1
|
Rogivue A, Leempoel K, Guillaume AS, Choudhury RR, Felber F, Kasser M, Joost S, Parisod C, Gugerli F. Locally Specific Genome-Wide Signatures of Adaptation to Environmental Variation at High Resolution in an Alpine Plant. Mol Ecol 2025; 34:e17646. [PMID: 39821486 DOI: 10.1111/mec.17646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Microevolutionary processes shape adaptive responses to heterogeneous environments, where these effects vary both among and within species. However, it remains largely unknown to which degree signatures of adaptation to environmental drivers can be detected based on the choice of spatial scale and genomic marker. We studied signatures of local adaptation across two levels of spatial extents, investigating complementary types of genomic variants-single-nucleotide polymorphisms (SNPs) and polymorphic transposable elements (TEs)-in populations of the alpine model plant species Arabis alpina . We coupled environmental factors, derived from remote sensed digital elevation models (DEMs) at very high resolution (0.5 m), with whole-genome sequencing data of 304 individuals across four populations. By comparing putatively adaptive loci detected between each local population versus a regional assessment including all populations simultaneously, we demonstrate that responses of A. alpina to similar amounts of abiotic variation are largely governed by local evolutionary processes. Furthermore, we find minimally overlapping signatures of local adaptation between SNPs and polymorphic TEs. Notably, functional annotations of candidate genes for adaptation revealed several symbiosis-related genes associated with the abiotic factors studied, which could represent selective pressures from biotic agents. Our results highlight the importance of considering different spatial extents and types of genomic polymorphisms when searching for signatures of adaptation to environmental variation. Such insights provide key information on microevolutionary processes and could guide management decisions to mitigate negative impacts of climate change on alpine plant populations.
Collapse
Affiliation(s)
- Aude Rogivue
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Kevin Leempoel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | - Annie S Guillaume
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | | | - François Felber
- Musée et Jardins Botaniques Cantonaux, Lausanne, Switzerland
| | - Michel Kasser
- Haute-Ecole d'Ingénierie et de Gestion (HEIG), INSIT Laboratory, Switzerland
| | - Stéphane Joost
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | | | - Felix Gugerli
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
2
|
Thosteman HE, Eisen K, Petrén H, Boutsi S, Pace L, Halley JM, De Moraes CM, Mescher MC, Buckley J, Friberg M. Integration of attractive and defensive phytochemicals is unlikely to constrain chemical diversification in a perennial herb. THE NEW PHYTOLOGIST 2024; 244:249-264. [PMID: 39081013 DOI: 10.1111/nph.20006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.
Collapse
Affiliation(s)
| | - Katherine Eisen
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Sotiria Boutsi
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Agriculture and Environment, Harper Adams University, Newport, TF10 8NB, UK
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - John M Halley
- Department of Biological Applications and Technology, University of Ioannina, Thessaloniki, 45110, Greece
| | - Consuelo M De Moraes
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Plant Ecology Group, Institute of Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - James Buckley
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
3
|
Zeitler L, Gilbert KJ. Using Runs of Homozygosity and Machine Learning to Disentangle Sources of Inbreeding and Infer Self-Fertilization Rates. Genome Biol Evol 2024; 16:evae139. [PMID: 38935434 PMCID: PMC11245710 DOI: 10.1093/gbe/evae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Runs of homozygosity (ROHs) are indicative of elevated homozygosity and inbreeding due to mating of closely related individuals. Self-fertilization can be a major source of inbreeding which elevates genome-wide homozygosity and thus should also create long ROHs. While ROHs are frequently used to understand inbreeding in the context of conservation and selective breeding, as well as for consanguinity of populations and their demographic history, it remains unclear how ROH characteristics are altered by selfing and if this confounds expected signatures of inbreeding due to demographic change. Using simulations, we study the impact of the mode of reproduction and demographic history on ROHs. We apply random forests to identify unique characteristics of ROHs, indicative of different sources of inbreeding. We pinpoint distinct features of ROHs that can be used to better characterize the type of inbreeding the population was subjected to and to predict outcrossing rates and complex demographic histories. Using additional simulations and four empirical datasets, two from highly selfing species and two from mixed-maters, we predict the selfing rate and validate our estimations. We find that self-fertilization rates are successfully identified even with complex demography. Population genetic summary statistics improve algorithm accuracy particularly in the presence of additional inbreeding, e.g. from population bottlenecks. Our findings highlight the importance of ROHs in disentangling confounding factors related to various sources of inbreeding and demonstrate situations where such sources cannot be differentiated. Additionally, our random forest models provide a novel tool to the community for inferring selfing rates using genomic data.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Kimberly J Gilbert
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
4
|
Mishra P, Roggen A, Ljung K, Albani MC, Vayssières A. Adventitious rooting in response to long-term cold: a possible mechanism of clonal growth in alpine perennials. FRONTIERS IN PLANT SCIENCE 2024; 15:1352830. [PMID: 38693930 PMCID: PMC11062184 DOI: 10.3389/fpls.2024.1352830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximize fitness and ensure reproductive success. We used the arctic alpine perennial Arabis alpina to explore the role of prolonged cold exposure on adventitious rooting. We exposed plants to 4°C for different durations and scored the presence of adventitious roots on the main stem and axillary branches. Our physiological studies demonstrated the presence of adventitious roots after 21 weeks at 4°C saturating the effect of cold on this process. Notably, adventitious roots on the main stem developing in specific internodes allowed us to identify the gene regulatory network involved in the formation of adventitious roots in cold using transcriptomics. These data and histological studies indicated that adventitious roots in A. alpina stems initiate during cold exposure and emerge after plants experience growth promoting conditions. While the initiation of adventitious root was not associated with changes of DR5 auxin response and free endogenous auxin level in the stems, the emergence of the adventitious root primordia was. Using the transcriptomic data, we discerned the sequential hormone responses occurring in various stages of adventitious root formation and identified supplementary pathways putatively involved in adventitious root emergence, such as glucosinolate metabolism. Together, our results highlight the role of low temperature during clonal growth in alpine plants and provide insights on the molecular mechanisms involved at distinct stages of adventitious rooting.
