerical aberrations of MYC have also been detected in these patients, but their incidence and prognostic role are still controversial. We analyzed the clinical impact of MYC increased copy number on 385 patients with diffuse large B-cell lymphoma screened at diagnosis for MYC, BCL2, and BCL6 rearrangements. We enumerated the number of MYC copies, defining as amplified those cases with an uncountable number of extra-copies. The prevalence of MYC translocation, increased copy number and amplification was 8.8%, 15%, and 1%, respectively. Patients with 3 or 4 gene copies, accounting for more than 60% of patients with MYC copy number changes, had a more favorable outcome compared to patients with >4 copies or translocation of MYC, and were not influenced by the type of treatment received as first-line. Stratification according to the number of MYC extra-copies showed a negative correlation between an increasing number of copies and survival. Patients with >7 copies or the amplification of MYC had the poorest prognosis. Patients with >4 copies of MYC showed a similar, trending towards worse prognosis compared to patients with MYC translocation. The survival of patients with >4 copies, translocation or amplification of MYC seemed to be superior if intensive treatments were used. Our study underlines the importance of fluorescence in situ hybridization testing at diagnosis of diffuse large B-cell lymphoma to detect the rather frequent and clinically significant numerical aberrations of MYC.
Collapse
Affiliation(s)
| | - Piera Balzarini
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Simona Fisogni
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Alessandro Re
- Department of Hematology, ASST Spedali Civili di Brescia
| | - Chiara Pagani
- Department of Hematology, ASST Spedali Civili di Brescia
| | | | - Lorenzo Micheli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Angela Passi
- Department of Hematology, ASST Spedali Civili di Brescia
| | | | | | | | | | - Vilma Pellegrini
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Giuseppe Rossi
- Department of Hematology, ASST Spedali Civili di Brescia
| | | |
Collapse
|
26
|
Chung C. Driving toward precision medicine for B cell lymphomas: Targeting the molecular pathogenesis at the gene level. J Oncol Pharm Pract 2020; 26:943-966. [DOI: 10.1177/1078155219895079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lymphomas are a diverse group of hematologic malignancies that arise from either T cell, B cell or the natural killer cell lineage. B cell lymphomas arise from gene mutations with critical functions during normal B cell development. Recent advances in the understanding of molecular pathogenesis demonstrate that many different recurrent genomic and molecular abnormalities and dysregulated oncogenic regulatory pathways exist for many subtypes of B cell lymphomas, both across and within histological subtypes. Pathogenetic processes such as (1) chromosomal aberrations, for example, t(14;18) in follicular lymphoma, t(11;14) in mantle cell lymphoma, t(8;14) in Burkitt lymphoma; dysregulations in signaling pathways of (2) nuclear factor- κB (NF-κB); (3) B cell receptor (BCR); (4) Janus kinase/signal transducers and transcription activators (JAK-STAT); (5) impaired apoptosis/cell cycle regulation due to mutated, rearranged or amplified MYC, BCL-2, BCL-6 proto-oncogenes; (6) epigenetic aberrations may contribute to pathogenesis. More studies are under way to elucidate the molecular heterogeneity underlying many types of lymphomas that account for variable responses to treatment, generation of subclones and treatment resistance. Although significant research is still needed, targeted therapy promises to provide new options for the treatment of patients with lymphomas. This article provides a non-exhaustive overview on the current understanding on the genetics of pathogenesis of B cell lymphomas and their therapeutic implications.
Collapse
Affiliation(s)
- Clement Chung
- Houston Methodist Baytown Hospital, Baytown, TX, USA
| |
Collapse
|
27
|
Physiological levels of the PTEN-PI3K-AKT axis activity are required for maintenance of Burkitt lymphoma. Leukemia 2019; 34:857-871. [PMID: 31719683 PMCID: PMC7214272 DOI: 10.1038/s41375-019-0628-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
In addition to oncogenic MYC translocations, Burkitt lymphoma (BL) depends on the germinal centre (GC) dark zone (DZ) B cell survival and proliferation programme, which is characterized by relatively low PI3K-AKT activity. Paradoxically, PI3K-AKT activation facilitates MYC-driven lymphomagenesis in mice, and it has been proposed that PI3K-AKT activation is essential for BL. Here we show that the PI3K-AKT activity in primary BLs and BL cell lines does not exceed that of human non-neoplastic tonsillar GC DZ B cells. BLs were not sensitive to AKT1 knockdown, which induced massive cell death in pAKThigh DLBCL cell lines. Likewise, BL cell lines show low sensitivity to pan-AKT inhibitors. Moreover, hyper-activation of the PI3K-AKT pathway by overexpression of a constitutively active version of AKT (myrAKT) or knockdown of PTEN repressed the growth of BL cell lines. This was associated with increased AKT phosphorylation, NF-κB activation, and downregulation of DZ genes including the proto-oncogene MYB and the DZ marker CXCR4. In contrast to GCB-DLBCL, PTEN overexpression was tolerated by BL cell lines. We conclude that the molecular mechanisms instrumental to guarantee the survival of normal DZ B cells, including the tight regulation of the PTEN-PI3K-AKT axis, also operate in the survival/proliferation of BL.
