1
|
Janíková E, Konečná M, Lisner A, Applová M, Blažek P, E-Vojtkó A, Götzenberger L, Lepš J. Closely related species differ in their traits, but competition induces high intra-specific variability. Ecol Evol 2024; 14:e70254. [PMID: 39279800 PMCID: PMC11393774 DOI: 10.1002/ece3.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Theories explaining community assembly assume that biotic and abiotic filters sort species into communities based on the values of their traits and are thus based on between-species trait variability (BTV). Nevertheless, these filters act on individuals rather than on species. Consequently, the selection is also influenced by intraspecific trait variability (ITV) and its drivers. These drivers may be abiotic (e.g., water availability) or biotic (e.g., competition). Although closely related species should have similar traits, many of them coexist. We investigated the relative magnitudes of BTV and ITV in coexisting closely related species and how their individual traits differ under different drivers of ITV. We manipulated conditions in a greenhouse pot experiment with four common Carex species, where individuals of each species originated from four source localities. Individuals were grown in factorial combinations of two moisture levels, with and without a competitor (grass species Holcus lanatus, a frequent competitor). We analyzed the variability of six morphological traits on individuals in the greenhouse and three morphological traits in the source localities. Species identity was the main determinant of differences in most traits. Competition exerted a greater effect than water availability. For leaf dry matter content (LDMC) and vegetative height, competition's effect even exceeded the variability among species. On the contrary, for specific leaf area (SLA) and clonal spread, the interspecific differences exceeded ITV induced by experimental treatments. SLA measured in the greenhouse closely correlated with values measured in field populations, while LDMC did not. The variability caused by source locality of ramets in the greenhouse was small, although sometimes significant. Closely related species differ in their traits, but for some traits, ITV can exceed BTV. We can expect that ITV can modify the processes of community assembly, particularly among coexisting closely related species.
Collapse
Affiliation(s)
- Eva Janíková
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Marie Konečná
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Aleš Lisner
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Markéta Applová
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Department of Functional Ecology Institute of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Petr Blažek
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Anna E-Vojtkó
- Department of Functional Ecology Institute of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Lars Götzenberger
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Department of Functional Ecology Institute of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Jan Lepš
- Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic
- Institute of Entomology, Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
| |
Collapse
|
2
|
Wang H, Feng Y, Zhang Q, Zou M, Li T, Ai L, Wang H. Urban greenspace types and climate factors jointly drive the microbial community structure and co-occurrence network. Sci Rep 2024; 14:16042. [PMID: 38992141 PMCID: PMC11239843 DOI: 10.1038/s41598-024-66588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
The benefits of urban green space are socially widely recognized as a direct link between plant-microbe interactions and the maintenance of biodiversity, community stability, and ecosystem functioning. Nevertheless, there is a lack of knowledge about the factors influencing microbial communities in urban green spaces, especially those related to phyllosphere epiphytes and stem epiphytes. In this study, we analyzed the microbial community assembly in leaf and stem bark samples collected from Square, Road, Campus, and Park. Illumina sequecing of 16S amplicons was performed to characterize microbial diversity and composition. The α-diversity was significantly higher in the bark epiphytic community, compared to the phyllosphere. Moreover, urban greenspaces'type altered the way communities gathered. The main soil and air properties factors of the urban greenhouse (e.g. soil temperature, atmospheric moisture, air temperature) were shaping the characteristics of bacterial communities on the leaf surface and bark epiphytic. In addition, in the co-occurrence network analysis, keystone taxa were not mostly observed in abundant species, which may be necessary to maintain ecosystem functions. Finally, our findings provide a deeper understanding of the ecological dynamics and microbial interactions within plant phyllosphere and stem epiphytes microbiomes.
Collapse
Affiliation(s)
- Huan Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400718, China
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Yilong Feng
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Qiaoyong Zhang
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Min Zou
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Ting Li
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China
| | - Lijiao Ai
- Chongqing Landscape and Gardening Research Institute, Chongqing, 401329, China.