Collapse
Affiliation(s)
- Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Rijk Zwaan, De Lier, Netherlands
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
5
|
Wunder J, Fulgione A, Toräng P, Wötzel S, Herzog M, Obeso JR, Kourmpetis Y, van Ham R, Odong T, Bink M, Kemi U, Ågren J, Coupland G. Adaptation of perennial flowering phenology across the European range of Arabis alpina. Proc Biol Sci 2023; 290:20231401. [PMID: 37989245 PMCID: PMC10688268 DOI: 10.1098/rspb.2023.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.
Collapse
Affiliation(s)
- Jörg Wunder
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andrea Fulgione
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Wötzel
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Michel Herzog
- Laboratoire d’Écologie Alpine, LECA, Université Grenoble Alpes, 38000 Grenoble, France
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Spain
| | - Yiannis Kourmpetis
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Roeland van Ham
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
- KeyGene, 6708 PW Wageningen, The Netherlands
| | - Thomas Odong
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Marco Bink
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Ulla Kemi
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
6
|
Zeitler L, Parisod C, Gilbert KJ. Purging due to self-fertilization does not prevent accumulation of expansion load. PLoS Genet 2023; 19:e1010883. [PMID: 37656747 PMCID: PMC10501686 DOI: 10.1371/journal.pgen.1010883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/14/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] Open
Abstract
As species expand their geographic ranges, colonizing populations face novel ecological conditions, such as new environments and limited mates, and suffer from evolutionary consequences of demographic change through bottlenecks and mutation load accumulation. Self-fertilization is often observed at species range edges and, in addition to countering the lack of mates, is hypothesized as an evolutionary advantage against load accumulation through increased homozygosity and purging. We study how selfing impacts the accumulation of genetic load during range expansion via purging and/or speed of colonization. Using simulations, we disentangle inbreeding effects due to demography versus due to selfing and find that selfers expand faster, but still accumulate load, regardless of mating system. The severity of variants contributing to this load, however, differs across mating system: higher selfing rates purge large-effect recessive variants leaving a burden of smaller-effect alleles. We compare these predictions to the mixed-mating plant Arabis alpina, using whole-genome sequences from refugial outcrossing populations versus expanded selfing populations. Empirical results indicate accumulation of expansion load along with evidence of purging in selfing populations, concordant with our simulations, suggesting that while purging is a benefit of selfing evolving during range expansions, it is not sufficient to prevent load accumulation due to range expansion.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Christian Parisod
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
7
|
Palumbo F, Draga S, Magon G, Gabelli G, Vannozzi A, Farinati S, Scariolo F, Lucchin M, Barcaccia G. MIK2 is a candidate gene of the S-locus for sporophytic self-incompatibility in chicory ( Cichorium intybus, Asteraceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1204538. [PMID: 37332702 PMCID: PMC10272723 DOI: 10.3389/fpls.2023.1204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The Cichorium genus offers a unique opportunity to study the sporophytic self-incompatibility (SSI) system, being composed of species characterized by highly efficient self-incompatibility (e.g., C. intybus) and complete self-compatibility (e.g., C. endivia). To this end, the chicory genome was used to map seven previously identified SSI locus-associated markers. The region containing the S-locus was therefore restricted to an ~4 M bp window on chromosome 5. Among the genes predicted in this region, MDIS1 INTERACTING RECEPTOR LIKE KINASE 2 (ciMIK2) was particularly promising as a candidate for SSI. Its ortholog in Arabidopsis (atMIK2) is involved in pollen-stigma recognition reactions, and its protein structure is similar to that of S-receptor kinase (SRK), a key component of the SSI system in the Brassica genus. The amplification and sequencing of MIK2 in chicory and endive accessions revealed two contrasting scenarios. In C. endivia, MIK2 was fully conserved even when comparing different botanical varieties (i.e., smooth and curly endive). In C. intybus, 387 polymorphic positions and 3 INDELs were identified when comparing accessions of different biotypes all belonging to the same botanical variety (i.e., radicchio). The polymorphism distribution throughout the gene was uneven, with hypervariable domains preferentially localized in the LRR-rich extracellular region, putatively identified as the receptor domain. The gene was hypothesized to be under positive selection, as the nonsynonymous mutations were more than double the synonymous ones (dN/dS = 2.17). An analogous situation was observed when analyzing the first 500 bp of the MIK2 promoter: no SNPs were observed among the endive samples, whereas 44 SNPs and 6 INDELs were detected among the chicory samples. Further analyses are needed to confirm the role of MIK2 in SSI and to demonstrate whether the 23 species-specific nonsynonymous SNPs in the CDS and/or the species-specific 10 bp-INDEL found in a CCAAT box region of the promoter are responsible for the contrasting sexual behaviors of chicory and endive.
