1
|
Wexler Y, Kiere Y, Sobol G, Nuriel R, Azoulay-Portal S, Cohen A, Toporik H, Pasmanik-Chor M, Finkler A, Shkolnik D. Modulation of Root Hydrotropism and Recovery From Drought by MIZ1-like Genes in Tomato. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39526383 DOI: 10.1111/pce.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Drought limits crop performance worldwide. Plant roots' ability to grow toward moisture, termed hydrotropism, is considered one strategy for optimizing water recruitment from the growth medium. Based on the sequence of the hydrotropism-indispensable MIZ1 protein in Arabidopsis thaliana, we identify hydrotropism and drought-responsive genes in tomato. We utilized CRISPR/Cas9 genome-editing technology for targeted mutagenesis of three hydrotropism-associated loci (MIZ1-like) in tomato (Solanum lycopersicum). We show that the three tomato MIZ1-like genes are drought-responsive and two of them are hydrostimulation-responsive. Examination of the root hydrotropic response of triple and double mutants indicated the gene SlMIZ1-1 as indispensable for tomato root hydrotropism. Moreover, expression of the SlMIZ1-1 gene in the Arabidopsis miz1 mutant effectively complemented the lost MIZ1 functionality, including root hydrotropic bending and generation of hydrotropic Ca2+ signals. Transcriptome analysis of hydrostimulated tomato root tips under control gravity and continuous clinorotation conditions was performed to identify gravitropism- and hydrotropism-responsive genes. This analysis suggested the involvement of ethylene and ABA signalling in modulating the interplay between hydrotropism and gravitropism. Unveiling the molecular mechanisms that underlie hydrotropism and drought response holds great potential for improving crop performance under limiting water availability due to global climate changes.
Collapse
Affiliation(s)
- Yonatan Wexler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Guy Sobol
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Roye Nuriel
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shaked Azoulay-Portal
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Cohen
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Hila Toporik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
3
|
Li Y, Chen Y, Jiang S, Dai H, Xu W, Zhang Q, Zhang J, Dodd IC, Yuan W. ABA is required for differential cell wall acidification associated with root hydrotropic bending in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:38-48. [PMID: 37705239 DOI: 10.1111/pce.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Hydrotropism is an important adaptation of plant roots to the uneven distribution of water, with current research mainly focused on Arabidopsis thaliana. To examine hydrotropism in tomato (Solanum lycopersicum) primary roots, we used RNA sequencing to determine gene expression of root tips (apical 5 mm) on dry and wet sides of hydrostimulated roots grown on agar plates. Hydrostimulation enhances cell division and expansion on the dry side compared with the wet side of the root tip. In hydrostimulated roots, the abscisic acid (ABA) biosynthesis gene ABA4 was induced more on the dry than the wet side of root tips. The ABA biosynthesis inhibitor Fluridone and the ABA-deficient mutant notabilis (not) significantly decreased hydrotropic curvature. Wild-type, but not the ABA biosynthesis mutant not, root tips showed asymmetric H+ efflux, with greater efflux on the dry than on the wet side of root tips. Thus, ABA mediates asymmetric H+ efflux, allowing the root to bend towards the wet side to take up more water.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Dai
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| |
Collapse
|
4
|
Li Y, Wang L, Chen Y, Zhang J, Xu W. Recovery of root hydrotropism in miz1 mutant by eliminating root gravitropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154144. [PMID: 38104389 DOI: 10.1016/j.jplph.2023.154144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Mizu-kussei1 (MIZ1) plays a crucial role in root hydrotropism, but it is still unclear whether auxin-mediated gravitropism is involved in MIZ1-modulated root hydrotropism. This study aimed to investigate whether the hydrotropism of the Arabidopsis miz1 mutants could be restored through pharmacological inhibition of auxin transport or genetic modification in root gravitropism. Our findings indicate that the hydrotropic defects of miz1 mutant can be partly recovered by using an auxin transport inhibitor. Furthermore, miz1/pin2 double mutants exhibit more pronounced defects in root gravitropism compared to the wild type, while still displaying a normal hydrotropic response similar to the wild type. These results suggest that the elimination of gravitropism enables miz1 roots to become hydrotropically responsive to moisture gradients.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
6
|
