1
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
2
|
Haverroth EJ, Rimer IM, Oliveira LA, de Lima LGA, Cesarino I, Martins SCV, McAdam SAM, Cardoso AA. Gradients in embolism resistance within stems driven by secondary growth in herbs. PLANT, CELL & ENVIRONMENT 2024; 47:2986-2998. [PMID: 38644584 DOI: 10.1111/pce.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Leydson G A de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
4
|
Haverroth EJ, Oliveira LA, Andrade MT, Taggart M, McAdam SAM, Zsögön A, Thompson AJ, Martins SCV, Cardoso AA. Abscisic acid acts essentially on stomata, not on the xylem, to improve drought resistance in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:3229-3241. [PMID: 37526514 DOI: 10.1111/pce.14676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Moab T Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Matthew Taggart
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Andrew J Thompson
- Centre for Soil, Agrifood and Biosciences, Cranfield University, Bedfordshire, UK
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Johnson KM, Brodribb TJ. Evidence for a trade-off between growth rate and xylem cavitation resistance in Callitris rhomboidea. TREE PHYSIOLOGY 2023:tpad037. [PMID: 36947141 DOI: 10.1093/treephys/tpad037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The ideal plant water transport system is one that features high efficiency and resistance to drought-induced damage (xylem cavitation), however species rarely possess both. This may be explained by trade-offs between traits, yet thus far, no proposed trade-off has offered a universal explanation for the lack water transport systems that are both highly drought-resistant and highly efficient. Here we find evidence for a new trade-off, between growth rate and resistance to xylem cavitation, in the canopies of a drought-resistant tree species (Callitris rhomboidea). Wide variation in cavitation resistance (P50) was found in distal branch tips (< 2 mm in diameter), converging to low variation in P50 in larger diameter stems (> 2 mm). We found a significant correlation between cavitation resistance and distal branchlet internode length across branch tips in C. rhomboidea canopies. Branchlets with long internodes (8 mm or longer) were significantly more vulnerable to drought-induced xylem cavitation than shorter internodes (4 mm or shorter). This suggests that varying growth rates, leading to differences in internode length, drive differences in cavitation resistance in C. rhomboidea trees. The only distinct anatomical difference found between internodes was the pith size, with the average pith to xylem area in long internodes, 5x greater than in short internodes. Understanding whether this trade-off exists within and between species will help us to uncover what drives and limits drought resistance across the world's flora.
Collapse
|
6
|
Johnson KM, Fletcher LR. A herbaceous species provides insights into drought-driven plant adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:680-683. [PMID: 36739580 PMCID: PMC9899411 DOI: 10.1093/jxb/erac485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This article comments on: Thonglim A, Bortolami G, Delzon S, Larter M, Offringa R, Keurentjes JJB, Smets E, Balazadeh S, Lens F. 2023. Drought response in Arabidopsis displays synergistic coordination between stems and leaves. Journal of Experimental Botany 74, 1004–1021
Collapse
Affiliation(s)
| | - Leila R Fletcher
- School of the Environment, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Thonglim A, Bortolami G, Delzon S, Larter M, Offringa R, Keurentjes JJB, Smets E, Balazadeh S, Lens F. Drought response in Arabidopsis displays synergistic coordination between stems and leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1004-1021. [PMID: 36350081 PMCID: PMC9899417 DOI: 10.1093/jxb/erac446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The synergy between drought-responsive traits across different organs is crucial in the whole-plant mechanism influencing drought resilience. These organ interactions, however, are poorly understood, limiting our understanding of drought response strategies at the whole-plant level. Therefore, we need more integrative studies, especially on herbaceous species that represent many important food crops but remain underexplored in their drought response. We investigated inflorescence stems and rosette leaves of six Arabidopsis thaliana genotypes with contrasting drought tolerance, and combined anatomical observations with hydraulic measurements and gene expression studies to assess differences in drought response. The soc1ful double mutant was the most drought-tolerant genotype based on its synergistic combination of low stomatal conductance, largest stomatal safety margin, more stable leaf water potential during non-watering, reduced transcript levels of drought stress marker genes, and reduced loss of chlorophyll content in leaves, in combination with stems showing the highest embolism resistance, most pronounced lignification, and thickest intervessel pit membranes. In contrast, the most sensitive Cvi ecotype shows the opposite extreme of the same set of traits. The remaining four genotypes show variations in this drought syndrome. Our results reveal that anatomical, ecophysiological, and molecular adaptations across organs are intertwined, and multiple (differentially combined) strategies can be applied to acquire a certain level of drought tolerance.