Collapse
|
8
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
9
|
Feng L, Lin H, Kang M, Ren Y, Yu X, Xu Z, Wang S, Li T, Yang W, Hu Q. A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation. DNA Res 2022; 29:dsac004. [PMID: 35094078 PMCID: PMC8801980 DOI: 10.1093/dnares/dsac004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
It remains largely unknown how plants adapt to high-altitude habitats. Crucihimalaya (Brassicaceae) is an alpine genus occurring in the Qinghai-Tibet Plateau characterized by cold temperatures and strong ultraviolet radiation. Here, we generated a chromosome-level genome for C. lasiocarpa with a total size of 255.8 Mb and a scaffold N50 size of 31.9 Mb. We first examined the karyotype origin of this species and found that the karyotype of five chromosomes resembled the ancestral karyotype of the Brassicaceae family, while the other three showed strong chromosomal structural variations. In combination with the rough genome sequence of another congener (C. himalaica), we found that the significantly expanded gene families and positively selected genes involved in alpine adaptation have occurred since the origin of this genus. Our new findings provide valuable information for the chromosomal karyotype evolution of Brassicaceae and investigations of high-altitude environment adaptation of the genus.
Collapse
Affiliation(s)
- Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xi Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhanpeng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Gutiérrez-Valencia J, Fracassetti M, Horvath R, Laenen B, Désamore A, Drouzas AD, Friberg M, Kolář F, Slotte T. Genomic Signatures of Sexual Selection on Pollen-Expressed Genes in Arabis alpina. Mol Biol Evol 2021; 39:6456311. [PMID: 34878144 PMCID: PMC8788238 DOI: 10.1093/molbev/msab349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Robert Horvath
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamore
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magne Friberg
- Department of Biology, Lund University, Lund, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Wötzel S, Andrello M, Albani MC, Koch MA, Coupland G, Gugerli F. Arabis alpina: A perennial model plant for ecological genomics and life-history evolution. Mol Ecol Resour 2021; 22:468-486. [PMID: 34415668 PMCID: PMC9293087 DOI: 10.1111/1755-0998.13490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Many model organisms were chosen and achieved prominence because of an advantageous combination of their life‐history characteristics, genetic properties and also practical considerations. Discoveries made in Arabidopsis thaliana, the most renowned noncrop plant model species, have markedly stimulated studies in other species with different biology. Within the family Brassicaceae, the arctic–alpine Arabis alpina has become a model complementary to Arabidopsis thaliana to study the evolution of life‐history traits, such as perenniality, and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including genomic aspects, the diversification of its mating system and demographic properties, and we discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. From this published knowledge, we derive open questions that might inspire future research in A. alpina, other Brassicaceae species or more distantly related plant families.
Collapse
Affiliation(s)
- Stefan Wötzel
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt and Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council, CNR-IAS, Rome, Italy
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - George Coupland
- Department of Plant Development Biology, MPI for Plant Breeding Research, Cologne, Germany
| | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Luizzi VJ, Friberg M, Petrén H. Phenotypic plasticity in floral scent in response to nutrient, but not water, availability in the perennial plant
Arabis alpina. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victoria J. Luizzi
- Department of Ecology & Evolutionary Biology University of Arizona Tucson AZ USA
- Department of Biology Lund University Lund Sweden
| | | | | |
Collapse
|
13
|
Petrén H, Toräng P, Ågren J, Friberg M. Evolution of floral scent in relation to self-incompatibility and capacity for autonomous self-pollination in the perennial herb Arabis alpina. ANNALS OF BOTANY 2021; 127:737-747. [PMID: 33555338 PMCID: PMC8103803 DOI: 10.1093/aob/mcab007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.
Collapse
Affiliation(s)
- Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
- SLU Swedish Species Information Centre, Box 7007, SE-750 07 Uppsala, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
14
|
Rellstab C, Zoller S, Sailer C, Tedder A, Gugerli F, Shimizu KK, Holderegger R, Widmer A, Fischer MC. Genomic signatures of convergent adaptation to Alpine environments in three Brassicaceae species. Mol Ecol 2020; 29:4350-4365. [PMID: 32969558 PMCID: PMC7756229 DOI: 10.1111/mec.15648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023]
Abstract
It has long been discussed to what extent related species develop similar genetic mechanisms to adapt to similar environments. Most studies documenting such convergence have either used different lineages within species or surveyed only a limited portion of the genome. Here, we investigated whether similar or different sets of orthologous genes were involved in genetic adaptation of natural populations of three related plant species to similar environmental gradients in the Alps. We used whole-genome pooled population sequencing to study genome-wide SNP variation in 18 natural populations of three Brassicaceae (Arabis alpina, Arabidopsis halleri, and Cardamine resedifolia) from the Swiss Alps. We first de novo assembled draft reference genomes for all three species. We then ran population and landscape genomic analyses with ~3 million SNPs per species to look for shared genomic signatures of selection and adaptation in response to similar environmental gradients acting on these species. Genes with a signature of convergent adaptation were found at significantly higher numbers than expected by chance. The most closely related species pair showed the highest relative over-representation of shared adaptation signatures. Moreover, the identified genes of convergent adaptation were enriched for nonsynonymous mutations, suggesting functional relevance of these genes, even though many of the identified candidate genes have hitherto unknown or poorly described functions based on comparison with Arabidopsis thaliana. We conclude that adaptation to heterogeneous Alpine environments in related species is partly driven by convergent evolution, but that most of the genomic signatures of adaptation remain species-specific.
