1
|
Tiozon RJN, Alseekh S, Fernie AR, Bonto AP, Yu J, Buenafe RJQ, Sreenivasulu N. Comprehensive lipidomic insights of differentially accumulating lipids in large pigmented rice sprout collection and the changes in the starch composition upon germination. Food Chem 2024; 460:140677. [PMID: 39102764 DOI: 10.1016/j.foodchem.2024.140677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Germination represents a vital bioprocess characterized by numerous biochemical transformations that significantly influence the nutritional characteristics of rice. The mobilization of starch and lipids during germination plays a pivotal role in altering the dietary profile of rice, thus potentially addressing the nutritional requirements of populations heavily reliant on rice as a staple food. To explore this potential, a comprehensive analysis encompassing lipidomics and starch composition was conducted on a diverse collection of pigmented rice sprouts. High-resolution mass spectrometry unveiled substantial shifts in the lipidome of pigmented rice sprouts, showcasing a notable enrichment in carotenoids and unsaturated triglycerides, with potential human health benefits. Notably, purple rice sprouts exhibited heightened levels of alpha- and beta-carotene. Analysis of starch composition revealed slight changes in amylose and amylopectin content; however, a consistent increase in digestible carbohydrates was observed across all rice varieties. Germination also led to a reduction in resistant starch content, with purple rice sprouts demonstrating a pronounced two-fold decrease (p < 0.05). These changes were corroborated by a 1.33% decrease in gelatinization enthalpy and a 0.40% reduction in the melting of the amylose-lipid complex. Furthermore, pasting property analysis indicated a substantial 42% decrease in the complexation index post-germination. We posit that the insights garnered from this study hold significant promise for the development of novel products enriched with health-promoting lipids and characterized by unique flour properties.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Aldrin P Bonto
- Department of Chemistry, College of Science, De La Salle University, Manila, Philippines.
| | - Jazlyn Yu
- Consumer-driven Grain Quality and Nutrition Center, Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños 4030, Philippines
| | - Reuben James Q Buenafe
- Consumer-driven Grain Quality and Nutrition Center, Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| |
Collapse
|
2
|
Yang H, Bai C, Ai X, Yu H, Xu Z, Wang J, Kuai J, Zhao J, Wang B, Zhou G. Conversion of lipids into carbohydrates rescues energy insufficiency in rapeseed germination under waterlogging stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14576. [PMID: 39400914 DOI: 10.1111/ppl.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Waterlogging stress, particularly during seed germination, significantly affects plant growth and development. However, the physiological and molecular mechanisms underlying waterlogging stress responses during rapeseed germination remain unclear. In this study, two rapeseed cultivars, Xiangzayou518 (waterlogging-sensitive) and Dadi199 (waterlogging-tolerant), were used to explore the physiological mechanisms underlying rapeseed response to waterlogging stress during germination. Our results showed that waterlogging significantly decreased the emergence percentage and seedling growth rate. During the radicle elongation period (from 48 to 96 h post-germination), the most sensitive period to waterlogging during germination, sugar content, and glycolysis efficiency were significantly decreased, but anaerobic fermentation was enhanced. In tolerant cultivars, when the energy supply was insufficient, the conversion efficiency of lipids into sugar increased, and the activities of isocitrate lyase, malate synthase, and fructose-1, 6-diphosphatase were enhanced by 11.63, 19.06, and 20.37%, respectively, at 72 h post-germination under waterlogging stress. Transcriptome data showed that the differentially expressed genes were significantly enriched in glucose and lipid metabolism pathways when comparing waterlogged stress and normal conditions. These results indicate that waterlogging affects seed germination in rapeseed by inhibiting carbohydrate metabolism, and the conversion capacity of lipids into sugar under waterlogging stress was stronger in tolerant cultivars than in sensitive cultivars, thus rescuing the insufficient energy supply in seed germination and seedling growth. This study reveals the physiological mechanism of rapeseed response to waterlogging stress during seed germination and provides a valuable reference for improving waterlogging tolerance.
Collapse
Affiliation(s)
- Haiyun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Ai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- Shenyang Agricultural University, Shenyang, China
| | - Zhenghua Xu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
4
|
Punia A, Kumari M, Chouhan M, Saini V, Joshi R, Kumar A, Kumar R. Proteomic and metabolomic insights into seed germination of Ferula assa-foetida. J Proteomics 2024; 300:105176. [PMID: 38604334 DOI: 10.1016/j.jprot.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cold stratification is known to affect the speed of seed germination; however, its regulation at the molecular level in Ferula assa-foetida remains ambiguous. Here, we used cold stratification (4 °C in the dark) to induce germination in F. assa-foetida and adopted a proteomic and metabolomic approach to understand the molecular mechanism of germination. Compared to the control, we identified 209 non-redundant proteins and 96 metabolites in germinated F. assa-foetida seed. Results highlight the common and unique regulatory mechanisms like signaling cascade, reactivation of energy metabolism, activation of ROS scavenging system, DNA repair, gene expression cascade, cytoskeleton, and cell wall modulation in F. assa-foetida germination. A protein-protein interaction network identifies 18 hub protein species central to the interactome and could be a key player in F. assa-foetida germination. Further, the predominant metabolic pathways like glucosinolate biosynthesis, arginine and proline metabolism, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis, and carotenoid biosynthesis in germinating seed may indicate the regulation of carbon and nitrogen metabolism is prime essential to maintain the physiology of germinating seedlings. The findings of this study provide a better understanding of cold stratification-induced seed germination, which might be utilized for genetic modification and traditional breeding of Ferula assa-foetida. SIGNIFICANCE: Seed germination is the fundamental checkpoint for plant growth and development, which has ecological significance. Ferula assa-foetida L., commonly known as "asafoetida," is a medicinal and food crop with huge therapeutic potential. To date, our understanding of F. assa-foetida seed germination is rudimentary. Therefore, studying the molecular mechanism that governs dormancy decay and the onset of germination in F. assa-foetida is essential for understanding the basic principle of seed germination, which could offer to improve genetic modification and traditional breeding.
Collapse
Affiliation(s)
- Ashwani Punia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manglesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Chouhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Wu L, Cao L, Tao Y, Zhatova H, Hu H, Li C. Identification of the succinate-CoA ligase protein gene family reveals that TaSUCL1-1 positively regulate cadmium resistance in wheat. Int J Biol Macromol 2024; 268:131693. [PMID: 38657916 DOI: 10.1016/j.ijbiomac.2024.131693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The Succinate-CoA ligase (SUCL1) gene family is involved in energy metabolism, phytohormone signaling, and plant growth, development, and tolerance to stress. This is the first study to analyze the SUCL1 gene family in wheat (Triticum aestivum). 17 TaSUCL1 genes were identified in the complete genome sequence and classified into five subfamilies based on related genes found in three other species. The 17 TaSUCL1 genes were unevenly distributed across 11 chromosomes, and the collinearity of these genes was further investigated. Through using real-time qPCR (RT-qPCR) analysis, we identified the expression patterns of the TaSUCL1 genes under various tissues and different heavy metal stress conditions. The functions of selected TaSUCL1-1 gene were investigated by RNA interference (RNAi). This study provided a comprehensive analysis of the TaSUCL1 gene family. Within the TaSUCL1 genes, the exon-intron structure and motif composition exhibited significant similarity among members of the same evolutionary branch. Homology analysis and phylogenetic comparison of the SUCL1 genes in different plants offered valuable insights for studying the evolutionary characteristics of the SUCL1 genes. The expression levels of the TaSUCL1 genes in different tissues and under various metal stress conditions reveal its important role in plant growth and development. Gene function analysis demonstrated that TaSUCL1-1 silenced wheat plants exhibited a decrease in the total cadmium (Cd) concentrations and gene expression levels compared to the wild type (WT). Additionally, TaSUCL1-1 belonging to class c physically interacts with the β-amylase protein TaBMY1 as verified by yeast two-hybridization. This research provides a useful resource for further study of the function and molecular genetic mechanism of the SUCL1 gene family members.
Collapse
Affiliation(s)
- Liuliu Wu
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine; Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lifan Cao
- Henan Academy of Sciences, Zhengzhou 450000, China
| | - Ye Tao
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine; Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China
| | | | - Haiyan Hu
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chengwei Li
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Agricultural University, Zhengzhou 450000, China; Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
6
|
Wang J, Han M, Huang Y, Zhao J, Liu C, Ma Y. Flooding Tolerance of Rice: Regulatory Pathways and Adaptive Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1178. [PMID: 38732393 PMCID: PMC11085783 DOI: 10.3390/plants13091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Rice is a major food crop for more than half of the world's population, while its production is seriously threatened by flooding, a common environmental stress worldwide. Flooding leads to oxygen deficiency, which is a major problem for submerged plants. Over the past three decades, significant progress has been made in understanding rice adaptation and molecular regulatory mechanisms in response to flooding. At the seed germination and seedling establishment stages, the CIPK15-SnRK1A-MYBS1 signaling cascade plays a central role in determining rice submergence tolerance. However, from seedlings to mature plants for harvesting, SUB1A- and SK1/SK2-regulated pathways represent two principal and opposite regulatory mechanisms in rice. In addition, phytohormones, especially gibberellins, induce adaptive responses to flooding throughout the rice growth period. This review summarizes the significant adaptive traits observed in flooded rice varieties and updates the molecular genetics and mechanisms of submergence tolerance in rice.
