1
|
Zhou CY, Lin WJ, Li R, Wu Y, Liu ZJ, Li MH. Characterization of Angraecum (Angraecinae, Orchidaceae) Plastomes and Utility of Sequence Variability Hotspots. Int J Mol Sci 2023; 25:184. [PMID: 38203355 PMCID: PMC10779182 DOI: 10.3390/ijms25010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Angraecum, commonly known as Darwin's orchid, is the largest genus of Angraecinae (Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly reported and the potential variability hotspots were explored. The plastomes possessed the typical quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine-cytosine (GC) content of 36.6-36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified. Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome evolution and DNA barcoding for Angraecum.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Wen-Jun Lin
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
2
|
Kantsa A, Garcia JE, Raguso RA, Dyer AG, Steen R, Tscheulin T, Petanidou T. Intrafloral patterns of color and scent in Capparis spinosa L. and the ghosts of its selection past. AMERICAN JOURNAL OF BOTANY 2023; 110:e16098. [PMID: 36371789 PMCID: PMC10108209 DOI: 10.1002/ajb2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths). METHODS We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera. RESULTS Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees. CONCLUSIONS The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.
Collapse
Affiliation(s)
- Aphrodite Kantsa
- Department of GeographyUniversity of the AegeanMytileneGreece
- Present address:
Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Jair E. Garcia
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell University, IthacaNew YorkUSA
| | - Adrian G. Dyer
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
- Department of PhysiologyMonash UniversityClaytonAustralia
- Present address:
Department of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| | - Ronny Steen
- Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | | |
Collapse
|
3
|
Ornithophily in the subtribe Maxillariinae (Orchidaceae) proven with a case study of Ornithidium fulgens in Guatemala. Sci Rep 2022; 12:5273. [PMID: 35379839 PMCID: PMC8980101 DOI: 10.1038/s41598-022-09146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Ornithophily has been long speculated to occur in the subtribe Maxillariinae (Orchidaceae), relying either solely on micromorphological analyses or scarce field observations of undefined species. In Guatemala we were able to observe regular visits of the azure-crowned hummingbirds feeding on flowers of Ornithidium fulgens. These observations have led us to investigation of floral attractants by means of scanning and transmission microscopy, histochemical and chemical analyses (GC–MS). Conducted investigation revealed that the epidermis of basal protuberance of column-foot has features proving the secretory activity and that secreted nectar is sucrose-dominant. Slight secretion on the middle part of the lip is puzzling. The presence of other potential pollinators has not been reported. Based on the results of this study, we confirmed that the flowers of O. fulgens meet all criteria of ornithophily and thus that the hypothesis about bird pollination in the subtribe Maxillariinae is proven. The presented results confirm that the previously described floral features predicting the bird pollination in this group are justified. This strengthens the theory about floral adaptations to different pollinators and gives valid reasons to consider species with flowers with a certain set of traits as ornithophilous, even in the absence of the pollination observation.
Collapse
|
4
|
Souza IM, Hughes FM, Funch LS, Queiroz LPDE. Rethinking the pollination syndromes in Hymenaea (Leguminosae): the role of anthesis in the diversification. AN ACAD BRAS CIENC 2021; 93:e20191446. [PMID: 34705934 DOI: 10.1590/0001-3765202120191446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Floral traits associated with functional groups of pollinators have been largely employed to understand mechanisms of floral diversification. Hymenaea is a monophyletic legume genus widely recognized to being bat-pollinated, with nocturnal anthesis and copious nectar. The most of species has short-paniculate inflorescences, white and robust flowers, congruent with a bat-pollination syndrome. However, other Hymenaea species show a different floral pattern (e.g., long-paniculate inflorescences and smaller flowers) which we report here as being bird pollinated. We examined the floral traits and visitors of Hymenaea oblongifolia var. latifolia and identified evolutionary shifts in floral traits associated with potential pollinators of Hymenaea species. Floral traits of H. oblongifolia var. latifolia differ from those expected for bat-pollinated flowers in species of sect. Hymenaea, and we observed hummingbirds collecting nectar legitimately. Our phylogenetic analysis did not support the monophyly of the taxonomic sections and suggests that bat pollination is ancestral in Hymenaea, with bird pollination evolving later. The transition coupling with shifts in the timing of anthesis and other floral traits. Pollinator-mediated evolutionary divergence hypothesis partially explains the Hymenaea diversification in the Neotropics. It is congruent with those species shifting from traits linked traditionally to bat pollination to hummingbird pollination.