Collapse
Affiliation(s)
| | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Christian Sailer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Andrew Tedder
- Department of Evolutionary Biology and Environmental Studies, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,School of Chemistry & Bioscience, University of Bradford, Bradford, UK
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.,Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Martin C Fischer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Abdallah D, Baraket G, Perez V, Salhi Hannachi A, Hormaza JI. Self-compatibility in peach [ Prunus persica (L.) Batsch]: patterns of diversity surrounding the S-locus and analysis of SFB alleles. HORTICULTURE RESEARCH 2020; 7:170. [PMID: 33082976 PMCID: PMC7527504 DOI: 10.1038/s41438-020-00392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) to self-compatibility (SC) transition is one of the most frequent and prevalent evolutionary shifts in flowering plants. Prunus L. (Rosaceae) is a genus of over 200 species most of which exhibit a Gametophytic SI system. Peach [Prunus persica (L.) Batsch; 2n = 16] is one of the few exceptions in the genus known to be a fully self-compatible species. However, the evolutionary process of the complete and irreversible loss of SI in peach is not well understood and, in order to fill that gap, in this study 24 peach accessions were analyzed. Pollen tube growth was controlled in self-pollinated flowers to verify their self-compatible phenotypes. The linkage disequilibrium association between alleles at the S-locus and linked markers at the end of the sixth linkage group was not significant (P > 0.05), except with the closest markers suggesting the absence of a signature of negative frequency dependent selection at the S-locus. Analysis of SFB1 and SFB2 protein sequences allowed identifying the absence of some variable and hypervariable domains and the presence of additional α-helices at the C-termini. Molecular and evolutionary analysis of SFB nucleotide sequences showed a signature of purifying selection in SFB2, while the SFB1 seemed to evolve neutrally. Thus, our results show that the SFB2 allele diversified after P. persica and P. dulcis (almond) divergence, a period which is characterized by an important bottleneck, while SFB1 diversified at a transition time between the bottleneck and population expansion.
Collapse
Affiliation(s)
- Donia Abdallah
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Ghada Baraket
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Veronica Perez
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma), Unidad Técnica del Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38700 S/C La Palma, Canary Islands, Spain
| | - Amel Salhi Hannachi
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Jose I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-UMA-CSIC), 29750 Algarrobo-Costa, Malaga Spain
| |
Collapse
|
16
|
Mishra P, Roggen A, Ljung K, Albani MC. Natural Variation in Adventitious Rooting in the Alpine Perennial Arabis alpina. PLANTS 2020; 9:plants9020184. [PMID: 32028613 PMCID: PMC7076489 DOI: 10.3390/plants9020184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Arctic alpine species follow a mixed clonal-sexual reproductive strategy based on the environmental conditions at flowering. Here, we explored the natural variation for adventitious root formation among genotypes of the alpine perennial Arabis alpina that show differences in flowering habit. We scored the presence of adventitious roots on the hypocotyl, main stem and axillary branches on plants growing in a long-day greenhouse. We also assessed natural variation for adventitious rooting in response to foliar auxin spray. In both experimental approaches, we did not detect a correlation between adventitious rooting and flowering habit. In the greenhouse, and without the application of synthetic auxin, the accession Wca showed higher propensity to produce adventitious roots on the main stem compared to the other accessions. The transcript accumulation of the A. alpina homologue of the auxin inducible GH3.3 gene (AaGH3.3) on stems correlated with the adventitious rooting phenotype of Wca. Synthetic auxin, 1-Naphthaleneacetic acid (1-NAA), enhanced the number of plants with adventitious roots on the main stem and axillary branches. A. alpina plants showed an age-, dosage- and genotype-dependent response to 1-NAA. Among the genotypes tested, the accession Dor was insensitive to auxin and Wca responded to auxin on axillary branches.
Collapse
Affiliation(s)
- Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47B, 50674 Cologne, Germany (A.R.)
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences “From Complex Traits towards Synthetic Modules”, 40225 Düsseldorf, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47B, 50674 Cologne, Germany (A.R.)
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden;
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47B, 50674 Cologne, Germany (A.R.)
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences “From Complex Traits towards Synthetic Modules”, 40225 Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
17
|
Koski MH, Galloway LF, Busch JW. Pollen limitation and autonomous selfing ability interact to shape variation in outcrossing rate across a species range. AMERICAN JOURNAL OF BOTANY 2019; 106:1240-1247. [PMID: 31415107 DOI: 10.1002/ajb2.1342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Hermaphroditic plants commonly reproduce through a mixture of selfing and outcrossing. The degree to which outcrossing rates reflect the availability of outcross pollen, genetic differentiation in the ability to autonomously self-fertilize, or both is often unclear. Despite the potential for autonomy and the pollination environment to jointly influence outcrossing, this interaction is rarely studied. METHODS We reviewed studies from the literature that tested whether the pollination environment or floral traits that cause autonomous selfing predict variation in outcrossing rate among populations. We also measured outcrossing rates in 23 populations of Campanula americana and examined associations with the pollination environment, autonomy, and their interaction. RESULTS Our review revealed that traits that facilitate selfing were often negatively associated with outcrossing rates whereas most aspects of the pollination environment poorly predicted outcrossing. Populations of C. americana varied from mixed mating to highly outcrossing, but variation was unrelated to population size, density, pollen limitation, or autonomous selfing ability. Outcrossing rate was significantly influenced by an interaction between autonomous selfing ability and pollen limitation. Across highly autonomous populations, elevated pollen limitation was associated with reduced outcrossing, while there was no relationship for less autonomous populations. CONCLUSIONS Both the ability to self autonomously and pollen limitation interact to shape outcrossing rates in C. americana. This work suggests that autonomy affords mating-system flexibility, though it is not ubiquitous in all populations across the species range. Interactions between traits influencing autonomy and pollen limitation are likely to explain variation in outcrossing rates among populations of flowering plants.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904, USA
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina, 29631, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington, 99164, USA
| |
Collapse
|
18
|
Rogivue A, Choudhury RR, Zoller S, Joost S, Felber F, Kasser M, Parisod C, Gugerli F. Genome-wide variation in nucleotides and retrotransposons in alpine populations of Arabis alpina (Brassicaceae). Mol Ecol Resour 2019; 19:773-787. [PMID: 30636378 DOI: 10.1111/1755-0998.12991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023]
Abstract
Advances in high-throughput sequencing have promoted the collection of reference genomes and genome-wide diversity. However, the assessment of genomic variation among populations has hitherto mainly been surveyed through single-nucleotide polymorphisms (SNPs) and largely ignored the often major fraction of genomes represented by transposable elements (TEs). Despite accumulating evidence supporting the evolutionary significance of TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e., presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 polymorphic TEs, comparing their contributions to genomic diversity and divergence across populations. Few SNPs were shared among populations and overall showed high population-specific variation, whereas most polymorphic TEs segregated among populations. The genomic context of these two classes of variants further highlighted candidate adaptive loci having a putative impact on functional genes. In particular, 4.96% of the SNPs were identified as nonsynonymous or affecting start/stop codons. In contrast, 43% of the polymorphic TEs were present next to Arabis genes enriched in functional categories related to the regulation of reproduction and responses to biotic as well as abiotic stresses. This unprecedented data set, mapping variation gained from SNPs and complementary polymorphic TEs within and among populations, will serve as a rich resource for addressing microevolutionary processes shaping genome variation.