Akita K, Miyazawa Y. Auxin biosynthesis, transport, and response directly attenuate hydrotropism in the latter stages to fine-tune root growth direction in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e14051. [PMID: 37882259 DOI: 10.1111/ppl.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Roots detect water potential gradients in the soil and orient toward moister areas, a response known as hydrotropism that aids drought avoidance. Although auxin is crucial in tropism, its polar transport is not essential for hydrotropism in Arabidopsis. Moreover, antiauxin treatments in Arabidopsis produced inconsistent outcomes: some studies indicated auxin action was necessary while others did not. In this study, we examined auxin's physiological role in hydrotropism. We found that inhibiting auxin biosynthesis or transport intensified hydrotropic bending not only in wild-type, but also in hydrotropism defective mutants, namely miz1-1 and miz2 plants. Given that miz1-1 and miz2 exhibited compromised hydrotropism even under clinorotated conditions, we infer that auxin biosynthesis and transport directly suppress hydrotropism. Additionally, tir1-10, afb1-3, and afb2-3 displayed augmented hydrotropism. We observed a significant delay in hydrotropic bending in arf7-1arf19-1, suggesting that ARF7 and ARF19 amplify hydrotropism in its early stages. To discern the functional ties of ARF7/19 with MIZ1 and MIZ2, we studied the hydrotropic phenotypes of arf7-1arf19-1miz1-1 and arf7-1arf19-1miz2. Both triple mutants had diminished early-stage hydrotropism yet showed partial but significant recovery in the later stages. Given MIZ1's role in reducing auxin levels and MIZ2's essentiality for MIZ1 functionality, we conclude that auxin inhibits hydrotropism downstream of MIZ1 in later stages to refine root bending. Furthermore, it is posited that gene expression driven by ARF7 and ARF19 is pivotal for early-stage root hydrotropism.
Collapse
Affiliation(s)
- Kotaro Akita
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | | |
Collapse
|
7
|
Khodaeiaminjan M, Knoch D, Ndella Thiaw MR, Marchetti CF, Kořínková N, Techer A, Nguyen TD, Chu J, Bertholomey V, Doridant I, Gantet P, Graner A, Neumann K, Bergougnoux V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1125672. [PMID: 37077626 PMCID: PMC10106628 DOI: 10.3389/fpls.2023.1125672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Cintia F. Marchetti
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Nikola Kořínková
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Alexie Techer
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Thu D. Nguyen
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Jianting Chu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Valentin Bertholomey
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Ingrid Doridant
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
- Unité Mixte de Recherche DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Andreas Graner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
8
|
Retzer K, Weckwerth W. Recent insights into metabolic and signalling events of directional root growth regulation and its implications for sustainable crop production systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1154088. [PMID: 37008498 PMCID: PMC10060999 DOI: 10.3389/fpls.2023.1154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Roots are sensors evolved to simultaneously respond to manifold signals, which allow the plant to survive. Root growth responses, including the modulation of directional root growth, were shown to be differently regulated when the root is exposed to a combination of exogenous stimuli compared to an individual stress trigger. Several studies pointed especially to the impact of the negative phototropic response of roots, which interferes with the adaptation of directional root growth upon additional gravitropic, halotropic or mechanical triggers. This review will provide a general overview of known cellular, molecular and signalling mechanisms involved in directional root growth regulation upon exogenous stimuli. Furthermore, we summarise recent experimental approaches to dissect which root growth responses are regulated upon which individual trigger. Finally, we provide a general overview of how to implement the knowledge gained to improve plant breeding.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Molecular Systems Biology (MoSys), University of Vienna, Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Wien, Austria
| |
Collapse
|
9
|
Feng Z, Liang X, Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, Xu K, Mostofa MG, Ha CV, Mochida K, Tian C, Tanaka M, Seki M, Liang Z, Miao Y, Tran LSP, Li W. SUPPRESSOR of MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) Negatively Regulate Drought Resistance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1900-1913. [PMID: 35681253 DOI: 10.1093/pcp/pcac080] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.