Collapse
|
28
|
Hayashi S, Moriyama T, Yamaguchi R, Mizuno S, Komura M, Miyano S, Nakagawa H, Imoto S. ALPHLARD-NT: Bayesian Method for Human Leukocyte Antigen Genotyping and Mutation Calling through Simultaneous Analysis of Normal and Tumor Whole-Genome Sequence Data. J Comput Biol 2019; 26:923-937. [PMID: 30942618 PMCID: PMC6748403 DOI: 10.1089/cmb.2018.0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human leukocyte antigen (HLA) genes provide useful information on the relationship between cancer and the immune system. Despite the ease of obtaining these data through next-generation sequencing methods, interpretation of these relationships remains challenging owing to the complexity of HLA genes. To resolve this issue, we developed a Bayesian method, ALPHLARD-NT, to identify HLA germline and somatic mutations as well as HLA genotypes from whole-exome sequencing (WES) and whole-genome sequencing (WGS) data. ALPHLARD-NT showed 99.2% accuracy for WGS-based HLA genotyping and detected five HLA somatic mutations in 25 colon cancer cases. In addition, ALPHLARD-NT identified 88 HLA somatic mutations, including recurrent mutations and a novel HLA-B type, from WES data of 343 colon adenocarcinoma cases. These results demonstrate the potential of ALPHLARD-NT for conducting an accurate analysis of HLA genes even from low-coverage data sets. This method can become an essential tool for comprehensive analyses of HLA genes from WES and WGS data, helping to advance understanding of immune regulation in cancer as well as providing guidance for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Shuto Hayashi
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takuya Moriyama
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Mizuno
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Komura
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Seiya Imoto
- Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The treatment of the germinal center lymphomas, diffuse large B cell (DLBCL) and follicular lymphoma, has changed little beyond the introduction of immunochemotherapies. However, there exists a substantial group of patients within both diseases for which improvements in care will involve appropriate tailoring of treatment. RECENT FINDINGS DLBCL consists of two major subtypes with striking differences in their clinical outcomes paralleling their underlying genetic heterogeneity. Recent studies have seen advances in the stratification of germinal center lymphomas, through comprehensive profiling of 1001 DLBCLs alongside refinements in the identification of high-risk follicular lymphoma patients using m7-FLIPI and 23G models. A new wave of novel therapeutic agents is now undergoing clinical trials for germinal center lymphomas, with BCR and EZH2 inhibitors demonstrating preferential benefit in subgroups of patients. The emergence of cell-free DNA has raised the possibility of dynamic disease monitoring to potentially mitigate the complexity of spatial and temporal heterogeneity, whilst predicting tumor evolution in real time. SUMMARY Altogether knowledge of the genomic landscape of germinal center lymphomas is offering welcome opportunities in patient risk stratification and therapeutics. The challenge ahead is to establish how best to combine upfront or dynamic prognostication with precision therapies, while retaining practicality in clinical trials and the real-world setting.
Collapse
|
30
|
Chitalia A, Swoboda DM, McCutcheon JN, Ozdemirli M, Khan N, Cheson BD. Descriptive analysis of genetic aberrations and cell of origin in Richter transformation. Leuk Lymphoma 2019; 60:971-979. [PMID: 30632835 DOI: 10.1080/10428194.2018.1516878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Richter transformation (RT) is a progression from chronic lymphocytic leukemia (CLL) to a more aggressive lymphoma, most often diffuse large B-cell lymphoma (DLBCL). Due to the rarity of the disease, data regarding the molecular profile and cell of origin (COO) of RT is limited. We performed immunohistochemistry analysis for COO determination and next-generation sequencing for gene mutation analysis in 11 RT patients. Seventy-nine percent of our patients were classified as non-GCB phenotype. Of the 57 unique mutations identified, the three most commonly mutated genes were TP53, TET2, and CREBBP. Neither TET2 nor CREBBP has been previously described in RT. Our analysis provides additional information to help guide further investigation of both the diagnosis and treatment of this complex and heterogeneous disease.
Collapse
Affiliation(s)
- Ami Chitalia
- a Department of Hematology and Oncology , Washington Cancer Institute Medstar Washington Hospital Center , Washington , D.C , U.S.A
| | - David M Swoboda
- b Department of Medicine , MedStar Georgetown University Hospital , Washington , D.C , U.S.A
| | - Justine N McCutcheon
- c Frederick National Laboratory for Cancer Research , Leidos Biomedical Research Inc , Frederick , MD , U.S.A
| | - Metin Ozdemirli
- d Department of Pathology , MedStar Georgetown University Hospital , Washington , D.C , U.S.A
| | - Nadia Khan
- e Department of Hematology and Oncology , Fox Chase Cancer Center Temple University Health System , Philadelphia , Pennsylvania , U.S.A
| | - Bruce D Cheson
- f Department of Hematology and Oncology , Lombardi Comprehensive Cancer Center Medstar Georgetown University Hospital , Washington , D.C , U.S.A
| |
Collapse
|
31
|
Bonnici V, Busato F, Aldegheri S, Akhmedov M, Cascione L, Carmena AA, Bertoni F, Bombieri N, Kwee I, Giugno R. cuRnet: an R package for graph traversing on GPU. BMC Bioinformatics 2018; 19:356. [PMID: 30367572 PMCID: PMC6191969 DOI: 10.1186/s12859-018-2310-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND R has become the de-facto reference analysis environment in Bioinformatics. Plenty of tools are available as packages that extend the R functionality, and many of them target the analysis of biological networks. Several algorithms for graphs, which are the most adopted mathematical representation of networks, are well-known examples of applications that require high-performance computing, and for which classic sequential implementations are becoming inappropriate. In this context, parallel approaches targeting GPU architectures are becoming pervasive to deal with the execution time constraints. Although R packages for parallel execution on GPUs are already available, none of them provides graph algorithms. RESULTS This work presents cuRnet, a R package that provides a parallel implementation for GPUs of the breath-first search (BFS), the single-source shortest paths (SSSP), and the strongly connected components (SCC) algorithms. The package allows offloading computing intensive applications to GPU devices for massively parallel computation and to speed up the runtime up to one order of magnitude with respect to the standard sequential computations on CPU. We have tested cuRnet on a benchmark of large protein interaction networks and for the interpretation of high-throughput omics data thought network analysis. CONCLUSIONS cuRnet is a R package to speed up graph traversal and analysis through parallel computation on GPUs. We show the efficiency of cuRnet applied both to biological network analysis, which requires basic graph algorithms, and to complex existing procedures built upon such algorithms.
