1
|
Kraithong S, Liu Y, Suwanangul S, Sangsawad P, Theppawong A, Bunyameen N. A comprehensive review of the impact of anthocyanins from purple/black Rice on starch and protein digestibility, gut microbiota modulation, and their applications in food products. Food Chem 2025; 473:143007. [PMID: 39874887 DOI: 10.1016/j.foodchem.2025.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This review explores the impact of anthocyanins derived from purple and black rice on starch and protein digestibility, gut microbiota modulation, and their applications in food production. Anthocyanins are shown to reduce starch digestibility by forming complexes with starch, thereby inhibiting key digestive enzymes. Additionally, they can influence protein digestion by inducing structural changes that enhance resistance to digestive processes. Evidence suggests that black rice anthocyanins positively modulate gut microbiota composition, potentially improving overall gut health. The incorporation of anthocyanin-rich extracts into various food products, such as bread and beverages, underscores their potential as functional ingredients. This review provides valuable insights into the health benefits associated with rice anthocyanins and identifies areas for future research to optimize their application in functional foods aimed at managing metabolic health.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B, 9000, Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Department of Research and Development of Halal Products, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand.
| |
Collapse
|
2
|
Ren Y, Xiong W, Feng C, Yu D, Wang X, Yang Q, Yu S, Zhang H, Huo B, Jiang H, Li Z, Wang J, Su YX, Yang P, Liao Y, Zhong Q, Wang J. Multi-omics insights into the molecular signature and prognosis of hypopharyngeal squamous cell carcinoma. Commun Biol 2025; 8:370. [PMID: 40044946 PMCID: PMC11882983 DOI: 10.1038/s42003-025-07700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Approximately two-thirds of hypopharyngeal squamous cell carcinoma (HPSCC) cases are diagnosed at advanced stages, with the worst prognosis among head and neck squamous cell carcinomas (HNSCCs). Identifying biomarkers for high-risk patients requiring aggressive treatment is crucial. We present mutational, transcriptomic, and proteomic studies of 103 Chinese HPSCC patients and observe a higher prevalence and poorer prognosis in males. Estrogen response pathways are up-regulated, and proteins phosphorylated by protein kinase C (PKC) and cyclin-dependent kinases (CDKs) are aberrantly regulated in HPSCC. We identify aberrant copy number regions including SOX2(3q26.33), FGFR(8p11.23), CCND1(11q13.3), CDKN2A/2B(9p21.3), and MYC(8q24.21). Human papillomavirus (HPV) status combined with highly mutated genes, such as SYNE1 in HPV(-) and MUC4 in HPV(+) patients, were assessed as prognosis markers. A predictive model involving clinical factors and expression of six genes was established and cross-site validated. These findings open new opportunities for stratifying high-risk patients and molecular targets for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yanxin Ren
- Department of Head and Neck Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Radiotherapy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chun Feng
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Dan Yu
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyan Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Qing Yang
- Department of Head and Neck Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Siting Yu
- Department of Radiotherapy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongjiang Zhang
- Department of Radiotherapy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bangyun Huo
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Honglu Jiang
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zuli Li
- Institute for Viral Hepatitis & Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology of Infectious Diseases, MOE (Ministry of Education), Chongqing, China
| | - Junlin Wang
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Ping Yang
- Department of Quantitative Health Science, Mayo Clinic, Scottsdale, USA
| | - Yong Liao
- Institute for Viral Hepatitis & Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology of Infectious Diseases, MOE (Ministry of Education), Chongqing, China
| | - Qi Zhong
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China.
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Graessle R, Piwonski I, Husemann C, Kleo K, Sabtan D, Franzen A, Olze H, Erben U, Hummel M, Coordes A. Multiple Mutations-A Genetic Marker for Extracapsular Spread in Human Papillomavirus/p16-Positive Oropharyngeal Carcinoma. Laryngoscope Investig Otolaryngol 2025; 10:e70094. [PMID: 39906575 PMCID: PMC11791759 DOI: 10.1002/lio2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Background In the 8th edition of the TNM classification, extracapsular spread (ECS) became a factor in classifying the UICC stage of oropharyngeal carcinomas (OPSCC). We aimed to find genetic markers for ECS and to identify differences between HPV/p16-positive and HPV/p16-negative cases. Methods We performed targeted next-generation sequencing on 99 samples of operable OPSCC and a retrospective analysis of clinical data. Results We included 55 HPV/p16-positive and 44 HPV/p16-negative patients. We found a significant difference between both groups, particularly in TP53 mutation (p < 0.001). Among other things, a small primary tumor (p < 0.001), no ECS (p = 0.026) were identified as predictors for survival. Multiple mutations were associated with an increased incidence of ECS, especially in HPV+/p16+ cases (p = 0.017). A mutation in PIK3CA occurred more frequently in nonsmokers, especially in HPV-/p16- patients (p = 0.027). A PTEN mutation-which only occurred in HPV+/p16+ tissues-reduced disease-free survival (DFS, p = 0.026). Conclusion The presence of multiple mutations in HPV+/p16+ OPSCC was associated with a higher risk of ECS. Level of Evidence 3.
Collapse
Affiliation(s)
- Raphaela Graessle
- Department of Otorhinolaryngology ‐ Head and Neck SurgeryUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical School Theodor Fontane (MHB)NeuruppinGermany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of PotsdamBrandenburg University of Technology Cottbus‐Senftenberg and Brandenburg Medical SchoolPotsdamGermany
- Department of Otorhinolaryngology ‐ Head and Neck SurgeryRWTH Aachen UniversityAachenGermany
| | - Iris Piwonski
- Department of Pathology, Charité—Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Cora Husemann
- Department of Pathology, Charité—Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Karsten Kleo
- Department of Pathology, Charité—Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Deema Sabtan
- Department of Pathology, Charité—Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Achim Franzen
- Department of Otorhinolaryngology ‐ Head and Neck SurgeryUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical School Theodor Fontane (MHB)NeuruppinGermany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of PotsdamBrandenburg University of Technology Cottbus‐Senftenberg and Brandenburg Medical SchoolPotsdamGermany
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Campus Virchow Klinikum and Campus Charité Mitte, Charité—Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Erben
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of PotsdamBrandenburg University of Technology Cottbus‐Senftenberg and Brandenburg Medical SchoolPotsdamGermany
| | - Michael Hummel
- Department of Pathology, Charité—Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Annekatrin Coordes
- Department of Otorhinolaryngology ‐ Head and Neck SurgeryUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical School Theodor Fontane (MHB)NeuruppinGermany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of PotsdamBrandenburg University of Technology Cottbus‐Senftenberg and Brandenburg Medical SchoolPotsdamGermany
| |
Collapse
|
4
|
Bedeir A, Ghani H, Oster C, Crymes A, Ibe I, Yamamoto M, Elliott A, Bryant DA, Oberley MJ, Evans MG. Detection of human papillomavirus (HPV) in malignant melanoma. Ann Diagn Pathol 2024; 73:152361. [PMID: 39032381 DOI: 10.1016/j.anndiagpath.2024.152361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The most common type of melanoma is cutaneous melanoma (CM). The predominant mutational signature is that of ultraviolet radiation (UVR) exposure. The Cancer Genome Atlas (TCGA) molecular classification includes four major subtypes of CM based on common genetic alterations involving the following genes: BRAF, NRAS, and NF1, with a small fraction being "triple" wild-type. The two main signaling pathway abnormalities in CM are the mitogen-activated protein kinase (MAPK) pathway and the phosphoinositol-3-kinase (PI3K) pathway. Other less common types include mucosal melanomas (MM) and uveal melanoma (UM), which have a significantly different genomic landscape. Although few studies reported rare cases with HPV-positive (HPV+) melanoma, the clinicopathological and molecular characteristic of this entity has not been well-described. Among the 2084 melanoma cases queried at our institution, we identified seven patients diagnosed with HPV+ melanoma (prevalence 0.03 %), including five instances of CM and two of MM. The majority of cases were positive for HPV16 (n = 6). Most of the patients were elderly and with advanced disease (n = 6), although this finding may be attributed to the relative frequency of our institution testing advanced-stage tumors. Histologically, most cases showed high degree of pleomorphism and high mitotic count (5 or more mitoses/mm2) (n = 6). UVR signature was present in the CM, but not in the MM cases. Alterations in either MAPK and/or PI3K pathways were detected in the majority of cases (n = 6). The most common genetic abnormalities detected in this study occurred in the TERT promoter (TERTp) (n = 5), a finding that has been reported to be associated with aggressive disease. Our data shows that while HPV+ melanoma is rare, identifying this disease entity could help guide therapy given the demonstrated genomic alterations.
Collapse
Affiliation(s)
- Adam Bedeir
- Basis Phoenix High School, Phoenix, AZ, United States of America
| | - Hassan Ghani
- Caris Life Sciences, Phoenix, AZ, United States of America
| | - Cyrus Oster
- Caris Life Sciences, Phoenix, AZ, United States of America
| | - Anthony Crymes
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Ifegwu Ibe
- University of California Irvine School of Medicine, Irvine, CA, United States of America
| | - Maki Yamamoto
- University of California Irvine School of Medicine, Irvine, CA, United States of America
| | - Andrew Elliott
- Caris Life Sciences, Phoenix, AZ, United States of America
| | - David A Bryant
- Caris Life Sciences, Phoenix, AZ, United States of America
| | | | - Mark G Evans
- Caris Life Sciences, Phoenix, AZ, United States of America.
| |
Collapse
|
5
|
Albahar A, Sarmiti R, Hossienzadeh H, Houshmand M. Evaluating the Role of KRAS and NRAS 3' Untranslated Region Polymorphisms in Susceptibility and Clinical Features of Laryngeal Squamous Cell Carcinoma. Cureus 2024; 16:e76477. [PMID: 39867023 PMCID: PMC11769096 DOI: 10.7759/cureus.76477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common head and neck cancers in which genetic factors play an important role in its occurrence. This study investigated the association of KRAS and NRAS gene polymorphisms with the risk of LSCC. KRAS polymorphisms including rs712, rs61764370, rs8720, and rs9266, as well as NRAS rs14804, were compared in the patient group (n=120) and the control group (n=100). The Sanger sequencing method was used to identify these polymorphisms. The results showed that KRAS rs8720 is associated with an increased risk of LSCC; consequently, those with the CT genotype were at a higher risk than those with the CC genotype. Also, the CC genotype had a protective effect on rs14804 polymorphism of the NRAS gene. These findings show that some KRAS and NRAS polymorphisms can be used as diagnostic and prognostic biomarkers in LSCC, and their accurate identification by Sanger sequencing is of great importance in research related to cancer genetics.
