1
|
Wessendorf RL, Stata M, Cousins AB. Testing the kinetic tradeoff between bicarbonate versus phosphoenolpyruvate affinity and glucose-6 phosphate response of phosphoenolpyruvate carboxylase from two C 4 grasses. PHOTOSYNTHESIS RESEARCH 2025; 163:6. [PMID: 39812731 DOI: 10.1007/s11120-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Abstract
Phosphoenolpyruvate (PEP) carboxylase (PEPC) has an anaplerotic role in central plant metabolism but also initiates the carbon concentrating mechanism during C4 photosynthesis. The C4 PEPC has different binding affinities (Km) for PEP (K0.5PEP) and HCO3- (K0.5HCO3), and allosteric regulation by glucose-6-phosphate (G6-P) compared to non-photosynthetic isoforms. These differences are linked to specific changes in amino acids within PEPC. For example, region II (residues 302-433, Zea mays numbering) has been identified as important for G6-P regulation and within this region residue 353 may be conserved in C4 PEPC enzymes. Additionally, residue 780 influences the C4 PEPC kinetic properties and may interact with region II as well as residue 353 to influence G6-P regulation. We test the hypothesis that variation within region II, including residue 353, and their interactions with residue 780 influence the kinetic and allosteric regulation by G6-P of two C4 PEPC isozymes from two C4 grasses. The data does not support a kinetic tradeoff between K0.5HCO3 and K0.5PEP in these PEPC isozymes. Additionally, these enzymes had different response to G6-P that was only partially attributed to region II, residue 353 and residue 780. This data provides new insights into factors influencing the kinetic variation of C4 PEPC isozymes.
Collapse
Affiliation(s)
- Ryan L Wessendorf
- School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA
| | - Matt Stata
- Departments of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, Lansing, MI, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Baros CJ, Beerkens J, Ludwig M. Agrobacterium-mediated transient transformation of Flaveria bidentis leaves: a novel method to examine the evolution of C 4 photosynthesis. PLANT METHODS 2024; 20:193. [PMID: 39731143 DOI: 10.1186/s13007-024-01306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/13/2024] [Indexed: 12/29/2024]
Abstract
The genus Flaveria has been studied extensively as a model for the evolution of C4 photosynthesis. Thus far, molecular analyses in this genus have been limited due to a dearth of genomic information and the lack of a rapid and efficient transformation protocol. Since their development, Agrobacterium-mediated transient transformation protocols have been instrumental in understanding many biological processes in a range of plant species. However, this technique has not been applied to the genus Flaveria. Here, an efficient protocol for the Agrobacterium-mediated transient transformation of the leaves of the C4 species Flaveria bidentis is presented. This technique has the distinct advantages of rapid turnaround, the ability to co-transform with multiple constructs, and the capacity to assay coding and non-coding regions of Flaveria genomes in a homologous context. To illustrate the utility of this protocol, the quantitative transcriptional regulation of phosphoenolpyruvate carboxylase, the primary carboxylase of C4 plants, was investigated. A 24 bp region in the ppcA1 proximal promoter was found to elicit high levels of reporter gene expression. The Agrobacterium-mediated transient transformation of F. bidentis leaves will accelerate the understanding of the biology and evolution of C4 photosynthesis in the genus Flaveria as well as in other C4 lineages.
Collapse
Affiliation(s)
- Christopher J Baros
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Jeremy Beerkens
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
3
|
Carvalho P, Gomes C, Saibo NJ. C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation. Genet Mol Biol 2024; 46:e20230190. [PMID: 38517370 PMCID: PMC10958771 DOI: 10.1590/1678-4685-gmb-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.
Collapse
Affiliation(s)
- Pedro Carvalho
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Célia Gomes
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Nelson J.M. Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
4
|
Investigating the Unique Ability of Trichodesmium To Fix Carbon and Nitrogen Simultaneously Using MiMoSA. mSystems 2023; 8:e0060120. [PMID: 36598239 PMCID: PMC9948733 DOI: 10.1128/msystems.00601-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The open ocean is an extremely competitive environment, partially due to the dearth of nutrients. Trichodesmium erythraeum, a marine diazotrophic cyanobacterium, is a keystone species in the ocean due to its ability to fix nitrogen and leak 30 to 50% into the surrounding environment, providing a valuable source of a necessary macronutrient to other species. While there are other diazotrophic cyanobacteria that play an important role in the marine nitrogen cycle, Trichodesmium is unique in its ability to fix both carbon and nitrogen simultaneously during the day without the use of specialized cells called heterocysts to protect nitrogenase from oxygen. Here, we use the advanced modeling framework called multiscale multiobjective systems analysis (MiMoSA) to investigate how Trichodesmium erythraeum can reduce dimolecular nitrogen to ammonium in the presence of oxygen. Our simulations indicate that nitrogenase inhibition is best modeled as Michealis-Menten competitive inhibition and that cells along the filament maintain microaerobia using high flux through Mehler reactions in order to protect nitrogenase from oxygen. We also examined the effect of location on metabolic flux and found that cells at the end of filaments operate in distinctly different metabolic modes than internal cells despite both operating in a photoautotrophic mode. These results give us important insight into how this species is able to operate photosynthesis and nitrogen fixation simultaneously, giving it a distinct advantage over other diazotrophic cyanobacteria because they can harvest light directly to fuel the energy demand of nitrogen fixation. IMPORTANCE Trichodesmium erythraeum is a marine cyanobacterium responsible for approximately half of all biologically fixed nitrogen, making it an integral part of the global nitrogen cycle. Interestingly, unlike other nitrogen-fixing cyanobacteria, Trichodesmium does not use temporal or spatial separation to protect nitrogenase from oxygen poisoning; instead, it operates photosynthesis and nitrogen fixation reactions simultaneously during the day. Unfortunately, the exact mechanism the cells utilize to operate carbon and nitrogen fixation simultaneously is unknown. Here, we use an advanced metabolic modeling framework to investigate and identify the most likely mechanisms Trichodesmium uses to protect nitrogenase from oxygen. The model predicts that cells operate in a microaerobic mode, using both respiratory and Mehler reactions to dramatically reduce intracellular oxygen concentrations.
Collapse
|
5
|
Shen S, Li N, Wang Y, Zhou R, Sun P, Lin H, Chen W, Yu T, Liu Z, Wang Z, Tan X, Zhu C, Feng S, Zhang Y, Song X. High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2107-2122. [PMID: 35838009 PMCID: PMC9616530 DOI: 10.1111/pbi.13892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/19/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Ice plant (Mesembryanthemum crystallinum), a member of the Aizoaceae family, is a typical halophyte crop and a model plant for studying the mechanism of transition from C3 photosynthesis to crassulacean acid metabolism (CAM). Here, we report a high-quality chromosome-level ice plant genome sequence. This 98.05% genome sequence is anchored to nine chromosomes, with a total length of 377.97 Mb and an N50 scaffold of 40.45 Mb. Almost half of the genome (48.04%) is composed of repetitive sequences, and 24 234 genes have been annotated. Subsequent to the ancient whole-genome triplication (WGT) that occurred in eudicots, there has been no recent whole-genome duplication (WGD) or WGT in ice plants. However, we detected a novel WGT event that occurred in the same order in Simmondsia chinensis, which was previously overlooked. Our findings revealed that ice plants have undergone chromosome rearrangements and gene removal during evolution. Combined with transcriptome and comparative genomic data and expression verification, we identified several key genes involved in the CAM pathway and constructed a comprehensive network. As the first genome of the Aizoaceae family to be released, this report will provide a rich data resource for comparative and functional genomic studies of Aizoaceae, especially for studies on salt tolerance and C3-to-CAM transitions to improve crop yield and resistance.