Collapse
Affiliation(s)
- Isys M Souza
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Frederic M Hughes
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil.,Instituto Nacional da Mata Atlântica/INMA, Av. José Ruschi, 4, 29650-000 Santa Teresa, ES, Brazil
| | - Ligia S Funch
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil
| | - Luciano P DE Queiroz
- Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, 44036-900 Feira de Santana, BA, Brazil
| |
Collapse
|
5
|
Brzosko E, Mirski P. Floral Nectar Chemistry in Orchids: A Short Review and Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:2315. [PMID: 34834677 PMCID: PMC8620889 DOI: 10.3390/plants10112315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 05/12/2023]
Abstract
Nectar is one of the most important flower traits, shaping plant-pollinator interactions and reproductive success. Despite Orchidaceae including numerous nectariferous species, nectar chemistry in this family has been infrequently studied. Therefore, the aim of this study is to compile data about nectar attributes in different orchid species. The scarcity of data restricted analyses to sugar concentration and composition. Our results suggest that the most important factor shaping nectar traits in orchids is the pollinator type, although we also found differentiation of nectar traits according to geographical regions. In spurred orchids, the length of the spur impacted nectar traits. We recommend the development of studies on nectar chemistry in orchids, including a wider range of species (both in taxonomic and geographical contexts), as well as extending the analyses to other nectar components (such as amino acids and secondary metabolites). The nectar biome would be also worth investigating, since it could affect the chemical composition of nectar. This will enrich the understanding of the mechanisms of plants-pollinators interactions.
Collapse
Affiliation(s)
- Emilia Brzosko
- Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Bialystok, Poland
| | - Paweł Mirski
- Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Bialystok, Poland
| |
Collapse
|
6
|
Droissart V, Azandi L, Onguene ER, Savignac M, Smith TB, Deblauwe V. PICT: A low‐cost, modular, open‐source camera trap system to study plant–insect interactions. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vincent Droissart
- AMAP Lab Université MontpellierIRDCNRSINRAECIRAD Montpellier France
- Herbarium et Bibliothèque de Botanique Africaine Université Libre de Bruxelles Brussels Belgium
- Plant Systematics and Ecology Laboratory Higher Teachers’ Training CollegeUniversity of Yaoundé I Yaoundé Cameroon
| | - Laura Azandi
- Herbarium et Bibliothèque de Botanique Africaine Université Libre de Bruxelles Brussels Belgium
- Plant Systematics and Ecology Laboratory Higher Teachers’ Training CollegeUniversity of Yaoundé I Yaoundé Cameroon
| | - Eric Rostand Onguene
- International Institute of Tropical Agriculture Yaoundé Cameroon
- National Forestry School Mbalmayo Mbalmayo Cameroon
| | - Marie Savignac
- AMAP Lab Université MontpellierIRDCNRSINRAECIRAD Montpellier France
- Plant Systematics and Ecology Laboratory Higher Teachers’ Training CollegeUniversity of Yaoundé I Yaoundé Cameroon
| | - Thomas B. Smith
- Center for Tropical Research Institute of the Environment and Sustainability University of California Los Angeles CA USA
| | - Vincent Deblauwe
- Herbarium et Bibliothèque de Botanique Africaine Université Libre de Bruxelles Brussels Belgium
- International Institute of Tropical Agriculture Yaoundé Cameroon
- Center for Tropical Research Institute of the Environment and Sustainability University of California Los Angeles CA USA
| |
Collapse
|
7
|
Unexpectedly low paternal diversity is associated with infrequent pollinator visitation for a bird-pollinated plant. Oecologia 2021; 196:937-950. [PMID: 33870456 DOI: 10.1007/s00442-021-04906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The behaviour of pollinators has important consequences for plant mating. Nectar-feeding birds often display behaviour that results in more pollen carryover than insect pollinators, which is predicted to result in frequent outcrossing and high paternal diversity for bird-pollinated plants. We tested this prediction by quantifying mating system parameters and bird visitation in three populations of an understory bird-pollinated herb, Anigozanthos humilis (Haemodoraceae). Microsatellite markers were used to genotype 131 adult plants, and 211 seeds from 23 maternal plants, from three populations. While outcrossing rates were high, estimates of paternal diversity were surprisingly low compared with other bird-pollinated plants. Despite nectar-feeding birds being common at the study sites, visits to A. humilis flowers were infrequent (62 visits over 21,552 recording hours from motion-triggered cameras, or equivalent to one visit per flower every 10 days), and the majority (76%) were by a single species, the western spinebill Acanthorhynchus superciliosus (Meliphagidae). Pollen counts from 30 captured honeyeaters revealed that A. humilis comprised just 0.3% of the total pollen load. For 10 western spinebills, A. humilis pollen comprised only 4.1% of the pollen load, which equated to an average of 3.9 A. humilis pollen grains per bird. Taken together, our findings suggest that low visitation rates and low pollen loads of floral visitors have led to the low paternal diversity observed in this understory bird-pollinated herb. As such, we shed new light on the conditions that can lead to departures from high paternal diversity for plants competing for the pollination services of generalist nectar-feeding birds.
