1
|
Wang Y, Xie J, Fan F, Sun Z, Yuan F, Wang Q, Yu L, Liu Y, Li J, Cui L. Phosphorus fertilization enhanced overwintering, root system and forage yield of late-seeded alfalfa in sodic soils. Sci Rep 2024; 14:18090. [PMID: 39103386 PMCID: PMC11300597 DOI: 10.1038/s41598-024-67087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Sowing date and soil fertility are very important factors in the overwintering and production performance of alfalfa (Medicago sativa L.), yet there's a knowledge gap in knowledge on how late-seeded alfalfa responds to phosphorus (P) fertilization. A field study was conducted in Inner Mongolia from 2020 to 2022 using a split-plot design. The main plots consisted of five sowing dates (31 July, 8, 16, and 24 August, and 1 September), while the subplots involved five P application rates (0, 40, 70, 100, and 130 kg P2O5 ha-1). Throughout the growing seasons, the overwintering rate, root traits, forage yield, and yield components were measured. The results revealed a consistent decrease in overwintering ability and productivity with the delayed sowing. This reduction in overwintering rate was mainly due to diminished root traits, while the decrease in forage yield was largely associated with a reduction in plants per square meter. However, P fertilizer application to late-seeded alfalfa demonstrated potential in enhancing the diameter of both the crown and taproot, thus strengthening the root system and improving the overwintering rate, the rate of increase ranges from 11.6 to 49%. This adjustment could also improve the shoots per square meter and mass per shoot, increasing by 9.4-31.3% and 15.0-27.1% respectively in 2 years, which can offset the decline in forage yield caused by late sowing and might even increase the forage yield. Regression and path analysis indicated that alfalfa forage yield is primarily affected by mass per shoot rather than shoots per square meter. This study recommended that the sowing of alfalfa in similar regions of Inner Mongolia should not be later than mid-August. Moreover, applying P fertilizer (P2O5) at 70.6-85.9 kg ha-1 can enhance the forage yield and persistence of late-seeded alfalfa. Therefore, appropriate late sowing combined with the application of P fertilizer can be used as an efficient cultivation strategy for alfalfa cultivation after a short-season crop harvest in arid and cold regions.
Collapse
Affiliation(s)
- Yuntao Wang
- School of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Jihong Xie
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
| | - Fan Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Sun
- School of Medicine, Qingdao Qiushi College, Qingdao, 266108, China
| | - Feng Yuan
- National Center of Pratacultural Technology Innovation (Under Preparation), Hohhot, 010030, China
| | - Qiqi Wang
- National Center of Pratacultural Technology Innovation (Under Preparation), Hohhot, 010030, China
| | - Linqing Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.
| | - Yaling Liu
- National Center of Pratacultural Technology Innovation (Under Preparation), Hohhot, 010030, China
| | - Jie Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Lele Cui
- School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
2
|
Burin G, Campbell LCE, Renner SS, Kiers ET, Chomicki G. Mutualisms drive plant trait evolution beyond interaction-related traits. Ecol Lett 2024; 27:e14379. [PMID: 38361469 DOI: 10.1111/ele.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system - epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non-mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long-term mean of non-mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions - which are the most common - have a greater impact on non-mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction-related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution.
Collapse
Affiliation(s)
| | | | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, Missouri, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
3
|
Medina-Vega JA, van der Heijden GMF, Schnitzer SA. Lianas decelerate tropical forest thinning during succession. Ecol Lett 2022; 25:1432-1441. [PMID: 35415947 DOI: 10.1111/ele.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The well-established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree-tree competition. The presence of non-tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake. We used a large-scale liana removal experiment over 7 years in a 60- to 70-year-old Panamanian forest to test the hypothesis that lianas reduce the rate of forest thinning during succession. We found that lianas slowed forest thinning by reducing tree growth, not by altering tree recruitment or mortality. Without lianas, trees grew and presumably competed more, ultimately reducing tree density while increasing mean tree biomass. Our findings challenge the assumption that forest thinning is driven solely by tree-tree interactions; instead, they demonstrate that competition from other growth forms, such as lianas, slow forest thinning and ultimately delay forest succession.