Collapse
Affiliation(s)
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA Leiden, The Netherlands
| | | | | | - Remko Offringa
- Leiden University, Institute of Biology Leiden, Plant Developmental Genetics, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA Leiden, The Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | |
Collapse
|
8
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
9
|
Yin L, Jiang X, Ma L, Liu S, He T, Jiao L, Yin Y, Yao L, Guo J. Anatomical adaptions of pits in two types of ray parenchyma cells in Populus tomentosa during the xylem differentiation. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153830. [PMID: 36195007 DOI: 10.1016/j.jplph.2022.153830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Pits in ray parenchyma cells are important to understand the functional anatomy of the ray parenchyma network in the xylem but have been less studied. Herein, pits in two types of ray parenchyma cells, contact cells and isolation cells, across different developmental stages were qualitatively studied using 48-year-old Populus tomentosa trees. The timing of differentiation and death was determined by histochemical staining and polarized light microscopy. The dimension, shape and density of pits as well as cell wall thickness were measured using SEM and optical microscopy images of semi-thin radial sections and macerated ray parenchyma cells, and analyzed by multi-factor analyses of variance. Results showed that secondary wall thickening and lignification of contact cells begun near the cambium, contrarily those of isolation cells have started until the transition zone. But even in the sapwood, contact cell walls were still much thinner than isolation cell walls. Moreover, district anatomical adaptions of pits during the xylem differentiation were present between horizontal walls and tangential walls, between contact cells and isolation cells. Ray pits were simple to slightly bordered, whereas sieve-like pits were only shown on tangential walls of isolation cells. Pit density of horizontal walls was similar between contact cells and isolation cells, nevertheless greater pits were present on tangential walls, especially for isolation cells. In addition, pits of ray parenchyma cells in the heartwood were smaller and more bordered than those in the sapwood, particularly on the horizontal walls. Moreover, isolation cells had pits with the smaller dimensions, greater pits on the tangential walls, more bordered pits on horizontal walls, as well as longer and narrower cell morphology with much thicker cell walls than contact cells. To a certain extent, all these anatomical adaptations were developed to ensure distinct functions of the two types of ray parenchyma cells in the xylem and finally to support tree growth in demand.
Collapse
Affiliation(s)
- Lijuan Yin
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Xiaomei Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lingyu Ma
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Shoujia Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Tuo He
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lichao Jiao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Yafang Yin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lihong Yao
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Juan Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China.
| |
Collapse
|
10
|
Abstract
Insular woodiness (IW)-the evolutionary transition from herbaceousness toward woodiness on islands-is one of the most iconic features of island floras. Since pioneering work by Darwin and Wallace, a number of drivers of IW have been proposed, such as 1) competition for sunlight requiring plants with taller and stronger woody stems and 2) drought favoring woodiness to safeguard root-to-shoot water transport. Alternatively, IW may be the indirect result of increased lifespan related to 3) a favorable aseasonal climate and/or 4) a lack of large native herbivores. However, information on the occurrence of IW is fragmented, hampering tests of these potential drivers. Here, we identify 1,097 insular woody species on 375 islands and infer at least 175 evolutionary transitions on 31 archipelagos, concentrated in six angiosperm families. Structural equation models reveal that the insular woody species richness on oceanic islands correlates with a favorable aseasonal climate, followed by increased drought and island isolation (approximating competition). When continental islands are also included, reduced herbivory pressure by large native mammals, increased drought, and island isolation are most relevant. Our results illustrate different trajectories leading to rampant convergent evolution toward IW and further emphasize archipelagos as natural laboratories of evolution, where similar abiotic or biotic conditions replicated evolution of similar traits.
