1
|
Dang J, Li C, Sun D, Guo Q, Liang G. A tetraploid-dominated cytochimera developed from a natural bud mutant of the nonapomictic mandarin variety 'Orah'. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:20. [PMID: 38404720 PMCID: PMC10891019 DOI: 10.1007/s11032-024-01456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
Nonapomictic citrus tetraploids are desirable in citrus breeding for the production of triploid, seedless varieties, and polyploid rootstocks. However, only a few lines have been reported, and they were all generated using chemical methods. A 2x + 4 × cytochimera of the nonapomictic citrus variety 'Orah' mandarin, which developed from a bud mutant, was found due to its morphology differing from that of diploid plants and characterised via ploidy analysis combining flow cytometry and chromosome observation. The chimaera was stable, and there were 1.86-1.90 times as tetraploid cells as diploid cells. Anatomical structure observation revealed that the 'Orah' chimaera may be a periclinal chimaera with diploid cells in the L1 layer and tetraploid cells in the L2 and L3 layers. The chimaera showed some typical traits of polyploid plants, including thicker shoots, wider and thicker leaves, larger flowers and fruits, and fewer but larger seeds in fruits than in diploid plants. Almost all the seeds of the chimaera were monoembryonic. Most of the self-pollinated progenies of the chimaera were identified as tetraploids, and some triploid, pentaploid, and hexaploid plants were found. As a female, the chimaera produced allotriploids when crossed with Australian finger lime. In addition, 6 plants developed from polyembryonic seeds of the chimaera were identified as sexual tetraploid progenies with low-level recombinant genomes. Therefore, the 'Orah' 2x + 4 × chimaera can be used as a female parent to produce hybrid triploid and tetraploid citrus plants with high efficiency. Identification of the chimaera demonstrated that tetraploid citrus plants, especially nonapomictic varieties, can be generated from shoot bud mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01456-x.
Collapse
Affiliation(s)
- Jiangbo Dang
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| | - Cai Li
- Fuling Center for Cash Crop Development, Fuling, Chongqing, 408000 China
| | - Danni Sun
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715 China
- Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|
2
|
Aleza P, Garavello MF, Rouiss H, Benedict AC, Garcia-Lor A, Hernández M, Navarro L, Ollitrault P. Inheritance pattern of tetraploids pummelo, mandarin, and their interspecific hybrid sour orange is highly influenced by their phylogenomic structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1327872. [PMID: 38143579 PMCID: PMC10739408 DOI: 10.3389/fpls.2023.1327872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Citrus polyploidy is associated with a wide range of morphological, genetic, and physiological changes that are often advantageous for breeding. Citrus triploid hybrids are very interesting as new seedless varieties. However, tetraploid rootstocks promote adaptation to different abiotic stresses and promote resilience. Triploid and tetraploid hybrids can be obtained through sexual hybridizations using tetraploid parents (2x × 4x, 4x × 2x, or 4x × 4x), but more knowledge is needed about the inheritance pattern of tetraploid parents to optimize the efficiency of triploid varieties and tetraploid rootstock breeding strategies. In this work, we have analyzed the inheritance pattern of three tetraploid genotypes: 'Chandler' pummelo (Citrus maxima) and 'Cleopatra' mandarin (Citrus reticulata), which represent two clear examples of autotetraploid plants constituted by the genome of a single species, and the 'Sevillano' sour orange, which is an allotetraploid interspecific hybrid between C. maxima and C. reticulata. Polymorphic simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers were used to estimate parental heterozygosity restitution, and allele frequencies for centromeric loci were used to calculate the preferential pairing rate related to the proportion of disomic and tetrasomic segregation. The tetraploid pummelo and mandarin displayed tetrasomic segregation. Sour orange evidenced a clear intermediate inheritance for five of the nine chromosomes (1, 2, 5, 7, and 8), a slight tendency toward tetrasomic inheritance on chromosome 3, and intermediate inheritance with a tendency toward disomy for chromosomes 4, 6, and 9. These results indicate that the interspecific versus intraspecific phylogenomic origin affects preferential pairing and, therefore, the inheritance patterns. Despite its high level of heterozygosity, the important preferential chromosome pairing observed in sour orange results in a limited diversity of the genotypic variability of its diploid gametes, and consequently, a large part of the genetic value of the original diploid sour orange is transferred to the tetraploid progenies.