Collapse
Affiliation(s)
- Vincenzo Bonnici
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Italy, Verona, Italy
| | - Federico Busato
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Italy, Verona, Italy
| | - Stefano Aldegheri
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Italy, Verona, Italy
| | - Murodzhon Akhmedov
- Institute of Oncology Research (IOR), Via Vincenzo Vela 6, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Via Vincenzo Vela 6, Bellinzona, Switzerland
| | | | - Francesco Bertoni
- Institute of Oncology Research (IOR), Via Vincenzo Vela 6, Bellinzona, Switzerland
| | - Nicola Bombieri
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Italy, Verona, Italy
| | - Ivo Kwee
- Institute of Oncology Research (IOR), Via Vincenzo Vela 6, Bellinzona, Switzerland
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Italy, Verona, Italy.
| |
Collapse
|
32
|
Vick EJ, Richardson N, Patel K, Delgado Ramos GM, Altahan A, Alloway T, Martin MG. Age-Related Chromosomal Aberrations in Patients with Diffuse Large B-Cell Lymphoma: An In Silico Approach. World J Oncol 2018; 9:97-103. [PMID: 30220946 PMCID: PMC6134989 DOI: 10.14740/wjon1136w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023] Open
Abstract
Background In diffuse large B-cell lymphoma (DLBCL), chromosomal aberrations are known to increase with advancing age. Our study aims to determine if there are other genetic aberrations associated with DLBCL based on age. Methods Using the Mitelman Database of Genetic Aberrations, we were able to find 749 cases of DLBCL with genomic aberrations with a median age of 62 years. Patients with DLBCL chromosomal aberration analysis results were divided into four groups based on age (0 - 30, 31 - 50, 51 - 70, > 71 years) and examined by chi-square analysis and Mantel-Cox for survival analysis. Results Ten aberrations were found to be significant with a particular age range: t(2;3), trisomy 19p13, trisomy 18q21, trisomy 3, trisomy 7, trisomy 14, trisomy 16, trisomy 18, monosomy 3 and monosomy 11, and survival ranged from 7 to 25 months. Conclusion This suggests that patients with DLBCL are likely to accumulate specific translocations depending on their age at the onset of DLBCL.
Collapse
Affiliation(s)
- Eric J. Vick
- Department of Internal Medicine, University of Cincinnati, Cincinnati OH, USA
| | - Noah Richardson
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kruti Patel
- Department of Internal Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Glenda M. Delgado Ramos
- Department of Internal Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alaa Altahan
- Department of Internal Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor Alloway
- Department of Internal Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael G. Martin
- Department of Hematology and Oncology, The West Cancer Center, Memphis, TN, USA
| |
Collapse
|
33
|
Gaudio E, Tarantelli C, Ponzoni M, Odore E, Rezai K, Bernasconi E, Cascione L, Rinaldi A, Stathis A, Riveiro E, Cvitkovic E, Zucca E, Bertoni F. Bromodomain inhibitor OTX015 (MK-8628) combined with targeted agents shows strong in vivo antitumor activity in lymphoma. Oncotarget 2018; 7:58142-58147. [PMID: 27494885 PMCID: PMC5295419 DOI: 10.18632/oncotarget.10983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022] Open
Abstract
The bromodomain inhibitor OTX015 (MK-8628) has shown anti-lymphoma activity as a single agent in both the preclinical and clinical settings, as well as in vitro synergism with several anticancer agents. Here, we report in vivo data for OTX015 in combination with the histone deacetylase inhibitor vorinostat, the Bruton's tyrosine kinase inhibitor ibrutinib, the anti-CD20 monoclonal antibody rituximab, and the mTOR inhibitor everolimus in a diffuse large B cell lymphoma model. The antitumor effect of OTX015-containing combinations in SU-DHL-2 xenografts in mice was much stronger than the activity of the corresponding single agents with almost complete tumor eradication for all four combinations. Pharmacokinetic analyses showed similar OTX015 levels in plasma and tumor samples of approximately 1.5 μM, which is equivalent to the concentration showing strong in vitro activity. For all four combinations, mean terminal levels of the bromodomain inhibitor differed from those in mice exposed to single agent OTX015, indicating a need for thorough pharmacokinetic investigations in phase I combination studies. In conclusion, our results provide a strong rationale to explore OTX015-containing combinations in the clinical lymphoma setting.