Collapse
Affiliation(s)
- José A Medina-Vega
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | | | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.,Smithsonian Tropical Research Institute, Balboa, Panamá
| |
Collapse
|
4
|
Duan HX, Luo CL, Zhu SY, Wang W, Naseer M, Xiong YC. Density- and moisture-dependent effects of arbuscular mycorrhizal fungus on drought acclimation in wheat. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02444. [PMID: 34448278 DOI: 10.1002/eap.2444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungus (AMF) is widely viewed as an ecosystem engineer to help plants adapt to adverse environments. However, a majority of the previous studies regarding AMF's eco-physiological effects are mutually inconsistent. To clarify this fundamental issue, we conducted an experiment focused on wheat (Triticum aestivum L.) plants with or without AMF (Funneliformis mosseae) inoculation. Two water regimes (80% and 40% field water capacity, FWC80 (CK) and FWC40 (drought stress) and four planting densities (6 or 12 plants per pot as low densities, 24 or 48 plants per pot as high densities) were designed. AMF inoculation did not show significant effects on shoot biomass, grain yield, and water use efficiency (WUE) under the low densities, regardless of water regimes. However, under the high densities, AMF inoculation significantly decreased shoot biomass, grain yield and WUE in FWC80, while it significantly increased these parameters in FWC40, showing density and/or moisture-dependent effects of AMF on wheat performance. In FWC40, the relationships between reproductive biomass (y-axis) vs. vegetative biomass (x-axis) (R-V), and between grain biomass (y-axis, sink) vs. leaf biomass (x-axis, source) fell into a typical allometric pattern (α > 1, P < 0.001), and the AMF inoculation significantly increased the values of α. Yet in FWC80, they were in an isometric pattern (α ≈ 1, P < 0.001) and AMF addition had no significant effects on α. Similarly, AMF did not significantly change the isometric relationship between leaf biomass (i.e., metabolic rate) and shoot biomass (body size) in FWC80, while it significantly decreased the α of allometric relationship between both of them in FWC40 (α > 1, P < 0.001). We therefore, sketched a generalized model of R-V and sink-source relationships as affected by AMF, in which AMF inoculation might enhance the capabilities of sink acquisition and utilization under drought stress, while having no significant effect under the well watered conditions. Our findings demonstrate dual density- and moisture-dependent effects of AMF on plant development and provide new insights into current ecological applications of AMF as an ecosystem engineer.
Collapse
Affiliation(s)
- Hai-Xia Duan
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chong-Liang Luo
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sai-Yong Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Minha Naseer
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Ueno AC, Gundel PE, Ghersa CM, Agathokleous E, Martínez-Ghersa MA. Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution. ENVIRONMENTAL RESEARCH 2021; 202:111773. [PMID: 34324850 DOI: 10.1016/j.envres.2021.111773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone is among the global change factors that pose a threat to plants and microorganisms. Symbiotic microorganisms can assist plants to cope with stress, but their role in the tolerance of plants to ozone is poorly understood. Here, we subjected endophyte-symbiotic and non-symbiotic plants of Lolium multiflorum, an annual species widely distributed in temperate grasslands, to high and low (i.e., charcoal-filtered air) ozone levels at vegetative and reproductive phases. Exposure to high ozone reduced leaf photochemical efficiency and greenness in both symbiotic and non-symbiotic plants. However, ozone-induced oxidative damage at biochemical level (i.e., lipid peroxidation) was mostly detected in symbiotic plants. Ozone exposure at the vegetative phase did not affect the reproductive investment in seeds, indicating full recovery from stress. Ozone exposure at the reproductive phase reduced biomass and seed production only in symbiotic plants indicating a symbiont-associated cost. At low ozone, endophyte-symbiotic plants showed a steeper slope in the relationship between seed number and seed weight (i.e., a number-weight trade-off) compared to non-symbiotic plants. However, when plants were treated at the reproductive phase, ozone increased the imbalance between seed number and seed weight in both endophyte-symbiotic and non-symbiotic plants. Plants with endophytes at the reproductive stage produced fewer seeds, which were not compensated by increased seed weight. Thus, fungal mycelium growing within ovaries or ozone-induced antioxidant systems may result in costs that finally depress the fitness of plants. Despite ozone pollution could destabilize plant-endophyte mutualisms and render them dysfunctional, other endophyte-mediated benefits (e.g., resistance to herbivory, tolerance to drought) could over-compensate these losses and explain the high incidence of the symbiosis in nature.