Collapse
Affiliation(s)
- Zhonghui Feng
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- College of Life Science, Baicheng Normal University, No. 57, Zhongxing West Road, Taobei District, Baicheng 137000, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaohan Liang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Hongtao Tian
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Vietnam
| | - Cuong Duy Tran
- Genetic Engineering Department, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Vietnam
| | - Mostafa Abdelrahman
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, New Galala 43511, Egypt
| | - Kun Xu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-tyo, Totsuka, Yokohama, 244-0813 Japan
- RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Chunjie Tian
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Zhengwei Liang
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Weiqiang Li
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| |
Collapse
|
10
|
Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, Liang X, Xu K, Sepulveda C, Mostofa MG, Van Ha C, Nelson DC, Mochida K, Tian C, Tanaka M, Seki M, Miao Y, Tran LSP, Li W. KARRIKIN UPREGULATED F-BOX 1 negatively regulates drought tolerance in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2671-2687. [PMID: 35822606 PMCID: PMC9706471 DOI: 10.1093/plphys/kiac336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance.
Collapse
Affiliation(s)
- Hongtao Tian
- Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Mostafa Abdelrahman
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, New Galala 43511, Egypt
| | - Xiaohan Liang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Kun Xu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Claudia Sepulveda
- Department of Botany & Plant Sciences, University of California, Riverside, California 92521, USA
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas 79409, USA
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas 79409, USA
| | - David C Nelson
- Department of Botany & Plant Sciences, University of California, Riverside, California 92521, USA
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Chunjie Tian
- Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | | | - Weiqiang Li
- Author for correspondence: or (W.L.), (L.-S.P.T.)
| |
Collapse
|
11
|
Mao B, Takahashi H, Takahashi H, Fujii N. Diversity of root hydrotropism among natural variants of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2022; 135:799-808. [PMID: 36149514 PMCID: PMC10039817 DOI: 10.1007/s10265-022-01412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/08/2022] [Indexed: 05/30/2023]
Abstract
Root gravitropism affects root hydrotropism. The interference intensity of root gravitropism with root hydrotropism differs among plant species. However, these differences have not been well compared within a single plant species. In this study, we compared root hydrotropism in various natural variants of Arabidopsis under stationary conditions. As a result, we detected a range of root hydrotropism under stationary conditions among natural Arabidopsis variants. Comparison of root gravitropism and root hydrotropism among several Arabidopsis natural variants classified natural variants that decreased root hydrotropism into two types; namely one type that expresses root gravitropism and root hydrotropism weaker than Col-0, and the other type that expresses weaker root hydrotropism than Col-0 but expresses similar root gravitropism with Col-0. However, root hydrotropism of all examined Arabidopsis natural variants was facilitated by clinorotation. These results suggested that the interference of root gravitropism with root hydrotropism is conserved among Arabidopsis natural variants, although the intensity of root gravitropism interference with root hydrotropism differs.