Collapse
Affiliation(s)
- Abdullah Albahar
- Department of Surgery, Sheikh Jaber Al Ahmed Al Jaber Al Sabah Hospital, Kuwait City, KWT
| | - Rana Sarmiti
- Genetics Department, Al Soor Clinic, Kuwait City, KWT
| | | | - Massoud Houshmand
- Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IRN
| |
Collapse
|
6
|
Nałęcz D, Świętek A, Hudy D, Złotopolska Z, Dawidek M, Wiczkowski K, Strzelczyk JK. The Potential Association of CDKN2A and Ki-67 Proteins in View of the Selected Characteristics of Patients with Head and Neck Squamous Cell Carcinoma. Curr Issues Mol Biol 2024; 46:13267-13280. [PMID: 39590385 PMCID: PMC11592571 DOI: 10.3390/cimb46110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent type of cancer worldwide. Not all mechanisms associated with cell cycle disturbances have been recognized in HNSCC. The aim of this study was to examine the concentration of CDKN2A and Ki-67 proteins in 54 tumor and margin samples of HNSCC and to evaluate their association with the clinical and demographic variables. The ELISA method was used to measure concentrations of CDKN2A and Ki-67 in the tissue homogenates. A significantly higher CDKN2A concentration was found in OSCC tumor samples as compared with OPSCC+HPSCC+LSCC. An inverse correlation was observed for Ki-67. We showed an association between the CDKN2A level and the clinical parameters N in tumors. The patients with concomitant diseases had significantly higher levels of Ki-67 as compared with patients with no concomitant diseases. An analysis of the effect of drinking habits on Ki-67 level demonstrated a statistical difference between regular or occasional users of stimulants and patients who do not use any stimulants in the tumor and margin samples. Moreover, we found an association between CDKN2A and Ki-67 concentrations and the HPV status in tumor and margin samples. The levels of the proteins tested may be dependent on environmental factors. Our results showed that changes in protein levels in HNSCC subtypes may reflect different molecular pathways of tumor development or may also be responsible for the involvement of CDKN2A and Ki-67 in the carcinogenesis process.
Collapse
Affiliation(s)
- Dariusz Nałęcz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 1 Wójta Radtkego St., 81-348 Gdynia, Poland;
| | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
- Silesia LabMed Research and Implementation Centre, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
| | - Zofia Złotopolska
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 1 Wójta Radtkego St., 81-348 Gdynia, Poland;
| | - Michał Dawidek
- Department of Head and Neck Reconstructive Surgery and Robotic Surgery, 1 Powstania Styczniowego St., 81-519 Gdynia, Poland;
| | - Karol Wiczkowski
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
- Students’ Scientific Association at the Department of Medical and Molecular Biology, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
| |
Collapse
|
7
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102120. [PMID: 39424062 DOI: 10.1016/j.jormas.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Next generation sequencing (NGS) is a massive, high-throughput sequencing technology used to analyze various mutations and genetic changes in cancer. Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck region. OSCC usually arises from oral potentially malignant disorders, like oral leukoplakia, oral submucous fibrosis and erythroplakia, and shows mutation of tumor suppressor genes, and several other critical genes involved in apoptotic pathways, cell migration, and cell growth. AIM To analyze the molecular profiles of oral epithelial dysplasia and different grades of oral squamous cell carcinoma using NGS in the Indian subpopulation. METHODOLOGY 21 patients (5 patients each of well differentiated, moderately differentiated, poorly differentiated squamous cell carcinoma, severe epithelial dysplasia, and 1 normal appearing mucosal tissue from apparently healthy individuals) were included in the study. Next generation sequencing was carried out using 50 hotspot gene panel. Protein-protein analysis was carried out using STRING Consortium 2023 and the methylation profile of the expressed genes was evaluated using the UALCAN portal. RESULTS Severe epithelial dysplasia showed TP53 (c.743G>A, p.R248Q) pathogenic mutations (SNV) in suboptimal QC parameters. Well differentiated squamous cell carcinoma showed TP53 (c.328delC, p.Arg110fs*13), APC (c.4135G>T, p.Glu1379*), and FBXW7 (c.832C>T, p.Arg278*) mutations. CTNNB1 (c.134C>T, p.Ser45PheS45F), TP53 (c.637C>T, Arg213TerR213*), NRAS (c.183A>C, p.Gln61HisQ61H) and PDGFRA (c.1672C>T, p.Arg558Cys) mutations were seen in moderately differentiated squamous cell carcinoma. No pathogenic mutations were evident in poorly differentiated squamous cell carcinoma. STRING analysis showed that all the expressed proteins in each group were interrelated to each other. No significant difference was evident in the methylation profile of all the expressed genes when compared to the normal controls. CONCLUSION The results obtained in this study explain the diverse genetic mutations in various grades of oral squamous cell carcinoma. Identification of these mutations would help in providing better treatment, designing a proper treatment plan for the patients with OSCC and support minimal intervention medicine.
Collapse
Affiliation(s)
- Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
8
|
Suleiman R, McGarrah P, Baral B, Owen D, Vera Aguilera J, Halfdanarson TR, Price KA, Fuentes Bayne HE. Alpelisib and Immunotherapy: A Promising Combination for Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Cancer Rep (Hoboken) 2024; 7:e70023. [PMID: 39376013 PMCID: PMC11458888 DOI: 10.1002/cnr2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Recurrent squamous cell carcinoma (SCC) of the head and neck (SCCHN) remains a formidable clinical challenge despite available treatments. The phosphatidylinositol 3-kinase (PI3K) pathway has been identified as a potential therapeutic target, and alpelisib, a selective PI3Kα inhibitor, has demonstrated efficacy in certain malignancies. Combining this targeted therapy with immunotherapy has been suggested in previous studies as a promising strategy to bolster the immune response against cancer. CASES A 69-year-old woman with locoregional recurrence of PIK3CA-mutated SCC of the left maxilla and cervical nodal metastases. Several chemotherapeutic regimens, including cisplatin, docetaxel, 5FU, chemoradiotherapy, and mono-immunotherapy, resulted in disease progression. Alpelisib combined with pembrolizumab led to a sustained response for 9 months. A 58-year-old man with recurrent metastatic PIK3CA-mutated SCC of the oropharynx, involving the left lung, hilar, and mediastinal lymph nodes. Despite prior palliative radiation and platinum-based chemotherapy with pembrolizumab and cetuximab, treatment with alpelisib and nivolumab resulted in a partial response. Severe hyperglycemia and rash led to treatment discontinuation. CONCLUSION Our findings highlight the potential of this innovative therapeutic combination, suggesting a need for further investigations in this setting.
Collapse
Affiliation(s)
- Riham Suleiman
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | | | - Binav Baral
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | - Dawn Owen
- Division of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | |
Collapse
|
9
|
Pakkanen P, Silvoniemi A, Aro K, Bäck L, Irjala H, Aaltonen LM, Hagström J, Haglund C, Laine J, Minn H, Huvila J. Simultaneous p53 and p16 Immunostaining for Molecular Subclassification of Head and Neck Squamous Cell Carcinomas. Head Neck Pathol 2024; 18:73. [PMID: 39110300 PMCID: PMC11306708 DOI: 10.1007/s12105-024-01680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Our aim was to assess the ability of simultaneous immunohistochemical staining (IHC) for p16 and p53 to accurately subclassify head and neck squamous cell carcinomas (HNSCC) as HPV-associated (HPV-A) versus HPV-independent (HPV-I) and compare p53 IHC staining patterns to TP53 mutation status, p16 IHC positivity and HPV status. METHODS We stained 31 HNSCCs for p53 and p16, and performed next-generation sequencing (FoundationOne©CDx) on all cases and HPV in-situ hybridization (ISH) when sufficient tissue was available (n = 23). p53 IHC staining patterns were assessed as wildtype (wt) or abnormal (abn) patterns i.e. overexpression, null or cytoplasmic staining. RESULTS In a majority of cases (28/31) interpretation of p16 and p53 IHC was straightforward; 10 were considered HPV-A (p16+/p53wt) and 18 cases were HPV-I (p16-/p53abn). In the remaining three tumours the unusual immunophenotype was resolved by molecular testing, specifically (i) subclonal p16 staining and wild type p53 staining in a tumour positive for HPV and with no TP53 mutation (HPV-A), (ii) negative p16 and wild type p53 staining with a TP53 mutation and negative for HPV (HPV-I), and (iii) equivocally increased p16 staining with mutant pattern p53 expression, negative HPV ISH and with a TP53 mutation (HPV-I). CONCLUSION Performing p16 and p53 IHC staining simultaneously allows classification of most HNSCC as HPV-A (p16 +, p53 wild type (especially basal sparing or null-like HPV associated staining patterns, which were completely specific for HPV-A SCC) or HPV-I (p16 -, p53 mutant pattern expression), with the potential for limiting additional molecular HPV or mutational testing to selected cases only.
Collapse
Affiliation(s)
- Pihla Pakkanen
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Antti Silvoniemi
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Katri Aro
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Leif Bäck
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
- Translational cancer research program unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Translational cancer research program unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jukka Laine
- Department of Pathology, University of Turku, Turku University Hospital, D5020, Medisiina D, 5. floor Kiinamyllynkatu 10, Turku, FIN-20520, Finland
| | - Heikki Minn
- Department of Oncology, University of Turku, Turku University Hospital, Turku, Finland
| | - Jutta Huvila
- Department of Pathology, University of Turku, Turku University Hospital, D5020, Medisiina D, 5. floor Kiinamyllynkatu 10, Turku, FIN-20520, Finland.
| |
Collapse
|
10
|
Krsek A, Baticic L, Braut T, Sotosek V. The Next Chapter in Cancer Diagnostics: Advances in HPV-Positive Head and Neck Cancer. Biomolecules 2024; 14:925. [PMID: 39199313 PMCID: PMC11352962 DOI: 10.3390/biom14080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is an increasingly prevalent pathology worldwide, especially in developed countries. For diagnosing HPV in HNSCC, the combination of p16 immunohistochemistry (IHC) and polymerase chain reaction (PCR) offers high sensitivity and specificity, with p16 IHC being a reliable initial screen and PCR confirming HPV presence. Advanced techniques like next-generation sequencing (NGS) and RNA-based assays provide detailed insights but are primarily used in research settings. Regardless of HPV status, standard oncological treatments currently include surgery, radiation, and/or chemotherapy. This conventional approach does not account for the typically better prognosis of HPV-positive HNSCC patients, leading to increased chemo/radiation-induced secondary morbidities and reduced quality of life. Therefore, it is crucial to identify and detect HPV positivity and other molecular characteristics of HNSCC to personalize treatment strategies. This comprehensive review aims to summarize current knowledge on various HPV detection techniques and evaluate their advantages and disadvantages, with a focus on developing methodologies to identify new biomarkers in HPV-positive HNSCC. The review discusses direct and indirect HPV examination in tumor tissue, DNA- and RNA-based detection techniques, protein-based markers, liquid biopsy potentials, immune-related markers, epigenetic markers, novel biomarkers, and emerging technologies, providing an overall insight into the current state of knowledge.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| | - Vlatka Sotosek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
11
|
Suzuki T, Nakanishi Y, Tanino T, Nishimaki-Watanabe H, Kobayashi H, Ohni S, Tang X, Hakamada K, Masuda S. Immunohistochemical and molecular profiles of heterogeneous components of metaplastic breast cancer: a squamous cell carcinomatous component was distinct from a spindle cell carcinomatous component. Discov Oncol 2024; 15:95. [PMID: 38564036 PMCID: PMC10987432 DOI: 10.1007/s12672-024-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Metaplastic breast carcinoma (MBC), a category of breast cancer, includes different histological types, which are occasionally mixed and heterogeneous. Considering the heterogeneity of cancer cells in a tumour mass has become highly significant, not only from a biological aspect but also for clinical management of recurrence. This study aimed to analyse the immunohistochemical and molecular profiles of each MBC component of a tumour mass. Twenty-five MBC tumours were histologically evaluated, and the most frequent MBC component (c) was squamous cell carcinoma (SCC), followed by spindle cell carcinoma (SpCC). A total of 69 components of MBC and non-MBC in formalin-fixed paraffin-embedded sections were examined for 7 markers by immunohistochemistry. SCC(c) were significantly PTEN negative and CK14 positive, and SpCC(c) were significantly E-cadherin negative and vimentin positive. Multivariate analyses revealed that immunohistochemical profiles of normal/intraductal (IC)(c), no special type (NST)(c), and MBC(c) differed; moreover, SCC(c) and SpCC(c) were distinctly grouped. PTEN gene mutation was detected only in SCC(c) (2/7), but not in SpCC(c). Next-generation sequence analyses for 2 cases with tumours containing SCC(c) demonstrated that PTEN gene mutation increased progressively from IC(c) to NST(c) to SCC(c). In conclusion, the immunohistochemical and molecular profiles of the SCC(c) of MBC are distinct from those of the SpCC(c).