Collapse
Affiliation(s)
- Pablo Aleza
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Miguel Fernando Garavello
- Concordia Agricultural Experimental Station, National Agricultural Technology Institute, Concordia, Entre Ríos, Argentina
| | - Houssem Rouiss
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Ana Cristina Benedict
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andres Garcia-Lor
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Maria Hernández
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Luis Navarro
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Patrick Ollitrault
- Centre de coopération internationale en recherche agronomique pour le développement Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
4
|
Murugan T, Awasthi OP, Singh SK, Chawla G, Solanke AU, Kumar S, Jha GK. Molecular and histological validation of modified in ovulo nucellus culture based high-competency direct somatic embryogenesis and amplitude true-to-the-type plantlet recovery in Kinnow mandarin. FRONTIERS IN PLANT SCIENCE 2023; 14:1116151. [PMID: 36968388 PMCID: PMC10031028 DOI: 10.3389/fpls.2023.1116151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Kinnow (Citrus nobilis Lour. × Citrus deliciosa Ten.) needs to be genetically improved for traits such as seedlessness using biotechnological tools. Indirect somatic embryogenesis (ISE) protocols have been reported for citrus improvement. However, its use is restricted due to frequent occurrences of somaclonal variation and low recovery of plantlets. Direct somatic embryogenesis (DSE) using nucellus culture has played a significant role in apomictic fruit crops. However, its application in citrus is limited due to the injury caused to tissues during isolation. Optimization of the explant developmental stage, explant preparation method, and modification in the in vitro culture techniques can play a vital role in overcoming the limitation. The present investigation deals with a modified in ovulo nucellus culture technique after the concurrent exclusion of preexisting embryos. The ovule developmental events were examined in immature fruits at different stages of fruit growth (stages I-VII). The ovules of stage III fruits (>21-25 mm in diameter) were found appropriate for in ovulo nucellus culture. Optimized ovule size induced somatic embryos at the micropylar cut end on induction medium containing Driver and Kuniyuki Walnut (DKW) basal medium with kinetin (KIN) 5.0 mg L-1 and malt extract (ME) 1,000 mg L-1. Simultaneously, the same medium supported the maturation of somatic embryos. The matured embryos from the above medium gave robust germination with bipolar conversion on Murashige and Tucker (MT) medium + gibberellic acid (GA3) 2.0 mg L-1 + ά-naphthaleneacetic acid (NAA) 0.5 mg L-1 + spermidine 100 mg L-1 + coconut water (CW) 10% (v/v). The bipolar germinated seedlings established well upon preconditioning in a plant bio regulator (PBR)-free liquid medium under the light. Consequently, a cent percent survival of emblings was achieved on a potting medium containing cocopeat:vermiculite:perlite (2:1:1). Histological studies confirmed the single nucellus cell origin of somatic embryos by undergoing normal developmental events. Eight polymorphic Inter Simple Sequence Repeats (ISSR) markers confirmed the genetic stability of acclimatized emblings. Since the protocol can induce rapid single-cell origin of genetically stable in vitro regenerants in high frequency, it has potential for the induction of solid mutants, besides crop improvement, mass multiplication, gene editing, and virus elimination in Kinnow mandarin.