Collapse
|
8
|
Chen XH, Tan SL, Liang YL, Huang L, Xiao HW, Luo HL, Xiong DJ, Yang BY, Ren ZX. The pollination of Habenaria rhodocheila (Orchidaceae) in South China: When butterflies take sides. Ecol Evol 2021; 11:2849-2861. [PMID: 33767841 PMCID: PMC7981216 DOI: 10.1002/ece3.7242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
Habenaria is one of the largest terrestrial genera in the family Orchidaceae. Most field studies on Habenaria species with greenish-white and nocturnal scented flowers are pollinated by nocturnal hawkmoths and settling moths. However, H. rhodocheila presents reddish flowers lacking a detectable scent and fails to fit the moth pollination syndrome. We investigated the pollinators, breeding system, and functional traits of H. rhodocheila in South China and found that two diurnal swallowtail butterflies Papilio helenus and Papilio nephelus (Papilionidae) were the effective pollinators. When butterflies foraged for nectar in the spur, the pollinia became attached between the palpi. A triangular projected median rostellar lobe was found at the entrance (sinus) of the spur of H. rhodocheila. This lobe divided the spur opening into two entrances forcing butterflies to enter their proboscides through the left or right side. When the projection of median rostellar lobe was removed, the site of pollinium attachment changed to the eyes of the butterflies, leading to a higher rate of pollinium removal but lower rate of pollinium deposition. Our quartz glass cylinder choice experiment suggested that visual rather than olfactory cues provided the major stimuli for butterflies to locate these flowers. Hand pollination experiments suggested this species was self-compatible but pollinator-dependent. However, the proportion of seeds with large embryos produced in self-pollinated fruits was significantly lower than in cross-pollinated fruits, indicating a significant inbreeding depression. Unlike many other orchid species, fruit set was higher than rates of pollinium removal, indicating a high level of pollination efficiency in a species with friable pollinia. Shifts from moth to butterfly pollination in the genus Habenaria parallel other orchid lineages providing insights into the potential for pollinator-mediated floral trait selection.
Collapse
Affiliation(s)
- Xing-Hui Chen
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Shao-Lin Tan
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Yue-Long Liang
- Jiulianshan National Natural Reserve Administration Bureau Ganzhou China
| | - Lang Huang
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Han-Wen Xiao
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Huo-Lin Luo
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Dong-Jin Xiong
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Bo-Yun Yang
- Jiangxi Key Laboratory of Plant Resources School of Life Sciences Nanchang University Nanchang China
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| |
Collapse
|
9
|
Taylor A, Weigelt P, König C, Zotz G, Kreft H. Island disharmony revisited using orchids as a model group. THE NEW PHYTOLOGIST 2019; 223:597-606. [PMID: 30848492 DOI: 10.1111/nph.15776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/18/2019] [Indexed: 05/28/2023]
Abstract
One central concept in island biology is that island assemblages form subsets of the mainland species pool, being disproportionately rich or poor in certain taxonomic groups. This unbalanced composition, termed 'disharmony', is generally explained using a taxon-centred approach, linking the over- or under-representation of taxa to their colonisation abilities. However, islands may also harbour 'functionally' disharmonic flora, being disproportionately rich or poor in species with certain traits, which may offer greater insights into the processes driving island colonisation. Here, we use orchids as a model to illustrate key processes involved in the formation of functionally disharmonic island floras, including filtering effects (for example biotic interactions), and speciation. Our synthesis is based on a comprehensive orchid dataset of 27 637 species and combines both a literature review and simple exploratory analyses to show that orchids are significantly under-represented on islands relative to mainland regions and that insular orchids display shifts in functional traits, from the shortening of nectar spurs to facilitate ornithophily to changes in colour associated with generalist insect pollinators. We highlight that taxa are simply coarse proxies and that we need to consider species traits and interactions to gain a full understanding of the processes constraining plant assembly on islands.