Collapse
Affiliation(s)
- Andrea C Ueno
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina.
| | - Pedro E Gundel
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina; Instituto Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Claudio M Ghersa
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, China
| | | |
Collapse
|
6
|
de Vries J, Evers JB, Kuyper TW, van Ruijven J, Mommer L. Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. THE NEW PHYTOLOGIST 2021; 231:1171-1182. [PMID: 33930184 PMCID: PMC8361744 DOI: 10.1111/nph.17435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 05/23/2023]
Abstract
Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.
Collapse
Affiliation(s)
- Jorad de Vries
- Centre for Crop System AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
- Institute for Integrative BiologyETH ZürichZürich8092Switzerland
| | - Jochem B. Evers
- Centre for Crop System AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
| | - Thomas W. Kuyper
- Soil Biology GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| |
Collapse
|
7
|
van ’t Padje A, Bonfante P, Ciampi LT, Kiers ET. Quantifying Nutrient Trade in the Arbuscular Mycorrhizal Symbiosis Under Extreme Weather Events Using Quantum-Dot Tagged Phosphorus. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Given the current trends in climate change, extreme weather events are expected to increase in strength and frequency. Such events can impact species survival and species interactions. One of the most ubiquitous symbioses on earth is the nutrient exchange partnership between arbuscular mycorrhizal fungi and their host plants. While past work has shown that mycorrhizal fungi can help alleviate stress, it is unknown how phosphorus uptake by plants to fungi is affected by extreme weather events, such as flooding and heat waves. To test this response, we grewMedicago truncatulahost plants with or without mycorrhizal fungi and then exposed them to extreme weather treatments: increasing soil temperature by 12°C, or by flooding the plant roots for 7 days. We measured plant and fungal performance, and quantified phosphorus (P) uptake before and after extreme weather treatments using a technique in which we tagged apatite, a form of rock phosphorus, with fluorescing quantum-dots (QDs) nanoparticles. We then measured fluorescence in root and shoot tissue at harvest. We found that plants and arbuscular mycorrhizal fungi were affected by soil flooding, with plant survival, fungal colonization and QD-apatite uptake decreasing under flooded conditions. We did not see these negative effects in the heat treatment. While the presence of arbuscular mycorrhizal fungi affected plant biomass allocation, leading to an increase in shoot biomass, the symbiosis did not increase plant survival, total biomass or QD uptake in either treatment. More generally, we found host tissue contained roughly 80% more QD-apatite from the pre-treatment compared to the post-treatment nutrient injection. Future studies should focus on various plant-fungal combinations to create databases on which predictive models to extreme weather events can be constructed.
Collapse
|
8
|
Postma JA, Hecht VL, Hikosaka K, Nord EA, Pons TL, Poorter H. Dividing the pie: A quantitative review on plant density responses. PLANT, CELL & ENVIRONMENT 2021; 44:1072-1094. [PMID: 33280135 DOI: 10.1111/pce.13968] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 05/20/2023]
Abstract
Plant population density is an important variable in agronomy and forestry and offers an experimental way to better understand plant-plant competition. We made a meta-analysis of responses of even-aged mono-specific stands to population density by quantifying for 3 stand and 33 individual plant variables in 334 experiments how much both plant biomass and phenotypic traits change with a doubling in density. Increasing density increases standing crop per area, but decreases the mean size of its individuals, mostly through reduced tillering and branching. Among the phenotypic traits, stem diameter is negatively affected, but plant height remains remarkably similar, partly due to an increased stem length-to-mass ratio and partly by increased allocation to stems. The reduction in biomass is caused by a lower photosynthetic rate, mainly due to shading of part of the foliage. Total seed mass per plant is also strongly reduced, marginally by lower mass per seed, but mainly because of lower seed numbers. Plants generally have fewer shoot-born roots, but their overall rooting depth seems hardly affected. The phenotypic plasticity responses to high densities correlate strongly with those to low light, and less with those to low nutrients, suggesting that at high density, shading affects plants more than nutrient depletion.