Collapse
Affiliation(s)
- Shaoqin Shen
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Nan Li
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yujie Wang
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Rong Zhou
- Department of Food ScienceAarhus UniversityAarhusDenmark
| | - Pengchuan Sun
- Key Laboratory for Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Hao Lin
- School of Life Science and Technology and Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Chen
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Tong Yu
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhuo Liu
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhiyuan Wang
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiao Tan
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Changping Zhu
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Shuyan Feng
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yu Zhang
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiaoming Song
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
- School of Life Science and Technology and Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Food Science and Technology DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
6
|
Conservation and Divergence of Phosphoenolpyruvate Carboxylase Gene Family in Cotton. PLANTS 2022; 11:plants11111482. [PMID: 35684256 PMCID: PMC9182757 DOI: 10.3390/plants11111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme in plants, which regulates carbon flow through the TCA cycle and controls protein and oil biosynthesis. Although it is important, there is little research on PEPC in cotton, the most important fiber crop in the world. In this study, a total of 125 PEPCs were identified in 15 Gossypium genomes. All PEPC genes in cotton are divided into six groups and each group generally contains one PEPC member in each diploid cotton and two in each tetraploid cotton. This suggests that PEPC genes already existed in cotton before their divergence. There are additional PEPC sub-groups in other plant species, suggesting the different evolution and natural selection during different plant evolution. PEPC genes were independently evolved in each cotton sub-genome. During cotton domestication and evolution, certain PEPC genes were lost and new ones were born to face the new environmental changes and human being needs. The comprehensive analysis of collinearity events and selection pressure shows that genome-wide duplication and fragment duplication are the main methods for the expansion of the PEPC family, and they continue to undergo purification selection during the evolutionary process. PEPC genes were widely expressed with temporal and spatial patterns. The expression patterns of PEPC genes were similar in G. hirsutum and G. barbadense with a slight difference. PEPC2A and 2D were highly expressed in cotton reproductive tissues, including ovule and fiber at all tested developmental stages in both cultivated cottons. However, PEPC1A and 1D were dominantly expressed in vegetative tissues. Abiotic stress also induced the aberrant expression of PEPC genes, in which PEPC1 was induced by both chilling and salinity stresses while PEPC5 was induced by chilling and drought stresses. Each pair (A and D) of PEPC genes showed the similar response to cotton development and different abiotic stress, suggesting the similar function of these PEPCs no matter their origination from A or D sub-genome. However, some divergence was also observed among their origination, such as PEPC5D was induced but PEPC5A was inhibited in G. barbadense during drought treatment, suggesting that a different organized PEPC gene may evolve different functions during cotton evolution. During cotton polyploidization, the homologues genes may refunction and play different roles in different situations.
Collapse
|
7
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
8
|
Hayford RK, Serba DD, Xie S, Ayyappan V, Thimmapuram J, Saha MC, Wu CH, Kalavacharla VK. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC PLANT BIOLOGY 2022; 22:107. [PMID: 35260072 PMCID: PMC8903725 DOI: 10.1186/s12870-022-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.
Collapse
Affiliation(s)
- Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA
| | | | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, USA.
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
9
|
Borghi GL, Arrivault S, Günther M, Barbosa Medeiros D, Dell’Aversana E, Fusco GM, Carillo P, Ludwig M, Fernie AR, Lunn JE, Stitt M. Metabolic profiles in C3, C3-C4 intermediate, C4-like, and C4 species in the genus Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1581-1601. [PMID: 34910813 PMCID: PMC8890617 DOI: 10.1093/jxb/erab540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023]
Abstract
C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.
Collapse
Affiliation(s)
- Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Correspondence:
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Emilia Dell’Aversana
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanna Marta Fusco
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Martha Ludwig
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, 6009 Perth, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Caburatan L, Park J. Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. PLANTS (BASEL, SWITZERLAND) 2021; 10:1887. [PMID: 34579420 PMCID: PMC8468890 DOI: 10.3390/plants10091887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme, which is crucial for plant carbon metabolism. PEPC participates in photosynthesis by catalyzing the initial fixation of atmospheric CO2 and is abundant in both C4 and crassulacean acid metabolism leaves. PEPC is differentially expressed at different stages of plant development, mostly in leaves, but also in developing seeds. PEPC is known to show tissue-specific distribution in leaves and in other plant organs, such as roots, stems, and flowers. Plant PEPC undergoes reversible phosphorylation and monoubiquitination, which are posttranslational modifications playing important roles in regulatory processes and in protein localization. Phosphorylation activates the PEPC enzyme, making it more sensitive to glucose-6-phosphate and less sensitive to malate or aspartate. PEPC phosphorylation is known to be diurnally regulated and delicately changed in response to various environmental stimuli, in addition to light. PEPCs belong to a small gene family encoding several plant-type and distantly related bacterial-type PEPCs. This paper provides a minireview of the general information on PEPCs in both C4 and C3 plants.
Collapse
Affiliation(s)
- Lorrenne Caburatan
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
12
|
Cao J, Cheng G, Wang L, Maimaitijiang T, Lan H. Genome-Wide Identification and Analysis of the Phosphoenolpyruvate Carboxylase Gene Family in Suaeda aralocaspica, an Annual Halophyte With Single-Cellular C 4 Anatomy. FRONTIERS IN PLANT SCIENCE 2021; 12:665279. [PMID: 34527003 PMCID: PMC8435749 DOI: 10.3389/fpls.2021.665279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays pivotal roles in the carbon fixation of photosynthesis and a variety of metabolic and stress pathways. Suaeda aralocaspica belongs to a single-cellular C4 species and carries out a photosynthetic pathway in an unusually elongated chlorenchyma cell, which is expected to have PEPCs with different characteristics. To identify the different isoforms of PEPC genes in S. aralocaspica and comparatively analyze their expression and regulation patterns as well as the biochemical and enzymatic properties in this study, we characterized a bacterial-type PEPC (BTPC; SaPEPC-4) in addition to the two plant-type PEPCs (PTPCs; SaPEPC-1 and SaPEPC-2) using a genome-wide identification. SaPEPC-4 presented a lower expression level in all test combinations with an unknown function; two SaPTPCs showed distinct subcellular localizations and different spatiotemporal expression patterns but positively responded to abiotic stresses. Compared to SaPEPC-2, the expression of SaPEPC-1 specifically in chlorenchyma cell tissues was much more active with the progression of development and under various stresses, particularly sensitive to light, implying the involvement of SaPEPC-1 in a C4 photosynthetic pathway. In contrast, SaPEPC-2 was more like a non-photosynthetic PEPC. The expression trends of two SaPTPCs in response to light, development, and abiotic stresses were also matched with the changes in PEPC activity in vivo (native) or in vitro (recombinant), and the biochemical properties of the two recombinant SaPTPCs were similar in response to various effectors while the catalytic efficiency, substrate affinity, and enzyme activity of SaPEPC-2 were higher than that of SaPEPC-1 in vitro. All the different properties between these two SaPTPCs might be involved in transcriptional (e.g., specific cis-elements), posttranscriptional [e.g., 5'-untranslated region (5'-UTR) secondary structure], or translational (e.g., PEPC phosphorylation/dephosphorylation) regulatory events. The comparative studies on the different isoforms of the PEPC gene family in S. aralocaspica may help to decipher their exact role in C4 photosynthesis, plant growth/development, and stress resistance.