Collapse
Affiliation(s)
- Jing Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.W.); (Y.H.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Mingzhen Han
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.W.); (Y.H.)
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
7
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
8
|
Thapa R, Tabien RE, Thomson MJ, Septiningsih EM. Genetic factors underlying anaerobic germination in rice: Genome-wide association study and transcriptomic analysis. THE PLANT GENOME 2024; 17:e20261. [PMID: 36169134 DOI: 10.1002/tpg2.20261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The success of rice (Oryza sativa L.) germination and survival under submerged conditions is mainly determined by the rapid growth of the coleoptile to reach the water surface. Previous reports have shown the presence of genetic variability within rice accessions in the levels of flooding tolerance during germination or anaerobic germination (AG). Although many studies have focused on the physiological mechanisms of oxygen stress, few studies have explored the breadth of natural variation in AG tolerance-related traits in rice. In this study, we evaluated the coleoptile lengths of a geographically diverse rice panel of 241 accessions, including global accessions along with elite breeding lines and released cultivars from the United States, under the normal and flooded conditions in laboratory and greenhouse environments. A genome-wide association study (GWAS) was performed using a 7K single-nucleotide polymorphism (SNP) array and the phenotypic data of normal coleoptile length, flooded coleoptile length, flooding tolerance index, and survival at 14 d after seeding (DAS). Out of the 30 significant GWAS quantitative trait loci (QTL) regions identified, 14 colocalized with previously identified candidate genes of AG tolerance, whereas 16 were potentially novel. Two rice accessions showing contrasting phenotypic responses to AG stress were selected for the transcriptomics study. The combined approach of GWAS and transcriptomics analysis identified 77 potential candidate genes related to AG tolerance. The findings of our study may assist rice improvement programs in developing rice cultivars with robust tolerance under flooding stress during germination and the early seedling stage.
Collapse
Affiliation(s)
- Ranjita Thapa
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Michael J Thomson
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | |
Collapse
|
9
|
Lim MN, Lee SE, Jeon JS, Yoon IS, Hwang YS. OsbZIP38/87-mediated activation of OsHXK7 improves the viability of rice cells under hypoxic conditions. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154182. [PMID: 38277982 DOI: 10.1016/j.jplph.2024.154182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Maintenance of energy metabolism is critical for rice (Oryza sativa) tolerance under submerged cultivation. Here, OsHXK7 was the most actively induced hexokinase gene in the embryos of hypoxically germinating rice seeds. Suspension-cultured cells established from seeds of T-DNA null mutants for the OsHXK7 locus did not regrow after 3-d-hypoxic stress and showed increased susceptibility to low-oxygen stress-in terms of viability-and decreased alcoholic fermentation activities compared to those of the wild-type. The promoter element containing the TGACG-motif, a well-known target site for the basic leucine zipper (bZIP) transcription factors, was responsible for sugar regulation of the OsHXK7 promoter activity. Systematic screening of the OsbZIP genes showing the similar expression patterns to that of OsHXK7 in the transcriptomic datasets produced two bZIP genes, OsbZIP38 and 87, belonging to the S1 bZIP subfamily as the candidate for the activator for this gene expression. Gain- and loss-of-function experiments through transient expression assays have demonstrated that these two bZIP proteins are indeed involved in the induction of OsHXK7 expression under starvation or low-energy conditions. Our finding suggests that C/S1 bZIP network-mediated hypoxic deregulation of sugar-responsive genes may work in concert for the molecular adaptation of rice cells to submergence.
Collapse
Affiliation(s)
- Mi-Na Lim
- Department of Biotechnology, CHA University, Seongnam, 13488, South Korea
| | - Sung-Eun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul, 143-701, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - In Sun Yoon
- Molecular Breeding Division, National Academy of Agricultural Science, Jeonju, 565-851, South Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|
10
|
O'Lone CE, Juhász A, Nye-Wood M, Dunn H, Moody D, Ral JP, Colgrave ML. Proteomic exploration reveals a metabolic rerouting due to low oxygen during controlled germination of malting barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1305381. [PMID: 38186599 PMCID: PMC10771735 DOI: 10.3389/fpls.2023.1305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Barley (Hordeum vulgare L.) is used in malt production for brewing applications. Barley malting involves a process of controlled germination that modifies the grain by activating enzymes to solubilize starch and proteins for brewing. Initially, the grain is submerged in water to raise grain moisture, requiring large volumes of water. Achieving grain modification at reduced moisture levels can contribute to the sustainability of malting practices. This study combined proteomics, bioinformatics, and biochemical phenotypic analysis of two malting barley genotypes with observed differences in water uptake and modification efficiency. We sought to reveal the molecular mechanisms at play during controlled germination and explore the roles of protein groups at 24 h intervals across the first 72 h. Overall, 3,485 protein groups were identified with 793 significant differentially abundant (DAP) within and between genotypes, involved in various biological processes, including protein synthesis, carbohydrate metabolism, and hydrolysis. Functional integration into metabolic pathways, such as glycolysis, pyruvate, starch and sucrose metabolism, revealed a metabolic rerouting due to low oxygen enforced by submergence during controlled germination. This SWATH-MS study provides a comprehensive proteome reference, delivering new insights into the molecular mechanisms underlying the impacts of low oxygen during controlled germination. It is concluded that continued efficient modification of malting barley subjected to submergence is largely due to the capacity to reroute energy to maintain vital processes, particularly protein synthesis.
Collapse
Affiliation(s)
- Clare E. O'Lone
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Mitchell Nye-Wood
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Hugh Dunn
- Pilot Malting Australia, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - David Moody
- Barley Breeding, InterGrain Pty Ltd, Bibra Lake, WA, Australia
| | - Jean-Philippe Ral
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Michelle L. Colgrave
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Mwakyusa L, Heredia MC, Kilasi NL, Madege RR, Herzog M, Dixit S. Screening of potential donors for anaerobic stress tolerance during germination in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1261101. [PMID: 38023850 PMCID: PMC10667690 DOI: 10.3389/fpls.2023.1261101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The rising cost of transplanting rice has made direct seeding an affordable alternative for rice establishment, particularly in Africa. However, direct seeding, while cost-effective, faces crop establishment challenges due to flooding. Uncontrolled water, driven by erratic rains in low-lying areas or uneven fields, limit germination. Rice possesses the unique ability of anaerobic germination, enabling it to sprout and emerge in oxygen-deprived conditions. Understanding rice's response to anaerobic stress during germination is crucial for resilience breeding. Africa, although relying on direct seeding, has made limited progress in addressing flooding during germination compared to Asia. Anaerobic stress tolerance ensures successful crop emergence even in oxygen-limited environments and can help suppress weeds, a significant challenge in direct-seeded rice cultivation. This study aims to contribute by screening for potential rice donors exhibiting anaerobic stress tolerance. We screened 200 rice genotypes at Sokoine University of Agriculture (SUA) in Morogoro, Tanzania, primarily focusing on landraces with untapped potential. Using an alpha lattice design, we conducted two anaerobic experiments in September and October 2022, adding 7 cm of standing water immediately after dry seeding for flooded and maintaining a 2 cm water level after germination in the control for duration of 21 days. We identified potential donors based on selection index computed from genomic estimated breeding values (GEBVs) using eight variables: germination at 14 DAS, germination at 21 DAS, seedling height at 14 DAS, seedling height at 21 DAS, shoot dry matter at 21 DAS, root dry matter at 21 DAS, culm diameter at 21 DAS, and root length at 21DAS. Ten genotypes emerged as the most promising, exhibiting at least 70% germination in floodwater at 21 DAS and greater selection indices. These genotypes were like: Afaa Mwanza 1/159, Rojomena 271/10, Kubwa Jinga, Wahiwahi, Magongo ya Wayungu, Mpaka wa Bibi, Mwangaza, Tarabinzona, IB126-Bug 2013A, and Kanamalia with respective percentages of 75, 74, 71, 86, 75, 80, 71, 80, 70, and 73. These findings contribute to global efforts to mitigate the impacts of flooding during germination. These donors, will be potential to enrich the gene pool for anaerobic germination, providing valuable resources for breeding for flooding tolerance.