Collapse
|
11
|
Sorek Y, Greenstein S, Hochberg U. Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. PHYSIOLOGIA PLANTARUM 2022; 174:e13785. [PMID: 36151946 PMCID: PMC9828144 DOI: 10.1111/ppl.13785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 05/20/2023]
Abstract
Embolism resistance is often viewed as seasonally stable. Here we examined the seasonality in the leaf xylem vulnerability curve (VC) and turgor loss point (ΨTLP ) of nine deciduous species that originated from Mediterranean, temperate, tropical, or sub-tropical habitats and were growing on the Volcani campus, Israel. All four Mediterranean/temperate species exhibited a shift of their VC to lower xylem pressures (Ψx ) along the dry season, in addition to two of the five tropical/sub-tropical species. In three of the species that exhibited VC seasonality, it was critical for avoiding embolism in the leaf. In total, seven out of the nine species avoided embolism. The seasonal VC adjustment was over two times higher as compared with the seasonal adjustment of ΨTLP , resulting in improved hydraulic safety as the season progressed. The results suggest that seasonality in the leaf xylem vulnerability is common in species that originate from Mediterranean or temperate habitats that have large seasonal environmental changes. This seasonality is advantageous because it enables a gradual seasonal reduction in the Ψx without increasing the danger of embolism. The results also highlight that measuring the minimal Ψx and the VC at different times can lead to erroneous estimations of the hydraulic safety margins. Changing the current hydraulic dogma into a seasonal dynamic in the vulnerability of the xylem itself should enable physiologists to understand plants' responses to their environment better.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
12
|
Levionnois S, Kaack L, Heuret P, Abel N, Ziegler C, Coste S, Stahl C, Jansen S. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. PLANT PHYSIOLOGY 2022; 190:371-386. [PMID: 35567500 PMCID: PMC9434246 DOI: 10.1093/plphys/kiac223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/19/2022] [Indexed: 05/16/2023]
Abstract
Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species. We also conducted gold perfusion and polar lipid detection experiments on three species covering the full range of leaf embolism resistance. We then related these observations to previously published data on embolism resistance of leaf xylem. We also incorporated previously published data on stem embolism resistance and stem xylem pit membranes to investigate the link between vulnerability segmentation (i.e. difference in embolism resistance) and leaf-stem anatomical variation. Maximum pit membrane thickness (Tpm,max) and the pit membrane thickness-to-diameter ratio (Tpm,max/Dpm) were predictive of leaf embolism resistance, especially when vestured pits were taken into account. Variation in Tpm,max/Dpm was the only trait predictive of vulnerability segmentation between leaves and stems. Gold particles of 5- and 10-nm infiltrated pit membranes in three species, while the entry of 50-nm particles was blocked. Moreover, polar lipids were associated with inner conduit walls and pits. Our results suggest that mechanisms related to embolism spreading are determined by Tpm, pore constrictions (i.e. the narrowest bottlenecks along pore pathways), and lipid surfactants, which are largely similar between leaf and stem xylem and between temperate and tropical trees. However, our mechanistic understanding of embolism propagation and the functional relevance of Tpm,max/Dpm remains elusive.
Collapse
Affiliation(s)
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | | | - Nina Abel
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, Nancy 54000, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | | |
Collapse
|
13
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
14
|
Echeverría A, Petrone‐Mendoza E, Segovia‐Rivas A, Figueroa‐Abundiz VA, Olson ME. The vessel wall thickness-vessel diameter relationship across woody angiosperms. AMERICAN JOURNAL OF BOTANY 2022; 109:856-873. [PMID: 35435252 PMCID: PMC9328290 DOI: 10.1002/ajb2.1854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
PREMISE Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.