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Tomoyuki Tanino
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Haruna Nishimaki-Watanabe
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Hiroko Kobayashi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Sumie Ohni
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Xiaoyan Tang
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
12
|
Lauwers I, Pachler K, Capala M, Sijtsema N, Van Gent D, Rovituso M, Hoogeman M, Verduijn G, Petit S. Ex vivo radiation sensitivity assessment for individual head and neck cancer patients using deep learning-based automated nuclei and DNA damage foci detection. Clin Transl Radiat Oncol 2024; 45:100735. [PMID: 38380115 PMCID: PMC10877102 DOI: 10.1016/j.ctro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Tumor biopsy tissue response to ex vivo irradiation is potentially an interesting biomarker for in vivo tumor response, therefore, for treatment personalization. Tumor response ex vivo can be characterized by DNA damage response, expressed by the large-scale presence of DNA damage foci in tumor nuclei. Currently, characterizing tumor nuclei and DNA damage foci is a manual process that takes hours per patient and is subjective to inter-observer variability, which is not feasible in for clinical decision making. Therefore, our goal was to develop a method to automatically segment nuclei and DNA damage foci in tumor tissue samples treated with radiation ex vivo to characterize the DNA damage response, as potential biomarker for in vivo radio-sensitivity. Methods Oral cavity tumor tissue of 21 patients was irradiated ex vivo (5 or 0 Gy), fixated 2 h post-radiation, and used to develop our method for automated nuclei and 53BP1 foci segmentation. The segmentation model used both deep learning and conventional image-analysis techniques. The training (22 %), validation (22 %), and test set (56 %) consisted of thousands of manually segmented nuclei and foci. The segmentations and number of foci per nucleus in the test set were compared to their ground truths. Results The automatic nuclei and foci segmentations were highly accurate (Dice = 0.901 and Dice = 0.749, respectively). An excellent correlation (R2 = 0.802) was observed for the foci per nucleus that outperformed reported inter-observation variation. The analysis took ∼ 8 s per image. Conclusion This model can replace manual foci analysis for ex vivo irradiation of head-and-neck squamous cell carcinoma tissue, reduces the image-analysis time from hours to minutes, avoids the problem of inter-observer variability, enables assessment of multiple images or conditions, and provides additional information about the foci size. Thereby, it allows for reliable and rapid ex vivo radio-sensitivity assessment, as potential biomarker for response in vivo and treatment personalization.
Collapse
Affiliation(s)
- I. Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - K.S. Pachler
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M.E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - N.D. Sijtsema
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D.C. Van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M. Rovituso
- Holland Proton Therapy Center, Delft, the Netherlands
| | - M.S. Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Medical Physics and Informatics, HollandPTC, Delft, the Netherlands
| | - G.M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - S.F. Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Li Q, Zhu G, Zhang L, Zeng B, Cai T, Wu J, Wei B, Xie Z, He L, Tang W, Lin X, Lu H, Wu F, Huang J, Hu H, Liu N, Fan S. Mutational landscape of head and neck cancer and cervical cancer in Chinese and Western population. Head Neck 2024; 46:528-540. [PMID: 38111234 DOI: 10.1002/hed.27603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND We aimed to unbiasedly map the genetic mutation profile of HNSC and CESC associated with HPV status in the Chinese population (SYSU-cohort) and compare them with Western population (TCGA-cohort). METHODS Fifty-one HNSC patients (SYSU-HNSC) and 38 CESC patients (SYSU-CESC) were enrolled in this study. Genomic alterations were examined, and the profile was produced using the YuanSuTM450 gene panel (OrigiMed, Shanghai, China). The altered genes were inferred and compared to Western patients from TCGA cohorts. RESULTS Compared to the TCGA-HNSC cohort, FGFR3 mutation was identified as a novel target in SYSU-HNSC with therapeutic potential. Compared to the TCGA-CESC cohort, some epigenetic regulation-associated genes were frequently mutated in SYSU-CESC cohort (KMT2C, KMT2D, KDM5C, KMT2A). CONCLUSION In summary, our study provides unbiased insights into the genetic landscape of HNSC and CESC in the Chinese population and highlights potential novel therapeutic targets that may benefit Chinese patients.
Collapse
Affiliation(s)
- Qunxing Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Genhai Zhu
- Department of Gynecology, Hainan General Hospital, Haikou, China
| | - Lizao Zhang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tingting Cai
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Wei
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Xie
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenbing Tang
- Department of Stomatology, Guangdong Agriculture and Reclamation Central Hospital, Zhanjiang, China
| | - Xinyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiwu Lu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | | | - Huijun Hu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niu Liu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Fan
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
14
|
Khoo A, Boyer M, Jafri Z, Makeham T, Pham T, Khachigian LM, Floros P, Dowling E, Fedder K, Shonka D, Garneau J, O'Meara CH. Human Papilloma Virus Positive Oropharyngeal Squamous Cell Carcinoma and the Immune System: Pathogenesis, Immunotherapy and Future Perspectives. Int J Mol Sci 2024; 25:2798. [PMID: 38474047 DOI: 10.3390/ijms25052798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC), a subset of head and neck squamous cell carcinoma (HNSCC), involves the palatine tonsils, soft palate, base of tongue, and uvula, with the ability to spread to adjacent subsites. Personalized treatment strategies for Human Papillomavirus-associated squamous cell carcinoma of the oropharynx (HPV+OPSCC) are yet to be established. In this article, we summarise our current understanding of the pathogenesis of HPV+OPSCC, the intrinsic role of the immune system, current ICI clinical trials, and the potential role of small molecule immunotherapy in HPV+OPSCC.
Collapse
Affiliation(s)
- A Khoo
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
| | - M Boyer
- Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Z Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - T Makeham
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
- ANU School of Medicine & Psychology, Australian National University, Canberra, ACT 0200, Australia
| | - T Pham
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
- ANU School of Medicine & Psychology, Australian National University, Canberra, ACT 0200, Australia
| | - L M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Floros
- St Vincent's Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - E Dowling
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - K Fedder
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - D Shonka
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - J Garneau
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - C H O'Meara
- Department of Otolaryngology, Head & Neck Surgery, Canberra Health Services, Canberra, ACT 2601, Australia
- ANU School of Medicine & Psychology, Australian National University, Canberra, ACT 0200, Australia
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
15
|
Furlan KC, Saeed-Vafa D, Mathew TM, Saller JJ, Tabbara SO, Boyle TA, Wenig BM, Hernandez-Prera JC. Utility of UV Signature Mutations in the Diagnostic Assessment of Metastatic Head and Neck Carcinomas of Unknown Primary. Head Neck Pathol 2024; 18:11. [PMID: 38393464 PMCID: PMC10891032 DOI: 10.1007/s12105-024-01620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Metastatic carcinoma of unknown primary origin to the head and neck lymph nodes (HNCUP) engenders unique diagnostic considerations. In many cases, the detection of a high-risk human papillomavirus (HR-HPV) unearths an occult oropharyngeal squamous cell carcinoma (SCC). In metastatic HR-HPV-independent carcinomas, other primary sites should be considered, including cutaneous malignancies that can mimic HR-HPV-associated SCC. In this context, ultraviolet (UV) signature mutations, defined as ≥ 60% C→T substitutions with ≥ 5% CC→TT substitutions at dipyrimidine sites, identified in tumors arising on sun exposed areas, are an attractive and underused tool in the setting of metastatic HNCUP. METHODS A retrospective review of institutional records focused on cases of HR-HPV negative HNCUP was conducted. All cases were subjected to next generation sequencing analysis to assess UV signature mutations. RESULTS We identified 14 HR-HPV negative metastatic HNCUP to either the cervical or parotid gland lymph nodes, of which, 11 (11/14, 79%) had UV signature mutations, including 4 (4/10, 40%) p16 positive cases. All UV signature mutation positive cases had at least one significant TP53 mutation and greater than 20 unique gene mutations. CONCLUSION The management of metastatic cutaneous carcinomas significantly differs from other HNCUP especially metastatic HR-HPV-associated SCC; therefore, the observation of a high percentage of C→T with CC →TT substitutions should be routinely incorporated in next generation sequencing reports of HNCUP. UV mutational signatures testing is a robust diagnostic tool that can be utilized in daily clinical practice.
Collapse
Affiliation(s)
- Karina Colossi Furlan
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Daryoush Saeed-Vafa
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Tiffani M Mathew
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - James J Saller
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Sana O Tabbara
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Theresa A Boyle
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Juan C Hernandez-Prera
- Department of Pathology, Moffitt Cancer Center 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Atique M, Muniz I, Farshadi F, Hier M, Mlynarek A, Macarella M, Maschietto M, Nicolau B, Alaoui-Jamali MA, da Silva SD. Genetic Mutations Associated with Inflammatory Response Caused by HPV Integration in Oropharyngeal Squamous Cell Carcinoma. Biomedicines 2023; 12:24. [PMID: 38275384 PMCID: PMC10813733 DOI: 10.3390/biomedicines12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Head and neck cancer (HNC) ranks as the sixth most prevalent cancer in the world. In addition to the traditional risk factors such as alcohol and tobacco consumption, the implication of the human papillomavirus (HPV) is becoming increasingly significant, particularly in oropharyngeal cancer (OPC). (2) Methods: This study is based on a review analysis of different articles and repositories investigating the mutation profile of HPV-related OPC and its impact on patient outcomes. (3) Results: By compiling data from 38 datasets involving 8311 patients from 12 countries, we identified 330 genes that were further analyzed. These genes were enriched for regulation of the inflammatory response (RB1, JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1, and ATM), among other biological processes. Hierarchical cluster analysis showed the most relevant biological processes were linked with the regulation of mast cell cytokine production, neutrophil activation and degranulation, and leukocyte activation (FDR < 0.001; p-value < 0.05), suggesting that neutrophils may be involved in the development and progression of HPV-related OPC. (4) Conclusions: The neutrophil infiltration and HPV status emerge as a potential prognostic factor for OPC. HPV-infected HNC cells could potentially lead to a decrease in neutrophil infiltration. By gaining a better molecular understanding of HPV-mediated neutrophil immunosuppression activity, it is possible to identify a meaningful target to boost antitumor immune response in HNC and hence to improve the survival of patients with HNC.