Collapse
|
13
|
Lyu MJA, Gowik U, Kelly S, Covshoff S, Hibberd JM, Sage RF, Ludwig M, Wong GKS, Westhoff P, Zhu XG. The coordination of major events in C 4 photosynthesis evolution in the genus Flaveria. Sci Rep 2021; 11:15618. [PMID: 34341365 PMCID: PMC8329263 DOI: 10.1038/s41598-021-93381-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
C4 photosynthesis is a remarkable complex trait, elucidations of the evolutionary trajectory of C4 photosynthesis from its ancestral C3 pathway can help us better understand the generic principles of the evolution of complex traits and guide the engineering of C3 crops for higher yields. Here, we used the genus Flaveria that contains C3, C3-C4, C4-like and C4 species as a system to study the evolution of C4 photosynthesis. We first mapped transcript abundance, protein sequence and morphological features onto the phylogenetic tree of the genus Flaveria, and calculated the evolutionary correlation of different features; we then predicted the relative changes of ancestral nodes of those features to illustrate the major events during the evolution of C4 photosynthesis. We found that gene expression and protein sequence showed consistent modification patterns in the phylogenetic tree. High correlation coefficients ranging from 0.46 to 0.9 among gene expression, protein sequence and morphology were observed. The greatest modification of those different features consistently occurred at the transition between C3-C4 species and C4-like species. Our results show highly coordinated changes in gene expression, protein sequence and morphological features, which support evolutionary major events during the evolution of C4 metabolism.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Dusseldorf, Germany
| | - Steve Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Gane Ka-Shu Wong
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Department of Medicine and Department of Biological Sciences, The University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Dusseldorf, Germany
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
Taniguchi YY, Gowik U, Kinoshita Y, Kishizaki R, Ono N, Yokota A, Westhoff P, Munekage YN. Dynamic changes of genome sizes and gradual gain of cell-specific distribution of C 4 enzymes during C 4 evolution in genus Flaveria. THE PLANT GENOME 2021; 14:e20095. [PMID: 33913619 DOI: 10.1002/tpg2.20095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
C4 plants are believed to have evolved from C3 plants through various C3 -C4 intermediate stages in which a photorespiration-dependent CO2 concentration system known as C2 photosynthesis operates. Genes involved in the C4 cycle were thought to be recruited from orthologs present in C3 species and developed cell-specific expression during C4 evolution. To understand the process of establishing C4 photosynthesis, we performed whole-genome sequencing and investigated expression and mesophyll- or bundle-sheath-cell-specific localization of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), pyruvate, orthophosphate dikinase (PPDK) in C3 , C3 -C4 intermediate, C4 -like, and C4 Flaveria species. While genome sizes vary greatly, the number of predicted protein-coding genes was similar among C3 , C3 -C4 intermediate, C4 -like, and C4 Flaveria species. Cell-specific localization of the PEPC, NADP-ME, and PPDK transcripts was insignificant or weak in C3 -C4 intermediate species, whereas these transcripts were expressed cell-type specific in C4 -like species. These results showed that elevation of gene expression and cell-specific control of pre-existing C4 cycle genes in C3 species was involved in C4 evolution. Gene expression was gradually enhanced during C4 evolution, whereas cell-specific control was gained independently of quantitative transcriptional activation during evolution from C3 -C4 intermediate to C4 photosynthesis in genus Flaveria.
Collapse
Affiliation(s)
- Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich Heine University, Universitätsstr. 1, Dusseldorf, 40225, Germany
| | - Yuto Kinoshita
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Risa Kishizaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoaki Ono
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich Heine University, Universitätsstr. 1, Dusseldorf, 40225, Germany
| | - Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
15
|
Callegari Ferrari R, Pires Bittencourt P, Yumi Nagumo P, Silva Oliveira W, Aurineide Rodrigues M, Hartwell J, Freschi L. Developing Portulaca oleracea as a model system for functional genomics analysis of C 4/CAM photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:666-682. [PMID: 33256895 DOI: 10.1071/fp20202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Previously regarded as an intriguing photosynthetic curiosity, the occurrence of C4 and Crassulacean acid metabolism (CAM) photosynthesis within a single organism has recently emerged as a source of information for future biotechnological use. Among C4/CAM facultative species, Portulaca oleracea L. has been used as a model for biochemical and gene expression analysis of C4/CAM under field and laboratory conditions. In the present work, we focussed on developing molecular tools to facilitate functional genomics studies in this species, from the optimisation of RNA isolation protocols to a method for stable genetic transformation. Eleven variations of RNA extraction procedures were tested and compared for RNA quantity and quality. Also, 7 sample sets comprising total RNA from hormonal and abiotic stress treatments, distinct plant organs, leaf developmental stages, and subspecies were used to select, among 12 reference genes, the most stable reference genes for RT-qPCR analysis of each experimental condition. Furthermore, different explant sources, Agrobacterium tumefaciens strains, and regeneration and antibiotic selection media were tested in various combinations to optimise a protocol for stable genetic transformation of P. oleracea. Altogether, we provide essential tools for functional gene analysis in the context of C4/CAM photosynthesis, including an efficient RNA isolation method, preferred reference genes for RT-qPCR normalisation for a range of experimental conditions, and a protocol to produce P. oleracea stable transformants using A. tumefaciens.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Priscila Pires Bittencourt
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Paula Yumi Nagumo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Willian Silva Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil; and Corresponding author.
| |
Collapse
|
16
|
DiMario RJ, Kophs AN, Pathare VS, Schnable JC, Cousins AB. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C 4 photosynthetic efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1677-1688. [PMID: 33345397 DOI: 10.1111/tpj.15141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The high rates of photosynthesis and the carbon-concentrating mechanism (CCM) in C4 plants are initiated by the enzyme phosphoenolpyruvate (PEP) carboxylase (PEPC). The flow of inorganic carbon into the CCM of C4 plants is driven by PEPC's affinity for bicarbonate (KHCO3 ), which can be rate limiting when atmospheric CO2 availability is restricted due to low stomatal conductance. We hypothesize that natural variation in KHCO3 across C4 plants is driven by specific amino acid substitutions to impact rates of C4 photosynthesis under environments such as drought that restrict stomatal conductance. To test this hypothesis, we measured KHCO3 from 20 C4 grasses to compare kinetic properties with specific amino acid substitutions. There was nearly a twofold range in KHCO3 across these C4 grasses (24.3 ± 1.5 to 46.3 ± 2.4 μm), which significantly impacts modeled rates of C4 photosynthesis. Additionally, molecular engineering of a low-HCO3- affinity PEPC identified key domains that confer variation in KHCO3 . This study advances our understanding of PEPC kinetics and builds the foundation for engineering increased-HCO3- affinity and C4 photosynthetic efficiency in important C4 crops.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Varsha S Pathare
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. FRONTIERS IN PLANT SCIENCE 2021; 11:600278. [PMID: 33519854 DOI: 10.3389/fpls.2020.600278.pmid:33519854;pmcid:pmc7838129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/17/2020] [Indexed: 05/24/2023]
Abstract
Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean. In summary, we define (i) a stay-green proteome signature in the drought-tolerant pearl millet phenotype and (ii) differential senescence proteome signatures in contrasting wheat phenotypes not capable of coping with similar drought stress. These different responses have a significant effect on yield and grain filling processes reflected by the harvest index. Proteome signatures related to root morphology and seed yield demonstrated the unexpected intra- and interspecies-specific biochemical plasticity for stress adaptation for both pearl millet and wheat genotypes. These quantitative reference data provide tissue- and phenotype-specific marker proteins of stress defense mechanisms which are not predictable from the genome sequence itself and have potential value for marker-assisted breeding beyond genome assisted breeding.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Gert Bachmann
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Weimin Li
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Recurrent sequence evolution after independent gene duplication. BMC Evol Biol 2020; 20:98. [PMID: 32770961 PMCID: PMC7414715 DOI: 10.1186/s12862-020-01660-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Convergent and parallel evolution provide unique insights into the mechanisms of natural selection. Some of the most striking convergent and parallel (collectively recurrent) amino acid substitutions in proteins are adaptive, but there are also many that are selectively neutral. Accordingly, genome-wide assessment has shown that recurrent sequence evolution in orthologs is chiefly explained by nearly neutral evolution. For paralogs, more frequent functional change is expected because additional copies are generally not retained if they do not acquire their own niche. Yet, it is unknown to what extent recurrent sequence differentiation is discernible after independent gene duplications in different eukaryotic taxa. Results We develop a framework that detects patterns of recurrent sequence evolution in duplicated genes. This is used to analyze the genomes of 90 diverse eukaryotes. We find a remarkable number of families with a potentially predictable functional differentiation following gene duplication. In some protein families, more than ten independent duplications show a similar sequence-level differentiation between paralogs. Based on further analysis, the sequence divergence is found to be generally asymmetric. Moreover, about 6% of the recurrent sequence evolution between paralog pairs can be attributed to recurrent differentiation of subcellular localization. Finally, we reveal the specific recurrent patterns for the gene families Hint1/Hint2, Sco1/Sco2 and vma11/vma3. Conclusions The presented methodology provides a means to study the biochemical underpinning of functional differentiation between paralogs. For instance, two abundantly repeated substitutions are identified between independently derived Sco1 and Sco2 paralogs. Such identified substitutions allow direct experimental testing of the biological role of these residues for the repeated functional differentiation. We also uncover a diverse set of families with recurrent sequence evolution and reveal trends in the functional and evolutionary trajectories of this hitherto understudied phenomenon.