Collapse
Affiliation(s)
- Theivanai Murugan
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Om Prakash Awasthi
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amolkumar U. Solanke
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sunil Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Girish Kumar Jha
- Discipline of Agricultural Statistics, Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
6
|
Lourkisti R, Oustric J, Quilichini Y, Froelicher Y, Herbette S, Morillon R, Berti L, Santini J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:762-775. [PMID: 33812345 DOI: 10.1016/j.plaphy.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Polyploidy plays a major role in citrus plant breeding to improve the adaptation of polyploid rootstocks as well as scions to adverse conditions and to enhance agronomic characteristics. In Citrus breeding programs, triploidy could be a useful tool to react to environmental issues and consumer demands because the produced fruits are seedless. In this study, we compared the physiological, biochemical, morphological, and ultrastructural responses to water deficit of triploid and diploid citrus varieties obtained from 'Fortune' mandarin and 'Ellendale' tangor hybridization. One diploid clementine tree was included and used as a reference. All studied scions were grafted on C-35 citrange rootstock. Triploidy decreased stomatal density and increased stomata size. The number of chloroplasts increased in 3x varieties. These cytological properties may explain the greater photosynthetic capacity (Pnet, gs, Fv/Fm) and enhanced water-holding capacity (RWC, proline). In addition, reduced degradation of ultrastructural organelles (chloroplasts and mitochondria) and thylakoids accompanied by less photosynthetic activity and low oxidative damages were found in 3x varieties. Triploid varieties, especially T40-3x, had a better ability to limit water loss and dissipate excess energy (NPQ) to protect photosystems. Higher starch reserves in 3x varieties suggest a better carbon and energy supply and increases in plastoglobuli size suggest less oxidative damage (H2O2, MDA), especially in T40-3x, and preservation of photosynthetic apparatus. Taken together, our results suggest that desirable cytological and ultrastructural traits induced by triploidy improve water stress response and could be a useful stress marker during environmental constraints.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Julie Oustric
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Yann Quilichini
- CNRS, Equipe « Parasites et Ecosystèmes méditerranéens, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe « Amélioration des Plantes à Multiplication Végétative », UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - Liliane Berti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France.
| |
Collapse
|
7
|
Lourkisti R, Froelicher Y, Herbette S, Morillon R, Giannettini J, Berti L, Santini J. Triploidy in Citrus Genotypes Improves Leaf Gas Exchange and Antioxidant Recovery From Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 11:615335. [PMID: 33679818 PMCID: PMC7933528 DOI: 10.3389/fpls.2020.615335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
The triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents ("Fortune" mandarin and "Ellendale" tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (P net and g s ) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs ) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe SEAPAG, CIRAD, UMR AGAP, F-97170 Petit-Bourg, Guadeloupe, France – AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean Giannettini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
8
|
Lourkisti R, Froelicher Y, Herbette S, Morillon R, Tomi F, Gibernau M, Giannettini J, Berti L, Santini J. Triploid Citrus Genotypes Have a Better Tolerance to Natural Chilling Conditions of Photosynthetic Capacities and Specific Leaf Volatile Organic Compounds. FRONTIERS IN PLANT SCIENCE 2020; 11:330. [PMID: 32391024 PMCID: PMC7189121 DOI: 10.3389/fpls.2020.00330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
Low temperatures during winter are one of the main constraints for citrus crop. Polyploid rootstocks can be used for improving tolerance to abiotic stresses, such as cold stress. Because the produced fruit are seedless, using triploid scions is one of the most promising approaches to satisfy consumer expectations. In this study, we evaluated how the triploidy of new citrus varieties influences their sensitivity to natural chilling temperatures. We compared their behavior to that of diploid citrus, their parents (Fortune mandarin and Ellendale tangor), and one diploid clementine tree, as reference, focusing on photosynthesis parameters, oxidative metabolism, and volatile organic compounds (VOC) in leaves. Triploid varieties appeared to be more tolerant than diploid ones to natural low temperatures, as evidenced by better photosynthetic properties (Pnet, gs, Fv/Fm , ETR/P net ratio), without relying on a better antioxidant system. The VOC levels were not influenced by chilling temperatures; however, they were affected by the ploidy level and atypical chemotypes were found in triploid varieties, with the highest proportions of E-β-ocimene and linalool. Such compounds may contribute to better stress adaptation.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe “Amélioration des Plantes à Multiplication Végétative”, UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - Félix Tomi
- CNRS, Equipe Chimie et Biomasse, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Marc Gibernau
- CNRS, Equipe Chimie et Biomasse, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jean Giannettini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