Collapse
Affiliation(s)
- Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Isis Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Marco Macarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13084-225, SP, Brazil;
- Boldrini Children’s Center, Campinas 13084-225, SP, Brazil
| | - Belinda Nicolau
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Campus I, João Pessoa 58051-900, PB, Brazil;
| | - Moulay A. Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC H3T 1E2, Canada; (M.A.); (I.M.); (F.F.); (M.H.); (A.M.); (M.M.)
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
17
|
Gupta MK, Kushwah AS, Singh R, Srivastava K, Banerjee M. Genetic and epigenetic alterations in MGMT gene and correlation with concomitant chemoradiotherapy (CRT) in cervical cancer. J Cancer Res Clin Oncol 2023; 149:15159-15170. [PMID: 37634205 DOI: 10.1007/s00432-023-05305-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The MGMT (O6-methylguanine-DNA methyltransferase) gene plays a crucial role in repairing DNA damage caused by alkylating agents, including those used in chemotherapy. Genetic and epigenetic alterations can influence the regulation of MGMT gene, which in turn may impact the response to concomitant chemoradiotherapy (CRT) in cervical cancer. The present study was undertaken to evaluate the correlation of such variations in MGMT gene with the treatment outcome of concomitant chemoradiotherapy (CRT) in cervical cancer. METHODS A total of 460 study subjects (240 controls and 220 patients) were subjected to genotypic analysis of MGMT gene variants rs12917(T/C) and rs2308327(A/G) by Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Out of them, 48 each of controls and patients were analyzed for promoter methylation and expression by methylation-specific PCR and real-time PCR, respectively. Patients (n = 48) were followed up and evaluated for treatment (CRT) outcome. Statistical analyses were done using GraphPad (9.0) and SPSS version 18.0. RESULTS Individuals with GG genotype, G allele of rs2308327, and haplotype 'TA' of both variants showed a significant increase in the development of cervical cancer (P ≤ 0.05). In epigenetic regulation, there was a significant hypermethylation of MGMT gene and down-regulation of their expression in patients compared to control individuals. In treatment outcome of CRT, GG genotype of rs2308327(A/G) gene variant showed better response and GG + AG was significantly associated with vital status (alive). Unmethylated MGMT gene showed better median overall survival up to 25 months significant in comparison to methylated MGMT promoter. CONCLUSION Gene variant rs2308327(A/G) and promoter hypermethylation regulated MGMT gene can be a good prognostic for treatment response in cervical cancer patients.
Collapse
Affiliation(s)
- Maneesh Kumar Gupta
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, 226003, India
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow, 226003, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
18
|
Xue L, Tang W, Zhou J, Xue J, Li Q, Ge X, Lin F, Zhao W, Guo Y. Next-generation sequencing identifies CDKN2A alterations as prognostic biomarkers in recurrent or metastatic head and neck squamous cell carcinoma predominantly receiving immune checkpoint inhibitors. Front Oncol 2023; 13:1276009. [PMID: 37936609 PMCID: PMC10627168 DOI: 10.3389/fonc.2023.1276009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Background This study aimed to identify potential biomarkers in patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) and further probe the prognostic implications of CDKN2A mutations, particularly within a subset receiving immunotherapy. Methods In this retrospective single-center study, we evaluated the next-generation sequencing (NGS) data from Foundation Medicine (FM) for patients with recurrent or metastatic HNSCC between January 1, 2019, and December 31, 2021. Patients were stratified based on CDKN2A loss-of-function (LOF) versus wild-type (WT) categorizations, with a focused subgroup analysis on those administered immunotherapy. Results The study encompassed 77 patients, of which 62 had undergone immunotherapy. The median duration of follow-up was 22.6 months. For the CDKN2A LOF group, the median overall survival (OS) was 16.5 months, contrasted with 30.0 months in the CDKN2A WT group (P=0.014). Notably, female gender (hazard ratio [HR]=4.526, 95% confidence interval [CI]: 1.934-10.180, P=0.0003) and CDKN2A LOF (HR=2.311, 95% CI: 1.156-4.748, P=0.019) emerged as independent risk factors for mortality in patients with recurrent or metastatic HNSCC. Within the immunotherapy subset, the median OS was 11.7 months for the CDKN2A LOF group, and 22.5 months for the CDKN2A WT group (P=0.017). Further, the female gender (HR=4.022, 95% CI: 1.417-10.710, P=0.006), CDKN2A LOF (HR=4.389, 95% CI: 1.782-11.460, P=0.002), and a combined positive score below 1 (HR=17.20, 95% CI: 4.134-79.550, P<0.0001) were identified as significant predictors of mortality among patients with recurrent or metastatic HNSCC receiving immunotherapy. Conclusion Alterations manifesting as LOF in the CDKN2A gene stand as robust indicators of unfavorable survival outcomes in HNSCC patients, including the subset that underwent immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Guo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
King AD, Deirawan H, Klein PA, Dasgeb B, Dumur CI, Mehregan DR. Next-generation sequencing in dermatology. Front Med (Lausanne) 2023; 10:1218404. [PMID: 37841001 PMCID: PMC10570430 DOI: 10.3389/fmed.2023.1218404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Over the past decade, Next-Generation Sequencing (NGS) has advanced our understanding, diagnosis, and management of several areas within dermatology. NGS has emerged as a powerful tool for diagnosing genetic diseases of the skin, improving upon traditional PCR-based techniques limited by significant genetic heterogeneity associated with these disorders. Epidermolysis bullosa and ichthyosis are two of the most extensively studied genetic diseases of the skin, with a well-characterized spectrum of genetic changes occurring in these conditions. NGS has also played a critical role in expanding the mutational landscape of cutaneous squamous cell carcinoma, enhancing our understanding of its molecular pathogenesis. Similarly, genetic testing has greatly benefited melanoma diagnosis and treatment, primarily due to the high prevalence of BRAF hot spot mutations and other well-characterized genetic alterations. Additionally, NGS provides a valuable tool for measuring tumor mutational burden, which can aid in management of melanoma. Lastly, NGS demonstrates promise in improving the sensitivity of diagnosing cutaneous T-cell lymphoma. This article provides a comprehensive summary of NGS applications in the diagnosis and management of genodermatoses, cutaneous squamous cell carcinoma, melanoma, and cutaneous T-cell lymphoma, highlighting the impact of NGS on the field of dermatology.
Collapse
Affiliation(s)
- Andrew D. King
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hany Deirawan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Catherine I. Dumur
- Bernhardt Laboratories, Sonic Healthcare Anatomic Pathology Division, Jacksonville, FL, United States
| | - Darius R. Mehregan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
20
|
Qualliotine JR, Nakagawa T, Rosenthal SB, Sadat S, Ballesteros-Merino C, Xu G, Mark A, Nasamran A, Gutkind JS, Fisch KM, Guo T, Fox BA, Khan Z, Molinolo AA, Califano JA. A Network Landscape of HPVOPC Reveals Methylation Alterations as Significant Drivers of Gene Expression via an Immune-Mediated GPCR Signal. Cancers (Basel) 2023; 15:4379. [PMID: 37686653 PMCID: PMC10486378 DOI: 10.3390/cancers15174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
HPV-associated oropharynx carcinoma (HPVOPC) tumors have a relatively low mutational burden. Elucidating the relative contributions of other tumor alterations, such as DNA methylation alterations, alternative splicing events (ASE), and copy number variation (CNV), could provide a deeper understanding of carcinogenesis drivers in this disease. We applied network propagation analysis to multiple classes of tumor alterations in a discovery cohort of 46 primary HPVOPC tumors and 25 cancer-unaffected controls and validated our findings with TCGA data. We identified significant overlap between differential gene expression networks and all alteration classes, and this association was highest for methylation and lowest for CNV. Significant overlap was seen for gene clusters of G protein-coupled receptor (GPCR) pathways. HPV16-human protein interaction analysis identified an enriched cluster defined by an immune-mediated GPCR signal, including CXCR3 cytokines CXCL9, CXCL10, and CXCL11. CXCR3 was found to be expressed in primary HPVOPC, and scRNA-seq analysis demonstrated CXCR3 ligands to be highly expressed in M2 macrophages. In vivo models demonstrated decreased tumor growth with antagonism of the CXCR3 receptor in immunodeficient but not immunocompetent mice, suggesting that the CXCR3 axis can drive tumor proliferation in an autocrine fashion, but the effect is tempered by an intact immune system. In conclusion, methylation, ASE, and SNV alterations are highly associated with network gene expression changes in HPVOPC, suggesting that ASE and methylation alterations have an important role in driving the oncogenic phenotype. Network analysis identifies GPCR networks, specifically the CXCR3 chemokine axis, as modulators of tumor-immune interactions that may have proliferative effects on primary tumors as well as a role for immunosurveillance; however, CXCR3 inhibition should be used with caution, as these agents may both inhibit and stimulate tumor growth considering the competing effects of this cytokine axis. Further investigation is needed to explore opportunities for targeted therapy in this setting.