Collapse
|
19
|
Lyu MJA, Wang Y, Jiang J, Liu X, Chen G, Zhu XG. What Matters for C 4 Transporters: Evolutionary Changes of Phospho enolpyruvate Transporter for C 4 Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:935. [PMID: 32695130 PMCID: PMC7338763 DOI: 10.3389/fpls.2020.00935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
C4 photosynthesis is a complex trait that evolved from its ancestral C3 photosynthesis by recruiting pre-existing genes. These co-opted genes were changed in many aspects compared to their counterparts in C3 species. Most of the evolutionary changes of the C4 shuttle enzymes are well characterized, however, evolutionary changes for the recruited metabolite transporters are less studied. Here we analyzed the evolutionary changes of the shuttle enzyme phosphoenolpyruvate (PEP) transporter (PPT) during its recruitment from C3 to C4 photosynthesis. Our analysis showed that among the two PPT paralogs PPT1 and PPT2, PPT1 was the copy recruited for C4 photosynthesis in multiple C4 lineages. During C4 evolution, PPT1 gained increased transcript abundance, shifted its expression from predominantly in root to in leaf and from bundle sheath cell to mesophyll cell, and gained more rapid and long-lasting responsiveness to light. Modifications occurred in both regulatory and coding regions in C4 PPT1 as compared to C3 PPT1, however, the PEP transporting function of PPT1 remained. We found that PPT1 of a Flaveria C4 species recruited a MEM1 B submodule in the promoter region, which might be related to the increased transcript abundance of PPT1 in C4 mesophyll cells. The case study of PPT further suggested that high transcript abundance in a proper location is of high priority for PPT to support C4 function.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yaling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianjun Jiang
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Xinyu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence In Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
21
|
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:600278. [PMID: 33519854 PMCID: PMC7838129 DOI: 10.3389/fpls.2020.600278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/17/2020] [Indexed: 05/20/2023]
Abstract
Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean. In summary, we define (i) a stay-green proteome signature in the drought-tolerant pearl millet phenotype and (ii) differential senescence proteome signatures in contrasting wheat phenotypes not capable of coping with similar drought stress. These different responses have a significant effect on yield and grain filling processes reflected by the harvest index. Proteome signatures related to root morphology and seed yield demonstrated the unexpected intra- and interspecies-specific biochemical plasticity for stress adaptation for both pearl millet and wheat genotypes. These quantitative reference data provide tissue- and phenotype-specific marker proteins of stress defense mechanisms which are not predictable from the genome sequence itself and have potential value for marker-assisted breeding beyond genome assisted breeding.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- *Correspondence: Palak Chaturvedi,
| | - Gert Bachmann
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Weimin Li
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- Wolfram Weckwerth,
| |
Collapse
|
22
|
DiMario RJ, Cousins AB. A single serine to alanine substitution decreases bicarbonate affinity of phosphoenolpyruvate carboxylase in C4Flaveria trinervia. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:995-1004. [PMID: 30517744 PMCID: PMC6363079 DOI: 10.1093/jxb/ery403] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 05/12/2023]
Abstract
Phosphoenolpyruvate (PEP) carboxylase (PEPc) catalyzes the first committed step of C4 photosynthesis generating oxaloacetate from bicarbonate (HCO3-) and PEP. It is hypothesized that PEPc affinity for HCO3- has undergone selective pressure for a lower KHCO3 (Km for HCO3-) to increase the carbon flux entering the C4 cycle, particularly during conditions that limit CO2 availability. However, the decrease in KHCO3 has been hypothesized to cause an unavoidable increase in KPEP (Km for PEP). Therefore, the amino acid residue S774 in the C4 enzyme, which has been shown to increase KPEP, should lead to a decrease in KHCO3. Several studies reported the effect S774 has on KPEP; however, the influence of this amino acid substitution on KHCO3 has not been tested. To test these hypotheses, membrane-inlet mass spectrometry (MIMS) was used to measure the KHCO3 of the photosynthetic PEPc from the C4Flaveria trinervia and the non-photosynthetic PEPc from the C3F. pringlei. The cDNAs for these enzymes were overexpressed and purified from the PEPc-less PCR1 Escherichia coli strain. Our work in comparison with previous reports suggests that KHCO3 and KPEP are linked by specific amino acids, such as S774; however, these kinetic parameters respond differently to the tested allosteric regulators, malate and glucose-6-phosphate.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence:
| |
Collapse
|
23
|
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM. The role of alanine and aspartate aminotransferases in C 4 photosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:64-76. [PMID: 30126035 DOI: 10.1111/plb.12904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Alanine and aspartate are essential transfer metabolites for C4 species of the NAD-malic enzyme and phosphoenolpyruvate carboxykinase subtype. To some degree both amino acids are also part of the metabolite shuttle in NADP-malic enzyme plants. In comparison with C3 species, the majority of C4 species are therefore characterised by enhanced expression and activity of alanine and aspartate aminotransferases (AT) in the photosynthetically active tissue. Both enzymes exist in multiple copies and have been found in different subcellular compartments. We tested whether different C4 species show preferential recruitment of enzymes from specific lineages and subcellular compartments. Phylogenetic analysis of alanine and aspartate ATs from a variety of monocot and eudicot C4 species and their C3 relatives was combined with subcellular prediction tools and analysis of the subsequent transcript amounts in mature leaves. Recruitment of aspartate AT from a specific subcellular compartment was strongly connected to the biochemical subtype. Deviation from the main model was however observed in Gynandropsis gynandra. The configuration of alanine AT generally differed in monocot and eudicot species. C4 monocots recruited an alanine AT from a specific cytosolic branch, but eudicots use alanine AT copies from a mitochondrial branch. Generally, plants display high plasticity in the setup of the C4 pathway. Beside the common models for the different C4 subtypes, individual solutions were found for plant groups or lineages.
