1
|
Clauzel A, Persoons R, Maître A, Balducci F, Petit P. Review of environmental airborne pyrene/benzo[a]pyrene levels from industrial emissions for the improvement of 1-hydroxypyrene biomonitoring interpretation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:212-232. [PMID: 38845364 DOI: 10.1080/10937404.2024.2362632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of significant public health concern, with several that are highly toxic to humans, including some proven or suspected carcinogens. To account for the high variability of PAH mixtures encountered in occupational settings, adjusting urinary 1-hydroxypyrene (1-OHP) levels by the total airborne pyrene (PyrT)/benzo[a]pyrene (BaP) ratio is essential for human biomonitoring (HBM). Given the complexity and cost of systematically monitoring atmospheric levels, alternative approaches to simultaneous airborne and HBM are required. The aim of this review was to catalog airborne PyrT/BaP ratios measured during different industrial activities and recommend 1-OHP-dedicated biological guidance values (BGV). A literature search was conducted. Seventy-one studies were included, with 5619 samples pertaining to 15 industrial sectors, 79 emission processes, and 213 occupational activities. This review summarized more than 40 years of data from almost 20 countries and highlighted the diversity and evolution of PAH emissions. PyrT/BaP ratios were highly variable, ranging from 0.8 in coke production to nearly 40 in tire and rubber production. A single PyrT/BaP value cannot apply to all occupational contexts, raising the question of the relevance of defining a single biological limit value for 1-OHP in industrial sectors where the PyrT/BaP ratio variability is high. Based upon the inventory, a practical approach is proposed for systematic PAH exposure and risk assessment, with a simple frame to follow based upon specific 1-OHP BGVs depending upon the occupational context and setup of a free PAH HBM interactive tool.
Collapse
Affiliation(s)
| | | | - Anne Maître
- Universite Grenoble Alpes, CNRS, Grenoble, France
| | | | - Pascal Petit
- Universite Grenoble Alpes, CNRS, Grenoble, France
- Universite Grenoble Alpes, AGEIS, Grenoble, France
| |
Collapse
|
2
|
Oltramare C, Mediouni Z, Shoman Y, Hopf NB, Graczyk H, Berthet A. Determinants of Pesticide Exposure in Occupational Studies: A Meta-Analysis. TOXICS 2023; 11:623. [PMID: 37505588 PMCID: PMC10386710 DOI: 10.3390/toxics11070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Few epidemiological studies use exposure determinants specifically tailored to assess pesticide or plant protection product (PPP) exposures when assessing presumed association between occupational exposure and health outcomes among agricultural workers. This lack of exposure specificity could lead to results that fail to detect an association. It could be related to the lack of consensus on exposure assessment methods and the choice of exposure determinants. We conducted a meta-analysis following the PRISMA checklist to identify PPP exposure determinants used in occupational studies and identified exposure determinants that best characterized agricultural exposures to PPPs. Out of 1436 studies identified, 71 were included. The exposure determinants identified were active ingredients, chemical classes, types of PPP, crops, tasks, frequencies, duration, lifetime exposure days, and intensity-weighted exposure days. Only six over 17 associations between exposure determinants and health outcomes were found with moderate quality of evidence. Overall, epidemiological studies had difficulty defining relevant determinants to characterize PPP exposures for agricultural workers. We recommend that a standardized list of determinants for PPP exposures in occupational exposure studies should include information on formulations, intensity, duration, and frequency of PPP exposure. Harmonized data collection on exposure and health outcomes are required as well as standard units for each exposure determinant.
Collapse
Affiliation(s)
- Christelle Oltramare
- Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health (DSTE), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| | - Zakia Mediouni
- Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health (DSTE), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| | - Yara Shoman
- Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health (DSTE), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health (DSTE), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| | - Halshka Graczyk
- International Labour Organization (ILO), 1211 Geneva, Switzerland
| | - Aurélie Berthet
- Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health (DSTE), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| |
Collapse
|
3
|
Louro H, Gomes BC, Saber AT, Iamiceli AL, Göen T, Jones K, Katsonouri A, Neophytou CM, Vogel U, Ventura C, Oberemm A, Duca RC, Fernandez MF, Olea N, Santonen T, Viegas S, Silva MJ. The Use of Human Biomonitoring to Assess Occupational Exposure to PAHs in Europe: A Comprehensive Review. TOXICS 2022; 10:toxics10080480. [PMID: 36006159 PMCID: PMC9414426 DOI: 10.3390/toxics10080480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers' health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008-2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.