Collapse
Affiliation(s)
- Boyuan Mao
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hiroki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
12
|
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:803603. [PMID: 35154193 PMCID: PMC8829427 DOI: 10.3389/fpls.2021.803603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Najeebul Rehman Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Roohi Mushtaq
- Department of Biotechnology and Bioinformatics, SP College, Cluster University Srinagar, Srinagar, India
| | - Jai Singh Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stuttgart, AR, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Li Y, Yuan W, Li L, Dai H, Dang X, Miao R, Baluška F, Kronzucker HJ, Lu C, Zhang J, Xu W. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7316-7330. [PMID: 32905588 DOI: 10.1093/jxb/eraa409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear. In this study, we found that an air system and an agar-sorbitol system induced only oblique water-potential gradients; an agar-glycerol system induced only vertical water-potential gradients; and a sand system established both oblique and vertical water-potential gradients. We employed obliquely oriented and vertically oriented experimental systems to study hydrotropism in Arabidopsis and tomato plants. Comparative analyses using different hydrotropic systems showed that gravity hindered the ability of roots to search for obliquely oriented water, whilst facilitating roots' search for vertically oriented water. We found that the gravitropism-deficient mutant aux1 showed enhanced hydrotropism in the oblique orientation but impaired root elongation towards water in the vertical orientation. The miz1 mutant exhibited deficient hydrotropism in the oblique orientation but normal root elongation towards water in the vertical orientation. Importantly, in contrast to miz1, the miz1/aux1 double mutant exhibited hydrotropic bending in the oblique orientation and attenuated root elongation towards water in the vertical orientation. Our results suggest that gravitropism is required for MIZ1-regulated root hydrotropism in both the oblique orientation and the vertical orientation, providing further insight into the role of gravity in root hydrotropism.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Wei Yuan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Luocheng Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Hui Dai
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Rui Miao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| |
Collapse
|
14
|
Li Y, Yuan W, Li L, Miao R, Dai H, Zhang J, Xu W. Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis. Cell Rep 2020; 32:108198. [PMID: 32997985 DOI: 10.1016/j.celrep.2020.108198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The role of amyloplasts in the interactions between hydrotropism and gravitropism has been previously described. However, the effect of light-dark on the interactions between the two tropisms remains unclear. Here, by developing a method that makes it possible to mimic natural conditions more closely than the conventional lab conditions, we show that hydrotropism is higher in wild-type Arabidopsis seedlings whose shoots are illuminated but whose roots are grown in the dark compared with seedlings that are fully exposed to light. Root gravitropism is substantially decreased because of the reduction of amyloplast content in the root tip with decreased gene expression in PGM1 (a key starch biosynthesis gene), which may contribute to enhanced root hydrotropism under darkness. Furthermore, the starch-deficient mutant pgm1-1 exhibits greater hydrotropism compared with wild-type. Our results suggest that amyloplast response and starch reduction occur under light-dark modulation, followed by decreased gravitropism and enhanced hydrotropism in Arabidopsis root.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Wei Yuan
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Luocheng Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rui Miao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hui Dai
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
15
|
Early Drought-Responsive Genes Are Variable and Relevant to Drought Tolerance. G3-GENES GENOMES GENETICS 2020; 10:1657-1670. [PMID: 32161086 PMCID: PMC7202030 DOI: 10.1534/g3.120.401199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drought stress is an important crop yield limiting factor worldwide. Plant physiological responses to drought stress are driven by changes in gene expression. While drought-responsive genes (DRGs) have been identified in maize, regulation patterns of gene expression during progressive water deficits remain to be elucidated. In this study, we generated time-series transcriptomic data from the maize inbred line B73 under well-watered and drought conditions. Comparisons between the two conditions identified 8,626 DRGs and the stages (early, middle, and late drought) at which DRGs occurred. Different functional groups of genes were regulated at the three stages. Specifically, early and middle DRGs display higher copy number variation among diverse Zea mays lines, and they exhibited stronger associations with drought tolerance as compared to late DRGs. In addition, correlation of expression between small RNAs (sRNAs) and DRGs from the same samples identified 201 negatively sRNA/DRG correlated pairs, including genes showing high levels of association with drought tolerance, such as two glutamine synthetase genes, gln2 and gln6 The characterization of dynamic gene responses to progressive drought stresses indicates important adaptive roles of early and middle DRGs, as well as roles played by sRNAs in gene expression regulation upon drought stress.