9
|
Zhu C, Zheng X, Huang Y, Ye J, Chen P, Zhang C, Zhao F, Xie Z, Zhang S, Wang N, Li H, Wang L, Tang X, Chai L, Xu Q, Deng X. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2199-2210. [PMID: 31004551 PMCID: PMC6790359 DOI: 10.1111/pbi.13132] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/22/2019] [Accepted: 04/14/2019] [Indexed: 05/19/2023]
Abstract
Hongkong kumquat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the monoembryonic F. hindsii (designated as 'Mini-Citrus') for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (~8 months) and stable monoembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig-N50 2.2 Mb and Scaffold-N50 5.2 Mb) for F. hindsii. In total, 32 257 protein-coding genes were annotated, 96.9% of which had homologues in other eight Citrinae species. The phylogenomic analysis revealed a close relationship of F. hindsii with cultivated citrus varieties, especially with mandarin. Furthermore, the CRISPR/Cas9 system was demonstrated to be an efficient strategy to generate target mutagenesis on F. hindsii. The modifications of target genes in the CRISPR-modified F. hindsii were predominantly 1-bp insertions or small deletions. This genetic transformation system based on F. hindsii could shorten the whole process from explant to T1 mutant to about 15 months. Overall, due to its short juvenility, monoembryony, close genetic background to cultivated citrus and applicability of CRISPR, F. hindsii shows unprecedented potentials to be used as a model species for citrus research.
Collapse
Affiliation(s)
- Chenqiao Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Peng Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Chenglei Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Fei Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Siqi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Nan Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
10
|
Zhang S, Liang M, Wang N, Xu Q, Deng X, Chai L. Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility. PLANT REPRODUCTION 2018; 31:43-57. [PMID: 29457194 DOI: 10.1007/s00497-018-0327-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/14/2018] [Indexed: 05/22/2023]
Abstract
Review on citrus reproduction. Citrus is one of the most important and widely grown fruit crops. It possesses several special reproductive characteristics, such as nucellar embryony and self-incompatibility. The special phenomenon of nucellar embryony in citrus, also known as the polyembryony, is a kind of sporophytic apomixis. During the past decade, the emergence of novel technologies and the construction of multiple citrus reference genomes have facilitated rapid advances to our understanding of nucellar embryony. Indeed, several research teams have preliminarily determined the genetic basis of citrus apomixis. On the other hand, the phenomenon of self-incompatibility that promotes genetic diversity by rejecting self-pollen and accepting non-self-pollen is difficult to study in citrus because the long juvenile period of citrus presents challenges to identifying candidate genes that control this phenomenon. In this review, we focus on advances to our understanding of reproduction in citrus from the last decade and discuss priorities for the coming decade.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
11
|
Heringer AS, Santa-Catarina C, Silveira V. Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics 2018; 18:e1700265. [DOI: 10.1002/pmic.201700265] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Angelo Schuabb Heringer
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| |
Collapse
|
12
|
Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. Unreduced Megagametophyte Production in Lemon Occurs via Three Meiotic Mechanisms, Predominantly Second-Division Restitution. FRONTIERS IN PLANT SCIENCE 2017; 8:1211. [PMID: 28747921 PMCID: PMC5506204 DOI: 10.3389/fpls.2017.01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
Unreduced (2n) gametes have played a pivotal role in polyploid plant evolution and are useful for sexual polyploid breeding in various species, particularly for developing new seedless citrus varieties. The underlying mechanisms of 2n gamete formation were recently revealed for Citrus reticulata but remain poorly understood for other citrus species, including lemon (C. limon [L.] Burm. f.). Here, we investigated the frequency and causal meiotic mechanisms of 2n megagametophyte production in lemon. We genotyped 48progeny plants of two lemon genotypes, "Eureka Frost" and "Fino", using 16 Simple Sequence Repeat (SSR) and 18 Single Nucleotide Polymorphism (SNP) markers to determine the genetic origin of the progenies and the underlying mechanisms for 2n gamete formation. We utilized a maximum-likelihood method based on parental heterozygosity restitution (PHR) of centromeric markers and analysis of PHR patterns along the chromosome. The frequency of 2n gamete production was 4.9% for "Eureka Frost" and 8.3% for "Fino", with three meiotic mechanisms leading to 2n gamete formation. We performed the maximum-likelihood method at the individual level via centromeric marker analysis, finding that 88% of the hybrids arose from second-division restitution (SDR), 7% from first-division restitution (FDR) or pre-meiotic doubling (PRD), and 5% from post-meiotic genome doubling (PMD). The pattern of PHR along LG1 confirmed that SDR is the main mechanism for 2n gamete production. Recombination analysis between markers in this LG revealed partial chiasma interference on both arms. We discuss the implications of these restitution mechanisms for citrus breeding and lemon genetics.