Collapse
Affiliation(s)
- Aude Rogivue
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Rimjhim R Choudhury
- University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Berne, Bern, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - François Felber
- University of Neuchâtel, Neuchâtel, Switzerland.,Musée et Jardins botaniques cantonaux, Lausanne, Switzerland
| | | | | | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
19
|
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A 2019; 116:7137-7146. [PMID: 30894495 PMCID: PMC6452661 DOI: 10.1073/pnas.1817580116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.
Collapse
|
20
|
Mable BK, Brysting AK, Jørgensen MH, Carbonell AKZ, Kiefer C, Ruiz-Duarte P, Lagesen K, Koch MA. Adding Complexity to Complexity: Gene Family Evolution in Polyploids. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Whitehead MR, Lanfear R, Mitchell RJ, Karron JD. Plant Mating Systems Often Vary Widely Among Populations. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00038] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Demography and mating system shape the genome-wide impact of purifying selection in Arabis alpina. Proc Natl Acad Sci U S A 2018; 115:816-821. [PMID: 29301967 DOI: 10.1073/pnas.1707492115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plant mating systems have profound effects on levels and structuring of genetic variation and can affect the impact of natural selection. Although theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population-genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles, whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, mating system and demography shape the impact of purifying selection on genomic variation in A. alpina These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.
Collapse
|
23
|
Toräng P, Vikström L, Wunder J, Wötzel S, Coupland G, Ågren J. Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution 2017; 71:2206-2218. [PMID: 28722132 DOI: 10.1111/evo.13308] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/04/2023]
Abstract
Capacity for autonomous self-fertilization provides reproductive assurance, has evolved repeatedly in the plant kingdom, and typically involves several changes in flower morphology and development (the selfing syndrome). Yet, the relative importance of different traits and trait combinations for efficient selfing and reproductive success in pollinator-poor environments is poorly known. In a series of experiments, we tested the importance of anther-stigma distance and the less studied trait anther orientation for efficiency of selfing in the perennial herb Arabis alpina. Variation in flower morphology among eight self-compatible European populations was correlated with efficiency of self-pollination and with pollen limitation in a common-garden experiment. To examine whether anther-stigma distance and anther orientation are subject to directional and/or correlational selection, and whether this is because these traits affect pollination success, we planted a segregating F2 population at two native field sites. Selection strongly favored a combination of introrse anthers and reduced anther-stigma distance at a site where pollinator activity was low, and supplemental hand-pollination demonstrated that this was largely because of their effect on securing self-pollination. The results suggest that concurrent shifts in more than one trait can be crucial for the evolution of efficient self-pollination and reproductive assurance in pollinator-poor habitats.
Collapse
Affiliation(s)
- Per Toräng
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.,School of Bioscience, University of Skövde, Box 408, SE-541 28, Skövde, Sweden
| | - Linus Vikström
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Jörg Wunder
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - Stefan Wötzel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - Jon Ågren
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
24
|
Hartfield M, Bataillon T, Glémin S. The Evolutionary Interplay between Adaptation and Self-Fertilization. Trends Genet 2017; 33:420-431. [PMID: 28495267 PMCID: PMC5450926 DOI: 10.1016/j.tig.2017.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
Genome-wide surveys of nucleotide polymorphisms, obtained from next-generation sequencing, have uncovered numerous examples of adaptation in self-fertilizing organisms, especially regarding changes to climate, geography, and reproductive systems. Yet existing models for inferring attributes of adaptive mutations often assume idealized outcrossing populations, which risks mischaracterizing properties of these variants. Recent theoretical work is emphasizing how various aspects of self-fertilization affects adaptation, yet empirical data on these properties are lacking. We review theoretical and empirical studies demonstrating how self-fertilization alters the process of adaptation, illustrated using examples from current sequencing projects. We propose ideas for how future research can more accurately quantify aspects of adaptation in self-fertilizers, including incorporating the effects of standing variation, demographic history, and polygenic adaptation. Analysis of large-scale next-generation sequencing datasets are finding more examples of adaptive evolution at the genomic level. Advances in theoretical work has demonstrated how self-fertilisation affects different aspects of adaptation in these organisms, compared to outcrossers. Current software and statistical methods do not take different mating systems into account, which risks mischaracterising the presence or strength of adaptive mutations from genome scans. Development of new mathematical and statistical methods that explicitly consider self-fertilization and associated demographic effects will enable researchers to more accurately quantify adaptation in these organisms.
Collapse
Affiliation(s)
- Matthew Hartfield
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto ON, Canada M5S 3B2; Bioinformatics Research Centre, Aarhus University, 8000C, Aarhus, Denmark.