Collapse
Affiliation(s)
- Amanda Taylor
- Biodiversity, Macroecology & Biogeography, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
| | - Christian König
- Biodiversity, Macroecology & Biogeography, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
| | - Gerhard Zotz
- Institute of Biology and Environmental Sciences, University of Oldenburg, Ammerländer Heerstrasse 114, Oldenburg, 26129, Germany
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
| |
Collapse
|
10
|
Abrahamczyk S. Comparison of the ecology and evolution of plants with a generalist bird pollination system between continents and islands worldwide. Biol Rev Camb Philos Soc 2019; 94:1658-1671. [DOI: 10.1111/brv.12520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Stefan Abrahamczyk
- Nees‐Institute for Biodiversity of PlantsUniversity of Bonn 53115 Bonn Germany
| |
Collapse
|
11
|
Roguz K, Bajguz A, Gołębiewska A, Chmur M, Hill L, Kalinowski P, Schönenberger J, Stpiczyńska M, Zych M. Functional Diversity of Nectary Structure and Nectar Composition in the Genus Fritillaria (Liliaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:1246. [PMID: 30349545 PMCID: PMC6187251 DOI: 10.3389/fpls.2018.01246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/06/2018] [Indexed: 06/01/2023]
Abstract
Fritillaria is a genus consisting of 130 to 140 species of bulbous plants, native to temperate regions of the northern hemisphere. Generally viewed as an insect pollinated genus with the exception of two North American species, Fritillaria gentneri and F. recurva, which are described as hummingbird-pollinated and the Asian species, F. imperialis, described as passerine-pollinated. These pollinator shifts are possibly the result of adaptive changes to the structure and morphology of the nectary, as well as a change in the nectar concentration and composition. A study was conducted in a target group of 56 Fritillaria species, based on the morphology of their nectaries and nectar composition to assess the significance of pollination mode as well as its predisposition for the evolution of bird pollination. All species studied had nectaries located at their tepal base and produced nectar, but their size, shape, color, and composition all varied. Most fritillaries had hexose-rich nectar, in easily accessible and unprotected nectaries. Scanning electron microscope (SEM) analysis revealed that the surface of the nectaries of most Fritillaria species was flat and clearly distinct from that of the surrounding tissues, which might be regarded as an adaptation for insect-pollination. Nectaries of F. imperialis were considerably larger and had dilute nectar without sucrose, which was produced profusely, thereby fulfilling the criteria characteristic of ornithophilous flowers. The copious nectar of presumed hummingbird-pollinated species was rather balanced and of medium sugar concentration. Their large lanceolate nectaries contrasted sharply with the tessellated background of their tepals. These characters might indicate a mixed pollination system that engages both birds and insects. Floral anatomy and microstructure and nectar composition for Fritillaria species in subgenera Korolkowia and Liliorhiza are studied for the first time.
Collapse
Affiliation(s)
- Katarzyna Roguz
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Bajguz
- Department of Plant Biochemistry and Toxicology, Faculty of Biology and Chemistry, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Agnieszka Gołębiewska
- Department of Plant Biochemistry and Toxicology, Faculty of Biology and Chemistry, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Magdalena Chmur
- Department of Plant Biochemistry and Toxicology, Faculty of Biology and Chemistry, Institute of Biology, University of Bialystok, Bialystok, Poland
| | | | - Paweł Kalinowski
- Department of Nature Protection and Rural Landscape, Institute of Technology and Life Sciences, Falenty, Poland
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Marcin Zych
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Fay MF. Orchid conservation: how can we meet the challenges in the twenty-first century? BOTANICAL STUDIES 2018; 59:16. [PMID: 29872972 DOI: 10.1186/s405229-018-0232-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
With c. 28,000 species, orchids are one of the largest families of flowering plants, and they are also one of the most threatened, in part due to their complex life history strategies. Threats include habitat destruction and climate change, but many orchids are also threatened by unsustainable (often illegal and/or undocumented) harvest for horticulture, food or medicine. The level of these threats now outstrips our abilities to combat them at a species-by-species basis for all species in such a large group as Orchidaceae; if we are to be successful in conserving orchids for the future, we will need to develop approaches that allow us to address the threats on a broader scale to complement focused approaches for the species that are identified as being at the highest risk.