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing, 401329, China.
| | - Haiyang Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400718, China.
| |
Collapse
|
3
|
Sharma MK, Hopak NE, Chawla A. Alpine plant species converge towards adopting elevation-specific resource-acquisition strategy in response to experimental early snow-melting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167906. [PMID: 37858830 DOI: 10.1016/j.scitotenv.2023.167906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Snow-melt is one of the important factors limiting growth and survival of alpine plants. Changes in snow-melt timing have profound effects on eco-physiological characteristics of alpine plant species through alterations in growing season length. Here, we conducted a field experiment and studied species response to experimentally induced early snow-melting (ES) (natural vs. early) at an alpine site (Rohtang) in the western Himalaya region. Eco-physiological response of eight snow-bed restricted alpine plant species from different elevations (lower: 3850 m and upper: 4150 m amsl) and belonging to contrasting resource acquisition strategies (conservative and acquisitive) were studied after 2-years (2019 & 2020) of initiating ES field experiment. We estimated the functional traits related to leaf economic spectrum and physiological performance and assessed their pattern of phenotypic plasticity. Analysis by linear mixed effect model showed that both the 'conservative' and 'acquisitive' species had responded to ES with significant effects on species specific leaf area, leaf dry matter content, leaf thickness, leaf water content and sugar content. Our results also revealed that ES treatment induced significant increase in leaf C/N ratio (10.57 % to 13.65 %) and protein content (15.85 % to 20.76 %) at both the elevations, irrespective of species groups. The phenotypic plasticity was found to be low and was essentially species-specific. However, for leaf protein content, the upper elevation species exhibited a higher phenotypic plasticity (0.43 ± 0.18) than the lower elevation species (0.31 ± 0.21). Interestingly, we found that irrespective of species unique functional strategy, species adapt to perform more conservative at lower elevation and more acquisitive at upper elevation, in response to ES. We conclude that plants occurring at contrasting elevations respond differentially to ES. However, species showed capacity for short-term acclimation to future environmental conditions, but may be vulnerable, if their niche is occupied by new species with greater phenotypic plasticity and a superior competitive ability.
Collapse
Affiliation(s)
- Manish K Sharma
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Centre for High Altitude Biology (CeHAB), Research Centre of CSIR-IHBT, Ribling, P.O. Tandi, District Lahaul and Spiti, Himachal Pradesh 175132, India
| | - Nang Elennie Hopak
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Centre for High Altitude Biology (CeHAB), Research Centre of CSIR-IHBT, Ribling, P.O. Tandi, District Lahaul and Spiti, Himachal Pradesh 175132, India
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Centre for High Altitude Biology (CeHAB), Research Centre of CSIR-IHBT, Ribling, P.O. Tandi, District Lahaul and Spiti, Himachal Pradesh 175132, India.
| |
Collapse
|
4
|
Lu Z, Qin G, Gan S, Liu H, Macreadie PI, Cheah W, Wang F. Blue carbon sink capacity of mangroves determined by leaves and their associated microbiome. GLOBAL CHANGE BIOLOGY 2024; 30:e17007. [PMID: 37916453 DOI: 10.1111/gcb.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Mangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata). We found that biogeochemical cycling took entirely different pathways for S. apetala and K. obovata. Blue carbon accumulation and the proportion of plant-carbon for native mangroves were high, with microbes (dominated by K-strategists) allocating the assimilated-carbon to starch and sucrose metabolism. Conversely, microbes with S. apetala adopted an r-strategy and increased protein- and nucleotide-biosynthetic potentials. These divergent biogeochemical pathways were related to leaf characteristics, with S. apetala leaves characterized by lower molecular-weight, C:N ratio, and lignin content than K. obovata. Moreover, anaerobic-degradation potentials for lignin were high in old-aged soils, but the overall degradation potentials of plant carbon were age-independent, explaining that S. apetala age had no significant influences on the contribution of plant-carbon to blue carbon. We propose that for introduced mangroves, newly fallen leaves release nutrient-rich organic matter that favors growth of r-strategists, which rapidly consume carbon to fuel growth, increasing the proportion of microbial-carbon to blue carbon. In contrast, lignin-rich native mangrove leaves shape K-strategist-dominated microbial communities, which grow slowly and store assimilated-carbon in cells, ultimately promoting the contribution of plant-carbon to the remarkable accumulation of blue carbon. Our study provides new insights into the molecular mechanisms of microbial community responses during reforestation in mangrove ecosystems.