Collapse
Affiliation(s)
- Jesse R. Qualliotine
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Takuya Nakagawa
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sayed Sadat
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Guorong Xu
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Art Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernard A. Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR 97213, USA
| | - Zubair Khan
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alfredo A. Molinolo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph A. Califano
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Ma SJ, Khan M, Chatterjee U, Santhosh S, Hashmi M, Gill J, Yu B, Iovoli A, Farrugia M, Wooten K, Gupta V, McSpadden R, Yu H, Kuriakose MA, Markiewicz MR, Al-Afif A, Hicks WL, Seshadri M, Ray AD, Repasky E, Singh AK. Association of Body Mass Index With Outcomes Among Patients With Head and Neck Cancer Treated With Chemoradiotherapy. JAMA Netw Open 2023; 6:e2320513. [PMID: 37368400 DOI: 10.1001/jamanetworkopen.2023.20513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Importance Combined modality therapy, such as chemoradiotherapy, often results in significant morbidity among patients with head and neck cancer. Although the role of body mass index (BMI) varies based on cancer subtypes, its association with treatment response, tumor recurrence, and survival outcomes among patients with head and neck cancer remains unclear. Objective To evaluate the role of BMI in treatment response, tumor recurrence, and survival outcomes among patients with head and neck cancer undergoing chemoradiotherapy. Design, Setting, and Participants This retrospective, observational, single-institution cohort study conducted at a comprehensive cancer center included 445 patients with nonmetastatic head and neck cancer who underwent chemoradiotherapy from January 1, 2005, to January 31, 2021. Exposure Normal vs overweight or obese BMI. Main Outcomes and Measures Metabolic response after chemoradiotherapy, locoregional failure (LRF), distant failure (DF), overall survival (OS), and progression-free survival (PFS), with Bonferroni correction used to adjust for multiple comparisons and P < .025 being considered statistically significant. Results A total of 445 patients (373 men [83.8%]; median age, 61 years [IQR, 55-66 years]; 107 [24.0%] with normal BMI, 179 [40.2%] with overweight BMI, and 159 [35.7%] with obese BMI) were included for analysis. Median follow-up was 48.1 months (IQR, 24.7-74.9 months). On Cox proportional hazards regression multivariable analysis, only overweight BMI was associated with improved OS (5-year OS, 71.5% vs 58.4%; adjusted hazard ratio [AHR], 0.59 [95% CI, 0.39-0.91]; P = .02) and PFS (5-year PFS, 68.3% vs 50.8%; AHR, 0.51 [95% CI, 0.34-0.75]; P < .001). On logistic multivariable analysis, overweight BMI (91.6% vs 73.8%; adjusted odds ratio [AOR], 0.86 [95% CI, 0.80-0.93]; P < .001) and obese BMI (90.6% vs 73.8%; AOR, 0.89 [95% CI, 0.81-0.96]; P = .005) were associated with complete metabolic response on follow-up positron emission tomography-computed tomography after treatments. On Fine-Gray multivariable analysis, overweight BMI was associated with reduction in LRF (5-year LRF, 7.0% vs 25.9%; AHR, 0.30 [95% CI, 0.12-0.71]; P = .01), but not DF (5-year DF, 17.4% vs 21.5%; AHR, 0.92 [95% CI, 0.47-1.77]; P = .79). Obese BMI was not associated with LRF (5-year LRF, 10.4% vs 25.9%; AHR, 0.63 [95% CI, 0.29-1.37]; P = .24) or DF (5-year DF, 15.0% vs 21.5%; AHR, 0.70 [95% CI, 0.35-1.38]; P = .30). Conclusion In this cohort study of patients with head and neck cancer, when compared with normal BMI, overweight BMI was an independent factor favorably associated with complete response after treatments, OS, PFS, and LRF. Further investigations are warranted to improve understanding on the role of BMI among patients with head and neck cancer.
Collapse
Affiliation(s)
- Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Michael Khan
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Udit Chatterjee
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharon Santhosh
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | | | - Jasmin Gill
- University at Buffalo, The State University of New York, Buffalo
| | - Brian Yu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Austin Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kimberly Wooten
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Vishal Gupta
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ryan McSpadden
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Moni A Kuriakose
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Michael R Markiewicz
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo
| | - Ayham Al-Afif
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wesley L Hicks
- Department of Head and Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Andrew D Ray
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elizabeth Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
22
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
23
|
Aguayo F, Perez-Dominguez F, Osorio JC, Oliva C, Calaf GM. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. BIOLOGY 2023; 12:biology12050672. [PMID: 37237486 DOI: 10.3390/biology12050672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HR-HPVs) are the causal agents of cervical, anogenital and a subset of head and neck carcinomas (HNCs). Indeed, oropharyngeal cancers are a type of HNC highly associated with HR-HPV infections and constitute a specific clinical entity. The oncogenic mechanism of HR-HPV involves E6/E7 oncoprotein overexpression for promoting cell immortalization and transformation, through the downregulation of p53 and pRB tumor suppressor proteins, among other cellular targets. Additionally, E6/E7 proteins are involved in promoting PI3K/AKT/mTOR signaling pathway alterations. In this review, we address the relationship between HR-HPV and PI3K/AKT/mTOR signaling pathway activation in HNC with an emphasis on its therapeutic importance.
Collapse
Affiliation(s)
- Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Perez-Dominguez
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
24
|
Apaydin Arikan E, Aydemir L, Ulusan M, Yilmazbayhan D, Ozluk Y. High-risk HPV Does not Appear to be an Important Risk Factor for Sinonasal Carcinomas in Turkish Population: A Tertiary Center Experience. Int J Surg Pathol 2023; 31:124-136. [PMID: 35404169 DOI: 10.1177/10668969221091590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. The sinonasal tract is the second most common site of human papillomavirus (HPV)-related carcinomas in the head and neck. Published data on the association between sinonasal tumors and HPV are quite inconsistent among different regions. Material and methods. We performed high-risk HPV DNA in situ hybridization (ISH) and p16 immunohistochemistry on sinonasal carcinomas diagnosed between 2006 and 2016. Results. Of 105 sinonasal carcinomas, we found only two (2%) HPV-positive cases; both had non-keratinizing morphology and were diffusely positive for p16. By histologic type, HPV DNA positivity rate was 14% in non-keratinizing squamous cell carcinomas, and we did not detect HPV DNA in any other type of sinonasal carcinomas. Thirteen HPV-negative tumors (7 salivary gland carcinomas, 3 sinonasal undifferentiated carcinomas, 2 keratinizing squamous cell carcinomas, and 1 non-keratinizing squamous cell carcinoma) were positive for p16. In nine carcinomas arising from an underlying sinonasal papilloma, p16 and HPV DNA ISH were evaluated in both carcinoma and papilloma areas and all were negative. Follow-up information was available for 104 patients; 46 (44%) were alive and 58 (55%) died of disease. One of the two HPV-positive patients died of the disease; the other was alive at 100 months of follow-up. Conclusions. We detected a much lower percentage of HPV positivity in sinonasal carcinomas when compared to the literature. We believe that our results support various rates of HPV-related carcinomas depending on the geographic and ethnic characteristics.
Collapse
Affiliation(s)
- Evsen Apaydin Arikan
- Department of Pathology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Levent Aydemir
- Department of Otorhinolaryngology and Head and Neck Surgery, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Murat Ulusan
- Department of Otorhinolaryngology and Head and Neck Surgery, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Dilek Yilmazbayhan
- Department of Pathology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Yasemin Ozluk
- Department of Pathology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| |
Collapse
|
25
|
Mazurek AM, Rutkowski TW. Practical Application of Circulating Tumor-Related DNA of Human Papillomavirus in Liquid Biopsy to Evaluate the Molecular Response in Patients with Oropharyngeal Cancer. Cancers (Basel) 2023; 15:1047. [PMID: 36831390 PMCID: PMC9953792 DOI: 10.3390/cancers15041047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Recent findings have shown that human papillomavirus (HPV) DNA is present in the blood as a tumor-specific biomarker (circulating tumor-related HPV; ctHPV) in patients with HPV-related oropharyngeal cancer (HPV-related OPC). The molecular response (MR) in patients with HPV-related OPC can be defined as the change in the number of ctHPV copies in relation to its initial quantity. The optimal model for assessing the MR using a liquid biopsy (LB) should be based on the E6/E7 sequences of the viral genome. MR assessment can help to evaluate the intensity of ongoing treatments in relation to the tumor response. The evaluation of the residual disease at the end of therapy may also be performed by MR assessment. If a partial MR (pMR) is found, caution is indicated and a subsequent LB should be considered, due to the likelihood of disease progression. Complete radiological and clinical responses together with a complete MR (cMR) convincingly indicate a low risk of treatment failure. Moreover, molecular recurrence (Mrec) during a follow-up, confirmed in two consecutive assays, even despite the lack of any other clinical or radiological symptoms of progression, indicates patients at high risk of disease recurrence. In conclusion, MR by ctHPV assessment may hasten the early detection of disease progression, at any stage of the management of the patient with HPV-related OPC.
Collapse
Affiliation(s)
- Agnieszka M. Mazurek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Tomasz W. Rutkowski
- I Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| |
Collapse
|
26
|
Ex Vivo Functional Assay for Evaluating Treatment Response in Tumor Tissue of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15020478. [PMID: 36672427 PMCID: PMC9856585 DOI: 10.3390/cancers15020478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) displays a large heterogeneity in treatment response, and consequently in patient prognosis. Despite extensive efforts, no clinically validated model is available to predict tumor response. Here we describe a functional test for predicting tumor response to radiation and chemotherapy on the level of the individual patient. METHODS Resection material of 17 primary HNSCC patients was cultured ex vivo, irradiated or cisplatin-treated, after which the effect on tumor cell vitality was analyzed several days after treatment. RESULTS Ionizing radiation (IR) affected tumor cell growth and viability with a clear dose-response relationship, and marked heterogeneity between tumors was observed. After a single dose of 5Gy, proliferation in IR-sensitive tumors dropped below 30% of the untreated level, while IR-resistant tumors maintained at least 60% of proliferation. IR-sensitive tumors showed on average a twofold increase in apoptosis, as well as an increased number and size of DNA damage foci after treatment. No differences in the homologous recombination (HR) proficiency between IR-sensitive and -resistant tumors were detected. Cisplatin caused a decrease in proliferation, as well as induction of apoptosis, again with marked variation between the samples. CONCLUSIONS Our functional ex vivo assay discriminated between IR-sensitive and IR-resistant HNSCC tumors, and may also be suitable for predicting response to cisplatin. Its predictive value is currently under investigation in a prospective clinical study.
Collapse
|
27
|
Association of Inherited Copy Number Variation in ADAM3A and ADAM5 Pseudogenes with Oropharynx Cancer Risk and Outcome. Genes (Basel) 2022; 13:genes13122408. [PMID: 36553675 PMCID: PMC9778539 DOI: 10.3390/genes13122408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Inherited copy number variations (CNVs) can provide valuable information for cancer susceptibility and prognosis. However, their association with oropharynx squamous cell carcinoma (OPSCC) is still poorly studied. Using microarrays analysis, we identified three inherited CNVs associated with OPSCC risk, of which one was validated in 152 OPSCC patients and 155 controls and related to pseudogene-microRNA-mRNA interaction. Individuals with three or more copies of ADAM3A and ADAM5 pseudogenes (8p11.22 chromosome region) were under 6.49-fold increased risk of OPSCC. ADAM5 shared a highly homologous sequence with the ADAM9 3'-UTR, predicted to be a binding site for miR-122b-5p. Individuals carrying more than three copies of ADAM3A and ADAM5 presented higher ADAM9 expression levels. Moreover, patients with total deletion or one copy of pseudogenes and with higher expression of miR-122b-5p presented worse prognoses. Our data suggest, for the first time, that ADAM3A and ADAM5 pseudogene-inherited CNV could modulate OPSCC occurrence and prognosis, possibly through the interaction of ADAM5 pseudogene transcript, miR-122b-5p, and ADAM9.