Collapse
Affiliation(s)
- Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
13
|
Fay MF. Orchid conservation: how can we meet the challenges in the twenty-first century? BOTANICAL STUDIES 2018; 59:16. [PMID: 29872972 PMCID: PMC5988927 DOI: 10.1186/s40529-018-0232-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/01/2018] [Indexed: 05/04/2023]
Abstract
With c. 28,000 species, orchids are one of the largest families of flowering plants, and they are also one of the most threatened, in part due to their complex life history strategies. Threats include habitat destruction and climate change, but many orchids are also threatened by unsustainable (often illegal and/or undocumented) harvest for horticulture, food or medicine. The level of these threats now outstrips our abilities to combat them at a species-by-species basis for all species in such a large group as Orchidaceae; if we are to be successful in conserving orchids for the future, we will need to develop approaches that allow us to address the threats on a broader scale to complement focused approaches for the species that are identified as being at the highest risk.
Collapse
Affiliation(s)
- Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
14
|
Netz C, Renner SS. Long-spurred Angraecum orchids and long-tongued sphingid moths on Madagascar: a time frame for Darwin’s predicted Xanthopan/Angraecum coevolution. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Kolanowska M, Grochocka E, Konowalik K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ 2017; 5:e3328. [PMID: 28533976 PMCID: PMC5436590 DOI: 10.7717/peerj.3328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023] Open
Abstract
In the present study we investigate the concept of phylogenetic niche conservatism (PNC) within the American species of angraecoid orchids (Campylocentrum and Dendrophylax) and their closest relatives in the Old World (Angraecum) using ecological niche modelling (ENM). The predicted niche occupancy profiles were matched with the outcomes of previous phylogenetic studies to reconstruct the evolution of climatic suitability within the orchid group studied and evaluate the role of niche differentiation in the speciation of Angraecinae. No correlation between preferred niches and taxonomic relationships within the orchid group studied was revealed. The climatic suitability of the majority of the species overlapped each other, either fully or partially. This pattern is also present in the species of other orchid genera. Our research confirms a significant level of PNC in Orchidaceae, even within taxa exhibiting a transatlantic disjunction. The analysis of the evolution of climatic suitability indicated that the adaptation to various climatic conditions is not a factor that has driven speciation within orchids studied.
Collapse
Affiliation(s)
- Marta Kolanowska
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Gdańsk, Poland.,Department of Biodiversity Research, Global Change Research Institute AS CR, Brno, Czech Republic
| | - Elżbieta Grochocka
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Gdańsk, Poland
| | - Kamil Konowalik
- Institute of Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Andriananjamanantsoa HN, Engberg S, Louis EE, Brouillet L. Diversification of Angraecum (Orchidaceae, Vandeae) in Madagascar: Revised Phylogeny Reveals Species Accumulation through Time Rather than Rapid Radiation. PLoS One 2016; 11:e0163194. [PMID: 27669569 PMCID: PMC5036805 DOI: 10.1371/journal.pone.0163194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests.