Collapse
Affiliation(s)
- Eugenio Gaudio
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Chiara Tarantelli
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Elodie Odore
- Institut Curie, Hôpital René Huguenin, Saint-Cloud, France
| | - Keyvan Rezai
- Institut Curie, Hôpital René Huguenin, Saint-Cloud, France
| | - Elena Bernasconi
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | | | - Emanuele Zucca
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| |
Collapse
|
34
|
Snak Y, Indrawati, Widayati K, Arfian N, Anggorowati N. Molecular Subtypes, Apoptosis and Proliferation Status in Indonesian Diffuse Large B-Cell Lymphoma Cases. Asian Pac J Cancer Prev 2018; 19:185-191. [PMID: 29373912 PMCID: PMC5844616 DOI: 10.22034/apjcp.2018.19.1.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: The diffuse large B-cell lymphoma (DLBCL) has two major molecular subtypes, germinal center B-cell-like (GCB) and non-GCB. These have differing behavior which affects overall patient survival. However, immunohistochemistry based molecular subtyping of Indonesian DLBCLs has been limited. This was the focus of the present study, with a focus of attention on the apoptotic index (AI) and the proliferation index (PI) of the two molecular subtypes. Materials and Methods: During the study period of 3.5 years, a total of 98 cases of DLBCL were identified. Molecular subtypes and PI were determined by immunohistochemistry and TUNEL method was used to determine the AI. Result: GCB accounted for 31 cases (31.6%) and non-GCB the remainder (68.4%). Gender showed a slight male predominance (54 cases, 55.1%), with a higher incidence in the extra-nodal region (57 cases, 58.2%). The AI and PI were significantly higher in GCB (p<0.001 in the Mann-Whitney test) and a Spearman correlation coefficient test showed that PI was positively correlated with AI (r=0.673, p<0.001). Conclusion: The findings indicate that the non-GCB subtype is more common than GCB in Indonesian DLBCL. GCB features significantly higher PI and AI, which themselves appear linked.
Collapse
Affiliation(s)
- Yosinta Snak
- Department of Anatomical Pathology, 2Division of Hematology Oncology, Department of Internal Medicine, 3Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada/Sardjito Hospital, Yogyakarta, Indonesia.
| | | | | | | | | |
Collapse
|
35
|
Guo L, Lin P, Xiong H, Tu S, Chen G. Molecular heterogeneity in diffuse large B-cell lymphoma and its implications in clinical diagnosis and treatment. Biochim Biophys Acta Rev Cancer 2018; 1869:85-96. [PMID: 29337112 DOI: 10.1016/j.bbcan.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.
Collapse
Affiliation(s)
- Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China.
| | - Pei Lin
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 72, Houston, TX 77030, USA.
| | - Hui Xiong
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China.
| | - Shichun Tu
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China; Scintillon Institute for Biomedical and Bioenergy Research, 6888 Nancy Ridge Dr., San Diego, CA 92121, USA; Allele Biotechnology & Pharmaceuticals, Inc., 6404 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - Gang Chen
- Department of Pathology of Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China.
| |
Collapse
|
36
|
Amin AD, Peters TL, Li L, Rajan SS, Choudhari R, Puvvada SD, Schatz JH. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Cold Spring Harb Mol Case Stud 2017; 3:a001719. [PMID: 28487884 PMCID: PMC5411687 DOI: 10.1101/mcs.a001719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene-expression profiling and next-generation sequencing have defined diffuse large B-cell lymphoma (DLBCL), the most common lymphoma diagnosis, as a heterogeneous group of subentities. Despite ongoing explosions of data illuminating disparate pathogenic mechanisms, however, the five-drug chemoimmunotherapy combination R-CHOP remains the frontline standard treatment. This has not changed in 15 years, since the anti-CD20 monoclonal antibody rituximab was added to the CHOP backbone, which first entered use in the 1970s. At least a third of patients are not cured by R-CHOP, and relapsed or refractory DLBCL is fatal in ∼90%. Targeted small-molecule inhibitors against distinct molecular pathways activated in different subgroups of DLBCL have so far translated poorly into the clinic, justifying the ongoing reliance on R-CHOP and other long-established chemotherapy-driven combinations. New drugs and improved identification of biomarkers in real time, however, show potential to change the situation eventually, despite some recent setbacks. Here, we review established and putative molecular drivers of DLBCL identified through large-scale genomics, highlighting among other things the care that must be taken when differentiating drivers from passengers, which is influenced by the promiscuity of activation-induced cytidine deaminase. Furthermore, we discuss why, despite having so much genomic data available, it has been difficult to move toward personalized medicine for this umbrella disorder and some steps that may be taken to hasten the process.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Tara L Peters
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Lingxiao Li
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Soumya Sundara Rajan
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ramesh Choudhari
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Soham D Puvvada
- Department of Medicine, Division of Hematology-Oncology, University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85719, USA
| | - Jonathan H Schatz
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
37
|