Collapse
Affiliation(s)
- Lupakisyo Mwakyusa
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Research and Innovation, Tanzania Agricultural Research Institute, Kigoma, Tanzania
| | - Maria Cristina Heredia
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Newton Lwiyiso Kilasi
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Richard R. Madege
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Max Herzog
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shalabh Dixit
- Rice Breeding Innovations Department, International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
12
|
Yu J, Wang X, Yuan Q, Shi J, Cai J, Li Z, Ma H. Elucidating the impact of in vitro cultivation on Nicotiana tabacum metabolism through combined in silico modeling and multiomics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1281348. [PMID: 38023876 PMCID: PMC10655011 DOI: 10.3389/fpls.2023.1281348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The systematical characterization and understanding of the metabolic behaviors are the basis of the efficient plant metabolic engineering and synthetic biology. Genome-scale metabolic networks (GSMNs) are indispensable tools for the comprehensive characterization of overall metabolic profile. Here we first constructed a GSMN of tobacco, which is one of the most widely used plant chassis, and then combined the tobacco GSMN and multiomics analysis to systematically elucidate the impact of in-vitro cultivation on the tobacco metabolic network. In-vitro cultivation is a widely used technique for plant cultivation, not only in the field of basic research but also for the rapid propagation of valuable horticultural and pharmaceutical plants. However, the systemic effects of in-vitro cultivation on overall plant metabolism could easily be overlooked and are still poorly understood. We found that in-vitro tobacco showed slower growth, less biomass and suppressed photosynthesis than soil-grown tobacco. Many changes of metabolites and metabolic pathways between in-vitro and soil-grown tobacco plants were identified, which notably revealed a significant increase of the amino acids content under in-vitro condition. The in silico investigation showed that in-vitro tobacco downregulated photosynthesis and primary carbon metabolism, while significantly upregulated the GS/GOGAT cycle, as well as producing more energy and less NADH/NADPH to acclimate in-vitro growth demands. Altogether, the combination of experimental and in silico analyses offers an unprecedented view of tobacco metabolism, with valuable insights into the impact of in-vitro cultivation, enabling more efficient utilization of in-vitro techniques for plant propagation and metabolic engineering.
Collapse
Affiliation(s)
- Jing Yu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaowei Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiaxin Shi
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingyi Cai
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhichao Li
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
13
|
Xing M, Huang K, Zhang C, Xi D, Luo H, Pei J, Ruan R, Liu H. Transcriptome Analysis Reveals the Molecular Mechanism and Responsive Genes of Waterlogging Stress in Actinidia deliciosa Planch Kiwifruit Plants. Int J Mol Sci 2023; 24:15887. [PMID: 37958870 PMCID: PMC10649176 DOI: 10.3390/ijms242115887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Waterlogging stress is one of the major natural issues resulting in stunted growth and loss of agricultural productivity. Cultivated kiwifruits are popular for their rich vitamin C content and unique flavor among consumers, while commonly sensitive to waterlogging stress. The wild kiwifruit plants are usually obliged to survive in harsh environments. Here, we carried out a transcriptome analysis by high-throughput RNA sequencing using the root tissues of Actinidia deliciosa (a wild resource with stress-tolerant phenotype) after waterlogging for 0 d, 3 d, and 7 d. Based on the RNA sequencing data, a high number of differentially expressed genes (DEGs) were identified in roots under waterlogging treatment, which were significantly enriched into four biological processes, including stress response, metabolic processes, molecular transport, and mitotic organization, by gene ontology (GO) simplify enrichment analysis. Among these DEGs, the hypoxia-related genes AdADH1 and AdADH2 were correlated well with the contents of acetaldehyde and ethanol, and three transcription factors Acc26216, Acc08443, and Acc16908 were highly correlated with both AdADH1/2 genes and contents of acetaldehyde and ethanol. In addition, we found that there might be an evident difference among the promoter sequences of ADH genes from A. deliciosa and A. chinensis. Taken together, our results provide additional information on the waterlogging response in wild kiwifruit plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Liu
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (M.X.); (K.H.); (C.Z.); (D.X.); (H.L.); (J.P.); (R.R.)
| |
Collapse
|
14
|
Mira MM, Hill RD, Hilo A, Langer M, Robertson S, Igamberdiev AU, Wilkins O, Rolletschek H, Stasolla C. Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. PLANT PHYSIOLOGY 2023; 193:1416-1432. [PMID: 37311198 DOI: 10.1093/plphys/kiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
- Department of Botany and Microbiology, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Matthias Langer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sean Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
15
|
Aung KM, Oo WH, Maung TZ, Min MH, Somsri A, Nam J, Kim KW, Nawade B, Lee CY, Chu SH, Park YJ. Genomic landscape of the OsTPP7 gene in its haplotype diversity and association with anaerobic germination tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1225445. [PMID: 37560030 PMCID: PMC10407808 DOI: 10.3389/fpls.2023.1225445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Early season flooding is a major constraint in direct-seeded rice, as rice genotypes vary in their coleoptile length during anoxia. Trehalose-6-phosphate phosphatase 7 (OsTPP7, Os09g0369400) has been identified as the genetic determinant for anaerobic germination (AG) and coleoptile elongation during flooding. We evaluated the coleoptile length of a diverse rice panel under normal and flooded conditions and investigated the Korean rice collection of 475 accessions to understand its genetic variation, population genetics, evolutionary relationships, and haplotypes in the OsTPP7 gene. Most accessions displayed enhanced flooded coleoptile lengths, with the temperate japonica ecotype exhibiting the highest average values for normal and flooded conditions. Positive Tajima's D values in indica, admixture, and tropical japonica ecotypes suggested balancing selection or population expansion. Haplotype analysis revealed 18 haplotypes, with three in cultivated accessions, 13 in the wild type, and two in both. Hap_1 was found mostly in japonica, while Hap-2 and Hap_3 were more prevalent in indica accessions. Further phenotypic performance of major haplotypes showed significant differences in flooded coleoptile length, flooding tolerance index, and shoot length between Hap_1 and Hap_2/3. These findings could be valuable for future selective rice breeding and the development of efficient haplotype-based breeding strategies for improving flood tolerance.
Collapse
Affiliation(s)
- Kyaw Myo Aung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Win Htet Oo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Myeong-Hyeon Min
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Aueangporn Somsri
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
| | - Jungrye Nam
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Kyu-Won Kim
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Bhagwat Nawade
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, College of Engineering, Kongju National University, Cheonan, Republic of Korea
| | - Sang-Ho Chu
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, Republic of Korea
- Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
16
|
Li X, Tian Y. STOP1 and STOP1-like proteins, key transcription factors to cope with acid soil syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1200139. [PMID: 37416880 PMCID: PMC10321353 DOI: 10.3389/fpls.2023.1200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
Acid soil syndrome leads to severe yield reductions in various crops worldwide. In addition to low pH and proton stress, this syndrome includes deficiencies of essential salt-based ions, enrichment of toxic metals such as manganese (Mn) and aluminum (Al), and consequent phosphorus (P) fixation. Plants have evolved mechanisms to cope with soil acidity. In particular, STOP1 (Sensitive to proton rhizotoxicity 1) and its homologs are master transcription factors that have been intensively studied in low pH and Al resistance. Recent studies have identified additional functions of STOP1 in coping with other acid soil barriers: STOP1 regulates plant growth under phosphate (Pi) or potassium (K) limitation, promotes nitrate (NO3 -) uptake, confers anoxic tolerance during flooding, and inhibits drought tolerance, suggesting that STOP1 functions as a node for multiple signaling pathways. STOP1 is evolutionarily conserved in a wide range of plant species. This review summarizes the central role of STOP1 and STOP1-like proteins in regulating coexisting stresses in acid soils, outlines the advances in the regulation of STOP1, and highlights the potential of STOP1 and STOP1-like proteins to improve crop production on acid soils.
Collapse
Affiliation(s)
- Xinbo Li
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yifu Tian
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Shanmugam A, Manivelan K, Deepika K, Nithishkumar G, Blessy V, Monihasri RB, Nivetha D, Roshini A, Sathya P, Pushpa R, Manimaran R, Subrahmaniyan K, Sassikumar D, Suresh R. Unraveling the genetic potential of native rice ( Oryza sativa L.) landraces for tolerance to early-stage submergence. FRONTIERS IN PLANT SCIENCE 2023; 14:1083177. [PMID: 37275250 PMCID: PMC10232957 DOI: 10.3389/fpls.2023.1083177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 06/07/2023]
Abstract
Direct-seeded rice (DSR) is a promising alternative to the traditional puddled rice system. It has become more popular among rice growers as a result of socioeconomic shifts and global climate change. Although DSR offers advantages, rice plants experience greater anaerobic stress at sowing from unpredicted rainfall. Rice is unique among cereals in its ability to germinate under anaerobiosis. The coleoptile of rice rapidly elongates above the water surface to obtain more oxygen and enhance vigorous seedling growth. A panel of 115 landraces and four check varieties were subjected to anaerobic stress with a water level of 10 cm for up to 15 days. The present study observed significant variation in anaerobic germination percentage (AGP) (10%-100%) and anaerobic vigor index (AVI) (150-4,433). Landraces Karuthakar, Poovan samba, Mattaikar, Edakkal, Manvilayan, and Varappu kudainchan were identified as genotypes tolerant to early water submergence. The shoot and root length of susceptible landraces were significantly lower than the tolerant landraces under hypoxia condition, implying that landraces with longer shoots and roots had a higher survival rate. The response index substantiated this. The results clearly show that tolerant and moderately tolerant landraces possessed higher mean values for root and shoot lengths than susceptible landraces. The landraces grouped under the long-bold category had superior AGP and AVI scores to other grain type groups. This raises the possibility that differences in kernel breadth, which is linked to grain type, could affect anaerobic germination potential. Molecular confirmation using gene-specific markers, viz., DFR, TTP_G4, RM478, RM208, and RM24161, for which the polymorphic information content (PIC) value ranged from 0.36 (RM478) to 0.68 (RM206) suggests that this diverse panel of landraces must be assessed further using advanced molecular tools to precisely clarify the genetic mechanism behind this phenomenon. The tolerant landraces thus identified may become donors in breeding programs. The introduction of these traits would contribute to the development of rice varieties tolerant to anaerobic stress, resulting in sustainable yields. This solution could promote the DSR system across the world.