Collapse
Affiliation(s)
- Zhe Lu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| | - Guoming Qin
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuchai Gan
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| | - Hongbin Liu
- Department of Ocean Sciences and Division of Life Sciences, School of Science, Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Peter I Macreadie
- School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, Victoria, Australia
| | - Wee Cheah
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P.R. China
- South China National Botanical Garden, Guangzhou, P.R. China
| |
Collapse
|
5
|
Zhang X, Li B, Peñuelas J, Sardans J, Cheng D, Yu H, Zhong Q. Resource-acquisitive species have greater plasticity in leaf functional traits than resource-conservative species in response to nitrogen addition in subtropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166177. [PMID: 37572896 DOI: 10.1016/j.scitotenv.2023.166177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The evergreen broad-leaf forest is subtropical zonal vegetation in China, and its species diversity and stability are crucial for maintaining forest ecosystem functions. The region is generally affected by global changes such as high levels of nitrogen deposition. Therefore, it is critical to determine the adaptation strategies of subtropical dominant species under nitrogen addition. Here, we conducted two-year field experiments with nitrogen addition levels as 0 kg N ha-1 yr-1 (CK), 50 kg N ha-1 yr-1 (LN) and 100 kg N ha-1 yr-1 (HN). We investigated the effects of nitrogen addition on leaf functional traits (including nutrition, structural and physiological characteristics) of five dominant species in subtropical evergreen broad-leaf forest. Results suggested that the effect of nitrogen addition on leaf functional traits was species-specific. Contrary to Rhododendron delavayi and Eurya muricata, Quercus glauca, Schima superba and Castanopsis eyrei all responded more to the HN treatment than LN treatment. Compared to other leaf functional traits, leaf anatomical structure traits had the highest average plasticity (0.246), and the relative effect of leaf photosynthetic property was highest (7.785) under N addition. Among the five species, S. superba was highest in terms of the index of plasticity for leaf functional traits under nitrogen addition, followed by Q. glauca, E. muricata, C. eyrei and R. delavayi. The major leaf functional traits representing the economic spectrum of leaves (LES) showed resource acquisitive strategy (high SLA, LNC, LPC, Pn) and conservative strategy (high LTD, LDMC, C/N) clustering on the opposite ends of the PCA axis. The PCA analysis indicated that species with high leaf plasticity adopt resource acquisitive strategy (S. superba and Q. glauca), whereas species with low leaf plasticity adopt resource conservative strategy (E. muricata, C. eyrei and R. delavayi). In aggregate, resource-acquisitive species benefit from nitrogen addition more than resource-conservative species, suggesting that S. superba and Q. glauca will occupy the dominant position in community succession under persistently elevated nitrogen deposition.
Collapse
Affiliation(s)
- Xue Zhang
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| | - Baoyin Li
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province funded), Fuzhou, Fujian Province 350007, China
| | - Josep Peñuelas
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Dongliang Cheng
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province funded), Fuzhou, Fujian Province 350007, China
| | - Hua Yu
- Ocean College, Minjiang University, Fuzhou, Fujian Province 350007, China
| | - Quanlin Zhong
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province 350007, China; College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province funded), Fuzhou, Fujian Province 350007, China.