Mohd Ridah LJ, A Talib N, Muhammad N, Hussain FA, Zainuddin N. p16 Tumor Suppressor Gene Methylation in Diffuse Large B Cell Lymphoma: A Study of 88 Cases at Two Hospitals in the East Coast of Malaysia. Asian Pac J Cancer Prev 2017; 18:2781-2785. [PMID: 29072413 PMCID: PMC5747404 DOI: 10.22034/apjcp.2017.18.10.2781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction: p16 gene plays an important role in the normal cell cycle regulation. Methylation of p16 has
been reported to be one of the epigenetic events contributing to the pathogenesis of diffuse large B-cell lymphoma
(DLBCL) which occurring at varying frequency. DLBCL is an aggressive and high-grade malignancy which accounts
for approximately 30% of all non-Hodgkin lymphoma cases. However, little is known regarding the epigenetic
alterations of p16 gene in DLBCL cases in Malaysia. Therefore, the objective of this study was to examine the status
of p16 methylation in DLBCL. Methods: A total of 88 formalin-fixed paraffin-embedded DLBCL tissues retrieved
from two hospitals located in the east coast of Malaysia, namely Hospital Tengku Ampuan Afzan (HTAA) Pahang and
Hospital Universiti Sains Malaysia (HUSM) Kelantan, were chosen for this study. DNA specimens were isolated and
subsequently subjected to bisulfite treatment prior to methylation specific-PCR. Two pairs of primers were used to
amplify methylated and unmethylated regions of p16 gene. The PCR products were then separated using agarose gel
electrophoresis and visualised under UV illumination. SPSS version 12.0 was utilised to perform all statistical analysis.
Result: p16 methylation was detected in 65 of 88 (74%) samples. There was a significant association between p16
methylation status and patients aged >50 years old (p=0.04). Conclusion: Our study demonstrated that methylation of
p16 tumor suppressor gene in our DLBCL cases is common and significantly increased among patients aged 50 years
and above. Aging is known to be an important risk factor in the development of cancers and we speculate that this
might be due to the increased transformation of malignant cells in aging cell population. However, this has yet to be
confirmed with further research and correlate the findings with clinicopathological parameters.
Collapse
Affiliation(s)
- Lailatul Jalilah Mohd Ridah
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malysia.
| | | | | | | | | |
Collapse
|
38
|
Cascione L, Rinaldi A, Chiappella A, Kwee I, Ciccone G, Altenbuchinger M, Kohler C, Vitolo U, Inghirami G, Bertoni F. Diffuse large B cell lymphoma cell of origin by digital expression profiling in the REAL07 Phase 1-2 study. Br J Haematol 2017; 182:453-456. [PMID: 28737236 DOI: 10.1111/bjh.14817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luciano Cascione
- USI Università della Svizzera Italiana (USI), Institute of Oncology Research (IOR), Bellinzona.,Oncology Institute of Southern Switzerland, Bellinzona (IOSI).,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrea Rinaldi
- USI Università della Svizzera Italiana (USI), Institute of Oncology Research (IOR), Bellinzona
| | - Annalisa Chiappella
- Ematologia, A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Ivo Kwee
- USI Università della Svizzera Italiana (USI), Institute of Oncology Research (IOR), Bellinzona.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | - Giovannino Ciccone
- Centro di Riferimento per l'Epidemiologia e la Prevenzione Oncologica in Piemonte (CPO-Piemonte), Turin, Italy
| | - Michael Altenbuchinger
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Christian Kohler
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Umberto Vitolo
- Ematologia, A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology, NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Francesco Bertoni
- USI Università della Svizzera Italiana (USI), Institute of Oncology Research (IOR), Bellinzona.,Oncology Institute of Southern Switzerland, Bellinzona (IOSI)
| |
Collapse
|
39
|
Bernasconi E, Gaudio E, Lejeune P, Tarantelli C, Cascione L, Kwee I, Spriano F, Rinaldi A, Mensah AA, Chung E, Stathis A, Siegel S, Schmees N, Ocker M, Zucca E, Haendler B, Bertoni F. Preclinical evaluation of the BET bromodomain inhibitor BAY 1238097 for the treatment of lymphoma. Br J Haematol 2017; 178:936-948. [PMID: 28653353 DOI: 10.1111/bjh.14803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 12/21/2022]
Abstract
The epigenome is often deregulated in cancer and treatment with inhibitors of bromodomain and extra-terminal proteins, the readers of epigenetic acetylation marks, represents a novel therapeutic approach. Here, we have characterized the anti-tumour activity of the novel bromodomain and extra-terminal (BET) inhibitor BAY 1238097 in preclinical lymphoma models. BAY 1238097 showed anti-proliferative activity in a large panel of lymphoma-derived cell lines, with a median 50% inhibitory concentration between 70 and 208 nmol/l. The compound showed strong anti-tumour efficacy in vivo as a single agent in two diffuse large B cell lymphoma models. Gene expression profiling showed BAY 1238097 targeted the NFKB/TLR/JAK/STAT signalling pathways, MYC and E2F1-regulated genes, cell cycle regulation and chromatin structure. The gene expression profiling signatures also highly overlapped with the signatures obtained with other BET Bromodomain inhibitors and partially overlapped with HDAC-inhibitors, mTOR inhibitors and demethylating agents. Notably, BAY 1238097 presented in vitro synergism with EZH2, mTOR and BTK inhibitors. In conclusion, the BET inhibitor BAY 1238097 presented promising anti-lymphoma preclinical activity in vitro and in vivo, mediated by the interference with biological processes driving the lymphoma cells. Our data also indicate the use of combination schemes targeting EZH2, mTOR and BTK alongside BET bromodomains.