Collapse
Affiliation(s)
- Aravindan Shanmugam
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| | - Kalaiarasan Manivelan
- Department of Genetics and Plant Breeding, Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Madurai, Tamil Nadu, India
| | - Konne Deepika
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| | - Gopal Nithishkumar
- Department of Genetics and Plant Breeding, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Trichy, Tamil Nadu, India
| | - Viswanadhapalli Blessy
- Department of Genetics and Plant Breeding, Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Madurai, Tamil Nadu, India
| | - Raju Baskaran Monihasri
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| | - Dhanasekar Nivetha
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| | - Arunkamaraj Roshini
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| | - Palanivelu Sathya
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| | - Raman Pushpa
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University (TNAU), Aduthurai, Tamil Nadu, India
| | - Rangarajan Manimaran
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University (TNAU), Aduthurai, Tamil Nadu, India
| | - Kasirajan Subrahmaniyan
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University (TNAU), Aduthurai, Tamil Nadu, India
| | | | - Ramalingam Suresh
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India
| |
Collapse
|
18
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
19
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
20
|
Hirano H, Watanabe T, Fukuda M, Fukao T. The Impact of Carbohydrate Management on Coleoptile Elongation in Anaerobically Germinating Seeds of Rice ( Oryza sativa L.) under Light and Dark Cycles. PLANTS (BASEL, SWITZERLAND) 2023; 12:1565. [PMID: 37050192 PMCID: PMC10097243 DOI: 10.3390/plants12071565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The ability of rice to elongate coleoptiles under oxygen deprivation is a determinant of anaerobic germination tolerance, critical for successful direct seeding. Most studies on anaerobic coleoptile elongation have been performed under constant darkness or in flooded soils because a drilling method was the primary approach for direct seeding of rice. However, aerial seeding is becoming popular, in which seeds which land on flooded soils are exposed to light during the daytime. Here, we investigated physiological mechanisms underlying anaerobic elongation of coleoptiles under light and dark cycles. This study identified two novel varieties, LG and L202, enabling the development of long coleoptiles under oxygen limitation, comparable to well-characterized varieties with strong anaerobic germination tolerance. Germination experiments using these two tolerant and two intolerant varieties, including Takanari and IR64, revealed that light and dark cycles increased coleoptile length in LG, Takanari, and IR64 relative to constant darkness. Interestingly, even in intolerant lines, dramatic starch breakdown and soluble carbohydrate accumulation occurred under oxygen limitation. However, intolerant lines were more susceptible to a representative soluble sugar, glucose, than tolerant lines under oxygen deprivation, suggesting that coleoptile growth can be inhibited in intolerant lines due to hypersensitivity to soluble sugars accumulated in anaerobically germinating seeds.
Collapse
|
21
|
Lee KW, Chen JJW, Wu CS, Chang HC, Chen HY, Kuo HH, Lee YS, Chang YL, Chang HC, Shiue SY, Wu YC, Ho YC, Chen PW. Auxin plays a role in the adaptation of rice to anaerobic germination and seedling establishment. PLANT, CELL & ENVIRONMENT 2023; 46:1157-1175. [PMID: 36071575 DOI: 10.1111/pce.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Auxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development. In this study, the high-level accumulation of endogenous IAA is observed under dark submergence, stimulating rice coleoptile elongation but limiting the root and primary leaf growth during anaerobic germination (AG). We found that oxygen and light can reduce IAA levels, promote the seedling establishment and enhance rice AG tolerance. miRNA microarray profiling and RNA gel blot analysis results show that the expression of miR167 is negatively regulated by submergence; it subsequently modulates the accumulation of free IAA through the miR167-ARF-GH3 pathway. The OsGH3-8 encodes an IAA-amido synthetase that functions to prevent free IAA accumulation. Reduced miR167 levels or overexpressing OsGH3-8 increase auxin metabolism, reduce endogenous levels of free IAA and enhance rice AG tolerance. Our studies reveal that poor seed germination and seedling growth inhibition resulting from excessive IAA accumulation would cause intolerance to submergence in rice, suggesting that a certain threshold level of auxin is essential for rice AG tolerance.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Shen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ho-Chun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hong-Yue Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hsin-Hao Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ya-Shan Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yan-Lun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hung-Chia Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Shiau-Yu Shiue
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Chen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Peng-Wen Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
22
|
Flooding tolerance in Rice: adaptive mechanism and marker-assisted selection breeding approaches. Mol Biol Rep 2023; 50:2795-2812. [PMID: 36592290 DOI: 10.1007/s11033-022-07853-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 01/03/2023]
Abstract
Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
Collapse
|
23
|
Liu K, Yang J, Sun K, Li D, Luo L, Zheng T, Wang H, Chen Z, Guo T. Genome-wide association study reveals novel genetic loci involved in anaerobic germination tolerance in Indica rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:9. [PMID: 37313132 PMCID: PMC10248643 DOI: 10.1007/s11032-022-01345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/20/2022] [Indexed: 06/15/2023]
Abstract
Increasing numbers of rice farmers are adopting methods of direct seeding in flooded paddy fields to save costs associated with labor and transplanting. Successful seedling establishment under anoxic conditions requires rapid coleoptile growth to access oxygen near the water surface. It is important to identify relevant genetic loci for coleoptile growth in rice. In this study, the coleoptile length (CL), coleoptile surface area (CSA), coleoptile volume (CV), and coleoptile diameter (CD) of a germplasm collection consisting of 200 cultivars growing in a low-oxygen environment for 6 days varied extensively. A genome-wide association study (GWAS) was performed using 161,657 high-quality single nucleotide polymorphisms (SNPs), which were obtained via genotyping by sequencing (GBS). A total of 96 target trait-associated loci were detected, of which 14 were detected repeatedly in both the wet and dry seasons. For these 14 loci, 384 genes were located within a 200-kb genomic region (± 100 kb from the peak SNP). In addition, 12,084 differentially expressed genes (DEGs) were identified using transcriptome expression profiling. Based on the GWAS and expression profiling, we further narrowed the candidate genes down to 111. Among the 111 candidate DEGs, Os02g0285300, Os02g0639300, Os04g0671300, Os06g0702600, Os06g0707300, and Os12g0145700 were the most promising candidates associated with anaerobic germination. In addition, we performed a detailed analysis of OsTPP7 sequences from 29 samples in our panel containing 200 diverse germplasms. A total of 11 mutation sites were identified, and four haplotypes were obtained. We found that 7 varieties with the OsTPP7-1 haplotype had higher phenotypic values. This work broadens our understanding of the genetic control of germination tolerance of anaerobic conditions. This study also provides a material basis for breeding superior direct-seeded rice varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01345-1.
Collapse
Affiliation(s)
- Kai Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500 China
| | - Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Dongxiu Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Taotao Zheng
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
24
|
New Insight into Short Time Exogenous Formaldehyde Application Mediated Changes in Chlorophytum comosum L. (Spider Plant) Cellular Metabolism. Cells 2023; 12:cells12020232. [PMID: 36672168 PMCID: PMC9857029 DOI: 10.3390/cells12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Chlorophytum comosum L. plants are known to effectively absorb air pollutants, including formaldehyde (HCHO). Since the metabolic and defense responses of C. comosum to HCHO are poorly understood, in the present study, biochemical changes in C. comosum leaves induced by 48 h exposure to exogenous HCHO, applied as 20 mg m-3, were analyzed. The observed changes showed that HCHO treatment caused no visible harmful effects on C. comosum leaves and seemed to be effectively metabolized by this plant. HCHO application caused no changes in total chlorophyll (Chl) and Chl a content, increased Chl a/b ratio, and decreased Chl b and carotenoid content. HCHO treatment affected sugar metabolism, towards the utilization of sucrose and synthesis or accumulation of glucose, and decreased activities of aspartate and alanine aminotransferases, suggesting that these enzymes do not play any pivotal role in amino acid transformations during HCHO assimilation. The total phenolic content in leaf tissues did not change in comparison to the untreated plants. The obtained results suggest that HCHO affects nitrogen and carbohydrate metabolism, effectively influencing photosynthesis, shortly after plant exposure to this volatile compound. It may be suggested that the observed changes are related to early HCHO stress symptoms or an early step of the adaptation of cells to HCHO treatment. The presented results confirm for the first time the direct influence of short time HCHO exposure on the studied parameters in the C. comosum plant leaf tissues.