Collapse
|
28
|
Zaryouh H, Van Loenhout J, Peeters M, Vermorken JB, Lardon F, Wouters A. Co-Targeting the EGFR and PI3K/Akt Pathway to Overcome Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma: What about Autophagy? Cancers (Basel) 2022; 14:cancers14246128. [PMID: 36551613 PMCID: PMC9776372 DOI: 10.3390/cancers14246128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance to EGFR-targeted therapy is a major obstacle on the road to effective treatment options for head and neck cancers. During the search for underlying mechanisms and regulators of this resistance, there were several indications that EGFR-targeted therapy resistance is (partially) mediated by aberrant signaling of the PI3K/Akt pathway. Genomic alterations in and/or overexpression of major components of the PI3K/Akt pathway are common in HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising targets in the search for novel therapeutic strategies overcoming resistance to EGFR inhibitors. As both the EGFR/Ras/Raf/MAPK and the PI3K/Akt pathway are involved in autophagy, combinations of EGFR and PI3K/Akt pathway inhibitors can induce an autophagic response in tumor cells. This activation of autophagy can be seen as a "double-edge sword", depending on the cellular context. Autophagy is largely known as a cytoprotective mechanism, but it can also be a mechanism of programmed (autophagic) cell death. The activation of autophagy during anti-cancer treatment is, therefore, not necessarily a bad sign. However, in HNSCC, the role of therapy-induced autophagy as an anti-tumor mechanism is still largely unclear. Further research is warranted to understand the potential of combination treatments targeting both the EGFR and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Correspondence: ; Tel.: +32-3-265-25-33
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
29
|
Mezi S, Pomati G, Zizzari IG, Di Filippo A, Cerbelli B, Cirillo A, Fiscon G, Amirhassankhani S, Valentini V, De Vincentiis M, Corsi A, Di Gioia C, Tombolini V, Della Rocca C, Polimeni A, Nuti M, Marchetti P, Botticelli A. Genomic and Immune Approach in Platinum Refractory HPV-Negative Head and Neck Squamous Cell Carcinoma Patients Treated with Immunotherapy: A Novel Combined Profile. Biomedicines 2022; 10:biomedicines10112732. [PMID: 36359251 PMCID: PMC9687656 DOI: 10.3390/biomedicines10112732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Only a minority of patients with platinum refractory head and neck squamous cell carcinoma (PR/HNSCC) gain some lasting benefit from immunotherapy. Methods: The combined role of the comprehensive genomic (through the FoundationOne Cdx test) and immune profiles of 10 PR/HNSCC patients treated with the anti-PD-1 nivolumab was evaluated. The immune profiles were studied both at baseline and at the second cycle of immunotherapy, weighing 20 circulating cytokines/chemokines, adhesion molecules, and 14 soluble immune checkpoints dosed through a multiplex assay. A connectivity map was obtained by calculating the Spearman correlation between the expression profiles of circulating molecules. Results: Early progression occurred in five patients, each of them showing TP53 alteration and three of them showing a mutation/loss/amplification of genes involved in the cyclin-dependent kinase pathway. In addition, ERB2 amplification (1 patient), BRCA1 mutation (1 patient), and NOTCH1 genes alteration (3 patients) occurred. Five patients achieved either stable disease or partial response. Four of them carried mutations in PI3K/AKT/PTEN pathways. In the only two patients, with a long response to immunotherapy, the tumor mutational burden (TMB) was high. Moreover, a distinct signature, in terms of network connectivity of the circulating soluble molecules, characterizing responder and non-responder patients, was evidenced. Moreover, a strong negative and statistically significant (p-value ≤ 0.05) correlation with alive status was evidenced for sE-selectin at T1. Conclusions: Our results highlighted the complexity and heterogeneity of HNSCCs, even though it was in a small cohort. Molecular and immune approaches, combined in a single profile, could represent a promising strategy, in the context of precision immunotherapy.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence: (S.M.); (G.P.)
| | - Giulia Pomati
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence: (S.M.); (G.P.)
| | - Ilaria Grazia Zizzari
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandra Di Filippo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Via Palagi 9, 40138 Bologna, Italy
| | - Valentino Valentini
- Department of Oral and Maxillo-Facial Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Marco De Vincentiis
- Department of Oral and Maxillo-Facial Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Paolo Marchetti
- IDI-IRCCS Istituto Dermopatico Dell’Immacolata, 00167 Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
30
|
Desilets A, Ho AL. Targeting HRAS in Head and Neck Cancer: Lessons From the Past and Future Promise. Cancer J 2022; 28:363-368. [PMID: 36165724 DOI: 10.1097/ppo.0000000000000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT HRAS mutations define a unique biologic subset of head and neck squamous cell carcinoma. Oncogenic HRAS is uniquely dependent on posttranslational farnesylation for membrane localization and activation of downstream signaling. Tipifarnib, a farnesyltransferase inhibitor, demonstrated encouraging antitumor activity for HRAS mutant head and neck squamous cell carcinoma and modest activity for HRAS mutant salivary gland cancer. New combination strategies to circumvent intrinsic and acquired resistance to TFIs are being investigated.
Collapse
Affiliation(s)
| | - Alan L Ho
- From the Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
31
|
Yu C, Li Q, Zhang Y, Wen ZF, Dong H, Mou Y. Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:941750. [PMID: 36092724 PMCID: PMC9458968 DOI: 10.3389/fcell.2022.941750] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) have a high incidence and mortality rate, and investigating the pathogenesis and potential therapeutic strategies of HNSCC is required for further progress. Immunotherapy is a considerable therapeutic strategy for HNSCC due to its potential to produce a broad and long-lasting antitumor response. However, immune escape, which involves mechanisms including dyregulation of cytokines, perturbation of immune checkpoints, and recruitment of inhibitory cell populations, limit the efficacy of immunotherapy. Currently, multiple immunotherapy strategies for HNSCC have been exploited, including immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted therapy. Each of these strategies has unique advantages, and the appropriate application of these immunotherapies in HNSCC treatment has significant value for patients. Therefore, this review comprehensively summarizes the mechanisms of immune escape and the characteristics of different immunotherapy strategies in HNSCC to provide a foundation and consideration for the clinical treatment of HNSCC.
Collapse
Affiliation(s)
- Chenhang Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Fa Wen
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Dong
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yongbin Mou
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Hobday S, Armache M, Paquin R, Nurimba M, Baddour K, Linder D, Kouame G, Tharrington S, Albergotti WG, Mady LJ. The Body Mass Index Paradox in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Nutr Cancer 2022; 75:48-60. [PMID: 35959747 DOI: 10.1080/01635581.2022.2102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The body mass index (BMI) paradox describes that among patients with certain cancers, higher pretreatment BMI may be associated with improved survival. We examine the impact of BMI on overall survival (OS) in head and neck squamous cell carcinoma (HNSCC) patients. A literature search was performed, and articles using hazard ratios to describe the prognostic impact of BMI on OS in HNSCC were included. Random-effects DerSimonian and Laird methods were employed for meta-analysis. Meta-analysis of OS indicated a lower hazards of death in the overweight (BMI: 25 kg/m2-30 kg/m2) compared to the normal weight (BMI: 18.5 kg/m2-25 kg/m2). This protective relationship loses significance when BMI exceeds 30 kg/m2. Underweight patients (BMI < 18.5 kg/m2) demonstrate higher hazards of death compared to normal weight patients. Compared to HNSCC patients with normal weight, being overweight up to a BMI of 30 kg/m2 is a positive predictor of OS, while being underweight confers a prognostic disadvantage. Further studies are needed to determine the mechanisms by which increased body mass influences survival outcomes in HNSCC.
Collapse
Affiliation(s)
- Sara Hobday
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Armache
- Department of Otolaryngology-Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rebecca Paquin
- Department of Otolaryngology-Head and Neck Surgery, Augusta University, Augusta, GA, USA
| | - Margaret Nurimba
- Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Khalil Baddour
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel Linder
- Division of Biostatistics and Data Science, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gail Kouame
- Greenblatt Library, Augusta University, Augusta, GA, USA
| | | | - William G Albergotti
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Leila J Mady
- Department of Otolaryngology-Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cancer Risk and Control (CRiC) Program of Excellence, Sidney Kimmel Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
33
|
Nguyen KA, Keith MJ, Keysar SB, Hall SC, Bimali A, Jimeno A, Wang XJ, Young CD. Epidermal growth factor receptor signaling in precancerous keratinocytes promotes neighboring head and neck cancer squamous cell carcinoma cancer stem cell-like properties and phosphoinositide 3-kinase inhibitor insensitivity. Mol Carcinog 2022; 61:664-676. [PMID: 35417043 PMCID: PMC9233118 DOI: 10.1002/mc.23409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is commonly associated with tobacco and alcohol consumption that induce a "precancerous field," with phosphoinositide 3-kinase (PI3K) signaling being a common driver. However, the preclinical effectiveness of PI3K inhibitors has not necessarily translated to remarkable benefit in HNSCC patients. Thus, we sought to determine how precancerous keratinocytes influence HNSCC proliferation, cancer stem cell (CSC) maintenance, and response to PI3K inhibitors. We used the NOK keratinocyte cell line as a model of preneoplastic keratinocytes because it harbors two frequent genetic events in HNSCC, CDKN2A promoter methylation and TP53 mutation, but does not form tumors. NOK cell coculture or NOK cell-conditioned media promoted HNSCC proliferation, PI3K inhibitor resistance, and CSC phenotypes. SOMAscan-targeted proteomics determined the relative levels of >1300 analytes in the media conditioned by NOK cells and HNSCC cells ± PI3K inhibitor. These results demonstrated that NOK cells release abundant levels of ligands that activate epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR), two receptor tyrosine kinases with oncogenic activity. Inhibition of EGFR, but not FGFR, blunted PI3K inhibitor resistance and CSC phenotypes induced by NOK cells. Our results demonstrate that precancerous keratinocytes can directly support neighboring HNSCC by activating EGFR. Importantly, PI3K inhibitor sensitivity was not necessarily a cancer cell-intrinsic property, and the tumor microenvironment impacts therapeutic response and supports CSCs. Additionally, combined inhibition of EGFR with PI3K inhibitor diminished EGFR activation induced by PI3K inhibitor and potently inhibited cancer cell proliferation and CSC maintenance.
Collapse
Affiliation(s)
- Khoa A. Nguyen
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Madison J. Keith
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Stephen B. Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Spencer C. Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Anamol Bimali
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Christian D. Young
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, CO
| |
Collapse
|
34
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
35
|
Dou S, Zhang L, Wang C, Yao Y, Jiang W, Ye L, Li J, Wu S, Sun D, Gong X, Li R, Zhu G. EGFR Mutation and 11q13 Amplification Are Potential Predictive Biomarkers for Immunotherapy in Head and Neck Squamous Cell Carcinoma. Front Immunol 2022; 13:813732. [PMID: 35371031 PMCID: PMC8965897 DOI: 10.3389/fimmu.2022.813732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant cancers. The treatment of HNSCC remains challenging despite recent progress in targeted therapies and immunotherapy. Research on predictive biomarkers in clinical settings is urgently needed. Methods Next-generation sequencing analysis was performed on tumor samples from 121 patients with recurrent or metastatic HNSCC underwent sequencing analysis. Clinicopathological information was collected, and the clinical outcomes were assessed. Progression-free survival (PFS) was estimated using the Kaplan-Meier method and cox regression model was used to conduct multivariate analysis. Fisher’s exact tests were used to calculate clinical benefit. A p value of less than 0.05 was designated as significant (p < 0.05). Results Chromosome 11q13 amplification (CCND1, FGF3, FGF4, and FGF19) and EGFR mutations were significantly associated with decreased PFS and no clinical benefits after treatment with a programmed death 1 (PD-1) inhibitor. The same results were found in the combined positive score (CPS) ≥ 1 subgroup. In patients who were treated with an EGFR antibody instead of a PD-1 inhibitor, a significant difference in PFS and clinical benefits was only observed between patients with CPS ≥ 1 and CPS < 1. Conclusion Chromosome 11q13 amplification and EGFR mutations were negatively correlated with anti-PD-1 therapy. These markers may serve as potential predictive biomarkers to identify patients for whom immunotherapy may be unsuitable.