Collapse
Affiliation(s)
- U Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - A Bräutigam
- Computational Biology, Centre for Biotechnology, University Bielefeld, Bielefeld, Germany
| | | | - J Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - A P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Zhao L, Han L, Xiao C, Lin X, Xu C, Yang C. Rapid and pervasive development- and tissue-specific homeolog expression partitioning in newly formed inter-subspecific rice segmental allotetraploids. BMC Genomics 2018; 19:756. [PMID: 30340512 PMCID: PMC6194744 DOI: 10.1186/s12864-018-5150-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background In diverse plant taxa, whole-genome duplication (WGD) events are major sources of phenotypic novelty. Studies of gene expression in synthetic polyploids have shown immediate expression and functional partitioning of duplicated genes among different tissues. Many studies of the tissue-specific homeolog expression partitioning have focused on allopolyploids that have very different parental genomes, while few studies have focused on autopolyploids or allopolyploids that have similar parental genomes. Results In this study, we used a set of reciprocal F1 hybrids and synthetic tetraploids constructed from subspecies (japonica and indica) of Asian rice (Oryza sativa L.) as a model to gain insights into the expression partitioning of homeologs among tissues in a developmental context. We assayed the tissue-specific silencing (TSS) of the parental homeologs of 30 key genes in the hybrids and tetraploids relative to the in vitro “hybrids” (parental mixes) using Sequenom MassARRAY. We found that the parental mix and synthetic tetraploids had higher frequencies of homeolog TSS than the F1, revealing an instantaneous role of WGD on homeolog expression partitioning. Conclusions Our observations contradicted those of previous studies in which newly formed allopolyploids had a low TSS frequency, similar to that of F1 hybrids, suggesting that the impact of WGD on homeolog expression requires a longer time to manifest. In addition, we found that the TSS frequency in the tetraploids varied at different growth stages and that roots had a much higher frequency of TSS than leaves, which indicated that developmental and metabolic traits may influence the expression states of duplicated genes in newly formed plant polyploids. Electronic supplementary material The online version of this article (10.1186/s12864-018-5150-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Long Zhao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Han
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chaoxia Xiao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
25
|
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G. De novo Transcriptome Assembly and Comparison of C 3, C 3-C 4, and C 4 Species of Tribe Salsoleae (Chenopodiaceae). FRONTIERS IN PLANT SCIENCE 2017; 8:1939. [PMID: 29184562 PMCID: PMC5694442 DOI: 10.3389/fpls.2017.01939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 05/29/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis appears likely, since PEP-CK gene expression is not only increased in S. divaricata but also in C2 species of other groups.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hanno Schmidt
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Kumari Billakurthi
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Westhoff
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Udo Gowik
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Biology and Environmental Science (IBU), Plant Evolutionary Genetics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Gudrun Kadereit
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
26
|
Clayton H, Saladié M, Rolland V, Sharwood R, Macfarlane T, Ludwig M. Loss of the Chloroplast Transit Peptide from an Ancestral C 3 Carbonic Anhydrase Is Associated with C 4 Evolution in the Grass Genus Neurachne. PLANT PHYSIOLOGY 2017; 173:1648-1658. [PMID: 28153918 PMCID: PMC5338660 DOI: 10.1104/pp.16.01893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/31/2017] [Indexed: 06/01/2023]
Abstract
Neurachne is the only known grass lineage containing closely related C3, C3-C4 intermediate, and C4 species, making it an ideal taxon with which to study the evolution of C4 photosynthesis in the grasses. To begin dissecting the molecular changes that led to the evolution of C4 photosynthesis in this group, the complementary DNAs encoding four distinct β-carbonic anhydrase (CA) isoforms were characterized from leaf tissue of Neurachne munroi (C4), Neurachne minor (C3-C4), and Neurachne alopecuroidea (C3). Two genes (CA1 and CA2) each encode two different isoforms: CA1a/CA1b and CA2a/CA2b. Transcript analyses found that CA1 messenger RNAs were significantly more abundant than transcripts from the CA2 gene in the leaves of each species examined, constituting ∼99% of all β-CA transcripts measured. Localization experiments using green fluorescent protein fusion constructs showed that, while CA1b is a cytosolic CA in all three species, the CA1a proteins are differentially localized. The N. alopecuroidea and N. minor CA1a isoforms were imported into chloroplasts of Nicotiana benthamiana leaf cells, whereas N. munroi CA1a localized to the cytosol. Sequence analysis indicated an 11-amino acid deletion in the amino terminus of N. munroi CA1a relative to the C3 and C3-C4 proteins, suggesting that chloroplast targeting of CA1a is the ancestral state and that loss of a functional chloroplast transit peptide in N. munroi CA1a is associated with the evolution of C4 photosynthesis in Neurachne spp. Remarkably, this mechanism is homoplastic with the evolution of the C4-associated CA in the dicotyledonous genus Flaveria, although the actual mutations in the two lineages differ.
Collapse
Affiliation(s)
- Harmony Clayton
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia (H.C., M.S., M.L.)
- Australian Research Council Centre for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia (V.R., R.S.); and
- Western Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth, Western Australia 6152, Australia (T.M.)
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia (H.C., M.S., M.L.)
- Australian Research Council Centre for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia (V.R., R.S.); and
- Western Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth, Western Australia 6152, Australia (T.M.)
| | - Vivien Rolland
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia (H.C., M.S., M.L.)
- Australian Research Council Centre for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia (V.R., R.S.); and
- Western Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth, Western Australia 6152, Australia (T.M.)
| | - Robert Sharwood
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia (H.C., M.S., M.L.)
- Australian Research Council Centre for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia (V.R., R.S.); and
- Western Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth, Western Australia 6152, Australia (T.M.)
| | - Terry Macfarlane
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia (H.C., M.S., M.L.)
- Australian Research Council Centre for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia (V.R., R.S.); and
- Western Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth, Western Australia 6152, Australia (T.M.)
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia (H.C., M.S., M.L.);
- Australian Research Council Centre for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia (V.R., R.S.); and
- Western Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth, Western Australia 6152, Australia (T.M.)
| |
Collapse
|
27
|
Reeves G, Grangé-Guermente MJ, Hibberd JM. Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:107-116. [PMID: 27940469 DOI: 10.1093/jxb/erw438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that increases delivery of carbon dioxide to RuBisCO and as a consequence reduces photorespiration. The C4 pathway is therefore beneficial in environments that promote high photorespiration. This pathway has evolved many times, and involves restricting gene expression to either mesophyll or bundle sheath cells. Here we review the regulatory mechanisms that control cell-preferential expression of genes in the C4 cycle. From this analysis, it is clear that the C4 pathway has a complex regulatory framework, with control operating at epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels. Some genes of the C4 pathway are regulated at multiple levels, and we propose that this ensures robust expression in each cell type. Accumulating evidence suggests that multiple genes of the C4 pathway may share the same regulatory mechanism. The control systems for C4 photosynthesis gene expression appear to operate in C3 plants, and so it appears that pre-existing mechanisms form the basis of C4 photosynthesis gene expression.
Collapse
Affiliation(s)
- Gregory Reeves
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
28
|
Li Y, Dong XM, Jin F, Shen Z, Chao Q, Wang BC. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C 4 Photosynthetic Enzyme Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:950. [PMID: 28642769 PMCID: PMC5462996 DOI: 10.3389/fpls.2017.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra) homologs of maize (Zea mays) C4 photosynthetic enzyme genes, carbonic anhydrase (CA), pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxykinase (PCK), and phosphoenolpyruvate carboxylase (PEPC), and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac) determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.
Collapse
Affiliation(s)
- Yuan Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry UniversityHarbin, China
| | - Xiu-Mei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Feng Jin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Zhuo Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Bai-Chen Wang,
| |
Collapse
|
29
|
Gowik U, Schulze S, Saladié M, Rolland V, Tanz SK, Westhoff P, Ludwig M. A MEM1-like motif directs mesophyll cell-specific expression of the gene encoding the C4 carbonic anhydrase in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:311-320. [PMID: 28040798 PMCID: PMC5853542 DOI: 10.1093/jxb/erw475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The first two reactions of C4 photosynthesis are catalysed by carbonic anhydrase (CA) and phosphoenolpyruvate carboxylase (PEPC) in the leaf mesophyll (M) cell cytosol. Translatome experiments using a tagged ribosomal protein expressed under the control of M and bundle-sheath (BS) cell-specific promoters showed transcripts encoding CA3 from the C4 species Flaveria bidentis were highly enriched in polysomes from M cells relative to those of the BS. Localisation experiments employing a CA3-green fluorescent protein fusion protein showed F. bidentis CA3 is a cytosolic enzyme. A motif showing high sequence homology to that of the Flaveria M expression module 1 (MEM1) element was identified approximately 2 kb upstream of the F. bidentis and F. trinervia ca3 translation start sites. MEM1 is located in the promoter of C4 Flaveria ppcA genes, which encode the C4-associated PEPC, and is necessary for M-specific expression. No MEM1-like sequence was found in the 4 kb upstream of the C3 species F. pringlei ca3 translation start site. Promoter-reporter fusion experiments demonstrated the region containing the ca3 MEM1-like element also directs M-specific expression. These results support the idea that a common regulatory switch drives the expression of the C4 Flaveria ca3 and ppcA1 genes specifically in M cells.