Collapse
|
25
|
Liang W, Du H, Pang B, Cheng J, He B, Hu F, Lv Y, Zhang Y. High-density genetic mapping identified QTLs for anaerobic germination tolerance in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1076600. [PMID: 36618635 PMCID: PMC9822775 DOI: 10.3389/fpls.2022.1076600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The tolerance of rice anaerobic germination (AG) is the main limiting factor for direct seeding application, yet the genetics mechanism is still in its infancy. In the study, recombinant inbred lines population of TD70 Japonica cultivar and Kasalath Indica cultivar, was employed to construct a high-density genetic map by whole genome re-sequencing. As a result, a genetic map containing 12,328 bin-markers was constructed and a total of 50 QTLs were then detected for CL(coleoptile length), CD (coleoptile diameter), CSA (coleoptile surface area) and CV (coleoptile volume) related traits in the two stages of anaerobic treatment using complete interval mapping method (inclusive composite interval mapping, ICIM). Among the four traits associated with coleoptile, coleoptile volume had the largest number of QTLs (17), followed by coleoptile diameter (16), and coleoptile length had 5 QTLs. These QTLs could explain phenotypic contribution rates ranging from 0.34% to 11.17% and LOD values ranging from 2.52 to 11.57. Combined with transcriptome analysis, 31 candidate genes were identified. Furthermore, 12 stable QTLs were used to detect the aggregation effect analysis. Besides, It was found that individuals with more aggregation synergistic alleles had higher phenotypic values in different environments. Totally, high-density genetic map, QTL mapping and aggregation effect analysis of different loci related to the anaerobic germination of rice seeds were conducted to lay a foundation for the fine mapping of related genes in subsequent assisted breeding.
Collapse
Affiliation(s)
- Wenhua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongyang Du
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Science, Hefei, China
| | - Bingwen Pang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Junjie Cheng
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Bing He
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural, Sciences, Nanjing, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
26
|
The Role of Aquaporins in Plant Growth under Conditions of Oxygen Deficiency. Int J Mol Sci 2022; 23:ijms231710159. [PMID: 36077554 PMCID: PMC9456501 DOI: 10.3390/ijms231710159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Plants frequently experience hypoxia due to flooding caused by intensive rainfall or irrigation, when they are partially or completely submerged under a layer of water. In the latter case, some resistant plants implement a hypoxia avoidance strategy by accelerating shoot elongation, which allows lifting their leaves above the water surface. This strategy is achieved due to increased water uptake by shoot cells through water channels (aquaporins, AQPs). It remains a puzzle how an increased flow of water through aquaporins into the cells of submerged shoots can be achieved, while it is well known that hypoxia inhibits the activity of aquaporins. In this review, we summarize the literature data on the mechanisms that are likely to compensate for the decline in aquaporin activity under hypoxic conditions, providing increased water entry into cells and accelerated shoot elongation. These mechanisms include changes in the expression of genes encoding aquaporins, as well as processes that occur at the post-transcriptional level. We also discuss the involvement of hormones, whose concentration changes in submerged plants, in the control of aquaporin activity.
Collapse
|
27
|
Wang H, Zhou X, Liu C, Li W, Guo W. Suppression of GhGLU19 encoding β-1,3-glucanase promotes seed germination in cotton. BMC PLANT BIOLOGY 2022; 22:357. [PMID: 35869418 PMCID: PMC9308338 DOI: 10.1186/s12870-022-03748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding β-1,3-glucanase, in cotton seed germination. RESULTS GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
28
|
Ahumada GD, Gómez-Álvarez EM, Dell’Acqua M, Bertani I, Venturi V, Perata P, Pucciariello C. Bacterial Endophytes Contribute to Rice Seedling Establishment Under Submergence. FRONTIERS IN PLANT SCIENCE 2022; 13:908349. [PMID: 35845658 PMCID: PMC9277545 DOI: 10.3389/fpls.2022.908349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 06/10/2023]
Abstract
Flooding events caused by severe rains and poor soil drainage can interfere with plant germination and seedling establishment. Rice is one of the cereal crops that has unique germination strategies under flooding. One of these strategies is based on the fast coleoptile elongation in order to reach the water surface and re-establish the contact with the air. Microorganisms can contribute to plant health via plant growth promoters and provide protection from abiotic stresses. To characterise the community composition of the microbiome in rice germination under submergence, a 16S rRNA gene profiling metagenomic analysis was performed of temperate japonica rice varieties Arborio and Lamone seedlings, which showed contrasting responses in terms of coleoptile length when submerged. This analysis showed a distinct microbiota composition of Arborio seeds under submergence, which are characterised by the development of a long coleoptile. To examine the potential function of microbial communities under submergence, culturable bacteria were isolated, identified and tested for plant growth-promoting activities. A subgroup of isolated bacteria showed the capacity to hydrolyse starch and produce indole-related compounds under hypoxia. Selected bacteria were inoculated in seeds to evaluate their effect on rice under submergence, showing a response that is dependent on the rice genotype. Our findings suggest that endophytic bacteria possess plant growth-promoting activities that can substantially contribute to rice seedling establishment under submergence.
Collapse
Affiliation(s)
| | | | | | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | |
Collapse
|
29
|
Sano N, Lounifi I, Cueff G, Collet B, Clément G, Balzergue S, Huguet S, Valot B, Galland M, Rajjou L. Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:867263. [PMID: 35755645 PMCID: PMC9225960 DOI: 10.3389/fpls.2022.867263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Seed germination and subsequent seedling growth affect the final yield and quality of the crop. Seed germination is defined as a series of processes that begins with water uptake by a quiescent dry seed and ends with the elongation of embryonic axis. Rice is an important cereal crop species, and during seed germination, two tissues function in a different manner; the embryo grows into a seedling as the next generation and the endosperm is responsible for nutritional supply. Toward understanding the integrated roles of each tissue at the transcriptional, translational, and metabolic production levels during germination, an exhaustive "multi-omics" analysis was performed by combining transcriptomics, label-free shotgun proteomics, and metabolomics on rice germinating embryo and endosperm, independently. Time-course analyses of the transcriptome and metabolome in germinating seeds revealed a major turning point in the early phase of germination in both embryo and endosperm, suggesting that dramatic changes begin immediately after water imbibition in the rice germination program at least at the mRNA and metabolite levels. In endosperm, protein profiles mostly showed abundant decreases corresponding to 90% of the differentially accumulated proteins. An ontological classification revealed the shift from the maturation to the germination process where over-represented classes belonged to embryonic development and cellular amino acid biosynthetic processes. In the embryo, 19% of the detected proteins are differentially accumulated during germination. Stress response, carbohydrate, fatty acid metabolism, and transport are the main functional classes representing embryo proteome change. Moreover, proteins specific to the germinated state were detected by both transcriptomic and proteomic approaches and a major change in the network operating during rice germination was uncovered. In particular, concomitant changes of hormonal metabolism-related proteins (GID1L2 and CNX1) implicated in GAs and ABA metabolism, signaling proteins, and protein turnover events emphasized the importance of such biological networks in rice seeds. Using metabolomics, we highlighted the importance of an energetic supply in rice seeds during germination. In both embryo and endosperm, starch degradation, glycolysis, and subsequent pathways related to these cascades, such as the aspartate-family pathway, are activated during germination. A relevant number of accumulated proteins and metabolites, especially in embryos, testifies the pivotal role of energetic supply in the preparation of plant growth. This article summarizes the key genetic pathways in embryo and endosperm during rice seed germination at the transcriptional, translational, and metabolite levels and thereby, emphasizes the value of combined multi-omics approaches to uncover the specific feature of tissues during germination.
Collapse
Affiliation(s)
- Naoto Sano
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Imen Lounifi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- MBCC Group, Master Builders Construction Chemical, Singapore, Singapore
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Boris Collet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Balzergue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Benoît Valot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, Plateforme d'Analyse de Proteomique Paris-Sud-Ouest, Gif-sur-Yvette, France
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Marc Galland
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
30
|
Chen J, Sui X, Ma B, Li Y, Li N, Qiao L, Yu Y, Dong CH. Arabidopsis CPR5 plays a role in regulating nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. PLANT CELL REPORTS 2022; 41:1075-1085. [PMID: 35201411 DOI: 10.1007/s00299-022-02838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis CPR5 is involved in regulation of ethylene signaling via two different ways: interacting with the ETR1 N-terminal domains, and controlling nucleocytoplasmic transport of ethylene-related mRNAs. The ETR1 receptor plays a predominant role in ethylene signaling in Arabidopsis thaliana. Previous studies showed that both RTE1 and CPR5 can directly bind to the ETR1 receptor and regulate ethylene signaling. RTE1 was suggested to promote the ETR1 receptor signaling by influencing its conformation, but little is known about the regulatory mechanism of CPR5 in ethylene signaling. In this study, we presented the data showing that both RTE1 and CPR5 bound to the N-terminal domains of ETR1, and regulated ethylene signaling via the ethylene receptor. On the other hand, the research provided evidence indicating that CPR5 could act as a nucleoporin to regulate the ethylene-related mRNAs export out of the nucleus, while RTE1 or its homolog (RTH) had no effect on the nucleocytoplasmic transport of mRNAs. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that defect of CPR5 restricted nucleocytoplasmic transport of mRNAs. These results advance our understanding of the regulatory mechanism of CPR5 in ethylene signaling.