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, 8000C, Aarhus, Denmark
| | - Sylvain Glémin
- Institut des Sciences de l'Evolution (ISEM - UMR 5554 Universite de Montpellier-CNRS-IRD-EPHE), Place Eugene Bataillon, 34075 Montpellier, France; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
25
|
Field Guide to Plant Model Systems. Cell 2017; 167:325-339. [PMID: 27716506 DOI: 10.1016/j.cell.2016.08.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.
Collapse
|
26
|
Tedder A, Carleial S, Gołębiewska M, Kappel C, Shimizu KK, Stift M. Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae). PLoS One 2015; 10:e0126618. [PMID: 26039362 PMCID: PMC4454584 DOI: 10.1371/journal.pone.0126618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 04/04/2015] [Indexed: 12/03/2022] Open
Abstract
Introduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results and Discussion Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. Conclusion We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution.
Collapse
Affiliation(s)
- Andrew Tedder
- Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland
| | - Samuel Carleial
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martyna Gołębiewska
- Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental studies, University of Zurich, Zurich, Switzerland
- * E-mail: (KKS); (MS)
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- * E-mail: (KKS); (MS)
| |
Collapse
|
27
|
Toräng P, Wunder J, Obeso JR, Herzog M, Coupland G, Ågren J. Large-scale adaptive differentiation in the alpine perennial herb Arabis alpina. THE NEW PHYTOLOGIST 2015; 206:459-470. [PMID: 25422098 DOI: 10.1111/nph.13176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Information about the incidence and magnitude of local adaptation can help to predict the response of natural populations to a changing environment, and should be of particular interest in arctic and alpine environments where the effects of climate change are expected to be severe. To quantify adaptive differentiation in the arctic-alpine perennial herb Arabis alpina, we conducted reciprocal transplant experiments for 3 yr between Spanish and Scandinavian populations. At the sites of one Spanish and one Scandinavian population, we planted seedlings representing two Spanish and four Scandinavian populations, and recorded survival, flowering propensity and fecundity. The experiment was replicated in two subsequent years. The results demonstrate strong adaptive differentiation between A. alpina populations from the two regions. At the field site in Spain, survival and fruit production of Spanish populations were higher than those of Scandinavian populations, while the opposite was true at the site in Scandinavia, and these differences were consistent across years. By comparison, fitness varied little among populations from the same region. The results suggest that the magnitude and geographical scale of local adaptation need to be considered in predictions of the effects of global change on the dynamics of arctic and alpine plant populations.
Collapse
Affiliation(s)
- Per Toräng
- Department of Plant Ecology and Evolution, EBC, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Jörg Wunder
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - José Ramón Obeso
- Research Unit of Biodivesity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600, Mieres, Spain
| | - Michel Herzog
- LECA, Université Grenoble Alpes, F-38000, Grenoble, France
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829, Cologne, Germany
| | - Jon Ågren
- Department of Plant Ecology and Evolution, EBC, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
28
|
Willing EM, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C, Warthmann N, Chica C, Szarzynska B, Zytnicki M, Albani MC, Kiefer C, Bergonzi S, Castaings L, Mateos JL, Berns MC, Bujdoso N, Piofczyk T, de Lorenzo L, Barrero-Sicilia C, Mateos I, Piednoël M, Hagmann J, Chen-Min-Tao R, Iglesias-Fernández R, Schuster SC, Alonso-Blanco C, Roudier F, Carbonero P, Paz-Ares J, Davis SJ, Pecinka A, Quesneville H, Colot V, Lysak MA, Weigel D, Coupland G, Schneeberger K. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. NATURE PLANTS 2015; 1:14023. [PMID: 27246759 DOI: 10.1038/nplants.2014.23] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/10/2014] [Indexed: 05/10/2023]
Abstract
Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.
Collapse
Affiliation(s)
- Eva-Maria Willing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Vimal Rawat
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Terezie Mandáková
- Research group Plant Cytogenomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Florian Maumus
- INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Karl J V Nordström
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Norman Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Claudia Chica
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 and Institut National de la Santé et de la Recherche Médicale (INSERM) U 1024, Paris, France
| | - Bogna Szarzynska
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 and Institut National de la Santé et de la Recherche Médicale (INSERM) U 1024, Paris, France
| | - Matthias Zytnicki
- INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France
| | - Maria C Albani
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Christiane Kiefer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Sara Bergonzi
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Loren Castaings
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Julieta L Mateos
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Markus C Berns
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Nora Bujdoso
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Thomas Piofczyk
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Laura de Lorenzo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). ETSI agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Isabel Mateos
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mathieu Piednoël
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Romy Chen-Min-Tao
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 and Institut National de la Santé et de la Recherche Médicale (INSERM) U 1024, Paris, France
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). ETSI agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Stephan C Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 and Institut National de la Santé et de la Recherche Médicale (INSERM) U 1024, Paris, France
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). ETSI agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Seth J Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Ales Pecinka
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Hadi Quesneville
- INRA, UR1164 URGI-Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de Saint-Cyr, Versailles 78026, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 and Institut National de la Santé et de la Recherche Médicale (INSERM) U 1024, Paris, France
| | - Martin A Lysak
- Research group Plant Cytogenomics, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany
| |
Collapse
|
29
|
Buehler D, Holderegger R, Brodbeck S, Schnyder E, Gugerli F. Validation of outlier loci through replication in independent data sets: a test on Arabis alpina. Ecol Evol 2014; 4:4296-306. [PMID: 25540691 PMCID: PMC4267868 DOI: 10.1002/ece3.1300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Outlier detection and environmental association analysis are common methods to search for loci or genomic regions exhibiting signals of adaptation to environmental factors. However, a validation of outlier loci and corresponding allele distribution models through functional molecular biology or transplant/common garden experiments is rarely carried out. Here, we employ another method for validation, namely testing outlier loci in specifically designed, independent data sets. Previously, an outlier locus associated with three different habitat types had been detected in Arabis alpina. For the independent validation data set, we sampled 30 populations occurring in these three habitat types across five biogeographic regions of the Swiss Alps. The allele distribution model found in the original study could not be validated in the independent test data set: The outlier locus was no longer indicative of habitat-mediated selection. We propose several potential causes of this failure of validation, of which unaccounted genetic structure and technical issues in the original data set used to detect the outlier locus were most probable. Thus, our study shows that validating outlier loci and allele distribution models in independent data sets is a helpful tool in ecological genomics which, in the case of positive validation, adds confidence to outlier loci and their association with environmental factors or, in the case of failure of validation, helps to explain inconsistencies.