Collapse
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Bruno Costa Gomes
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | | | - Thomas Göen
- IPASUM, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kate Jones
- Health and Safety Executive, Buxton, Derbyshire SK17 9JN, UK
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
| | - Christiana M. Neophytou
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, 3000 Leuven, Belgium
| | - Mariana F. Fernandez
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nicolas Olea
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
4
|
Valière M, Petit P, Persoons R, Demeilliers C, Maître A. Consistency between air and biological monitoring for assessing polycyclic aromatic hydrocarbon exposure and cancer risk of workers. ENVIRONMENTAL RESEARCH 2022; 207:112268. [PMID: 34695431 DOI: 10.1016/j.envres.2021.112268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atmospheric levels of polycyclic aromatic hydrocarbons (PAHs) have been monitored in many companies since 1940. Because of the use of respiratory protective equipment (RPE) and cutaneous absorption, the measurement of urinary 1-hydroxypyrene (1-OHP), metabolite of pyrene (Pyr), and, more recently, 3-hydroxybenzo[a]pyrene (3-OHBaP), metabolite of benzo[a]pyrene (BaP), has been carried out to assess PAH exposure and estimate health risks. OBJECTIVES This study aimed to investigate the agreement between 523 air and biological levels recorded in the Exporisq-HAP database by taking into account the effectiveness of RPE. METHODS The agreement/consistency between 523 air and biological exposure levels was assessed by estimating and comparing the probability of exceeding French limit values (LVs) for both BaP and 3-OHBaP and ACGIH LV for 1-OHP, respectively. PAH airborne levels (wPAHs) were weighted by an assigned protection factor (APF) depending on the type of mask worn by workers, while urinary 1-OHP concentrations were adjusted with the wBaP/wPyr ratio of each industrial sector (wadj1-OHP). RESULTS Within occupational groups, there was an overall agreement between airborne PAH levels and urinary biomarker concentrations. A clear dichotomy was found between "petroleum-derived" and "coal-derived" groups, with much higher exposures in the latest group despite the use of RPEs by two-thirds of the workers. The type of RPE varied from one plant to another, which underlines the importance of taking into account their effectiveness. The analysis of urinary 3-OHBaP was not relevant for low PAH exposure levels. In addition, this biomarker underdiagnosed the exceedance of LV relative to BaP levels for 6% of "coal-derived" groups. CONCLUSIONS The use of urinary wadj1-OHP seemed to be more protective to assess the exceedance of LVs than those of urinary 3-OHBaP and air wBaP, but adjustment of the 1-OHP concentration by the BaP/Pyr ratio requires air sampling due to highly variable ratios observed in the studied occupational groups.
Collapse
Affiliation(s)
- Mélodie Valière
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC Laboratory (UMR CNRS 5525), EPSP Team, 38000, Grenoble, France
| | - Pascal Petit
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC Laboratory (UMR CNRS 5525), EPSP Team, 38000, Grenoble, France
| | - Renaud Persoons
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC Laboratory (UMR CNRS 5525), EPSP Team, 38000, Grenoble, France
| | - Christine Demeilliers
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC Laboratory (UMR CNRS 5525), EPSP Team, 38000, Grenoble, France
| | - Anne Maître
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC Laboratory (UMR CNRS 5525), EPSP Team, 38000, Grenoble, France.