Collapse
|
16
|
Kaur V, Yadav SK, Wankhede DP, Pulivendula P, Kumar A, Chinnusamy V. Cloning and characterization of a gene encoding MIZ1, a domain of unknown function protein and its role in salt and drought stress in rice. PROTOPLASMA 2020; 257:475-487. [PMID: 31786672 DOI: 10.1007/s00709-019-01452-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/22/2019] [Indexed: 05/19/2023]
Abstract
Dwindling fresh water resources and climate change poses serious threats to rice production. Roots play crucial role in sensing water gradient and directing growth of the plant towards water through a mechanism called hydrotropism. Since very little information is available on root hydrotropism in major food crops, this study was carried out to clone and characterize an ortholog of Arabidopsis MIZU-KUSSEI1 (MIZ1) from rice. Contrasting rice genotypes for drought and salt tolerance were selected based on phenotyping for root traits. Nagina 22 and CR-262-4 were identified as most tolerant and Pusa Sugandh 5 and Pusa Basmati 1121 were identified as most susceptible varieties for both drought and salt stresses. Allele mining of MIZ1 in these varieties identified a 12 bp Indel but did not show specific allelic association with stress tolerance. Analysis of allelic variation of OsMIZ1 in 3024 rice genotypes of 3K genome lines using Rice SNP-Seek database revealed 49 InDels. Alleles with the 12 bp deletions were significantly prevalent in indica group as compared to that of japonica group. Real-time RT-PCR analysis revealed that OsMIZ1 expression levels were upregulated significantly in tolerant cv. Nagina 22 and CR-262-4 under osmotic stress, while under salt stress, it was significantly upregulated only in CR-262-4 but maintained in Nagina 22 under salt stress. However, in the roots of susceptible genotypes, OsMIZ1 expression decreased under both the stresses. These results highlight the possible involvement of OsMIZ1 in drought and salt stress tolerance in rice. Furthermore, expression studies using publically available resources showed that enhanced expression of OsMIZ1 is regulated in response to disease infections, mineral deficiency, and heavy metal stresses and is also expressed in reproductive tissues in addition to roots. These findings indicate potential involvement of MIZ1 in developmental and stress response processes in rice.
Collapse
Affiliation(s)
- Vikender Kaur
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India.
| | - Shashank K Yadav
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | | | - Pranusha Pulivendula
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
17
|
Miyazawa Y, Takahashi H. Molecular mechanisms mediating root hydrotropism: what we have observed since the rediscovery of hydrotropism. JOURNAL OF PLANT RESEARCH 2020; 133:3-14. [PMID: 31797131 PMCID: PMC7082378 DOI: 10.1007/s10265-019-01153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Roots display directional growth toward moisture in response to a water potential gradient. Root hydrotropism is thought to facilitate plant adaptation to continuously changing water availability. Hydrotropism has not been as extensively studied as gravitropism. However, comparisons of hydrotropic and gravitropic responses identified mechanisms that are unique to hydrotropism. Regulatory mechanisms underlying the hydrotropic response appear to differ among different species. We recently performed molecular and genetic analyses of root hydrotropism in Arabidopsis thaliana. In this review, we summarize the current knowledge of specific mechanisms mediating root hydrotropism in several plant species.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan.
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
18
|
Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Tohge T, Martínez-Andújar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T, Yokota T, Conesa A, Alfocea FP, Fernie AR, Caño-Delgado AI. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 2018; 9:4680. [PMID: 30409967 PMCID: PMC6224425 DOI: 10.1038/s41467-018-06861-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Drought represents a major threat to food security. Mechanistic data describing plant responses to drought have been studied extensively and genes conferring drought resistance have been introduced into crop plants. However, plants with enhanced drought resistance usually display lower growth, highlighting the need for strategies to uncouple drought resistance from growth. Here, we show that overexpression of BRL3, a vascular-enriched member of the brassinosteroid receptor family, can confer drought stress tolerance in Arabidopsis. Whereas loss-of-function mutations in the ubiquitously expressed BRI1 receptor leads to drought resistance at the expense of growth, overexpression of BRL3 receptor confers drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress, increased BRL3 triggers the accumulation of osmoprotectant metabolites including proline and sugars. Transcriptomic analysis suggests that this results from differential expression of genes in the vascular tissues. Altogether, this data suggests that manipulating BRL3 expression could be used to engineer drought tolerant crops. Drought resistant plants typically have reduced growth. Here the authors show that overexpression of the BRL3 brassinosteroid receptor confers drought tolerance and accumulation of osmoprotectant metabolites without penalizing growth, demonstrating that drought response and growth can be uncoupled.