Collapse
Affiliation(s)
- Houssem Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| |
Collapse
|
13
|
Long JM, Liu Z, Wu XM, Fang YN, Jia HH, Xie ZZ, Deng XX, Guo WW. Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5743-5756. [PMID: 27619233 PMCID: PMC5066493 DOI: 10.1093/jxb/erw338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucellar embryony (NE) is an adventitious form of apomixis common in citrus, wherein asexual embryos initiate directly from nucellar cells surrounding the embryo sac. NE enables the fixation of desirable agronomic traits and the production of clonal offspring of virus-free rootstock, but impedes progress in hybrid breeding. In spite of the great importance of NE in citrus breeding and commercial production, little is understood about the underlying molecular mechanisms. In this study, the stages of nucellar embryo initiation (NEI) were determined for two polyembryonic citrus cultivars via histological observation. To explore the genes and regulatory pathways involved in NEI, we performed mRNA-seq and sRNA-seq analyses of ovules immediately prior to and at stages during NEI in the two pairs of cultivars. A total of 305 differentially expressed genes (DEGs) were identified between the poly- and monoembryonic ovules. Gene ontology (GO) analysis revealed that several processes are significantly enriched based on DEGs. In particular, response to stress, and especially response to oxidative stress, was over-represented in polyembryonic ovules. Nearly 150 miRNAs, comprising ~90 conserved and ~60 novel miRNAs, were identified in the ovules of either cultivar pair. Only two differentially expressed miRNAs (DEMs) were identified, of which the novel miRN23-5p was repressed whereas the targets accumulated in the polyembryonic ovules. This integrated study on the transcriptional and post-transcriptional regulatory profiles between poly- and monoembryonic citrus ovules provides new insights into the mechanism of NE, which should contribute to revealing the regulatory mechanisms of plant apomixis.
Collapse
Affiliation(s)
- Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Ni Fang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Hui-Hui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
In vitro polyembryony induction in a critically endangered fern, Pteris tripartita Sw. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC PLANT BIOLOGY 2015; 15:271. [PMID: 26538180 PMCID: PMC4634795 DOI: 10.1186/s12870-015-0642-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/08/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. METHODS Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. RESULTS Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity. CONCLUSIONS Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Li
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Lu YB, Qi YP, Yang LT, Lee J, Guo P, Ye X, Jia MY, Li ML, Chen LS. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:585. [PMID: 26284101 PMCID: PMC4517394 DOI: 10.3389/fpls.2015.00585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level.