Collapse
Affiliation(s)
- Dominique Buehler
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland ; Department of Environmental Systems Science, ETH Zürich Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Rolf Holderegger
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland ; Department of Environmental Systems Science, ETH Zürich Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Sabine Brodbeck
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Elvira Schnyder
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
30
|
Nasrallah JB, Nasrallah ME. Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. THE PLANT CELL 2014. [PMID: 25336507 DOI: 10.1105/tpc.114.127712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) is the primary determinant of the outbreeding mode of sexual reproduction in the Brassicaceae. All Arabidopsis thaliana accessions analyzed to date carry mutations that disrupt SI functions by inactivating the SI specificity-determining S locus or SI modifier loci. S-locus genes isolated from self-incompatible close relatives of A. thaliana restore robust SI in several accessions that harbor only S-locus mutations and confer transient SI in accessions that additionally harbor mutations at modifier loci. Self-incompatible transgenic A. thaliana plants have proved to be valuable for analysis of the recognition and signaling events that underlie SI in the Brassicaceae. Here, we review results demonstrating that S-locus genes are necessary and sufficient for SI signaling and for restoration of a strong and developmentally stable SI phenotype in several accessions of A. thaliana. The data indicate that introduction of a functional E3 ligase-encoding ARC1 gene, which is deleted in all accessions that have been analyzed to date, is not required for SI signaling leading to inhibition of self pollen or for reversion of A. thaliana to its fully self-incompatible ancestral state.
Collapse
Affiliation(s)
- June B Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
31
|
Nasrallah JB, Nasrallah ME. Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. THE PLANT CELL 2014; 26:3838-41. [PMID: 25336507 PMCID: PMC4247572 DOI: 10.1105/tpc.114.129387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Self-incompatibility (SI) is the primary determinant of the outbreeding mode of sexual reproduction in the Brassicaceae. All Arabidopsis thaliana accessions analyzed to date carry mutations that disrupt SI functions by inactivating the SI specificity-determining S locus or SI modifier loci. S-locus genes isolated from self-incompatible close relatives of A. thaliana restore robust SI in several accessions that harbor only S-locus mutations and confer transient SI in accessions that additionally harbor mutations at modifier loci. Self-incompatible transgenic A. thaliana plants have proved to be valuable for analysis of the recognition and signaling events that underlie SI in the Brassicaceae. Here, we review results demonstrating that S-locus genes are necessary and sufficient for SI signaling and for restoration of a strong and developmentally stable SI phenotype in several accessions of A. thaliana. The data indicate that introduction of a functional E3 ligase-encoding ARC1 gene, which is deleted in all accessions that have been analyzed to date, is not required for SI signaling leading to inhibition of self pollen or for reversion of A. thaliana to its fully self-incompatible ancestral state.
Collapse
Affiliation(s)
- June B Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
32
|
Self-incompatibility in Brassicaceae: identification and characterization of SRK-like sequences linked to the S-locus in the tribe Biscutelleae. G3-GENES GENOMES GENETICS 2014; 4:983-92. [PMID: 24939184 PMCID: PMC4065267 DOI: 10.1534/g3.114.010843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a third deep-branching lineage of Brassicaceae: the tribe Biscutelleae. By coupling sequencing of the SI gene responsible for pollen recognition (SRK) with phenotypic analyses based on controlled pollinations, we identified 20 SRK-like sequences functionally linked to 13 S-haplotypes in 21 individuals of Biscutella neustriaca and 220 seedlings. We found two genetic and phylogenetic features of SI in Biscutelleae that depart from patterns observed in the reference Arabidopsis clade: (1) SRK-like sequences cluster into two main phylogenetic lineages interspersed within the many SRK lineages of Arabidopsis; and (2) some SRK-like sequences are transmitted by linked pairs, suggesting local duplication within the S-locus. Strikingly, these features also were observed in the Brassica clade but probably evolved independently, as the two main SRK clusters in Biscutella are distinct from those in Brassica. In the light of our results and of what has been previously observed in other Brassicaceae, we discuss the ecological and evolutionary implications on SI plant populations of the high diversity and the complex dominance relationships we found at the S-locus in Biscutelleae.
Collapse
|
33
|
Vekemans X, Poux C, Goubet PM, Castric V. The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S-locus? J Evol Biol 2014; 27:1372-85. [PMID: 24725152 DOI: 10.1111/jeb.12372] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
Evolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants.
Collapse
Affiliation(s)
- X Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université Lille 1, Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
34
|
An outlier locus relevant in habitat-mediated selection in an alpine plant across independent regional replicates. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Inbreeding depression in self-incompatible North-American Arabidopsis lyrata: disentangling genomic and S-locus-specific genetic load. Heredity (Edinb) 2012; 110:19-28. [PMID: 22892638 DOI: 10.1038/hdy.2012.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO(2), and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages.