Collapse
Affiliation(s)
- Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Montserrat Saladié
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Vivien Rolland
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sandra K Tanz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martha Ludwig
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
30
|
Bräutigam A, Gowik U. Photorespiration connects C 3and C 4photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2953-62. [PMID: 26912798 DOI: 10.1093/jxb/erw056] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
31
|
Cheng G, Wang L, Lan H. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme Microb Technol 2015; 83:57-67. [PMID: 26777251 DOI: 10.1016/j.enzmictec.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of C4 photosynthetic pathway and plays an important biochemical role in higher plants and micro organisms. To gain understanding of the role of PEPC in stress adaptation in plant, we cloned PEPC gene from Suaeda aralocaspica, a C4 species without Kranz anatomy, and performed a series of experiments with PEPC gene expressed in Escherichia coli under various abiotic stresses. Results showed that, based on the homology cloning and 5'-RACE technique, the full-length cDNA sequence of PEPC (2901 bp) from S. aralocaspica was obtained, which shares the typical conserved domains to documented PEPCs and was identified as PEPC-1 in accord to the reported partial sequence (ppc-1) in S. aralocaspica. qRT-PCR analysis revealed the expression patterns of PEPC-1 and PEPC-2 (known as ppc-2, another plant type of PEPC) in S. aralocaspica, suggesting that PEPC-1 was up-regulated during seed germination and under NaCl stress, and presented higher level in chlorenchyma than other tissues, which were significantly different with PEPC-2. Afterwards, PEPC-1 was recombinant in E. coli (pET-28a-PEPC) and expressed as an approximate 110 kDa protein. Under various abiotic stresses, the recombinant E. coli strain harboring with PEPC-1 showed significant advantage in growth at 400-800 mmol L(-1) NaCl, 10-20% PEG6000, 25 and 30 °C lower temperature, 50-200 μmol L(-1) methyl viologen, and pH 5.0 and 9.0 condition, compared to control. Further analysis of the enzymatic characteristics of the recombinant PEPC-1 suggests that it was the higher enzyme activity of PEPC-1 which might confer the stress tolerance to E. coli. We speculate that over expression of PEPC-1 is probably related to regulation of oxaloacetate (OAA) in tricarboxylic acid (TCA) cycle in E. coli, which may contribute to further understanding of the physiological function of PEPC in S. aralocaspica.
Collapse
Affiliation(s)
- Gang Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Lu Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
32
|
Friso G, van Wijk KJ. Posttranslational Protein Modifications in Plant Metabolism. PLANT PHYSIOLOGY 2015; 169:1469-87. [PMID: 26338952 PMCID: PMC4634103 DOI: 10.1104/pp.15.01378] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, increase functionality, and allow for rapid responses, all at relatively low costs for the cell. PTMs play key roles in plants through their impact on signaling, gene expression, protein stability and interactions, and enzyme kinetics. Following a brief discussion of the experimental and bioinformatics challenges of PTM identification, localization, and quantification (occupancy), a concise overview is provided of the major PTMs and their (potential) functional consequences in plants, with emphasis on plant metabolism. Classic examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs and their cross talk are summarized. Recent large-scale proteomics studies mapped many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert this growing wealth of data into an understanding of plant metabolic regulation.
Collapse
Affiliation(s)
- Giulia Friso
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- School for Integrative Plant Sciences, Section Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
33
|
Muramatsu M, Suzuki R, Yamazaki T, Miyao M. Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme. PLANT & CELL PHYSIOLOGY 2015; 56:468-480. [PMID: 25505033 DOI: 10.1093/pcp/pcu189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary metabolism in bacteria, algae and vascular plants, and it undergoes allosteric regulation by various metabolic effectors. Rice (Oryza sativa) has five plant-type PEPCs, four cytosolic and one chloroplastic. We investigated their kinetic properties using recombinant proteins and found that, like most plant-type PEPCs, rice cytosolic isozymes were activated by glucose 6-phosphate and by alkaline pH. In contrast, no such activation was observed for the chloroplastic isozyme, Osppc4. In addition, Osppc4 showed low affinity for the substrate phosphoenolpyruvate (PEP) and very low sensitivities to allosteric inhibitors aspartate and glutamate. By comparing the isozyme amino acid sequences and three-dimensional structures simulated on the basis of the reported crystal structures, we identified two regions where Osppc4 has unique features that can be expected to affect its kinetic properties. One is the N-terminal extension; replacement of the extension of Osppc2a (cytosolic) with that from Osppc4 reduced the aspartate and glutamate sensitivities to about one-tenth of the wild-type values but left the PEP affinity unaffected. The other is the N-terminal loop, in which a conserved lysine at the N-terminal end is replaced with a glutamate-alanine pair in Osppc4. Replacement of the lysine of Osppc2a with glutamate-alanine lowered the PEP affinity to a quarter of the wild-type level (down to the Osppc4 level), without affecting inhibitor sensitivity. Both the N-terminal extension and the N-terminal loop are specific to plant-type PEPCs, suggesting that plant-type isozymes acquired these regions so that their activity could be regulated properly at the sites where they function.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, 305-8602 Japan
| | - Rintaro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, 305-8602 Japan
| | - Toshimasa Yamazaki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, 305-8602 Japan
| | - Mitsue Miyao
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, 305-8602 Japan
| |
Collapse
|
34
|
Chi S, Wu S, Yu J, Wang X, Tang X, Liu T. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes. PLoS One 2014; 9:e110154. [PMID: 25313828 PMCID: PMC4196954 DOI: 10.1371/journal.pone.0110154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today’s Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.
Collapse
Affiliation(s)
- Shan Chi
- Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
| | - Shuangxiu Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XW); (TL)
| | - Xuexi Tang
- Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
| | - Tao Liu
- Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
- * E-mail: (XW); (TL)
| |
Collapse
|
35
|
Sunil M, Hariharan AK, Nayak S, Gupta S, Nambisan SR, Gupta RP, Panda B, Choudhary B, Srinivasan S. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal. DNA Res 2014; 21:585-602. [PMID: 25071079 PMCID: PMC4263292 DOI: 10.1093/dnares/dsu021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution.
Collapse
Affiliation(s)
- Meeta Sunil
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Arun K Hariharan
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Soumya Nayak
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Saurabh Gupta
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Suran R Nambisan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Ravi P Gupta
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Binay Panda
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| |
Collapse
|
36
|
Rosnow JJ, Edwards GE, Roalson EH. Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3595-607. [PMID: 24600021 PMCID: PMC4085955 DOI: 10.1093/jxb/eru053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In subfamily Suaedoideae, four independent gains of C4 photosynthesis are proposed, which includes two parallel origins of Kranz anatomy (sections Salsina and Schoberia) and two independent origins of single-cell C4 anatomy (Bienertia and Suaeda aralocaspica). Additional phylogenetic support for this hypothesis was generated from sequence data of the C-terminal portion of the phosphoenolpyruvate carboxylase (PEPC) gene used in C4 photosynthesis (ppc-1) in combination with previous sequence data. ppc-1 sequence was generated for 20 species in Suaedoideae and two outgroup Salsola species that included all types of C4 anatomies as well as two types of C3 anatomies. A branch-site test for positively selected codons was performed using the software package PAML. From labelling of the four branches where C4 is hypothesized to have developed (foreground branches), residue 733 (maize numbering) was identified to be under positive selection with a posterior probability >0.99 and residue 868 at the >0.95 interval using Bayes empirical Bayes (BEB). When labelling all the branches within C4 clades, the branch-site test identified 13 codons to be under selection with a posterior probability >0.95 by BEB; this is discussed considering current information on functional residues. The signature C4 substitution of an alanine for a serine at position 780 in the C-terminal end (which is considered a major determinant of affinity for PEP) was only found in four of the C4 species sampled, while eight of the C4 species and all the C3 species have an alanine residue; indicating that this substitution is not a requirement for C4 function.