Collapse
Affiliation(s)
- Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuetong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
31
|
Kumari A, Singh P, Kaladhar VC, Paul D, Pathak PK, Gupta KJ. Phytoglobin-NO cycle and AOX pathway play a role in anaerobic germination and growth of deepwater rice. PLANT, CELL & ENVIRONMENT 2022; 45:178-190. [PMID: 34633089 DOI: 10.1111/pce.14198] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
An important and interesting feature of rice is that it can germinate under anoxic conditions. Though several biochemical adaptive mechanisms play an important role in the anaerobic germination of rice but the role of phytoglobin-nitric oxide cycle and alternative oxidase pathway is not known, therefore in this study we investigated the role of these pathways in anaerobic germination. Under anoxic conditions, deepwater rice germinated much higher and rapidly than aerobic condition and the anaerobic germination and growth were much higher in the presence of nitrite. The addition of nitrite stimulated NR activity and NO production. Important components of phytoglobin-NO cycle such as methaemoglobin reductase activity, expression of Phytoglobin1, NIA1 were elevated under anaerobic conditions in the presence of nitrite. The operation of phytoglobin-NO cycle also enhanced anaerobic ATP generation, LDH, ADH activities and in parallel ethylene levels were also enhanced. Interestingly nitrite suppressed the ROS production and lipid peroxidation. The reduction of ROS was accompanied by enhanced expression of mitochondrial alternative oxidase protein and its capacity. Application of AOX inhibitor SHAM inhibited the anoxic growth mediated by nitrite. In addition, nitrite improved the submergence tolerance of seedlings. Our study revealed that nitrite driven phytoglobin-NO cycle and AOX are crucial players in anaerobic germination and growth of deepwater rice.
Collapse
Affiliation(s)
- Aprajita Kumari
- National Institute for Plant Genome Research, New Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pooja Singh
- National Institute for Plant Genome Research, New Delhi, India
| | | | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | | |
Collapse
|
32
|
Uddin MM, Zakeel MCM, Zavahir JS, Marikar FMMT, Jahan I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. TOXICS 2021; 9:360. [PMID: 34941794 PMCID: PMC8706345 DOI: 10.3390/toxics9120360] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Aquatic ecosystems are contaminated with heavy metals by natural and anthropogenic sources. Whilst some heavy metals are necessary for plants as micronutrients, others can be toxic to plants and humans even in trace concentrations. Among heavy metals, cadmium (Cd), arsenic (As), chromium (Cr), lead (Pb), and mercury (Hg) cause significant damage to aquatic ecosystems and can invariably affect human health. Rice, a staple diet of many nations, and other aquatic plants used as vegetables in many countries, can bioaccumulate heavy metals when they grow in contaminated aquatic environments. These metals can enter the human body through food chains, and the presence of heavy metals in food can lead to numerous human health consequences. Heavy metals in aquatic plants can affect plant physicochemical functions, growth, and crop yield. Various mitigation strategies are being continuously explored to avoid heavy metals entering aquatic ecosystems. Understanding the levels of heavy metals in rice and aquatic plants grown for food in contaminated aquatic environments is important. Further, it is imperative to adopt sustainable management approaches and mitigation mechanisms. Although narrowly focused reviews exist, this article provides novel information for improving our understanding about heavy metal accumulation in rice and aquatic plants, addressing the gaps in literature.
Collapse
Affiliation(s)
- Mohammad Main Uddin
- Institute of Forestry and Environmental Sciences, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mohamed Cassim Mohamed Zakeel
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura 50000, Sri Lanka
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia
| | - Junaida Shezmin Zavahir
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Melbourne, VIC 3800, Australia;
| | - Faiz M. M. T. Marikar
- Staff Development Centre, General Sir John Kotelawala Defense University, Ratmalana 10390, Sri Lanka;
| | - Israt Jahan
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals, Mirpur, Dhaka 1216, Bangladesh;
| |
Collapse
|
33
|
Submergence Gene Sub1A Transfer into Drought-Tolerant japonica Rice DT3 Using Marker-Assisted Selection. Int J Mol Sci 2021; 22:ijms222413365. [PMID: 34948165 PMCID: PMC8705020 DOI: 10.3390/ijms222413365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Flash flooding is a major environmental stressor affecting rice production worldwide. DT3 is a drought-tolerant, recurrent parent with a good yield, edible quality, and agronomic traits akin to those of an elite Taiwanese variety, Taiken9 (TK9). Progenies carrying Sub1A can enhance submergence stress tolerance and can be selected using the marker-assisted backcross (MAB) breeding method. For foreground selection, Sub1A and SubAB1 were utilized as markers on the BC2F1, BC3F1, and BC3F2 generations to select the submergence-tolerant gene, Sub1A. Background selection was performed in the Sub1A-BC3F2 genotypes, and the percentages of recurrent parent recovery within individuals ranged from 84.7–99.55%. BC3F3 genotypes (N = 100) were evaluated for agronomic traits, yield, and eating quality. Four of the eleven BC3F4 lines showed good yield, yield component, grain, and eating quality. Four BC3F4 lines, SU39, SU40, SU89, and SU92, exhibited desirable agronomic traits, including grain quality and palatability, consistent with those of DT3. These genotypes displayed a high survival rate between 92 and 96%, much better compared with DT3 with 64%, and demonstrated better drought tolerance compared to IR64 and IR96321-345-240. This study provides an efficient and precise MAB strategy for developing climate-resilient rice varieties with good grain quality for flood-prone regions.
Collapse
|
34
|
Wang S, Liu W, He Y, Adegoke TV, Ying J, Tong X, Li Z, Tang L, Wang H, Zhang J, Tian Z, Wang Y. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:112-118. [PMID: 34775177 DOI: 10.1016/j.plaphy.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Seed germination and coleoptile elongation in response to flooding stress is an important trait for the direct seeding of rice. However, the genes regulating this process and the underlying mechanisms are little understood. In this study, bZIP72 was identified as a positive regulator of seed germination under submergence. Transcription of bZIP72 was submergence induced. Over-expression of bZIP72 enhanced submerged seed germination and coleoptile elongation, while bzip72 mutants exhibited the opposite tendency. Using biochemical interaction assays, we showed that bZIP72 directly binds to the promoter of alcohol dehydrogenase 1 (ADH1), enhances its activity, and subsequently produces more NAD+, NADH and ATP involved in the alcoholic fermentation and glycolysis pathway, ultimately providing necessary energy reserves thus conferring tolerance to submergence. In summary, this research provides novel insights into bZIP72 participation in submerged rice seed germination and coleoptile elongation.
Collapse
Affiliation(s)
- Shuang Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yong He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, LinAn, 311300, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
35
|
Sadhukhan A, Kobayashi Y, Iuchi S, Koyama H. Synergistic and antagonistic pleiotropy of STOP1 in stress tolerance. TRENDS IN PLANT SCIENCE 2021; 26:1014-1022. [PMID: 34253485 DOI: 10.1016/j.tplants.2021.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 05/29/2023]
Abstract
SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) is a master transcription factor (TF) that regulates genes encoding proteins critical for cellular pH homeostasis. STOP1 also causes pleiotropic effects in both roots and shoots associated with various stress tolerances. STOP1-regulated genes in roots synergistically confer tolerance to coexisting stress factors in acid soil, and root-architecture remodeling for superior phosphorus acquisition. Additionally, STOP1 confers salt tolerance to roots under low-potassium conditions. By contrast, STOP1 antagonistically functions in shoots to promote hypoxia tolerance but to suppress drought tolerance. In this review, we discuss how these synergetic- and antagonistic-pleiotropic effects indicate that STOP1 is a central hub of stress regulation and that the harmonization of STOP1-regulated traits is essential for plant adaptation to various environments.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuriko Kobayashi
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, 305-0074, Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
36
|
Kim H, Lee YH. Spatiotemporal Assembly of Bacterial and Fungal Communities of Seed-Seedling-Adult in Rice. Front Microbiol 2021; 12:708475. [PMID: 34421867 PMCID: PMC8375405 DOI: 10.3389/fmicb.2021.708475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Seeds harbor not only genetic information about plants but also microbial communities affecting plants’ vigor. Knowledge on the movement and formation of seed microbial communities during plant development remains insufficient. Here, we address this knowledge gap by investigating endophytic bacterial and fungal communities of seeds, seedlings, and adult rice plants. We found that seed coats act as microbial niches for seed bacterial and fungal communities. The presence or absence of the seed coat affected taxonomic composition and diversity of bacterial and fungal communities associated with seeds and seedlings. Ordination analysis showed that niche differentiation between above- and belowground compartments leads to compositional differences in endophytic bacterial and fungal communities originating from seeds. Longitudinal tracking of the composition of microbial communities from field-grown rice revealed that bacterial and fungal communities originating from seeds persist in the leaf, stem, and root endospheres throughout the life cycle. Our study provides ecological insights into the assembly of the initial endophytic microbial communities of plants from seeds.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Ma Y, Zhao J, Fu H, Yang T, Dong J, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S, Edwards D. Genome-Wide Identification, Expression and Functional Analysis Reveal the Involvement of FCS-Like Zinc Finger Gene Family in Submergence Response in Rice. RICE (NEW YORK, N.Y.) 2021; 14:76. [PMID: 34417910 PMCID: PMC8380221 DOI: 10.1186/s12284-021-00519-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Direct seeding is an efficient rice cultivation practice. However, its application is often limited due to O2 deficiency following submergence, leading to poor seed germination, seedling establishment, and consequently yield loss. Identification of genes associated with tolerance to submergence and understanding their regulatory mechanisms is the fundamental way to address this problem. Unfortunately, the molecular mechanism of rice response to submergence stress is still not well understood. RESULTS Here, we have performed a genome-wide identification of FCS-like zinc finger (FLZ) proteins and assessed their involvement in submergence response in rice. We identified 29 FLZ genes in rice, and the expression analysis revealed that several genes actively responded to submergence stress. Eight OsFLZ proteins interact with SnRK1A. As a case study, we demonstrated that OsFLZ18 interacted with SnRK1A and inhibited the transcriptional activation activity of SnRK1A in modulating the expression of its target gene αAmy3, a positive regulator in rice flooding tolerance. In line with this, OsFLZ18-overexpression lines displayed retarded early seedling growth and shorter coleoptile following submergence. CONCLUSIONS These data provide the most comprehensive information of OsFLZ genes in rice, and highlight their roles in rice submergence response.