Collapse
|
36
|
Buehler D, Graf R, Holderegger R, Gugerli F. Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape. ANNALS OF BOTANY 2012; 109:1359-67. [PMID: 22492332 PMCID: PMC3359921 DOI: 10.1093/aob/mcs066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/20/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae). METHODS An entire sub-alpine to alpine landscape of 2 km(2) was exhaustively sampled in the Swiss Alps. Eighteen nuclear microsatellite loci were used to genotype 595 individuals and 499 offspring from 49 maternal plants. Contemporary gene flow by pollen was estimated from paternity analysis, matching the genotypes of maternal plants and offspring to the pool of likely father plants. Realized mating patterns and genetic structure were also estimated. KEY RESULTS Paternity analysis revealed several long-distance gene flow events (≤1 km). However, most outcrossing pollen was dispersed close to the mother plants, and 84 % of all offspring were selfed. Individuals that were spatially close were more related than by chance and were also more likely to be connected by pollen dispersal. CONCLUSIONS In the alpine landscape studied, genetic structure occurred on small spatial scales as expected for alpine plants. However, gene flow also covered large distances. This makes it plausible for alpine plants to spread beneficial alleles at least via pollen across landscapes at a short time scale. Thus, gene flow potentially facilitates rapid adaptation in A. alpina likely to be required under ongoing climate change.
Collapse
Affiliation(s)
- D. Buehler
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- ETH Zürich, Institute of Integrative Biology, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - R. Graf
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - R. Holderegger
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- ETH Zürich, Institute of Integrative Biology, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - F. Gugerli
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
37
|
Karl R, Kiefer C, Ansell SW, Koch MA. Systematics and evolution of Arctic-Alpine Arabis alpina (Brassicaceae) and its closest relatives in the eastern Mediterranean. AMERICAN JOURNAL OF BOTANY 2012; 99:778-794. [PMID: 22454383 DOI: 10.3732/ajb.1100447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY The high mountains in southern Anatolia and the eastern Mediterranean are assumed to play a major role as a primary center of genetic diversity and species richness in Eurasia. We tested this hypothesis by focusing on the widespread perennial arctic-alpine Arabis alpina and its sympatrically distributed closest relatives in the eastern Mediterranean. METHODS Plastid (trnL intron, trnL-F intergenic spacer) and nuclear (ITS) DNA sequence analysis was used for phylogenetic reconstruction. Broad-scale plastid haplotype analyses were conducted to infer ancestral biogeographic patterns. KEY RESULTS Five Arabis species, identified from the eastern Mediterranean (Turkey mainland and Cyprus), evolved directly and independently from A. alpina, leaving Arabis alpina as a paraphyletic taxon. These species are not affected by hybridization or introgression, and species divergence took place at the diploid level during the Pleistocene. CONCLUSIONS Pleistocene climate fluctuations produced local altitudinal range-shifts among mountain glacial survival areas, resulting not only in the accumulation of intraspecific genotype diversity but also in the formation of five local species. We also show that the closest sister group of Arabis alpina consists exclusively of annuals/winter annuals and diverged prior to Pleistocene climatic fluctuations during the colonization of the lowland Mediterranean landscape. These findings highlight that Anatolia is not only a center of species richness but also a center for life-history diversification.
Collapse
Affiliation(s)
- Robert Karl
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
|
39
|
Ansell SW, Stenøien HK, Grundmann M, Russell SJ, Koch MA, Schneider H, Vogel JC. The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic-alpine species. ANNALS OF BOTANY 2011; 108:241-52. [PMID: 21712298 PMCID: PMC3143044 DOI: 10.1093/aob/mcr134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Anatolia is a biologically diverse, but phylogeographically under-explored region. It is described as either a centre of origin and long-term Pleistocene refugium, or as a centre for genetic amalgamation, fed from distinct neighbouring refugia. These contrasting hypotheses are tested through a global phylogeographic analysis of the arctic-alpine herb, Arabis alpina. METHODS Herbarium and field collections were used to sample comprehensively the entire global range, with special focus on Anatolia and Levant. Sequence variation in the chloroplast DNA trnL-trnF region was examined in 483 accessions. A haplotype genealogy was constructed and phylogeographic methods, demographic analysis and divergence time estimations were used to identify the centres of diversity and to infer colonization history. KEY RESULTS Fifty-seven haplotypes were recovered, belonging to three haplogroups with non-overlapping distributions in (1) North America/Europe/northern Africa, (2) the Caucuses/Iranian Plateau/Arabian Peninsula and (3) Ethiopia-eastern Africa. All haplogroups occur within Anatolia, and all intermediate haplotypes linking the three haplogroups are endemic to central Anatolia and Levant, where haplotypic and nucleotide diversities exceeded all other regions. The local pattern of haplotype distribution strongly resembles the global pattern, and the haplotypes began to diverge approx. 2·7 Mya, coinciding with the climate cooling of the early Middle Pleistocene. CONCLUSIONS The phylogeographic structure of Arabis alpina is consistent with Anatolia being the cradle of origin for global genetic diversification. The highly structured landscape in combination with the Pleistocene climate fluctuations has created a network of mountain refugia and the accumulation of spatially arranged genotypes. This local Pleistocene population history has subsequently left a genetic imprint at the global scale, through four range expansions from the Anatolian diversity centre into Europe, the Near East, Arabia and Africa. Hence this study also illustrates the importance of sampling and scaling effects when translating global from local diversity patterns during phylogeographic analyses.
Collapse
Affiliation(s)
- Stephen W Ansell
- Department of Botany, The Natural History Museum, London SW7 5BD, UK.
| | | | | | | | | | | | | |
Collapse
|