Collapse
Affiliation(s)
- Josh J Rosnow
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
37
|
Silvera K, Winter K, Rodriguez BL, Albion RL, Cushman JC. Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3623-36. [PMID: 24913627 PMCID: PMC4085970 DOI: 10.1093/jxb/eru234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) catalyses the initial fixation of atmospheric CO2 into oxaloacetate and subsequently malate. Nocturnal accumulation of malic acid within the vacuole of photosynthetic cells is a typical feature of plants that perform crassulacean acid metabolism (CAM). PEPC is a ubiquitous plant enzyme encoded by a small gene family, and each member encodes an isoform with specialized function. CAM-specific PEPC isoforms probably evolved from ancestral non-photosynthetic isoforms by gene duplication events and subsequent acquisition of transcriptional control elements that mediate increased leaf-specific or photosynthetic-tissue-specific mRNA expression. To understand the patterns of functional diversification related to the expression of CAM, ppc gene families and photosynthetic patterns were characterized in 11 closely related orchid species from the subtribe Oncidiinae with a range of photosynthetic pathways from C3 photosynthesis (Oncidium cheirophorum, Oncidium maduroi, Rossioglossum krameri, and Oncidium sotoanum) to weak CAM (Oncidium panamense, Oncidium sphacelatum, Gomesa flexuosa and Rossioglossum insleayi) and strong CAM (Rossioglossum ampliatum, Trichocentrum nanum, and Trichocentrum carthagenense). Phylogenetic analysis revealed the existence of two main ppc lineages in flowering plants, two main ppc lineages within the eudicots, and three ppc lineages within the Orchidaceae. Our results indicate that ppc gene family expansion within the Orchidaceae is likely to be the result of gene duplication events followed by adaptive sequence divergence. CAM-associated PEPC isoforms in the Orchidaceae probably evolved from several independent origins.
Collapse
Affiliation(s)
- Katia Silvera
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama Department of Biochemistry & Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - B Leticia Rodriguez
- Department of Biochemistry & Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Rebecca L Albion
- Department of Biochemistry & Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry & Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| |
Collapse
|
38
|
Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3579-93. [PMID: 24642845 PMCID: PMC4085959 DOI: 10.1093/jxb/eru100] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with related C4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C4 photosynthesis. However, a comparison between C3 and the phosphoenolpyruvate carboxykinase (PEP-CK) subtype of C4 photosynthesis is still missing. An integrative analysis of all three C4 subtypes has also not been possible to date, since no comparison has been available for closely related C3 and PEP-CK C4 species. To generate the data, the guinea grass Megathyrsus maximus, which represents a PEP-CK species, was analysed in comparison with a closely related C3 sister species, Dichanthelium clandestinum, and with publicly available sets of RNA-Seq data from C4 species belonging to the NAD-ME and NADP-ME subgroups. The data indicate that the core C4 cycle of the PEP-CK grass M. maximus is quite similar to that of NAD-ME species with only a few exceptions, such as the subcellular location of transfer acid production and the degree and pattern of up-regulation of genes encoding C4 enzymes. One additional mitochondrial transporter protein was associated with the core cycle. The broad comparison identified sucrose and starch synthesis, as well as the prevention of leakage of C4 cycle intermediates to other metabolic pathways, as critical components of C4 metabolism. Estimation of intercellular transport fluxes indicated that flux between cells is increased by at least two orders of magnitude in C4 species compared with C3 species. In contrast to NAD-ME and NADP-ME species, the transcription of photosynthetic electron transfer proteins was unchanged in PEP-CK. In summary, the PEP-CK blueprint of M. maximus appears to be simpler than those of NAD-ME and NADP-ME plants.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Simon Schliesky
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Covshoff S, Burgess SJ, Kneřová J, Kümpers BMC. Getting the most out of natural variation in C4 photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:157-167. [PMID: 23794170 DOI: 10.1007/s11120-013-9872-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
C4 photosynthesis is a complex trait that has a high degree of natural variation, involving anatomical and biochemical changes relative to the ancestral C3 state. It has evolved at least 66 times across a variety of lineages and the evolutionary route from C3 to C4 is likely conserved but not necessarily genetically identical. As such, a variety of C4 species are needed to identify what is fundamental to the C4 evolutionary process in a global context. In order to identify the genetic components of C4 form and function, a number of species are used as genetic models. These include Zea mays (maize), Sorghum bicolor (sorghum), Setaria viridis (Setaria), Flaveria bidentis, and Cleome gynandra. Each of these species has different benefits and challenges associated with its use as a model organism. Here, we propose that RNA profiling of a large sampling of C4, C3-C4, and C3 species, from as many lineages as possible, will allow identification of candidate genes necessary and sufficient to confer C4 anatomy and/or biochemistry. Furthermore, C4 model species will play a critical role in the functional characterization of these candidate genes and identification of their regulatory elements, by providing a platform for transformation and through the use of gene expression profiles in mesophyll and bundle sheath cells and along the leaf developmental gradient. Efforts should be made to sequence the genomes of F. bidentis and C. gynandra and to develop congeneric C3 species as genetic models for comparative studies. In combination, such resources would facilitate discovery of common and unique C4 regulatory mechanisms across genera.
Collapse
Affiliation(s)
- Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK,
| | | | | | | |
Collapse
|
40
|
Storm J, Sethia S, Blackburn GJ, Chokkathukalam A, Watson DG, Breitling R, Coombs GH, Müller S. Phosphoenolpyruvate carboxylase identified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism. PLoS Pathog 2014; 10:e1003876. [PMID: 24453970 PMCID: PMC3894211 DOI: 10.1371/journal.ppat.1003876] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/25/2013] [Indexed: 12/04/2022] Open
Abstract
Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery. The genome of the human malaria parasite Plasmodium falciparum encodes a protein called phosphoenolpyruvate carboxylase (PEPC) absent from the human host. PEPC is known to fix CO2 to generate metabolites used for energy metabolism in plants and bacteria, but its function in malaria parasites remained an enigma. Our study aimed to elucidate the role and importance of PEPC in P. falciparum in its host red blood cell by generating a gene deletion mutant in P. falciparum. This was only achievable in the presence of high concentrations of malate were added to the culture medium. The mutant generated (D10Δpepc) had a severe growth defect, which was rescued partially by malate or fumarate (but not any other downstream metabolites), suggesting that they feed into the same metabolic pathway. Using heavy isotope labelled 13C-U-D-glucose and 13C-bicarbonate we showed that PECP has an important role in intermediary carbon metabolism and is vital for the maintenance of cytosolic and mitochondrial redox balance. Together these findings imply that PEPC may be an exploitable target for future drug discovery.
Collapse
Affiliation(s)
- Janet Storm
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sonal Sethia
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gavin J. Blackburn
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde, Glasgow, United Kingdom
| | | | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde, Glasgow, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde, Glasgow, United Kingdom
| | - Sylke Müller
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Berry JO, Yerramsetty P, Zielinski AM, Mure CM. Photosynthetic gene expression in higher plants. PHOTOSYNTHESIS RESEARCH 2013; 117:91-120. [PMID: 23839301 DOI: 10.1007/s11120-013-9880-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 05/08/2023]
Abstract
Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.
Collapse
Affiliation(s)
- James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA,
| | | | | | | |
Collapse
|
42
|
Paulus JK, Schlieper D, Groth G. Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution. Nat Commun 2013; 4:1518. [PMID: 23443546 PMCID: PMC3586729 DOI: 10.1038/ncomms2504] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/16/2013] [Indexed: 11/08/2022] Open
Abstract
The C4-photosynthetic carbon cycle is an elaborated addition to the classical C3-photosynthetic pathway, which improves solar conversion efficiency. The key enzyme in this pathway, phosphoenolpyruvate carboxylase, has evolved from an ancestral non-photosynthetic C3 phosphoenolpyruvate carboxylase. During evolution, C4 phosphoenolpyruvate carboxylase has increased its kinetic efficiency and reduced its sensitivity towards the feedback inhibitors malate and aspartate. An open question is the molecular basis of the shift in inhibitor tolerance. Here we show that a single-point mutation is sufficient to account for the drastic differences between the inhibitor tolerances of C3 and C4 phosphoenolpyruvate carboxylases. We solved high-resolution X-ray crystal structures of a C3 phosphoenolpyruvate carboxylase and a closely related C4 phosphoenolpyruvate carboxylase. The comparison of both structures revealed that Arg884 supports tight inhibitor binding in the C3-type enzyme. In the C4 phosphoenolpyruvate carboxylase isoform, this arginine is replaced by glycine. The substitution reduces inhibitor affinity and enables the enzyme to participate in the C4 photosynthesis pathway.