| |
Collapse
|
6
|
Jiang S, Zhang J, Tang Y, Li Z, Liu H, Wang L, Wu Y, Liang C. Plant functional traits and biodiversity can reveal the response of ecosystem functions to grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165636. [PMID: 37487897 DOI: 10.1016/j.scitotenv.2023.165636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Plant functional traits can elucidate the response of plant communities and ecosystems to biotic and abiotic disturbances. However, whether livestock consume more aboveground biomass (AGB) in communities dominated by species with 'acquisitive' traits or in communities where biodiversity is high is not well known. Here, we measured 22 functional traits of the grazing communities and control communities in a Mongolian Plateau desert steppe. The effects of grazing on AGB, CWM traits, species diversity, and functional diversity (FD) were analysed, furthermore, we estimated the grazing impact by using the log response ratio (LRR, an increasing value shows a higher grazing impact) and investigated the correlations between the LRR, plant growth, and community-weighted mean (CWM) traits and diversity indices. We found that grazing significantly increased the CWM dry matter content and carbon-to‑nitrogen ratio and decreased the CWM height, specific leaf area (SLA), and nitrogen and phosphorus contents. The AGB decreased, while species diversity and FD increased under grazing treatments. Additionally, we found that plant traits and biodiversity could predict the response of AGB to grazing, the LRR was higher in patches dominated by species with 'acquisitive' foliage and in patches with higher biodiversity; in these patches, plant growth was lower. In the study area, the response of CWM traits to grazing suggests an avoidance strategy, which may be more conducive for adapting to low resource utilization environments. Also, the relationship between the CWM traits and the LRR indicated that the effect of grazing on AGB was mainly related to the selective foraging of herbivores. In addition, patches preferred by livestock may not recover quickly, leading to slow growth and thus reduced biomass under grazing treatments after prolonged grazing.
Collapse
Affiliation(s)
- Shan Jiang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinghui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Yiwei Tang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huamin Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Ministry of Education of China and Inner Mongolia Autonomous Region, Collaborative Innovation Centre for Grassland Ecological Security, Hohhot 010021, China
| | - Yantao Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Wingler A, Sandel B. Relationships of the competitor, stress tolerator, ruderal functional strategies of grass species with lifespan, photosynthetic type, naturalization and climate. AOB PLANTS 2023; 15:plad021. [PMID: 37197712 PMCID: PMC10184452 DOI: 10.1093/aobpla/plad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species' strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range. We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C3 or C4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species' average mean annual temperature and annual precipitation across its range as a function of CSR scores. Values for competitiveness were higher in C4 species than in C3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation. The findings presented here demonstrate that CSR classification of functional strategies based on leaf traits matches expectations for the adaptations of grass species that underlie lifespan, photosynthetic type, naturalization and climate.
Collapse
Affiliation(s)
| | - Brody Sandel
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| |
Collapse
|
8
|
Halliday FW, Czyżewski S, Laine AL. Intraspecific trait variation and changing life-history strategies explain host community disease risk along a temperature gradient. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220019. [PMID: 36744568 PMCID: PMC9900715 DOI: 10.1098/rstb.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 02/07/2023] Open
Abstract
Predicting how climate change will affect disease risk is complicated by the fact that changing environmental conditions can affect disease through direct and indirect effects. Species with fast-paced life-history strategies often amplify disease, and changing climate can modify life-history composition of communities thereby altering disease risk. However, individuals within a species can also respond to changing conditions with intraspecific trait variation. To test the effect of temperature, as well as inter- and intraspecifc trait variation on community disease risk, we measured foliar disease and specific leaf area (SLA; a proxy for life-history strategy) on more than 2500 host (plant) individuals in 199 communities across a 1101 m elevational gradient in southeastern Switzerland. There was no direct effect of increasing temperature on disease. Instead, increasing temperature favoured species with higher SLA, fast-paced life-history strategies. This effect was balanced by intraspecific variation in SLA: on average, host individuals expressed lower SLA with increasing temperature, and this effect was stronger among species adapted to warmer temperatures and lower latitudes. These results demonstrate how impacts of changing temperature on disease may depend on how temperature combines and interacts with host community structure while indicating that evolutionary constraints can determine how these effects are manifested under global change. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fletcher W. Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Szymon Czyżewski