Collapse
Affiliation(s)
| | - Shannon Engberg
- Omaha’s Henry Doorly Zoo and Aquarium, Omaha, Nebraska, United States of America
| | - Edward E. Louis
- Omaha’s Henry Doorly Zoo and Aquarium, Omaha, Nebraska, United States of America
| | - Luc Brouillet
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Padyšáková E, Janeček Š. Sunbird hovering behavior is determined by both the forager and resource plant. Biotropica 2016. [DOI: 10.1111/btp.12345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliška Padyšáková
- Biology Centre; Institute of Entomology; The Czech Academy of Sciences; Branišovská 31 CZ- 370 05 České Budějovice Czech Republic
- Faculty of Science; University of South Bohemia; Branišovská 31 CZ-370 05 České Budějovice Czech Republic
- Department of Ecology; Faculty of Science; Charles University; Viničná 7 CZ-128 44 Praha 2 Czech Republic
| | - Štěpán Janeček
- Department of Ecology; Faculty of Science; Charles University; Viničná 7 CZ-128 44 Praha 2 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Dukelská 135 CZ-379 82 Třeboň Czech Republic
| |
Collapse
|
18
|
Cabral PRDM, Pansarin ER. Biologia reprodutiva de Campylocentrum micranthum (Orchidaceae, Angraecinae). RODRIGUÉSIA 2016. [DOI: 10.1590/2175-7860201667209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Campylocentrum micranthum é uma espécie amplamente distribuída pelo Brasil. A biologia reprodutiva de C. micranthum foi estudada no município de São Simão, no noroeste do estado de São Paulo. A vegetação da região é caracterizada por florestas semideciduais, matas palustres e cerrado. Na área de estudo C. micranthum floresce no verão. A população estudada é formada por mais de 35 indivíduos distribuídos em uma área de mata palustre. As plantas são epífitas, e as flores são ressupinadas e de coloração creme. Cada flor possui um nectário tubuloso na base que produz em média 0,053 µL de néctar. As atividades dos polinizadores se iniciam por volta das 07:30 e as visitas se estendem até 13:00 h. Os polinizadores de C. micranthum são abelhas dos gêneros Lophopedia e Ceratina. A espécie autocompatível e não autógama. No entanto, necessita de polinizadores para a transferência de pólen. Nos experimentos de polinização cruzada à formação de frutos foi de 3,17%, enquanto no tratamento de autopolinização manual foi obtido 16% de frutificação. Em condições naturais a taxa de frutificação foi de 36,4%.
Collapse
|
19
|
Nunes CEP, Amorim FW, Mayer JLS, Sazima M. Pollination ecology of two species of Elleanthus (Orchidaceae): novel mechanisms and underlying adaptations to hummingbird pollination. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:15-25. [PMID: 25678071 DOI: 10.1111/plb.12312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such a form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit set in hand-pollination experiments was more than twice that under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these sympatric co-flowering species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinarium to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to our knowledge of orchid pollination. In E. crinipes, pollinarium attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around it. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae.
Collapse
Affiliation(s)
- C E P Nunes
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - F W Amorim
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - J L S Mayer
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - M Sazima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Nielsen LJ, Møller BL. Scent emission profiles from Darwin's orchid--Angraecum sesquipedale: Investigation of the aldoxime metabolism using clustering analysis. PHYTOCHEMISTRY 2015; 120:3-18. [PMID: 26603277 DOI: 10.1016/j.phytochem.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
The display of scent is crucial for plants in attracting pollinating insects to flowers and ensuring successful pollination and reproduction. The large number of aldoxime volatile species present in the scent of the Madagascan orchid Angraecum sesquipedale has been suggested to play a primary role in attracting the sphingid moth Xanthopan morgani praedicta. By solid phase micro-extraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS), we monitored the scent release from different flowers of a single orchid, day and night throughout the entire flowering period. In separate experiments, the diurnal release was monitored in 3h intervals and the tissue specific release from the different floral parts was tracked. Numerous novel compounds related to the aldoxime metabolism not previously detected in A. sesquipedale were identified and positioned into a proposed pathway for aldoxime metabolism. From the results, we hypothesize that (E/Z)-phenylacetaldoxime and its derivatives could be important attractants for the pollinating moth X. morgani praedicta. By applying an untargeted Partitioning Around Medoids (PAM) cluster analysis to the metabolite profiles in the scent, the proposed pathways for the formation of aldoximes were substantiated. With this study, we demonstrate the powerful utility of a bioinformatics tool to aid in the elucidation of the routes of formation for volatiles and provide a benchmark and guidelines for future detailed observations of hawkmoth pollination of Angraecum species, and in particular A. sesquipedale, in the wild.
Collapse
Affiliation(s)
- Lasse Janniche Nielsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark; VILLUM Research Center of Excellence "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark; VILLUM Research Center of Excellence "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
21
|
Abstract
Orchidaceae, one of the largest families of flowering plants, present particular challenges for conservation, due in great part to their often complex interactions with mycorrhizal fungi, pollinators and host trees. In this Highlight, we present seven papers focusing on orchids and their interactions and other factors relating to their conservation.