Collapse
Affiliation(s)
- Norma Fàbregas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.,Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Fidel Lozano-Elena
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - David Blasco-Escámez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany.,NAIST Graduate school of Biological Sciences, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga-Consejo Superior de Investigaciones Científicas. Department of Molecular Biology and Biochemistry, 29071, Málaga, Spain
| | - Mariana Bustamante
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Minemachi, Utsunomiya, 321-8505, Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, Toyosatodai, Utsunomiya, 320-8551, Japan
| | - Ana Conesa
- Microbiology and Cell Science Department, IFAS, Genetics Institute, University of Florida, Gainesville, 32603, USA
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Ana I Caño-Delgado
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| |
Collapse
|
19
|
Dietrich D. Hydrotropism: how roots search for water. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2759-2771. [PMID: 29529239 DOI: 10.1093/jxb/ery034] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
Fresh water is an increasingly scarce resource for agriculture. Plant roots mediate water uptake from the soil and have developed a number of adaptive traits such as hydrotropism to aid water foraging. Hydrotropism modifies root growth to respond to a water potential gradient in soil and grow towards areas with a higher moisture content. Abscisic acid (ABA) and a small number of genes, including those encoding ABA signal transducers, MIZ2/GNOM, and the hydrotropism-specific MIZ1, are known to be necessary for the response in Arabidopsis thaliana, whereas the role of auxin in hydrotropism appears to vary depending on the plant species. This review will describe recent progress characterizing the hormonal regulation of hydrotropism. Recent advances in identifying the sites of hydrotropic perception and response, together with its interaction with gravitropism, will also be discussed. Finally, I will describe putative mechanisms for perception of the water potential gradient and a potential role for hydrotropism in acclimatizing plants to drought conditions.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology and Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
20
|
Iqbal A, Wang T, Wu G, Tang W, Zhu C, Wang D, Li Y, Wang H. Physiological and transcriptome analysis of heteromorphic leaves and hydrophilic roots in response to soil drying in desert Populus euphratica. Sci Rep 2017; 7:12188. [PMID: 28939837 PMCID: PMC5610244 DOI: 10.1038/s41598-017-12091-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Populus euphratica Olivier, which has been considered as a tree model for the study of higher plant response to abiotic stresses, survive in the desert ecosystem characterized by extreme drought stress. To survive in the harsh environmental condition the plant species have developed some plasticity such as the development of heteromorphic leaves and well-developed roots system. We investigated the physiological and molecular mechanisms enabling this species to cope with severe stress caused by drought. The heterophylly, evolved from linear to toothed-ovate shape, showed the significant difference in cuticle thickness, stomata densities, and sizes. Physiological parameters, SOD, POD, PPO, CAT activity, free proline, soluble protein and MDA contents fluctuated in response to soil drying. Gene expression profile of roots monitored at control and 4 moisture gradients regimes showed the up-regulation of 124, 130, 126 and 162 and down-regulation of 138, 251, 314, 168 DEGs, respectively. Xyloglucan endotransglucosylase/ hydrolase gene (XET) up-regulated at different moisture gradients, was cloned and expressed in tobacco. The XET promoter sequence harbors the drought signaling responsive cis-elements. The promoter expression activity varies in different organs. Over-expression and knocked down transgenic tobacco plant analysis confirmed the role of XET gene in roots growth and drought resistance.
Collapse
Affiliation(s)
- Arshad Iqbal
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Tianxiang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Guodong Wu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Wensi Tang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Chen Zhu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Dapeng Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- Department of Plant Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Morohashi K, Okamoto M, Yamazaki C, Fujii N, Miyazawa Y, Kamada M, Kasahara H, Osada I, Shimazu T, Fusejima Y, Higashibata A, Yamazaki T, Ishioka N, Kobayashi A, Takahashi H. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. THE NEW PHYTOLOGIST 2017; 215:1476-1489. [PMID: 28722158 DOI: 10.1111/nph.14689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/28/2017] [Indexed: 05/27/2023]
Abstract
Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity.
Collapse
Affiliation(s)
- Keita Morohashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Miki Okamoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Chiaki Yamazaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Motoshi Kamada
- Advanced Engineering Services Co. Ltd, 1-6-1 Takezono, Tsukuba, 305-0032, Japan
| | - Haruo Kasahara
- Japan Manned Space Systems Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toru Shimazu
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasuo Fusejima
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Akira Higashibata
- JEM Utilization Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, 305-8505, Japan
| | - Takashi Yamazaki
- Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 252-5210, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
22
|
|
23
|
Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K. Analysis of plant hormone profiles in response to moderate dehydration stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:17-36. [PMID: 27995695 DOI: 10.1111/tpj.13460] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 05/19/2023]
Abstract
Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses.