Collapse
Affiliation(s)
- Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Emilio Petrone‐Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Alí Segovia‐Rivas
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| |
Collapse
|
15
|
Harrison Day BL, Carins-Murphy MR, Brodribb TJ. Reproductive water supply is prioritized during drought in tomato. PLANT, CELL & ENVIRONMENT 2022; 45:69-79. [PMID: 34705293 DOI: 10.1111/pce.14206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Reproductive success largely defines the fitness of plant species. Understanding how heat and drought affect plant reproduction is thus key to predicting future plant fitness under rising global temperatures. Recent work suggests reproductive tissues are highly vulnerable to water stress in perennial plants where reproductive sacrifice could preserve plant survival. However, most crop species are annuals where such a strategy would theoretically reduce fitness. We examined the reproductive strategy of tomato (Solanum lycopersicum var. Rheinlands Ruhm) to determine whether water supply to fruits is prioritized above vegetative tissues during drought. Using optical methods, we mapped xylem cavitation and tissue shrinkage in vegetative and reproductive organs during dehydration to determine the priority of water flow under acute water stress. Stems and peduncles of tomato showed significantly greater xylem cavitation resistance than leaves. This maintenance of intact water supply enabled tomato fruit to continue to expand during acute water stress, utilizing xylem water made available by tissue collapse and early cavitation of leaves. Here, tomato plants prioritize water supply to reproductive tissues, maintaining fruit development under drought conditions. These results emphasize the critical role of water transport in shaping life history and suggest a broad relevance of hydraulic prioritization in plant ecology.
Collapse
Affiliation(s)
| | | | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Suissa JS, Friedman WE. From cells to stems: the effects of primary vascular construction on drought-induced embolism in fern rhizomes. THE NEW PHYTOLOGIST 2021; 232:2238-2253. [PMID: 34273190 DOI: 10.1111/nph.17629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
While a considerable amount of data exists on the link between xylem construction and hydraulic function, few studies have focused on resistance to drought-induced embolism of primary vasculature in herbaceous plants. Ferns rely entirely on primary xylem and display a remarkable diversity of vascular construction in their rhizomes, making them an ideal group in which to examine hydraulic structure-function relationships. New optical methods allowed us to measure vulnerability to embolism in rhizomes, which are notoriously difficult to work with. We investigated five fern species based on their diverse xylem traits at the cellular, histological, and architectural levels. To link below- and above-ground hydraulics, we then measured leaf-stem vulnerability segmentation. Overall, rhizome vulnerability to embolism was correlated most strongly with cellular but not histological or architectural traits. Interestingly, at P6-12 , species with increased architectural dissection were actually more vulnerable to embolism, suggesting different hydraulic dynamics at low compared to high percent embolism. Importantly, leaves fully embolize before stems reach P88 , suggesting strong vulnerability segmentation. This is the first study to explore the functional implications of primary vascular construction in fern rhizomes and leaf-stem vulnerability segmentation. Strong segmentation suggests that leaves protect perennial rhizomes against severe drought stress and hydraulically induced mortality.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| | - William E Friedman
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
17
|
Hooft van Huysduynen A, Janssens S, Merckx V, Vos R, Valente L, Zizka A, Larter M, Karabayir B, Maaskant D, Witmer Y, Fernández‐Palacios JM, de Nascimento L, Jaén‐Molina R, Caujapé Castells J, Marrero‐Rodríguez Á, del Arco M, Lens F. Temporal and palaeoclimatic context of the evolution of insular woodiness in the Canary Islands. Ecol Evol 2021; 11:12220-12231. [PMID: 34522372 PMCID: PMC8427628 DOI: 10.1002/ece3.7986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
Insular woodiness (IW), referring to the evolutionary transition from herbaceousness toward woodiness on islands, has arisen more than 30 times on the Canary Islands (Atlantic Ocean). One of the IW hypotheses suggests that drought has been a major driver of wood formation, but we do not know in which palaeoclimatic conditions the insular woody lineages originated. Therefore, we provided an updated review on the presence of IW on the Canaries, reviewed the palaeoclimate, and estimated the timing of origin of woodiness of 24 insular woody lineages that represent a large majority of the insular woody species diversity on the Canaries. Our single, broad-scale dating analysis shows that woodiness in 60%-65% of the insular woody lineages studied originated within the last 3.2 Myr, during which Mediterranean seasonality (yearly summer droughts) became established on the Canaries. Consequently, our results are consistent with palaeoclimatic aridification as a potential driver of woodiness in a considerable proportion of the insular woody Canary Island lineages. However, the observed pattern between insular woodiness and palaeodrought during the last couple of million years could potentially have emerged as a result of the typically young age of the native insular flora, characterized by a high turnover.