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Research Centre for Ecological Change, Organismal & Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| |
Collapse
|
9
|
Miao C, Bai Y, Zhang Y, She W, Liu L, Qiao Y, Qin S. Interspecific interactions alter plant functional strategies in a revegetated shrub-dominated community in the Mu Us Desert, China. ANNALS OF BOTANY 2022; 130:149-158. [PMID: 35311887 PMCID: PMC9445594 DOI: 10.1093/aob/mcac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS Previous studies investigating plant-plant interactions have focused on plant growth, context dependence and shifts in interactive outcomes. However, changes in functional traits in the context of interactions have been inadequately explored; few studies have focused on the effects of interactions on the plasticity of functional strategies. METHODS We conducted a 4-year removal experiment for the xeric shrub Artemisia ordosica and perennial graminoids (PGs) in the Mu Us Desert, northern China. Soil nutrient content, biomass and 12 functional traits related to plant morphology and nutrient status were measured for the shrub species and a dominant PG species (i.e. Leymus secalinus) in the presence and absence of shrubs and PGs. KEY RESULTS Shrubs affected the functional traits of L. secalinus, reducing leaf dry matter content and increasing plant height, which probably promoted the functional strategy of L. secalinus towards a more resource-acquisitive and competitive strategy. In contrast, when the shrubs were affected by PGs, they shifted towards a resource-conservative and stress-tolerative strategy, by increasing leaf dry matter content and decreasing specific leaf area. Moreover, the shrub species relied more on internal nutrient recycling (higher nitrogen resorption efficiency) rather than on external nitrogen uptake under nitrogen competition; instead, L. secalinus tended to exhibit higher external nitrogen uptake from soil during nitrogen shortages. CONCLUSIONS This study indicated that the functional strategies and nutrient cycling of the shrub species and the dominant PG were altered by each other. The shifts in functional traits may help plants to coexist in the community for a relatively long time. Our findings highlighted that interspecific interactions alter plant functional strategies and provided new insights into community assembly and succession mechanisms in a revegetated shrubland for ecological restoration of drylands.
Collapse
Affiliation(s)
- Chun Miao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yuxuan Bai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Weiwei She
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Liang Liu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yangui Qiao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Affiliation(s)
- Lucas D. Gorné
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, IMBiV Córdoba Argentina
- Univ. Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales Córdoba Argentina
| | - Sandra Díaz
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, IMBiV Córdoba Argentina
- Univ. Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales Córdoba Argentina
| |
Collapse
|
11
|
Westerband AC, Funk JL, Barton KE. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. ANNALS OF BOTANY 2021; 127:397-410. [PMID: 33507251 PMCID: PMC7988520 DOI: 10.1093/aob/mcab011] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary and population biology have extensively investigated ITV, only in the last 10 years has interest in ITV surged within community and comparative ecology. SCOPE Despite this recent interest, still lacking are thorough descriptions of ITV's extent, the spatial and temporal structure of ITV, and stronger connections between ITV and community and ecosystem properties. Our primary aim in this review is to synthesize the recent literature and ask: (1) How extensive is intraspecific variation in traits across scales, and what underlying mechanisms drive this variation? (2) How does this variation impact higher-order ecological processes (e.g. population dynamics, community assembly, invasion, ecosystem productivity)? (3) What are the consequences of ignoring ITV and how can these be mitigated? and (4) What are the most pressing research questions, and how can current practices be modified to suit our research needs? Our secondary aim is to target diverse and underrepresented traits and plant organs, including anatomy, wood, roots, hydraulics, reproduction and secondary chemistry. In addressing these aims, we showcase papers from the Special Issue. CONCLUSIONS Plant ITV plays a key role in determining individual and population performance, species interactions, community structure and assembly, and ecosystem properties. Its extent varies widely across species, traits and environments, and it remains difficult to develop a predictive model for ITV that is broadly applicable. Systematically characterizing the sources (e.g. ontogeny, population differences) of ITV will be a vital step forward towards identifying generalities and the underlying mechanisms that shape ITV. While the use of species means to link traits to higher-order processes may be appropriate in many cases, such approaches can obscure potentially meaningful variation. We urge the reporting of individual replicates and population means in online data repositories, a greater consideration of the mechanisms that enhance and constrain ITV's extent, and studies that span sub-disciplines.
Collapse
Affiliation(s)
- A C Westerband
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - J L Funk
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - K E Barton
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, USA
| |
Collapse
|