Collapse
Affiliation(s)
- Kaoru Urano
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kyonoshin Maruyama
- Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
24
|
Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:692-705. [PMID: 27813246 DOI: 10.1111/tpj.13413] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 05/07/2023]
Abstract
Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- Madhumita Dash
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Yordan S Yordanov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Tatyana Georgieva
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | | | - Elena Yordanova
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Victor Busov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
25
|
Salazar-Blas A, Noriega-Calixto L, Campos ME, Eapen D, Cruz-Vázquez T, Castillo-Olamendi L, Sepulveda-Jiménez G, Porta H, Dubrovsky JG, Cassab GI. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:102-114. [PMID: 27912083 DOI: 10.1016/j.jplph.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 05/03/2023]
Abstract
Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding hydrotropism.
Collapse
Affiliation(s)
- Amed Salazar-Blas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Laura Noriega-Calixto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - María E Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Delfeena Eapen
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Tania Cruz-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Luis Castillo-Olamendi
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gabriela Sepulveda-Jiménez
- Doctorado en Ciencias Biológicas, Facultad de Ciencias UNAM, Centro de Desarrollo de Productos Bióticos-IPN, Calle CeProBi No. 8, Col. San Isidro, Yautepec Morelos 62731, México
| | - Helena Porta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México.
| |
Collapse
|
26
|
Shkolnik D, Fromm H. The Cholodny-Went theory does not explain hydrotropism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:400-403. [PMID: 27717476 DOI: 10.1016/j.plantsci.2016.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 05/11/2023]
Abstract
Optimization of water foraging by plants is partially achieved by the ability of roots to direct growth towards high water potential, a phenomenon termed hydrotropism. In contrast to gravitropism and phototropism, which require auxin redistribution, as suggested by the Cholodny-Went theory, hydrotropism is not mediated by the phytohormone auxin, which raises questions about the mechanism underlying this tropic response. Here we specify the open questions in this field of research and discuss the possible interactions of abscisic acid, calcium and reactive oxygen species as part of a dynamic system of sensing water potential in the root tip, transmission of the signal to the root elongation zone and promoting root curvature towards water. We conclude that root hydrotropism is mediated by inter-cellular signals that are not explained by the Cholodny-Went theory.
Collapse
Affiliation(s)
- Doron Shkolnik
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Hillel Fromm
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel.
| |
Collapse
|
27
|
Robbins NE, Dinneny JR. The divining root: moisture-driven responses of roots at the micro- and macro-scale. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2145-54. [PMID: 25617469 PMCID: PMC4817643 DOI: 10.1093/jxb/eru496] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought.
Collapse
Affiliation(s)
- Neil E Robbins
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - José R Dinneny
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Robbins NE, Dinneny JR. The divining root: moisture-driven responses of roots at the micro- and macro-scale. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 25617469 DOI: 10.1093/jxb/eru49496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought.
Collapse
Affiliation(s)
- Neil E Robbins
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - José R Dinneny
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Rogers ED, Benfey PN. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 2014; 32:93-98. [PMID: 25448235 DOI: 10.1016/j.copbio.2014.11.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 11/15/2022]
Abstract
Root system architecture (RSA) plays a major role in plant fitness, crop performance, and grain yield yet only recently has this role been appreciated. RSA describes the spatial arrangement of root tissue within the soil and is therefore crucial to nutrient and water uptake. Recent studies have identified many of the genetic and environmental factors influencing root growth that contribute to RSA. Some of the identified genes have the potential to limit crop loss caused by environmental extremes and are currently being used to confer drought tolerance. It is hypothesized that manipulating these and other genes that influence RSA will be pivotal for future crop advancements worldwide.