Collapse
Affiliation(s)
- Shengjin Dou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lin Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanli Yao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wen Jiang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lulu Ye
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sicheng Wu
- Biostatistics Office of Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Debin Sun
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xiaoli Gong
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Rongrong Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Guopei Zhu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
36
|
Zhu J, Liu X, Luan Z, Xue W, Cui H, Zhang B, Xue G. Circular RNA circSLC8A1 inhibits the proliferation and invasion of glioma cells through targeting the miR-214-5p/CDC27 axis. Metab Brain Dis 2022; 37:1015-1023. [PMID: 35098413 DOI: 10.1007/s11011-022-00915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Circular RNA circSLC8A1 is one of the cancer-related circRNAs that is implicated in various cancers. However, studies focusing on the role of circSLC8A1 in glioma is rare. Here we attempted to evaluate the biological function of circSLC8A1 in glioma and explore the potential mechanism. The relative expression of circSLC8A1, miR-214-5p and CDC27 in tissues and cell lines was determined by qRT-PCR. Cell proliferation and invasion were respectively measured by CCK-8 and transwell assays. Protein level of CDC27 was analyzed by western blot. Luciferase reporter assay was performed to confirm the regulatory interaction of cirRNA-miRNA-mRNA. Lowly expressed circSLC8A1 was observed in both glioma tissues and cell lines. Further biological analyses showed that circSLC8A1 inhibits the cell proliferation and invasion of glioma cells. CircSLC8A1 directly sponged miR-214-5p and inhibited miR-214-5p expression in glioma cells. CDC27 was a direct target of miR-214-5p and could be regulated by miR-214-5p. Moreover, miR-214-5p mimics and CDC27 knockdown reversed the inhibitory effects of circSLC8A1 on cell proliferation and invasion. Taken together, our results demonstrated a tumor suppressive role of circSLC8A1 in glioma through regulation of glioma cells proliferation and invasion. The effects of circSLC8A1 were mediated by miR-214-5p/CDC27 axis. Our study provided a new understanding of the occurrence and development of glioma.
Collapse
Affiliation(s)
- Jiabao Zhu
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China.
| | - Xiaobin Liu
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zhonghua Luan
- Department of Pathology, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Wei Xue
- Department of Radiology, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Haizheng Cui
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Baochen Zhang
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Guoqiang Xue
- Department of Neurosurgery, Yuncheng Central Hospital of Shanxi Medical University, Yuncheng, 044000, China
| |
Collapse
|
37
|
Symer DE, Akagi K, Geiger HM, Song Y, Li G, Emde AK, Xiao W, Jiang B, Corvelo A, Toussaint NC, Li J, Agrawal A, Ozer E, El-Naggar AK, Du Z, Shewale JB, Stache-Crain B, Zucker M, Robine N, Coombes KR, Gillison ML. Diverse tumorigenic consequences of human papillomavirus integration in primary oropharyngeal cancers. Genome Res 2021; 32:55-70. [PMID: 34903527 PMCID: PMC8744672 DOI: 10.1101/gr.275911.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.
Collapse
Affiliation(s)
- David E Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Yang Song
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gaiyun Li
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - André Corvelo
- New York Genome Center, New York, New York 10013, USA
| | | | - Jingfeng Li
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Amit Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Enver Ozer
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Adel K El-Naggar
- Division of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zoe Du
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jitesh B Shewale
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Mark Zucker
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Bubola J, MacMillan CM, Weinreb I, Witterick I, Swanson D, Zhang L, Antonescu CR, Dickson BC. A Poorly Differentiated Non-keratinizing Sinonasal Squamous Cell Carcinoma with a Novel ETV6-TNFRSF8 Fusion Gene. Head Neck Pathol 2021; 15:1284-1288. [PMID: 33394379 PMCID: PMC8633219 DOI: 10.1007/s12105-020-01249-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Squamous cell carcinoma of the sinonasal tract is relatively rare and morphologically and genetically heterogeneous. We report the case of an adult male with a left sphenoid sinus mass. A biopsy revealed an undifferentiated carcinoma composed of sheets of epithelioid cells lacking keratinization and glandular formation. The tumor was associated with a prominent lymphoplasmacytic inflammatory infiltrate. Immunohistochemical staining demonstrated diffuse expression of pankeratin and p63; it was negative for p16. In addition, EBER was also negative. Morphologically the findings raised the possibility of non-keratinizing squamous cell carcinoma. RNA sequencing was undertaken to exclude the possibility of NUT carcinoma; interestingly, this revealed a novel ETV6-TNFRSF8 fusion transcript, which was independently confirmed by fluorescence in situ hybridization. The current case is illustrative because it broadens our understanding of the molecular pathogenesis of non-keratinizing squamous cell carcinoma and adds to the diversity of ETV6-rearranged malignancies.
Collapse
Affiliation(s)
- Justin Bubola
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Christina M MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Ian Witterick
- Department of Otolaryngology Head and Neck Surgery, Department of Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Suite 6.500.12.5, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
39
|
Vaccine-Based Immunotherapy for Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13236041. [PMID: 34885150 PMCID: PMC8656843 DOI: 10.3390/cancers13236041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Therapeutic vaccines are given to patients with cancer, as opposed to prophylactic vaccines given to a healthy population. The challenge for therapeutic oncological vaccines is to stimulate an immune T cell response against endogenous (or derived) antigens that is sufficiently potent to induce cytotoxic activity and broad enough to take tumor heterogeneity into account. The purpose of this article is to provide an updated review of the prophylactic and therapeutic vaccines that target viral or non-viral antigens, particularly in head and neck cancers. Abstract In 2019, the FDA approved pembrolizumab, a monoclonal antibody targeting PD-1, for the first-line treatment of recurrent or metastatic head and neck cancers, despite only a limited number of patients benefiting from the treatment. Promising effects of therapeutic vaccination led the FDA to approve the use of the first therapeutic vaccine in prostate cancer in 2010. Research in the field of therapeutic vaccination, including possible synergistic effects with anti-PD(L)1 treatments, is evolving each year, and many vaccines are in pre-clinical and clinical studies. The aim of this review article is to discuss vaccines as a new therapeutic strategy, particularly in the field of head and neck cancers. Different vaccination technologies are discussed, as well as the results of the first clinical trials in HPV-positive, HPV-negative, and EBV-induced head and neck cancers.
Collapse
|
40
|
Wu CY, Liao JD, Chen CH, Lee H, Wang SH, Liu BH, Lee CY, Shao PL, Li E. Non-Thermal Reactive N2/He Plasma Exposure to Inhibit Epithelial Head and Neck Tumor Cells. COATINGS 2021; 11:1284. [DOI: doi.org/10.3390/coatings11111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The traditional therapy for head and neck cancer patients has several side effects. Hence, regular follow-up care is usually required. Recently, non-thermal micro-plasma was applied to inactivate cancer cells. Such a physical method provides localized energy and reactive oxygen/nitrogen species (ROS/RNS). In this study, the ability of non-oxygen N2/He micro-plasma to inactivate four pharynx squamous carcinomatous cells, namely SAS, CAL 27, FaDu, and Detroit 562, under different exposure durations is evaluated. The four cell lines were affected with regard to proliferation, reduction, and apoptosis-related DNA damage, implying that the cell medium is critical in plasma–cell interaction. This is expected to be a promising method for head and neck cancer cell suppression through plasma-initiated ROS/RNS species under a suitable exposure time.
Collapse
|
41
|
Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, Sampurno S, Sia J, Bernardi MP, Chittleborough TJ, Behrenbruch CC, Teh J, Xu H, Haynes NM, Yu J, Lupat R, Hawkes D, Di Costanzo N, Tothill RW, Mitchell C, Ngan SY, Heriot AG, Ramsay RG, Phillips WA. Molecular and genomic characterisation of a panel of human anal cancer cell lines. Cell Death Dis 2021; 12:959. [PMID: 34663790 PMCID: PMC8523722 DOI: 10.1038/s41419-021-04141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
Collapse
Affiliation(s)
- Glen R Guerra
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Joseph C Kong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rosemary M Millen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Read
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David S Liu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- UGI Surgery Unit, Austin Hospital, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Sara Roth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shienny Sampurno
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Joseph Sia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Maria-Pia Bernardi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy J Chittleborough
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Corina C Behrenbruch
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiasian Teh
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Huiling Xu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiaan Yu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard Lupat
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - David Hawkes
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- VCS Foundation, Carlton, VIC, 3053, Australia
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Natasha Di Costanzo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard W Tothill
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Samuel Y Ngan
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Alexander G Heriot
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert G Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
42
|
Kono T, Laimins L. Genomic Instability and DNA Damage Repair Pathways Induced by Human Papillomaviruses. Viruses 2021; 13:1821. [PMID: 34578402 PMCID: PMC8472259 DOI: 10.3390/v13091821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical and other anogenital cancers as well as those of the oropharynx. HPV proteins activate host DNA damage repair factors to promote their viral life cycle in stratified epithelia. Activation of both the ATR pathway and the ATM pathway are essential for viral replication and differentiation-dependent genome amplification. These pathways are also important for maintaining host genomic integrity and their dysregulation or mutation is often seen in human cancers. The APOBEC3 family of cytidine deaminases are innate immune factors that are increased in HPV positive cells leading to the accumulation of TpC mutations in cellular DNAs that contribute to malignant progression. The activation of DNA damage repair factors may corelate with expression of APOBEC3 in HPV positive cells. These pathways may actively drive tumor development implicating/suggesting DNA damage repair factors and APOBEC3 as possible therapeutic targets.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Keio University, Tokyo 1608582, Japan
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
43
|
Sjöstedt S, von Buchwald C, Agander TK, Aanaes K. Impact of human papillomavirus in sinonasal cancer-a systematic review. Acta Oncol 2021; 60:1175-1191. [PMID: 34319844 DOI: 10.1080/0284186x.2021.1950922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) is an established prognostic marker in oropharyngeal squamous cell carcinoma. Currently, the role of HPV in sinonasal carcinoma is being explored. OBJECTIVES This systematic review addresses the role of HPV in sinonasal cancer, establishing the occurrence of HPV-positive cancers and the influence of HPV-positivity on prognosis in sinonasal cancer as well as the utility of the putative surrogate marker of HPV (p16) in sinonasal cancer. MATERIAL AND METHODS Studies were identified with searches of Medline via PubMed and Embase via OVID (4 May 2020). Articles on original research concerning sinonasal cancer and HPV in humans written in English were included. Case reports with less than five cases were excluded. RESULTS Initially, 545 articles were identified; 190 duplicate articles were removed leaving 355 articles for title/abstract screening. Title/abstract screening excluded 243 articles, leaving 112 studies assessed for eligibility. After full-text screening, 57 studies were included. All articles investigated the significance of HPV in sinonasal carcinomas. HPV was reported in approximately 30% of sinonasal squamous cell carcinoma (SNSCC), where it was associated with a better prognosis. In sinonasal cancer, p16 is associated with diagnostic pitfalls and a putative utility of p16 in SNSCC has yet to be established. HPV was not frequently reported in other types of sinonasal carcinomas, besides the recently described subtype, HPV-dependent Multiphenotypic Sinonasal Carcinoma. In other types of sinonasal carcinoma, HPV is not frequently found. CONCLUSION Approximately 30% of SNSCC are HPV-positive. HPV-positivity in SNSCC is associated with improved survival. HPV occurs only rarely in other sinonasal cancers. There is currently not sufficient evidence for p16 as a surrogate marker of HPV in SNSCC.