Collapse
Affiliation(s)
- Elena Bernasconi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Chiara Tarantelli
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,IDSIA Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Filippo Spriano
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Afua A Mensah
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Elaine Chung
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | | | - Matthias Ocker
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Emanuele Zucca
- IDSIA Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland
| | | | - Francesco Bertoni
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| |
Collapse
|
40
|
Jeon YK, Yoon SO, Paik JH, Kim YA, Shin BK, Kim HJ, Cha HJ, Kim JE, Huh J, Ko YH. Molecular Testing of Lymphoproliferative Disorders: Current Status and Perspectives. J Pathol Transl Med 2017; 51:224-241. [PMID: 28535584 PMCID: PMC5445208 DOI: 10.4132/jptm.2017.04.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/09/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular pathologic testing plays an important role for the diagnosis, prognostication and decision of treatment strategy in lymphoproliferative disease. Here, we briefly review the molecular tests currently used for lymphoproliferative disease and those which will be implicated in clinical practice in the near future. Specifically, this guideline addresses the clonality test for B- and T-cell proliferative lesions, molecular cytogenetic tests for malignant lymphoma, determination of cell-of-origin in diffuse large B-cell lymphoma, and molecular genetic alterations incorporated in the 2016 revision of the World Health Organization classification of lymphoid neoplasms. Finally, a new perspective on the next-generation sequencing for diagnostic, prognostic, and therapeutic purpose in malignant lymphoma will be summarized.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Corresponding Author Yoon Kyung Jeon, MD, PhD Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-1347 Fax: +82-2-743-5530 E-mail:
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young A Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bong Kyung Shin
- Department of Pathology, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
| | - Hyun-Jung Kim
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Ji Eun Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - The Hematopathology Study Group of the Korean Society of Pathologists
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - The Molecular Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Restelli V, Vagni M, Arribas AJ, Bertoni F, Damia G, Carrassa L. Inhibition of
CHK
1 and
WEE
1 as a new therapeutic approach in diffuse large B cell lymphomas with
MYC
deregulation. Br J Haematol 2016; 181:129-133. [DOI: 10.1111/bjh.14506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Valentina Restelli
- Laboratory of Molecular Pharmacology Department of Oncology IRCCS – Istituto di Ricerche Farmacologiche “Mario Negri” Milan Italy
| | - Micaela Vagni
- Laboratory of Molecular Pharmacology Department of Oncology IRCCS – Istituto di Ricerche Farmacologiche “Mario Negri” Milan Italy
| | - Alberto J. Arribas
- Lymphoma and Genomics Research Program IOR Institute of Oncology Research Bellinzona Switzerland
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program IOR Institute of Oncology Research Bellinzona Switzerland
- IOSI Oncology Institute of Southern Switzerland Bellinzona Switzerland
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology Department of Oncology IRCCS – Istituto di Ricerche Farmacologiche “Mario Negri” Milan Italy
| | - Laura Carrassa
- Laboratory of Molecular Pharmacology Department of Oncology IRCCS – Istituto di Ricerche Farmacologiche “Mario Negri” Milan Italy
| |
Collapse
|
42
|
p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function. Aging (Albany NY) 2016; 8:345-65. [PMID: 26878872 PMCID: PMC4789587 DOI: 10.18632/aging.100898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of p53 family member, p63 in oncogenesis is the subject of controversy. Limited research has been done on the clinical implications of p63 expression in diffuse large B-cell lymphoma (DLBCL). In this study, we assessed p63 expression in de novo DLBCL samples (n=795) by immunohistochemistry with a pan-p63-monoclonal antibody and correlated it with other clinicopathologic factors and clinical outcomes. p63 expression was observed in 42.5% of DLBCL, did not correlate with p53 levels, but correlated with p21, MDM2, p16INK4A, Ki-67, Bcl-6, IRF4/MUM-1 and CD30 expression, REL gains, and BCL6 translocation. p63 was an independent favorable prognostic factor in DLBCL, which was most significant in patients with International Prognostic Index (IPI) >2, and in activated-B-cell–like DLBCL patients with wide-type TP53. The prognostic impact in germinal-center-B-cell–like DLBCL was not apparent, which was likely due to the association of p63 expression with high-risk IPI, and potential presence of ∆Np63 isoform in TP63 rearranged patients (a mere speculation). Gene expression profiling suggested that p63 has both overlapping and distinct functions compared with p53, and that p63 and mutated p53 antagonize each other. In summary, p63 has p53-like and p53-independent functions and favorable prognostic impact, however this protective effect can be abolished by TP53 mutations.