Collapse
Affiliation(s)
- Yi-Bin Lu
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical SciencesFuzhou, China
| | - Lin-Tong Yang
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jinwook Lee
- Department of Horticultural Science, Kyungpook National UniversityDaegu, South Korea
| | - Peng Guo
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Meng-Yang Jia
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Mei-Li Li
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Li-Song Chen, Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Boxue Building, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
17
|
Aleza P, Juárez J, Cuenca J, Ollitrault P, Navarro L. Extensive citrus triploid hybrid production by 2x×4x sexual hybridizations and parent-effect on the length of the juvenile phase. PLANT CELL REPORTS 2012; 31:1723-35. [PMID: 22614256 DOI: 10.1007/s00299-012-1286-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 05/23/2023]
Abstract
UNLABELLED The citrus fresh market demands the production of seedless citrus fruits, as seedy fruits are not accepted by consumers. The recovery of triploid plants has proven to be the most promising approach to achieve this goal, since triploids have very low fertility, are generally seedless and do not induce seeds in other cultivars by cross pollination. Triploid plants can be recovered by 2x×4x sexual hybridization. In this work, we present an effective methodology to recover triploid plants from 2x×4x hybridizations based on in vitro embryo rescue, ploidy level analysis by flow cytometry and genetic origin of triploid plants. The pollen viability of diploid and tetraploid citrus genotypes was analyzed by comparing the pollen germination rate in vitro. The pollen viability of tetraploid (doubled-diploid) genotypes is generally reduced but sufficient for successful pollination. Triploid embryos were identified in normal and undeveloped seeds that did not germinate under greenhouse conditions. The influence of parents and environmental conditions on obtaining triploid plants was analyzed and a strong interaction was noted between the parents and environmental conditions. The parental effect on the length of the juvenile phase was also demonstrated through observations of a large number of progeny over the last 15 years. The juvenile phase length of the triploid hybrids obtained with 'Fortune' mandarin as female parent and tetraploid 'Orlando' tangelo as male parent was shorter than the juvenile phase obtained with a clementine as female parent and tetraploids of 'Nova', 'W. Leaf' and 'Pineapple' male parents. KEY MESSAGE Effective methodology to recover citrus triploid plants from 2x×4x sexual hybridizations and the parental effect on the length of the juvenile phase.
Collapse
Affiliation(s)
- P Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113, Moncada, Valencia, Spain
| | | | | | | | | |
Collapse
|
18
|
Snoussi H, Duval MF, Garcia-Lor A, Belfalah Z, Froelicher Y, Risterucci AM, Perrier X, Jacquemoud-Collet JP, Navarro L, Harrabi M, Ollitrault P. Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm. BMC Genet 2012; 13:16. [PMID: 22429788 PMCID: PMC3323426 DOI: 10.1186/1471-2156-13-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus represents a substantial income for farmers in the Mediterranean Basin. However, the Mediterranean citrus industry faces increasing biotic and abiotic constraints. Therefore the breeding and selection of new rootstocks are now of the utmost importance. In Tunisia, in addition to sour orange, the most widespread traditional rootstock of the Mediterranean area, other citrus rootstocks and well adapted to local environmental conditions, are traditionally used and should be important genetic resources for breeding. To characterize the diversity of Tunisian citrus rootstocks, two hundred and one local accessions belonging to four facultative apomictic species (C. aurantium, sour orange; C. sinensis, orange; C. limon, lemon; and C. aurantifolia, lime) were collected and genotyped using 20 nuclear SSR markers and four indel mitochondrial markers. Multi-locus genotypes (MLGs) were compared to references from French and Spanish collections. RESULTS The differentiation of the four varietal groups was well-marked. The groups displayed a relatively high allelic diversity, primarily due to very high heterozygosity. Sixteen distinct MLGs were identified. Ten of these were noted in sour oranges. However, the majority of the analysed sour orange accessions corresponded with only two MLGs, differentiated by a single allele, likely due to a mutation. The most frequent MLG is shared with the reference sour oranges. No polymorphism was found within the sweet orange group. Two MLGs, differentiated by a single locus, were noted in lemon. The predominant MLG was shared with the reference lemons. Limes were represented by three genotypes. Two corresponded to the 'Mexican lime' and 'limonette de Marrakech' references. The MLG of 'Chiiri' lime was unique. CONCLUSIONS The Tunisian citrus rootstock genetic diversity is predominantly due to high heterozygosity and differentiation between the four varietal groups. The phenotypic diversity within the varietal groups has resulted from multiple introductions, somatic mutations and rare sexual recombination events. Finally, this diversity study enabled the identification of a core sample of accessions for further physiological and agronomical evaluations. These core accessions will be integrated into citrus rootstock breeding programs for the Mediterranean Basin.