| |
Collapse
|
5
|
Petit P, Maître A, Persoons R, Bicout DJ. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries. ENVIRONMENT INTERNATIONAL 2019; 124:109-120. [PMID: 30641254 DOI: 10.1016/j.envint.2018.12.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Millions of workers are exposed to carcinogenic polycyclic aromatic hydrocarbon (PAH) mixtures. The toxicity of PAH mixtures is variable and depends on the composition of the mixture, which is related to the emission sources. Although several indicators exist, the cancer risk estimation associated with occupational exposure to PAHs is poorly known. OBJECTIVES To assess the risk of lung cancer associated with PAHs in several industries using the atmospheric concentrations of benzo[a]pyrene (BaP) as a proxy. METHODS A total of 93 exposure groups belonging to 9 industries were investigated. Eight indicators found in the literature were compared to assess risks. A consensual indicator was used to estimate lung cancer risks. RESULTS Approximately 30% of the exposure groups were above the maximal risk level of the European Union (10-4). The risk probabilities were >10-3 for coke and silicon production; >10-4 for the manufacturing of carbon products and aluminum production; >10-5 for foundries and combustion processes; >10-6 for the use of lubricating oils and engine exhaust emissions; and >10-7 for bitumen. The risk probabilities were highly variable within industries (from 1 to 1000 likelihood). A total of 27 (95% CI: 0.1-54) contemporary additional lung cancer cases could be expected per year in the French exposed population based on estimations using published data. CONCLUSION This study provides an overview of cancer risk estimation in many industries. Despite efforts and changes that had been made to decrease risks, PAHs remain a sanitary threat for people exposed to these pollutants in occupational environments.
Collapse
Affiliation(s)
- Pascal Petit
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France.
| | - Anne Maître
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France; Grenoble Alpes teaching Hospital, CHUGA, Occupational and Environmental Toxicology Laboratory, Biochemistry Toxicology and Pharmacology Department, Biology and Pathology Institute, F-38000 Grenoble, France
| | - Renaud Persoons
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France; Grenoble Alpes teaching Hospital, CHUGA, Occupational and Environmental Toxicology Laboratory, Biochemistry Toxicology and Pharmacology Department, Biology and Pathology Institute, F-38000 Grenoble, France
| | - Dominique J Bicout
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, EPSP team (Environment and Health Prediction of Populations), 38000 Grenoble, France; VetAgro Sup, Biomathematics and Epidemiology Unit, Veterinary Campus of Lyon, F-69280 Marcy l'Etoile, France
| |
Collapse
|
6
|
[Study on the Establishment of a Specific Similar Exposure Group (SEG) in Personal Exposure Monitoring: A Case Report of Indium Tin Oxide Target Surface Grinding Process]. J UOEH 2018; 40:323-329. [PMID: 30568084 DOI: 10.7888/juoeh.40.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface grinding workers of Indium Tin Oxide target material are exposed to an indium compound with high toxicity. We divided individual exposure workers into similar exposure groups (SEG) and examined the effectiveness of the classification of SEG. Sampling was carried out twice a day for a total of 10 times, in 9 of which a work environment measurement in unit work area was performed at the same time. The classification examined two methods. One method was to set all the workers in the work place as one group (SEG1), and the other was to classify them depending on whether the workers handled the target material contained indium or not (SEG2). The group handled indium-contained material was SEG2(+) n=9, and the other was SEG2(-) n=9. Only the arithmetic mean value (AM) of four groups 2.8-27.4 µg/m3 in the SEG2(+) was lower than the measurement B value of the work environment measurement, but the AM of all the groups in SEG2(+) 2.8-276.8 µg/m3 was higher than the geometric mean value of measurement A 0.4-12.3 µg/m3. The concentration range of 100 μg/m3 or more of SEG2(+) AM was 20% of the total. This range was not recognized in the other items, and the variation of SEG2(+) was small. Even though the evaluation of SEG1 is control class 2, if revaluated on SEG2(+), 50% of the SEG2(+) were evaluated as control class 3. It is possible to efficiently manage chemical substances by establishing specific SEG properly stratified.
Collapse
|
7
|
Maitre A, Petit P, Marques M, Hervé C, Montlevier S, Persoons R, Bicout DJ. Exporisq-HAP database: 20 years of monitoring French occupational exposure to polycyclic aromatic hydrocarbon mixtures and identification of exposure determinants. Int J Hyg Environ Health 2018; 221:334-346. [DOI: 10.1016/j.ijheh.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
|