Collapse
Affiliation(s)
- Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA Australia
| |
Collapse
|
38
|
Yu J, Mao C, Zhong Q, Yao X, Li P, Liu C, Ming F. OsNAC2 Is Involved in Multiple Hormonal Pathways to Mediate Germination of Rice Seeds and Establishment of Seedling. FRONTIERS IN PLANT SCIENCE 2021; 12:699303. [PMID: 34367219 PMCID: PMC8343022 DOI: 10.3389/fpls.2021.699303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 05/11/2023]
Abstract
The germination of seeds and establishment of seedling are the preconditions of plant growth and are antagonistically regulated by multiple phytohormones, e.g., ethylene, abscisic acid (ABA), and gibberellic acid (GA). However, the interactions between these phytohormones and their upstream transcriptional regulation during the seed and seedling growth in rice remain poorly understood. Here, we demonstrated a rice NAC (NAM-ATAF-CUC) transcription factor, OsNAC2, the overexpression of which increases the ethylene sensitivity in rice roots during the seedling period. Further study proved that OsNAC2 directly activates the expressions of OsACO and OsACO3, enhancing ethylene synthesis, and then retards seedling establishment. Moreover, OsNAC2 delays the germination of seeds and coleoptile growth through the ABA pathway instead of the ethylene and GA pathway, by targeting the promoters of OsNCED3, OsZEP1, and OsABA8ox1. We also found that OsNAC2 regulates downstream targets in a time-dependent manner by binding to the promoter of OsKO2 in the seedling period but not in the germination stage. Our finding enriched the regulatory network of ethylene, ABA, and GA in the germination of rice seeds and seedling growth, and uncovered new insights into the difference of transcription factors in targeting their downstream components.
Collapse
Affiliation(s)
- Jiangtao Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qun Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuefeng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chunming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
39
|
Castano-Duque L, Ghosal S, Quilloy FA, Mitchell-Olds T, Dixit S. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment. PLANT PHYSIOLOGY 2021; 186:1042-1059. [PMID: 33638990 PMCID: PMC8195528 DOI: 10.1093/plphys/kiab100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in 2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a generalized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influences AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling establishment developmental stages.
Collapse
Affiliation(s)
| | - Sharmistha Ghosal
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | - Fergie A Quilloy
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | | | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| |
Collapse
|
40
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021. [PMID: 34204152 DOI: 10.3390/ijms221161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
41
|
Anwar K, Joshi R, Dhankher OP, Singla-Pareek SL, Pareek A. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. Int J Mol Sci 2021; 22:6119. [PMID: 34204152 PMCID: PMC8201344 DOI: 10.3390/ijms22116119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
In nature, plants are exposed to an ever-changing environment with increasing frequencies of multiple abiotic stresses. These abiotic stresses act either in combination or sequentially, thereby driving vegetation dynamics and limiting plant growth and productivity worldwide. Plants' responses against these combined and sequential stresses clearly differ from that triggered by an individual stress. Until now, experimental studies were mainly focused on plant responses to individual stress, but have overlooked the complex stress response generated in plants against combined or sequential abiotic stresses, as well as their interaction with each other. However, recent studies have demonstrated that the combined and sequential abiotic stresses overlap with respect to the central nodes of their interacting signaling pathways, and their impact cannot be modelled by swimming in an individual extreme event. Taken together, deciphering the regulatory networks operative between various abiotic stresses in agronomically important crops will contribute towards designing strategies for the development of plants with tolerance to multiple stress combinations. This review provides a brief overview of the recent developments in the interactive effects of combined and sequentially occurring stresses on crop plants. We believe that this study may improve our understanding of the molecular and physiological mechanisms in untangling the combined stress tolerance in plants, and may also provide a promising venue for agronomists, physiologists, as well as molecular biologists.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.A.); (R.J.)
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| |
Collapse
|
42
|
Toyoizumi T, Kosugi T, Toyama Y, Nakajima T. Effects of high-temperature cooking on the gamma-aminobutyric acid content and antioxidant capacity of germinated brown rice ( Oryza sativa L.). CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1905721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tomoyasu Toyoizumi
- Shizuoka Prefectural Research Institute of Agriculture and Forestry, Iwata, Japan
| | - Toru Kosugi
- Shizuoka Prefectural Research Institute of Agriculture and Forestry, Iwata, Japan
| | - Yusuke Toyama
- Shizuoka Prefectural Research Institute of Agriculture and Forestry, Iwata, Japan
| | - Teruko Nakajima
- Shizuoka Prefectural Research Institute of Agriculture and Forestry, Iwata, Japan
| |
Collapse
|
43
|
Panda D, Barik J, Sarkar RK. Recent Advances of Genetic Resources, Genes and Genetic Approaches for Flooding Tolerance in Rice. Curr Genomics 2021; 22:41-58. [PMID: 34045923 PMCID: PMC8142345 DOI: 10.2174/1389202922666210114104140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world, which results in huge economic losses. The frequency and duration of flooding is predicted to increase in near future as a result of global climate change. Breeding of flooding tolerance in rice is a challenging task because of the complexity of the component traits, screening technique, environmental factors and genetic interactions. A great progress has been made during last two decades to find out the flooding tolerance mechanism in rice. An important breakthrough in submergence research was achieved by the identification of major quantitative trait locus (QTL) SUB1 in rice chromosomes that acts as the primary contributor for tolerance. This enabled the use of marker-assisted backcrossing (MABC) to transfer SUB1 QTL into popular varieties which showed yield advantages in flood prone areas. However, SUB1 varieties are not always tolerant to stagnant flooding and flooding during germination stage. So, gene pyramiding approach can be used by combining several important traits to develop new breeding rice lines that confer tolerances to different types of flooding. This review highlights the important germplasm/genetic resources of rice to different types of flooding stress. A brief discussion on the genes and genetic mechanism in rice exhibited to different types of flooding tolerance was discussed for the development of flood tolerant rice variety. Further research on developing multiple stresses tolerant rice can be achieved by combining SUB1 with other tolerance traits/genes for wider adaptation in the rain-fed rice ecosystems.
Collapse
Affiliation(s)
- Debabrata Panda
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput-764 020, Odisha, India
| | - Jijnasa Barik
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput-764 020, Odisha, India
| | - Ramani K Sarkar
- ICAR-National Rice Research Institute, Cuttack-753 006, Odisha, India
| |
Collapse
|
44
|
Bal HB, Adhya TK. Alleviation of Submergence Stress in Rice Seedlings by Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Submergence stress slows seed germination, imposes fatalities, and delays seedling establishment in rice. Seeds of submergence susceptible rice variety IR 42 were inoculated with four 1-aminocyclopropane-1-carboxylic acid (ACC) utilizing isolates viz., Bacillus sp. (AR-ACC1), Microbacterium sp. (AR-ACC2), Methylophaga sp. (AR-ACC3), and Paenibacillus sp. (ANR-ACC3) and subjected to submergence stress under controlled conditions for 7 days. Seeds treated with Microbacterium sp. AR-ACC2, Paenibacillus sp. ANR-ACC3, and Methylophaga sp. AR-ACC3 significantly enhanced the germination percentage (GP), seedling vigor index (SVI), and other growth parameters like root and shoot length and total chlorophyll contents, when compared with nonbacterized seeds submerged similarly. However, the values were statistically at par when control seeds were treated with l-α-(2-aminoethoxyvinyl) glycine hydrochloride (AVG), a known inhibitor of ethylene production. Results suggest that stress ethylene production was significantly reduced by around 85% in seedlings treated with Microbacterium sp. AR-ACC2 as compared with untreated control seeds under submergence. Paenibacillus sp. ANR-ACC3 and Methylophaga sp. AR-ACC3 were the next effective strains. Ethylene synthesis in seedlings was statistically at par with seeds treated with AVG suggesting ACC deaminase can effectively reduce ethylene levels in plants subjected to submergence. Bacillus sp. (AR-ACC1) was neither able to significantly promote seedling growth parameters nor inhibit ethylene production as compared with control seeds. Results suggest that flooded soil planted to rice harbor microorganisms with plant growth-promoting properties that can be used effectively to alleviate submergence stresses in susceptible rice varieties under field conditions.