Collapse
Affiliation(s)
- Johannes A Postma
- Plant Sciences, Forschungszentrum Juelich GmbH, Wilhelm-Johnen Strasse, Juelich, Germany
| | - Vera L Hecht
- Plant Sciences, Forschungszentrum Juelich GmbH, Wilhelm-Johnen Strasse, Juelich, Germany
| | - Kouki Hikosaka
- Laboratory of Functional Ecology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Eric A Nord
- Department of Biology and Chemistry, Greenville University, Greenville, Illinois, USA
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Hendrik Poorter
- Plant Sciences, Forschungszentrum Juelich GmbH, Wilhelm-Johnen Strasse, Juelich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
9
|
Leroy C, Maes AQ, Louisanna E, Séjalon-Delmas N. How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Li Z, Wu N, Liu T, Chen H, Tang M. Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. PHYSIOLOGIA PLANTARUM 2015; 155:192-204. [PMID: 25720810 DOI: 10.1007/s11738-015-1932-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/17/2015] [Accepted: 02/22/2015] [Indexed: 05/23/2023]
Abstract
Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (ΦPSII), non-photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well-watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions.
Collapse
Affiliation(s)
- Zhen Li
- College of Life Science, Northwest A&F University, Yangling, China
| | - Na Wu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Life Science, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Adolfsson L, Solymosi K, Andersson MX, Keresztes Á, Uddling J, Schoefs B, Spetea C. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production. PLoS One 2015; 10:e0115314. [PMID: 25615871 PMCID: PMC4304716 DOI: 10.1371/journal.pone.0115314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/22/2014] [Indexed: 11/29/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with P(i) fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i) fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i) supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i)-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i) fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i)-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.
Collapse
Affiliation(s)
- Lisa Adolfsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Mats X. Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Áron Keresztes
- Department of Plant Anatomy, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Benoît Schoefs
- Mer, Molécules, Santé, MicroMar—EA2160, LUNAM Université, IUML – FR 3473 CNRS, University of Le Mans, 72085 Le Mans Cedex 9, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
|
13
|
Saravesi K, Ruotsalainen AL, Cahill JF. Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. MYCORRHIZA 2014; 24:239-245. [PMID: 24197419 DOI: 10.1007/s00572-013-0536-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.
Collapse
Affiliation(s)
- K Saravesi
- Department of Biology, University of Oulu, PO Box 3000, 90014, Oulu, Finland,
| | | | | |
Collapse
|
14
|
Fu H, Yuan G, Zhong J, Cao T, Ni L, Xie P. Environmental and ontogenetic effects on intraspecific trait variation of a macrophyte species across five ecological scales. PLoS One 2013; 8:e62794. [PMID: 23626856 PMCID: PMC3633840 DOI: 10.1371/journal.pone.0062794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
Although functional trait variability is increasingly used in community ecology, the scale- and size-dependent aspects of trait variation are usually disregarded. Here we quantified the spatial structure of shoot height, branch length, root/shoot ratio and leaf number in a macrophyte species Potamogeton maackianus, and then disentangled the environmental and ontogenetic effects on these traits. Using a hierarchical nested design, we measured the four traits from 681 individuals across five ecological scales: lake, transect, depth stratus, quadrat and individual. A notable high trait variation (coefficient variation: 48–112%) was observed within species. These traits differed in the spatial structure, depending on environmental factors of different scales. Shoot height and branch length were most responsive to lake, transect and depth stratus scales, while root/shoot ratio and leaf number to quadrat and individual scales. The trait variations caused by environment are nearly three times higher than that caused by ontogeny, with ontogenetic variance ranging from 21% (leaf number) to 33% (branch length) of total variance. Remarkably, these traits showed non-negligible ontogenetic variation (0–60%) in each ecological scale, and significant shifts in allometric trajectories at lake and depth stratus scales. Our results highlight that environmental filtering processes can sort individuals within species with traits values adaptive to environmental changes and ontogenetic variation of functional traits was non-negligible across the five ecological scales.
Collapse
Affiliation(s)
- Hui Fu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
- Jiangxi Institute of Water Sciences, Nanchang, China
| | - Guixiang Yuan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Jiayou Zhong
- Jiangxi Institute of Water Sciences, Nanchang, China
| | - Te Cao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
| | - Leyi Ni
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Gundel PE, Garibaldi LA, Helander M, Saikkonen K. Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0224-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Yu Z, Zhang Q, Yang H, Tang J, Weiner J, Chen X. The effects of salt stress and arbuscular mycorrhiza on plant neighbour effects and self-thinning. Basic Appl Ecol 2012. [DOI: 10.1016/j.baae.2012.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
|