Collapse
Affiliation(s)
- Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK,
| | - Thierry Pailler
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical, CIRAD-Université de La Réunion, 15 Avenue René Cassin BP 7151, 97715 Saint-Denis, La Réunion, France and
| | - Kingsley W Dixon
- Department of Environment and Agriculture, Curtin University, Kent Street, Bentley, Perth, Western Australia, 6102, Australia
| |
Collapse
|
22
|
Meseguer AS, Aldasoro JJ, Sanmartín I. Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John’s wort (Hypericum). Mol Phylogenet Evol 2013; 67:379-403. [DOI: 10.1016/j.ympev.2013.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 02/06/2013] [Indexed: 11/29/2022]
|
23
|
Sakamoto RL, Ito M, Kawakubo N. Contribution of pollinators to seed production as revealed by differential pollinator exclusion in Clerodendrum trichotomum (Lamiaceae). PLoS One 2012; 7:e33803. [PMID: 22442724 PMCID: PMC3307763 DOI: 10.1371/journal.pone.0033803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/17/2012] [Indexed: 12/02/2022] Open
Abstract
A diverse assemblage of pollinators, such as bees, beetles, flies, and butterflies, will often visit a single plant species. However, evaluating the effect of several insects on fruit and seed production is difficult in plants visited by a variety of insects. Here, we analyzed the effect of three types of pollinators, Papilio spp., Macroglossum pyrrhosticta, and Xylocopa appendiculata on fruit and seed production in Clerodendrum trichotomum by using a flower visitor barrier experiment with nets of specific mesh sizes. As a result, fruit/flower and seed/ovule ratios were significantly lower under Papilio exclusion than under natural conditions. On the other hand, ratios were not significantly different between Papilio excluded and both Papilio and M. pyrrhosticta excluded treatments. Therefore, Papilio and X. appendiculata are effective pollinators, whereas M. pyrrhosticta, which was the most frequent visitor, of C. trichotomum, is not. From our observations of visiting behaviors, we believe that because M. pyrrhosticta probably promotes self- pollination, this species is a non-effective pollinator. This is the first study to separate and compare the contribution of various visitors to the reproductive success of a plant.
Collapse
Affiliation(s)
- Ryota L Sakamoto
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
24
|
Abstract
The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre-copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is becoming well understood for some species, but visual and tactile signals such as colour, shape, and texture remain neglected. Experimental manipulations that test for function, multi-signal interactions, and pollinator perception of these signals are required. Furthermore, other forms of deception such as exploitation of pollinator sensory biases or mating preferences merit more comprehensive investigation. Application of molecular techniques adapted from model plants and animals is likely to deliver new insights into orchid signalling, and pollinator perception and behaviour. There is little current evidence that sexual deception drives any species-level selection on pollinators. Pollinators do learn to avoid deceptive orchids and their locations, but this is not necessarily a response specific to orchids. Even in systems where evidence suggests that orchids do interfere with pollinator mating opportunities, considerable further research is required to determine whether this is sufficient to impose selection on pollinators or generate antagonistic coevolution or an arms race between orchids and their pollinators. Botanists, taxonomists and chemical ecologists have made remarkable progress in the study of deceptive orchid pollination. Further complementary investigations from entomology and behavioural ecology perspectives should prove fascinating and engender a more complete understanding of the evolution and maintenance of such enigmatic plant-animal interactions.
Collapse
Affiliation(s)
- A C Gaskett
- Department of Biological Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
25
|
Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin-Bialecki A, Pailler T, Strasberg D, Chase MW. Orthoptera, a new order of pollinator. ANNALS OF BOTANY 2010; 105:355-64. [PMID: 20067913 PMCID: PMC2826249 DOI: 10.1093/aob/mcp299] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Pollinator-mediated selection and evolution of floral traits have long fascinated evolutionary ecologists. No other plant family shows as wide a range of pollinator-linked floral forms as Orchidaceae. In spite of the large size of this model family and a long history of orchid pollination biology, the identity and specificity of most orchid pollinators remains inadequately studied, especially in the tropics where the family has undergone extensive diversification. Angraecum (Vandeae, Epidendroideae), a large genus of tropical Old World orchids renowned for their floral morphology specialized for hawkmoth pollination, has been a model system since the time of Darwin. METHODS The pollination biology of A. cadetii, an endemic species of the islands of Mauritius and Reunion (Mascarene Islands, Indian Ocean) displaying atypical flowers for the genus (white and medium-size, but short-spurred) was investigated. Natural pollinators were observed by means of hard-disk camcorders. Pollinator-linked floral traits, namely spur length, nectar volume and concentration and scent production were also investigated. Pollinator efficiency (pollen removal and deposition) and reproductive success (fruit set) were quantified in natural field conditions weekly during the 2003, 2004 and 2005 flowering seasons (January to March). KEY RESULTS Angraecum cadetii is self-compatible but requires a pollinator to achieve fruit set. Only one pollinator species was observed, an undescribed species of raspy cricket (Gryllacrididae, Orthoptera). These crickets, which are nocturnal foragers, reached flowers by climbing up leaves of the orchid or jumping across from neighbouring plants and probed the most 'fresh-looking' flowers on each plant. Visits to flowers were relatively long (if compared with the behaviour of birds or hawkmoths), averaging 16.5 s with a maximum of 41.0 s. At the study site of La Plaine des Palmistes (Pandanus forest), 46.5 % of flowers had pollen removed and 27.5 % had pollinia deposited on stigmas. The proportion of flowers that set fruit ranged from 11.9 % to 43.4 %, depending of the sites sampled across the island. CONCLUSIONS Although orthopterans are well known for herbivory, this represents the first clearly supported case of orthopteran-mediated pollination in flowering plants.