Collapse
|
45
|
Liu L, Li X, Liu S, Min J, Liu W, Pan X, Fang B, Hu M, Liu Z, Li Y, Zhang H. Identification of QTLs associated with the anaerobic germination potential using a set of Oryza nivara introgression lines. Genes Genomics 2021; 43:399-406. [PMID: 33609225 DOI: 10.1007/s13258-021-01063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rice (Oryza sativa L.) is an important crop and a staple food for half of the population around the world. The recent water and labor shortages are encouraging farmers to shift from traditional transplanting to direct-seeding. However, poor germination and slow elongation of the coleoptile constrains large-scale application of direct-seeding. OBJECTIVE This study was aimed to investigate the genetic basis of the anaerobic germination (AG) potential using a set of Oryza nivara (O. nivara) introgression lines (ILs). METHODS In this study, a total of 131 ILs were developed by introducing O. nivara chromosome segments into the elite indica rice variety 93-11 through advanced backcrossing and repeated selfing. A high-density genetic map has been previously constructed with 1,070 bin-markers. The seeds of ILs were germinated and used to measure coleoptile length under normal and anaerobic conditions. QTLs associated with AG potential were determined in rice. RESULTS Based on the high-density genetic map of the IL population, two QTLs, qAGP1 and qAGP3 associated with AG tolerance were characterized and located on chromosomes 1 and 3, respectively. Each QTL explained 15% of the phenotypic variance. Specifically, the O. nivara-derived chromosome segments of the two QTLs were positively tolerance to anaerobic condition by increasing coleoptile length. In a further analysis of public transcriptome data, a total of 26 and 36 genes within qAGP1 and qAGP3 were transcriptionally induced by anaerobic stress, respectively. CONCLUSIONS Utilization of O. nivara-derived alleles at qAGP1 and qAGP3 can potentially enhance tolerance to anaerobic stress at the germination stage in rice, thereby accelerating breeding of rice varieties to be more adaptative for direct-seeding.
Collapse
Affiliation(s)
- Licheng Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Sanxiong Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Jun Min
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Wenqiang Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Baohua Fang
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Min Hu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China
| | - Zhongqi Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yongchao Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha, 410125, China.
- MOA Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, 410125, China.
| | - Haiqing Zhang
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
46
|
Rice RBH1 Encoding A Pectate Lyase is Critical for Apical Panicle Development. PLANTS 2021; 10:plants10020271. [PMID: 33573206 PMCID: PMC7912155 DOI: 10.3390/plants10020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Panicle morphology is one of the main determinants of the rice yield. Panicle abortion, a typical panicle morphological defect results in yield reduction due to defective spikelet development. To further elucidate the molecular mechanism of panicle abortion in rice, a rice panicle bald head 1 (rbh1) mutant with transfer DNA (T-DNA) insertion showing severely aborted apical spikelets during panicle development was identified and characterized. The rbh1-1 mutant showed obviously altered cell morphology and structure in the degenerated spikelet. Molecular genetic studies revealed that RBH1 encodes a pectate lyase protein. Pectate lyase-specific activity of Rice panicle Bald Head 1 (RBH1) protein assay using polygalacturonic acid (PGA) as substrates illustrated that the enzyme retained a significant capacity to degrade PGA. In addition, immunohistochemical analysis showed that the degradation of pectin is inhibited in the rbh1-1 mutant. Further analysis revealed that a significant increase in reactive oxygen species (ROS) level was found in degenerated rbh1-1 spikelets. Taken together, our findings suggest that RBH1 is required for the formation of panicle and for preventing panicle abortion.
Collapse
|
47
|
Yuan X, Chen X, Virk MS, Ma Y, Chen F. Effects of Various Rice-Based Raw Materials on Enhancement of Volatile Aromatic Compounds in Monascus Vinegar. Molecules 2021; 26:687. [PMID: 33525711 PMCID: PMC7866154 DOI: 10.3390/molecules26030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Monascus vinegar (MV), during whose brewing process Monascus spp. and polished rice (PR) are normally used as the starter and the raw material, respectively, is one of the traditional vinegars in China. In this study, the effects of three raw materials, including PR, unhusked rice (UR), and germinated UR (GR), on MV volatile compounds have been investigated. The results revealed that MV of GR (GMV), and its intermediate Monascus wine (GMW), exhibited the highest amount of aroma, not only in the concentrations but also in the varieties of the aromatic compounds mainly contributing to the final fragrance. Especially after three years of aging, the contents of benzaldehyde and furfural in GMV could reach to 13.93% and 0.57%, respectively, both of which can coordinate synergistically on enhancing the aroma. We also found that the filtering efficiency was significantly improved when UR and GR were applied as the raw materials, respectively. Therefore, GR might be more suitable raw materials for MV.
Collapse
Affiliation(s)
- Xi Yuan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyuan Chen
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China;
| | - Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglun Ma
- Fujian Yongchun Ageing Vinegar Vinegar Industry Co., Ltd., Quanzhou 362000, China;
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (M.S.V.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
48
|
Su L, Yang J, Li D, Peng Z, Xia A, Yang M, Luo L, Huang C, Wang J, Wang H, Chen Z, Guo T. Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice. RICE (NEW YORK, N.Y.) 2021; 14:1. [PMID: 33409869 PMCID: PMC7788155 DOI: 10.1186/s12284-020-00444-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND In Asian rice production, an increasing number of countries now choose the direct seeding mode because of rising costs, labour shortages and water shortages. The ability of rice seeds to undergo anaerobic germination (AG) plays an important role in the success of direct seeding. RESULTS In this study, we used 2,123,725 single nucleotide polymorphism (SNP) markers based on resequencing to conduct a dynamic genome-wide association study (GWAS) of coleoptile length (CL) and coleoptile diameter (CD) in 209 natural rice populations. A total of 26 SNP loci were detected in these two phenotypes, of which 5 overlapped with previously reported loci (S1_ 39674301, S6_ 20797781, S7_ 18722403, S8_ 9946213, S11_ 19165397), and two sites were detected repeatedly at different time points (S3_ 24689629 and S5_ 27918754). We suggest that these 7 loci (-log10 (P) value > 7.3271) are the key sites that affect AG tolerance. To screen the candidate genes more effectively, we sequenced the transcriptome of the flooding-tolerant variety R151 in six key stages, including anaerobic (AN) and the oxygen conversion point (AN-A), and obtained high-quality differential expression profiles. Four reliable candidate genes were identified: Os01g0911700 (OsVP1), Os05g0560900 (OsGA2ox8), Os05g0562200 (OsDi19-1) and Os06g0548200. Then qRT-PCR and LC-MS/ MS targeting metabolite detection technology were used to further verify that the up-regulated expression of these four candidate genes was closely related to AG. CONCLUSION The four novel candidate genes were associated with gibberellin (GA) and abscisic acid (ABA) regulation and cell wall metabolism under oxygen-deficiency conditions and promoted coleoptile elongation while avoiding adverse effects, allowing the coleoptile to obtain oxygen, escape the low-oxygen environment and germinate rapidly. The results of this study improve our understanding of the genetic basis of AG in rice seeds, which is conducive to the selection of flooding-tolerant varieties suitable for direct seeding.
Collapse
Affiliation(s)
- Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Dandan Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Ziai Peng
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Aoyun Xia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
49
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
The Molecular Regulatory Pathways and Metabolic Adaptation in the Seed Germination and Early Seedling Growth of Rice in Response to Low O 2 Stress. PLANTS 2020; 9:plants9101363. [PMID: 33066550 PMCID: PMC7602250 DOI: 10.3390/plants9101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
As sessile organisms, flooding/submergence is one of the major abiotic stresses for higher plants, with deleterious effects on their growth and survival. Therefore, flooding/submergence is a large challenge for agriculture in lowland areas worldwide. Long-term flooding/submergence can cause severe hypoxia stress to crop plants and can result in substantial yield loss. Rice has evolved distinct adaptive strategies in response to low oxygen (O2) stress caused by flooding/submergence circumstances. Recently, direct seeding practice has been increasing in popularity due to its advantages of reducing cultivation cost and labor. However, establishment and growth of the seedlings from seed germination under the submergence condition are large obstacles for rice in direct seeding practice. The physiological and molecular regulatory mechanisms underlying tolerant and sensitive phenotypes in rice have been extensively investigated. Here, this review focuses on the progress of recent advances in the studies of the molecular mechanisms and metabolic adaptions underlying anaerobic germination (AG) and coleoptile elongation. Further, we highlight the prospect of introducing quantitative trait loci (QTL) for AG into rice mega varieties to ensure the compatibility of flooding/submergence tolerance traits and yield stability, thereby advancing the direct seeding practice and facilitating future breeding improvement.
Collapse
|