Collapse
|
43
|
Goyal G, Nguyen AH, Kendric K, Caponetti GC. Composite lymphoma with diffuse large B-cell lymphoma and classical Hodgkin lymphoma components: A case report and review of the literature. Pathol Res Pract 2016; 212:1179-1190. [PMID: 27887763 DOI: 10.1016/j.prp.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/18/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023]
Abstract
Composite lymphoma (CL) is an infrequently diagnosed entity in which two or more distinct types of lymphomas occur synchronously in the same organ or anatomical site. Most commonly, CLs are composed of two non-Hodgkin B-cell lymphomas. We present a case of a composite lymphoma with diffuse large B-cell lymphoma, not otherwise specified (DLBCL-NOS) and classical Hodgkin lymphoma (CHL) components involving the terminal ileum, colon and pericolic lymph nodes. Immunohistochemical evaluation for determination of cell of origin of the DLBCL-NOS component indicated a germinal center B-cell subtype. Immunoglobulin heavy chain fragment length analysis revealed identical dominant monoclonal peaks on the DH1-6-JH reaction, and also a dominant monoclonal peak observed only in the framework II reaction done on the CHL component, indicating a partial clonal relationship between the two components. Additionally, a review of the available literature reveals a total of 20 previously reported cases of CL with DLBCL-NOS and CHL components, and most of the tested cases showed clonal relationship between the two components. The overall findings indicate that in most cases, the two components of CL with DLBCL-NOS and CHL components are clonally related, and suggest a shared origin from a common B-cell precursor.
Collapse
Affiliation(s)
- Gaurav Goyal
- Department of Internal Medicine, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Austin Huy Nguyen
- Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Kayla Kendric
- Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, USA
| | - Gabriel C Caponetti
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Knittel G, Liedgens P, Korovkina D, Pallasch CP, Reinhardt HC. Rewired NFκB signaling as a potentially actionable feature of activated B-cell-like diffuse large B-cell lymphoma. Eur J Haematol 2016; 97:499-510. [DOI: 10.1111/ejh.12792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Gero Knittel
- Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| | - Paul Liedgens
- Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| | - Darya Korovkina
- Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| | - Christian P. Pallasch
- Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
- Center of Integrated Oncology (CIO); University Hospital of Cologne; Cologne Germany
| | - Hans Christian Reinhardt
- Department I of Internal Medicine; University Hospital of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
- Center of Integrated Oncology (CIO); University Hospital of Cologne; Cologne Germany
- Center of Molecular Medicine; University of Cologne; Cologne Germany
| |
Collapse
|
45
|
Li L, Xu-Monette ZY, Ok CY, Tzankov A, Manyam GC, Sun R, Visco C, Zhang M, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Wang J, Parsons BM, Winter JN, Piris MA, Pham LV, Medeiros LJ, Young KH. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:23157-80. [PMID: 26324762 PMCID: PMC4695110 DOI: 10.18632/oncotarget.4319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mingzhi Zhang
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
46
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with considerable heterogeneity reflected in the 2008 World Health Organization classification. In recent years, genome-wide assessment of genetic and epigenetic alterations has shed light upon distinct molecular subsets linked to dysregulation of specific genes or pathways. Besides fostering our knowledge regarding the molecular complexity of DLBCL types, these studies have unraveled previously unappreciated genetic lesions, which may be exploited for prognostic and therapeutic purposes. Following the last World Health Organization classification, we have witnessed the emergence of new variants of specific DLBCL entities, such as CD30 DLBCL, human immunodeficiency virus-related and age-related variants of plasmablastic lymphoma, and EBV DLBCL arising in young patients. In this review, we will present an update on the clinical, pathologic, and molecular features of DLBCL incorporating recently gained information with respect to their pathobiology and prognosis. We will emphasize the distinctive features of newly described or emerging variants and highlight advances in our understanding of entities presenting a diagnostic challenge, such as T-cell/histiocyte-rich large B-cell lmphoma and unclassifiable large B-cell lymphomas. Furthermore, we will discuss recent advances in the genomic characterization of DLBCL, as they may relate to prognostication and tailored therapeutic intervention. The information presented in this review derives from English language publications appearing in PubMed throughout December 2015. For a complete outline of this paper, please visit: http://links.lww.com/PAP/A12.
Collapse
|
47
|
Li LJ, Ma N, Zeng L, Mo LH, Li XX, Xu LZ, Yang B, Liu ZG, Feng BS, Zheng PY, Zhang HP, Yang PC. Flagellin modulates IgE expression in B cells to initiate food allergy in mice. Am J Transl Res 2016; 8:2748-2757. [PMID: 27398157 PMCID: PMC4931168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
The initiation mechanism of IgE expression has not been fully understood. Flagellin (FGN) is an important microbial factor in the regulation of immune responses in the intestine. This study tests a hypothesis that FGN plays a crucial role in the isotype switching of IgE in B cells and the initiation of food allergy. In this study, the expression of IgE in B cells was analyzed by real time RT-PCR, Western blotting and chromatin immunoprecipitation. A mouse model was developed to assess the role of Toll like receptor-5 in the development of IgE-mediated allergic reaction in the intestinal mucosa. The results showed that exposure to FGN suppressed the expression of Bcl6 in B cells via increasing the levels of histone deacetylase (HDAC) 7; the latter up regulated the levels of methylated H3K9 and H3K27, down regulated RNA polymerase II and STAT3 (signal transducer and activator of transcription 3) at the Bcl6 promoter locus. Exposure to FGN and IL-4 markedly increased the expression of IgE in B cells via activating p300, H3K4, Pol II and STAT6 at the IgE promoter locus. As compared with the sensitized wild mice, the sensitized TLR5-deficient mice showed no detectable OVA-specific IgE in the serum; mast cells in the intestinal mucosa were not activated, no apparent allergic symptoms were evoked after the specific antigen challenge. In conclusion, FGN facilitates the initiation of food allergy in mice by triggering IgE transcription in B cells in a Th2 polarization environment via activating HDAC7 and suppressing Bcl6 expression.