Collapse
Affiliation(s)
- Claire Micheneau
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical, CIRAD-Université de La Réunion, 15 Avenue René Cassin BP 7151, 97715 Saint-Denis, La Réunion.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
LEIGH, JR EG, VERMEIJ GJ, WIKELSKI M. What do human economies, large islands and forest fragments reveal about the factors limiting ecosystem evolution? J Evol Biol 2009; 22:1-12. [DOI: 10.1111/j.1420-9101.2008.01624.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Martén-Rodríguez S, Fenster CB. Pollination ecology and breeding systems of five Gesneria species from Puerto Rico. ANNALS OF BOTANY 2008; 102:23-30. [PMID: 18424471 PMCID: PMC2712418 DOI: 10.1093/aob/mcn056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/28/2008] [Accepted: 03/19/2008] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The genus Gesneria diversified in the Greater Antilles giving rise to various floral designs corresponding to different pollination syndromes. The goal of this study was to characterize the pollination and breeding systems of five Puerto Rican Gesneria species. METHODS The study was conducted in Arecibo and El Yunke National Forest, Puerto Rico, between 2003 and 2007. Floral visitors were documented by human observers and video cameras. Floral longevity and nectar production were recorded for the five study species. Tests for self-compatibility and autonomous selfing were conducted through hand-pollination and bagging experiments. KEY RESULTS Floral phenology and nectar production schedules agree with nocturnal (in bell-shaped flowered G. pedunculosa and G. viridiflora subsp. sintenisii) or diurnal pollination syndromes (in tubular-flowered G. citrina, G. cuneifolia and G. reticulata). Nectar concentration is consistently low (8-13 %) across species. Gesneria citrina and G. cuneifolia are exclusively pollinated by hummingbirds, while Gesneria reticulata relies mostly on autonomous self-pollination, despite having classic ornithophilous flowers. A variety of floral visitors was recorded for the two species with bell-shaped flowers; however, not all visitors have the ability to transfer pollen. Bats are the primary pollinators of G. pedunculosa, with bananaquits probably acting as secondary pollinators. For G. viridiflora subsp. sintenisii, both bats and hummingbirds contact the flower's reproductive organs, thus, this species is considered to be a generalist despite its nocturnal floral syndrome. All species are self-compatible but only tubular-flowered Gesneria are capable of autonomous self-pollination. CONCLUSIONS The visitation patterns described in this study fit the predicted hummingbird and bat pollination syndromes and support both specialization and generalization of pollination systems in Puerto Rican Gesneria. Specialization is associated with low pollinator visitation, particularly by hummingbirds, which may explain the occurrence of autonomous selfing mechanisms in tubular-flowered species.
Collapse
Affiliation(s)
- Silvana Martén-Rodríguez
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
28
|
|
29
|
Micheneau C, Carlsward BS, Fay MF, Bytebier B, Pailler T, Chase MW. Phylogenetics and biogeography of Mascarene angraecoid orchids (Vandeae, Orchidaceae). Mol Phylogenet Evol 2008; 46:908-22. [DOI: 10.1016/j.ympev.2007.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 11/28/2007] [Accepted: 12/03/2007] [Indexed: 11/30/2022]
|