Collapse
Affiliation(s)
- Sannia Sjöstedt
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Kasper Aanaes
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
44
|
Chitsike L, Duerksen-Hughes PJ. Targeted Therapy as a Potential De-Escalation Strategy in Locally Advanced HPV-Associated Oropharyngeal Cancer: A Literature Review. Front Oncol 2021; 11:730412. [PMID: 34490123 PMCID: PMC8418093 DOI: 10.3389/fonc.2021.730412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape of locally advanced HPV-oropharyngeal squamous cell carcinoma (OPSCC) is undergoing transformation. This is because the high cures rates observed in OPSCC are paired with severe treatment-related, long-term toxicities. These significant adverse effects have led some to conclude that the current standard of care is over-treating patients, and that de-intensifying the regimens may achieve comparable survival outcomes with lower toxicities. Consequently, several de-escalation approaches involving locally advanced OPSCC are underway. These include the reduction of dosage and volume of intensive cytotoxic regimens, as well as elimination of invasive surgical procedures. Such de-intensifying treatments have the potential to achieve efficacy and concurrently alleviate morbidity. Targeted therapies, given their overall safer toxicity profiles, also make excellent candidates for de-escalation, either alone or alongside standard treatments. However, their role in these endeavors is currently limited, because few targeted therapies are currently in clinical use for head and neck cancers. Unfortunately, cetuximab, the only FDA-approved targeted therapy, has shown inferior outcomes when paired with radiation as compared to cisplatin, the standard radio-sensitizer, in recent de-escalation trials. These findings indicate the need for a better understanding of OPSCC biology in the design of rational therapeutic strategies and the development of novel, OPSCC-targeted therapies that are safe and can improve the therapeutic index of standard therapies. In this review, we summarize ongoing research on mechanism-based inhibitors in OPSCC, beginning with the salient molecular features that modulate tumorigenic processes and response, then exploring pharmacological inhibition and pre-clinical validation studies of candidate targeted agents, and finally, summarizing the progression of those candidates in the clinic.
Collapse
|
45
|
Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral Cancer: Genetics and the Role of Precision Medicine. Surg Oncol Clin N Am 2021; 29:127-144. [PMID: 31757309 DOI: 10.1016/j.soc.2019.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
Affiliation(s)
- Chia-Cheng Li
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhen Shen
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Roxanne Bavarian
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Francis Street, Boston, MA 02115, USA
| | - Fan Yang
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, East 24th Street, New York, NY 10010, USA
| |
Collapse
|
46
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
47
|
Kordbacheh F, Farah CS. Molecular Pathways and Druggable Targets in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3453. [PMID: 34298667 PMCID: PMC8307423 DOI: 10.3390/cancers13143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some improvements in survival, however, have been a result of new management and treatment approaches made possible because of our ever-increasing understanding of the molecular pathways triggered in head and neck oncogenesis, and the growing understanding of the abundant heterogeneity of this group of cancers. Some important pathways are common to other solid tumours, but their impact on reducing the burden of head and neck disease has been less than impressive. Other less known and little-explored pathways may hold the key to the development of potential druggable targets. The extensive work carried out over the last decade, mostly utilising next generation sequencing has opened up the development of many novel approaches to head and neck cancer treatment. This paper explores our current understanding of the molecular pathways of this group of tumours and outlines associated druggable targets which are deployed as therapeutic approaches in head and neck oncology with the ultimate aim of improving patient outcomes and controlling the personal and economic burden of head and neck cancer.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Perth, WA 6009, Australia
- Genomics for Life, Brisbane, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6008, Australia
- Peter MacCallum Cancer Centre, Head and Neck Cancer Signalling Laboratory, Melbourne, VIC 3000, Australia
| |
Collapse
|
48
|
Brennan S, Baird AM, O’Regan E, Sheils O. The Role of Human Papilloma Virus in Dictating Outcomes in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:677900. [PMID: 34250016 PMCID: PMC8262095 DOI: 10.3389/fmolb.2021.677900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
The Human Papilloma Virus (HPV) is an oncogenic virus which is associated with the development of head and neck squamous cell carcinoma (HNSCC), predominantly within the oropharynx. Approximately 25% of oropharyngeal squamous cell carcinoma (OPSCC) cases worldwide are attributable to HPV infection, with an estimated 65% in the United States. Transmission is via exposure during sexual contact, with distinctive anatomical features of the tonsils providing this organ with a predilection for infection by HPV. No premalignant lesion is identifiable on clinical examination, thus no comparative histological features to denote the stages of carcinogenesis for HPV driven HNSCC are identifiable. This is in contrast to HPV-driven cervical carcinoma, making screening a challenge for the head and neck region. However, HPV proffers a favorable prognosis in the head and neck region, with better overall survival rates in contrast to its HPV negative counterparts. This has resulted in extensive research into de-intensifying therapies aiming to minimize the morbidity induced by standard concurrent chemo-radiotherapy without compromising efficacy. Despite the favorable prognosis, cases of recurrence and/or metastasis of HPV positive HNSCC do occur, and are linked with poor outcomes. HPV 16 is the most frequent genotype identified in HNSCC, yet there is limited research to date studying the impact of other HPV genotype with respect to overall survival. A similar situation pertains to genetic aberrations associated in those with HPV positive HNSCC who recur, with only four published studies to date. Somatic mutations in TSC2, BRIP1, NBN, TACC3, NFE2l2, STK11, HRAS, PIK3R1, TP63, and FAT1 have been identified in recurrent HPV positive OPSCC. Finding alternative therapeutic strategies for this young cohort may depend on upfront identification of HPV genotypes and mutations which are linked with worse outcomes, thus ensuring appropriate stratification of treatment regimens.
Collapse
Affiliation(s)
- Shane Brennan
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Esther O’Regan
- Department of Histopathology, St. James’s Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
49
|
Burcher KM, Faucheux AT, Lantz JW, Wilson HL, Abreu A, Salafian K, Patel MJ, Song AH, Petro RM, Lycan T, Furdui CM, Topaloglu U, D’Agostino RB, Zhang W, Porosnicu M. Prevalence of DNA Repair Gene Mutations in Blood and Tumor Tissue and Impact on Prognosis and Treatment in HNSCC. Cancers (Basel) 2021; 13:3118. [PMID: 34206538 PMCID: PMC8267691 DOI: 10.3390/cancers13133118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors are currently approved for a limited number of cancers and targetable mutations in DNA damage repair (DDR) genes. In this single-institution retrospective study, the profiles of 170 patients with head and neck squamous cell cancer (HNSCC) and available tumor tissue DNA (tDNA) and circulating tumor DNA (ctDNA) results were analyzed for mutations in a set of 18 DDR genes as well as in gene subsets defined by technical and clinical significance. Mutations were correlated with demographic and outcome data. The addition of ctDNA to the standard tDNA analysis contributed to identification of a significantly increased incidence of patients with mutations in one or more genes in each of the study subsets of DDR genes in groups of patients older than 60 years, patients with laryngeal primaries, patients with advanced stage at diagnosis and patients previously treated with chemotherapy and/or radiotherapy. Patients with DDR gene mutations were found to be significantly less likely to have primary tumors within the in oropharynx or HPV-positive disease. Patients with ctDNA mutations in all subsets of DDR genes analyzed had significantly worse overall survival in univariate and adjusted multivariate analysis. This study underscores the utility of ctDNA analysis, alone, and in combination with tDNA, for defining the prevalence and the role of DDR gene mutations in HNSCC. Furthermore, this study fosters research promoting the utilization of PARP inhibitors in HNSCC precision oncology treatments.
Collapse
Affiliation(s)
- Kimberly M. Burcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Andrew T. Faucheux
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Jeffrey W. Lantz
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Harper L. Wilson
- University of Kentucky Medical Center, Lexington, KY 40536, USA;
| | - Arianne Abreu
- Campbell University School of Osteopathic Medicine (CUSOM), Lillington, NC 27546, USA;
| | - Kiarash Salafian
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Manisha J. Patel
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Alexander H. Song
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Robin M. Petro
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Thomas Lycan
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Cristina M. Furdui
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Umit Topaloglu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Ralph B. D’Agostino
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Wei Zhang
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| | - Mercedes Porosnicu
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (K.M.B.); (A.T.F.); (J.W.L.); (K.S.); (M.J.P.); (A.H.S.); (R.M.P.); (T.L.J.); (C.M.F.); (U.T.); (R.B.D.J.); (W.Z.)
| |
Collapse
|
50
|
Borkowska EM, Barańska M, Kowalczyk M, Pietruszewska W. Detection of PIK3CA Gene Mutation in Head and Neck Squamous Cell Carcinoma Using Droplet Digital PCR and RT-qPCR. Biomolecules 2021; 11:818. [PMID: 34072735 PMCID: PMC8227819 DOI: 10.3390/biom11060818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are the seventh cause of human malignancy with low survival rate due to late diagnosis and treatment. Its etiology is diverse; however genetic factors are significant. The most common mutations in HNSCC were found in the genes: PIK3CA (10-12%), BRCA1 (6%), and BRCA2 (7-9%). In some cases, these biomarkers correlate with recurrences or survival showing a potential of prognostic and predictive value. A total of 113 formalin-fixed paraffin embedded (FFPE) tumor samples were collected from patients with HNSCC (oral cavity: 35 (31.0%); oropharynx: 30 (26.0%); larynx: 48 (43.0%)). We examined PIK3CA H1047R mutation by Real Time PCR (RT-qPCR) and droplet digital PCR (ddPCR). BRCA1 and BRCA2 mutations were analyzed by RT-qPCR while p16 protein expression was assessed by immunohistochemistry. Finally, we identified HPV infection by RT-qPCR. The relationships between genomic alterations and clinical parameters were assessed using the Yates' corrected Chi-squared test or Fisher's exact test for nominal variables. Kaplan Meier plots were applied for survival analysis. Our results revealed 9 PIK3CA H1047R mutations detected by ddPCR: 8 of them were negative in RT-qPCR. Due to the use of different methods to test the presence of the PIK3CA gene mutation, different treatment decisions might be made. That is why it is so important to use the most sensitive methods available. We confirmed the usefulness of ddPCR in the PIK3CA mutation assessment in FFPE samples.
Collapse
Affiliation(s)
- Edyta M. Borkowska
- Department of Clinical Genetics Chair of Laboratory and Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Magda Barańska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 93-143 Lodz, Poland; (M.B.); (M.K.)
| | - Magdalena Kowalczyk
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 93-143 Lodz, Poland; (M.B.); (M.K.)
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 93-143 Lodz, Poland; (M.B.); (M.K.)
| |
Collapse
|