Collapse
Affiliation(s)
- Lin-Jing Li
- Department of Gastroenterology, The First Hospital, Zhengzhou UniversityZhengzhou 450052, China
- Brain Body Institute and Department of Pathology & Molecular Medicine, McMaster UniversityHamilton, ON, L8N 3Z5, Canada
| | - Na Ma
- Department of Gastroenterology, The First Hospital, Zhengzhou UniversityZhengzhou 450052, China
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Lu Zeng
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Li-Hua Mo
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Xiao-Xi Li
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Ling-Zhi Xu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Bo Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Zhi-Gang Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Bai-Sui Feng
- Department of Gastroenterology, The Second Hospital, Zhengzhou UniversityZhengzhou 450052, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, The Fifth Hospital, Zhengzhou UniversityZhengzhou 450052, China
| | - Huan-Ping Zhang
- Brain Body Institute and Department of Pathology & Molecular Medicine, McMaster UniversityHamilton, ON, L8N 3Z5, Canada
| | - Ping-Chang Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| |
Collapse
|
48
|
B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice. Blood 2016; 127:2732-41. [PMID: 27048211 DOI: 10.1182/blood-2015-11-684183] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/30/2016] [Indexed: 12/20/2022] Open
Abstract
The adaptor protein MYD88 is critical for relaying activation of Toll-like receptor signaling to NF-κB activation. MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B-cell malignancies, including diffuse large B-cell lymphoma (DLBCL). Twenty-nine percent of activated B-cell-type DLBCL (ABC-DLBCL), which is characterized by constitutive activation of the NF-κB pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2 Here, we generated a novel mouse model in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P) (the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These mice develop a lymphoproliferative disease and occasional transformation into clonal lymphomas. The clonal disease displays the morphologic and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression of BCL2 Cross-validation experiments in human DLBCL samples revealed that both MYD88 and CD79B mutations are substantially enriched in ABC-DLBCL compared with germinal center B-cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occurred with MYD88 mutations, further validating our approach. Finally, in silico experiments revealed that MYD88-mutant ABC-DLBCL cells in particular display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL that could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL.
Collapse
|
49
|
Abstract
Ocular adnexal lymphoma (OAL) is a relatively common lesion in the practice of ophthalmic oncology. Although OALs are usually primary tumors, secondary involvement of the ocular adnexae by systemic lymphoma is also possible. The clinical and radiological features of OAL are non-specific. Thorough morphological evaluation, aided by immunostaining, cytogenetic studies and molecular testing, are necessary for accurate diagnosis.
Collapse
Affiliation(s)
- Kaustubh Mulay
- National Reporting Centre for Ophthalmic Pathology (NRCOP), Centre For Sight, Hyderabad, India.
| | - Santosh G Honavar
- Oculoplastics, Facial Aesthetics and Ocular Oncology, Centre For Sight, Hyderabad, India
| |
Collapse
|
50
|
Gaudio E, Tarantelli C, Kwee I, Barassi C, Bernasconi E, Rinaldi A, Ponzoni M, Cascione L, Targa A, Stathis A, Goodstal S, Zucca E, Bertoni F. Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas. Ann Oncol 2016; 27:1123-1128. [PMID: 26961147 DOI: 10.1093/annonc/mdw131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lymphomas are among the most common human cancers and represent the cause of death for still too many patients. The B-cell receptor with its downstream signaling pathways represents an important therapeutic target for B-cell lymphomas. Here, we evaluated the activity of the MEK1/2 inhibitor pimasertib as single agent and in combination with other targeted drugs in lymphoma preclinical models. MATERIALS AND METHODS Cell lines derived mature B-cell lymphomas were exposed to increasing doses of pimasertib alone. Immunoblotting and gene expression profiling were performed. Combination of pimasertib with idelalisib or ibrutinib was assessed. RESULTS Pimasertib as single agent exerted a dose-dependent antitumor activity across a panel of 23 lymphoma cell lines, although at concentrations higher than reported for solid tumors. Strong synergism was observed with pimasertib combined with the PI3K inhibitor idelalisib and the BTK inhibitor ibrutinib in cell lines derived from diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma. The data were confirmed in an in vivo experiment treating DLBCL xenografts with pimasertib and ibrutinib. CONCLUSION The data presented here provide the basis for further investigation of regimens including pimasertib in relapsed and refractory lymphomas.
Collapse
Affiliation(s)
- E Gaudio
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - C Tarantelli
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - I Kwee
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - C Barassi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - E Bernasconi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - A Rinaldi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - M Ponzoni
- Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy
| | - L Cascione
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - A Targa
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona
| | - A Stathis
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - S Goodstal
- Translational and Biomarker Research, Translational Innovation Platform Oncology, EMD Serono Research and Development Institute, Billerica, USA
| | - E Zucca
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - F Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona; IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|