Collapse
Affiliation(s)
- Hager Snoussi
- Horticultural Laboratory, Tunisian National Agronomic Research Institute (INRAT), Rue Hedi Karray, 2049 Ariana, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aleza P, Froelicher Y, Schwarz S, Agustí M, Hernández M, Juárez J, Luro F, Morillon R, Navarro L, Ollitrault P. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. ANNALS OF BOTANY 2011; 108:37-50. [PMID: 21586529 PMCID: PMC3119611 DOI: 10.1093/aob/mcr099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/07/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation. METHODS Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of 'Tardivo di Ciaculli' mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype ('Carrizo' citrange; Citrus sinensis × Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries. KEY RESULTS Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area. CONCLUSIONS Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks.
Collapse
Affiliation(s)
- Pablo Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4·5, 46113 Moncada, Valencia, Spain
| | - Yann Froelicher
- Unité de Recherche Multiplication Végétative, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier 34398, France
| | - Sergio Schwarz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4·5, 46113 Moncada, Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universidad Politécnica, Camino de Vera, s/n, 46022 Valencia, Spain
| | - María Hernández
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4·5, 46113 Moncada, Valencia, Spain
| | - José Juárez
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4·5, 46113 Moncada, Valencia, Spain
| | - François Luro
- Unité GEQA, INRA, San Giuliano 20230 San Nicolao, France
| | - Raphael Morillon
- Unité de Recherche Multiplication Végétative, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier 34398, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4·5, 46113 Moncada, Valencia, Spain
| | - Patrick Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4·5, 46113 Moncada, Valencia, Spain
- Unité de Recherche Multiplication Végétative, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier 34398, France
| |
Collapse
|
20
|
Dambier D, Benyahia H, Pensabene-Bellavia G, Aka Kaçar Y, Froelicher Y, Belfalah Z, Lhou B, Handaji N, Printz B, Morillon R, Yesiloglu T, Navarro L, Ollitrault P. Somatic hybridization for citrus rootstock breeding: an effective tool to solve some important issues of the Mediterranean citrus industry. PLANT CELL REPORTS 2011; 30:883-900. [PMID: 21225429 DOI: 10.1007/s00299-010-1000-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 05/18/2023]
Abstract
The prevalence of sour orange rootstock in the southern and eastern part of the Mediterranean Basin is presently threatened by the spread of Citrus Tristeza Virus (CTV) and its main vector Toxoptera citricida, combined with abiotic constraints such as drought, salinity and alkalinity. The search for alternative CTV-resistant rootstocks that also withstand the other constraints is now considered an urgent priority for a sustainable citrus industry in the area. Complementary progenitors can be found in citrus germplasm to combine the desired traits, particularly between Poncirus and Citrus genera. The production of somatic hybrids allows cumulating all dominant traits irrespective of their heterozygosity level, and would appear to be an effective way to solve the rootstock challenge facing the Mediterranean citrus industry. This paper presents the results obtained during a regional collaborative effort between five countries, to develop new rootstocks by somatic hybridization. New embryogenic callus lines to be used for somatic hybridization have been created. Protoplast fusions have been performed at CIRAD and IVIA laboratories, focusing on intergeneric combinations. Analysis of ploidy level by flow cytometry and molecular markers confirmed the acquisition of new interesting tetraploid somatic hybrids for six combinations. Diploid cybrids with intergeneric (Citrus × Poncirus) nucleus and C. reticulata or C. aurantifolia mitochondria were also identified for four combinations. The agronomical performance of a pre-existing somatic hybrid between Poncirus trifoliata and Citrus reticulata was validated in calcareous soils in Morocco. Somatic hybridization is now integrated into the breeding programs of the five Mediterranean countries.
Collapse
Affiliation(s)
- Dominique Dambier
- UPR 75, Département BIOS, CIRAD, Av. Agropolis, TA A-75/02, 34398, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|