Collapse
Affiliation(s)
| | - Steven Janssens
- Meise Botanic GardenMeiseBelgium
- Department of BiologyKU LeuvenLeuvenBelgium
| | - Vincent Merckx
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rutger Vos
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Luis Valente
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Alexander Zizka
- Naturalis Biodiversity CenterLeidenThe Netherlands
- German Center for Integrative Biodiversity Research (iDiv)LeipzigGermany
| | | | | | | | - Youri Witmer
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - José María Fernández‐Palacios
- Island Ecology and Biogeography Research GroupInstituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna (ULL)La LagunaSpain
| | - Lea de Nascimento
- Island Ecology and Biogeography Research GroupInstituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna (ULL)La LagunaSpain
| | - Ruth Jaén‐Molina
- Jardín Botánico Canario “Viera y Clavijo”‐Unidad Asociada al CSIC (Cabildo de Gran Canaria)Las Palmas de Gran CanariaSpain
| | - Juli Caujapé Castells
- Jardín Botánico Canario “Viera y Clavijo”‐Unidad Asociada al CSIC (Cabildo de Gran Canaria)Las Palmas de Gran CanariaSpain
| | - Águedo Marrero‐Rodríguez
- Jardín Botánico Canario “Viera y Clavijo”‐Unidad Asociada al CSIC (Cabildo de Gran Canaria)Las Palmas de Gran CanariaSpain
| | - Marcelino del Arco
- Departamento de BotánicaEcología y Fisiología VegetalUniversidad de La Laguna (ULL)La LagunaSpain
| | - Frederic Lens
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Biology Leiden, Plant SciencesLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
18
|
Brodersen CR. By the narrowest of margins: nano-scale modification of pit membranes and the fate of plants during drought. A commentary on: 'Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of Arabidopsis thaliana accessions'. ANNALS OF BOTANY 2021; 128:iii-v. [PMID: 34230960 PMCID: PMC8324028 DOI: 10.1093/aob/mcab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on: Ajaree Thonglim, Sylvain Delzon, Maximilian Larter, Omid Karami, Arezoo Rahimi, Remko Offringa, Joost J. B. Keurentjes, Salma Balazadeh, Erik Smets and Frederic Lens, Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of Arabidopsis thaliana accessions, Annals of Botany, Volume 128, Issue 2, 23 July 2021, Pages 171–182, 10.1093/aob/mcaa196
Collapse
|
19
|
Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, Schmidt V, Jansen S. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. THE NEW PHYTOLOGIST 2021; 230:1829-1843. [PMID: 33595117 DOI: 10.1111/nph.17282] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance. Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively). The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed. Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.
Collapse
Affiliation(s)
- Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Zohreh Karimi
- Department of Biology, Faculty of Sciences, Golestan University, Shahid Beheshti St., Gorgan, 15759-49138, Iran
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Christophe L Trabi
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Ya Zhang
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, Wuhu, 241000, China
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|