Collapse
Affiliation(s)
- Eric D Rogers
- Department of Biology and Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Philip N Benfey
- Department of Biology and Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
30
|
Pierik R, Testerink C. The art of being flexible: how to escape from shade, salt, and drought. PLANT PHYSIOLOGY 2014; 166:5-22. [PMID: 24972713 PMCID: PMC4149730 DOI: 10.1104/pp.114.239160] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/20/2014] [Indexed: 05/18/2023]
Abstract
Environmental stresses, such as shading of the shoot, drought, and soil salinity, threaten plant growth, yield, and survival. Plants can alleviate the impact of these stresses through various modes of phenotypic plasticity, such as shade avoidance and halotropism. Here, we review the current state of knowledge regarding the mechanisms that control plant developmental responses to shade, salt, and drought stress. We discuss plant hormones and cellular signaling pathways that control shoot branching and elongation responses to shade and root architecture modulation in response to drought and salinity. Because belowground stresses also result in aboveground changes and vice versa, we then outline how a wider palette of plant phenotypic traits is affected by the individual stresses. Consequently, we argue for a research agenda that integrates multiple plant organs, responses, and stresses. This will generate the scientific understanding needed for future crop improvement programs aiming at crops that can maintain yields under variable and suboptimal conditions.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (C.T.)
| | - Christa Testerink
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (C.T.)
| |
Collapse
|
31
|
Lobet G, Couvreur V, Meunier F, Javaux M, Draye X. Plant water uptake in drying soils. PLANT PHYSIOLOGY 2014; 164:1619-27. [PMID: 24515834 PMCID: PMC3982728 DOI: 10.1104/pp.113.233486] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/05/2014] [Indexed: 05/04/2023]
Abstract
Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches.
Collapse
Affiliation(s)
- Guillaume Lobet
- PhytoSYSTEMS, Université de Liège, 4000 Liège,
Belgium (G.L.)
- Department of Land, Air, and Water Resources, University of California,
Davis, California 95616 (V.C.)
- Earth and Life Institute, Université Catholique de Louvain, Croix
du Sud 2–L7.05.11, 1348 Louvain-la-Neuve, Belgium (V.C., F.M., M.J., X.D.);
and
- Institut für Bio- und Geowissenschaften: Agrosphäre,
Forschungszentrum Jülich GmbH, D–52425 Juelich, Germany (M.J.)
| | - Valentin Couvreur
- PhytoSYSTEMS, Université de Liège, 4000 Liège,
Belgium (G.L.)
- Department of Land, Air, and Water Resources, University of California,
Davis, California 95616 (V.C.)
- Earth and Life Institute, Université Catholique de Louvain, Croix
du Sud 2–L7.05.11, 1348 Louvain-la-Neuve, Belgium (V.C., F.M., M.J., X.D.);
and
- Institut für Bio- und Geowissenschaften: Agrosphäre,
Forschungszentrum Jülich GmbH, D–52425 Juelich, Germany (M.J.)
| | - Félicien Meunier
- PhytoSYSTEMS, Université de Liège, 4000 Liège,
Belgium (G.L.)
- Department of Land, Air, and Water Resources, University of California,
Davis, California 95616 (V.C.)
- Earth and Life Institute, Université Catholique de Louvain, Croix
du Sud 2–L7.05.11, 1348 Louvain-la-Neuve, Belgium (V.C., F.M., M.J., X.D.);
and
- Institut für Bio- und Geowissenschaften: Agrosphäre,
Forschungszentrum Jülich GmbH, D–52425 Juelich, Germany (M.J.)
| | - Mathieu Javaux
- PhytoSYSTEMS, Université de Liège, 4000 Liège,
Belgium (G.L.)
- Department of Land, Air, and Water Resources, University of California,
Davis, California 95616 (V.C.)
- Earth and Life Institute, Université Catholique de Louvain, Croix
du Sud 2–L7.05.11, 1348 Louvain-la-Neuve, Belgium (V.C., F.M., M.J., X.D.);
and
- Institut für Bio- und Geowissenschaften: Agrosphäre,
Forschungszentrum Jülich GmbH, D–52425 Juelich, Germany (M.J.)
| | | |
Collapse
|