Collapse
Affiliation(s)
- Judith Katharina Paulus
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
- These authors contributed equally to this work
| | - Daniel Schlieper
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
- These authors contributed equally to this work
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Alla MMN, Hassan NM. A possible role for C4 photosynthetic enzymes in tolerance of Zea mays to NaCl. PROTOPLASMA 2012; 249:1109-17. [PMID: 22130690 DOI: 10.1007/s00709-011-0356-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/21/2011] [Indexed: 05/16/2023]
Abstract
Treatment of 14-day-old maize cultivars (Hybrid351 and Giza2) with 250 mM NaCl significantly reduced shoot fresh and dry weights and protein content during the subsequent 12 days. The magnitude of reduction was more pronounced in Giza than Hybrid. Both cultivars contained converging levels of protein for the enzymes phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), pyruvate phosphate dikinase (PPDK) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) under normal conditions; however, NaCl led to increase these levels in Hybrid and decrease them in Giza. Moreover, NaCl significantly inhibited the activities of PEPC, MDH and PPDK in both cultivars during the first 2 days, thereafter the inhibition nullified only in Hybrid; nonetheless, Rubisco was the least affected enzyme in both cultivars. In addition, NaCl slightly increased V (max) of PEPC, MDH and PPDK in Hybrid with no change in K (m); nevertheless V (max) dropped in Giza with an increase in K (m) of only PEPC and MDH. Also K (cat), K (cat)/K (m) and V (max)/K (m) of all enzymes were lower in treated Giza than in treated Hybrid. The increased V (max) of all enzymes in only Hybrid by NaCl confirms that they were synthesised more in Hybrid than in Giza. However, the decreased V (max) in Giza concomitant with the increased K (m) points to an interference of salinity with synthesis of enzymes and their structural integrity. This would lead to a noncompetitive inhibition for the enzymes. These findings declare that maize tolerance to NaCl was larger in Hybrid compared to Giza due to a role for C4 enzymes.
Collapse
Affiliation(s)
- Mamdouh M Nemat Alla
- Botany Department, Faculty of Science at Damietta, Mansoura University, Damietta, P.O. Box 34517, Egypt.
| | | |
Collapse
|
44
|
Williams BP, Aubry S, Hibberd JM. Molecular evolution of genes recruited into C₄ photosynthesis. TRENDS IN PLANT SCIENCE 2012; 17:213-20. [PMID: 22326564 DOI: 10.1016/j.tplants.2012.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
The C₄ pathway is found in 62 lineages of land plants. We assess evidence for parallel versus convergent evolution of C₄ photosynthesis from three approaches: (i) studies of specific genes and cis-elements controlling their expression; (ii) phylogenetic analyses of mRNAs and inferred amino acid sequences; and (iii) analysis of C₃ and C₄ genomes and transcriptomes. Evidence suggests that although convergent evolution is common, parallel evolution can underlie both changes to gene expression and amino acid sequence. cis-elements that direct cell specificity in C₄ leaves are present in C₃ orthologues of genes recruited into C₄, probably facilitating this parallel evolution. From this, and genomic data, we propose that gene duplication followed by neofunctionalisation is not necessarily important in the evolution of C₄ biochemistry.
Collapse
Affiliation(s)
- Ben P Williams
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
45
|
Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM. Multiple Arabidopsis genes primed for recruitment into C₄ photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:47-56. [PMID: 21883556 DOI: 10.1111/j.1365-313x.2011.04769.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
C(4) photosynthesis occurs in the most productive crops and vegetation on the planet, and has become widespread because it allows increased rates of photosynthesis compared with the ancestral C(3) pathway. Leaves of C(4) plants typically possess complicated alterations to photosynthesis, such that its reactions are compartmented between mesophyll and bundle sheath cells. Despite its complexity, the C(4) pathway has arisen independently in 62 separate lineages of land plants, and so represents one of the most striking examples of convergent evolution known. We demonstrate that elements in untranslated regions (UTRs) of multiple genes important for C(4) photosynthesis contribute to the metabolic compartmentalization characteristic of a C(4) leaf. Either the 5' or the 3' UTR is sufficient for cell specificity, indicating that functional redundancy underlies this key aspect of C(4) gene expression. Furthermore, we show that orthologous PPDK and CA genes from the C(3) plant Arabidopsis thaliana are primed for recruitment into the C(4) pathway. Elements sufficient for M-cell specificity in C(4) leaves are also present in both the 5' and 3' UTRs of these C(3) A. thaliana genes. These data indicate functional latency within the UTRs of genes from C(3) species that have been recruited into the C(4) pathway. The repeated recruitment of pre-existing cis-elements in C(3) genes may have facilitated the evolution of C(4) photosynthesis. These data also highlight the importance of alterations in trans in producing a functional C(4) leaf, and so provide insight into both the evolution and molecular basis of this important type of photosynthesis.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | | | | | | | | |
Collapse
|
46
|
Wiludda C, Schulze S, Gowik U, Engelmann S, Koczor M, Streubel M, Bauwe H, Westhoff P. Regulation of the photorespiratory GLDPA gene in C(4) flaveria: an intricate interplay of transcriptional and posttranscriptional processes. THE PLANT CELL 2012; 24:137-51. [PMID: 22294620 PMCID: PMC3289567 DOI: 10.1105/tpc.111.093872] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/23/2011] [Accepted: 01/12/2012] [Indexed: 05/05/2023]
Abstract
The mitochondrial Gly decarboxylase complex (GDC) is a key component of the photorespiratory pathway that occurs in all photosynthetically active tissues of C(3) plants but is restricted to bundle sheath cells in C(4) species. GDC is also required for general cellular C(1) metabolism. In the Asteracean C(4) species Flaveria trinervia, a single functional GLDP gene, GLDPA, encodes the P-subunit of GDC, a decarboxylating Gly dehydrogenase. GLDPA promoter reporter gene fusion studies revealed that this promoter is active in bundle sheath cells and the vasculature of transgenic Flaveria bidentis (C(4)) and the Brassicacean C(3) species Arabidopsis thaliana, suggesting the existence of an evolutionarily conserved gene regulatory system in the bundle sheath. Here, we demonstrate that GLDPA gene regulation is achieved by an intricate interplay of transcriptional and posttranscriptional mechanisms. The GLDPA promoter is composed of two tandem promoters, P(R2) and P(R7), that together ensure a strong bundle sheath expression. While the proximal promoter (P(R7)) is active in the bundle sheath and vasculature, the distal promoter (P(R2)) drives uniform expression in all leaf chlorenchyma cells and the vasculature. An intron in the 5' untranslated leader of P(R2)-derived transcripts is inefficiently spliced and apparently suppresses the output of P(R2) by eliciting RNA decay.
Collapse
Affiliation(s)
- Christian Wiludda
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Stefanie Schulze
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Udo Gowik
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Sascha Engelmann
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Maria Koczor
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Monika Streubel
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Hermann Bauwe
- Universität Rostock, Abteilung Pflanzenphysiologie, 18059 Rostock, Germany
| | - Peter Westhoff
- Heinrich-Heine-Universität Düsseldorf, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| |
Collapse
|
47
|
The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 2011; 436:15-34. [DOI: 10.1042/bj20110078] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO2-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
Collapse
|
48
|
Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM. Independent and Parallel Recruitment of Preexisting Mechanisms Underlying C4 Photosynthesis. Science 2011; 331:1436-9. [DOI: 10.1126/science.1201248] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
49
|
Gowik U, Westhoff P. The path from C3 to C4 photosynthesis. PLANT PHYSIOLOGY 2011; 155:56-63. [PMID: 20940348 PMCID: PMC3075750 DOI: 10.1104/pp.110.165308] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/10/2010] [Indexed: 05/17/2023]
Affiliation(s)
- Udo Gowik
- Institut für Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany.
| | | |
Collapse
|
50
|
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. THE PLANT CELL 2010; 22:3509-42. [PMID: 21081695 PMCID: PMC3015116 DOI: 10.1105/tpc.110.079764] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Brian Connolly
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Mingshu Huang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Edwin Reidel
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Cankui Zhang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Yukari Asakura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Nazmul H. Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Robert Turgeon
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|