1
|
Wu LY, Huang SQ, Tong ZY. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats ( Fagopyrum) in the Hengduan Mountains. PLANT DIVERSITY 2024; 46:661-670. [PMID: 39290890 PMCID: PMC11403118 DOI: 10.1016/j.pld.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 09/19/2024]
Abstract
Reproductive strategies of sexually dimorphic plants vary in response to the environment. Here, we ask whether the sexual systems of Fagopyrum species (i.e., selfing homostylous and out-crossing distylous) represent distinct adaptive strategies to increase reproductive success in changing alpine environments. To answer this question, we determined how spatial and temporal factors (e.g., elevation and peak flowering time) affect reproductive success (i.e., stigmatic pollen load) in nine wild Fagopyrum species (seven distylous and two homostylous) among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains, southwestern China. We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility, self-compatibility and pollen limitation in four Fagopyrum species (two distylous and two homostylous). We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads; late-flowering individuals had smaller flowers and lower pollen deposition. Stigmatic pollen deposition was more variable in distylous species than in homostylous species. Although seed set was not pollen-limited in all species, we found that fruit set was much lower in distylous species, which rely on frequent pollinator visits, than in homostylous species capable of autonomous self-pollination. Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shuang-Quan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ze-Yu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Song B, Chen J, Lev-Yadun S, Niu Y, Gao Y, Ma R, Armbruster WS, Sun H. Multifunctionality of angiosperm floral bracts: a review. Biol Rev Camb Philos Soc 2024; 99:1100-1120. [PMID: 38291834 DOI: 10.1111/brv.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Floral bracts (bracteoles, cataphylls) are leaf-like organs that subtend flowers or inflorescences but are of non-floral origin; they occur in a wide diversity of species, representing multiple independent origins, and exhibit great variation in form and function. Although much attention has been paid to bracts over the past 150 years, our understanding of their adaptive significance remains remarkably incomplete. This is because most studies of bract function and evolution focus on only one or a few selective factors. It is widely recognised that bracts experience selection mediated by pollinators, particularly for enhancing pollinator attraction through strong visual, olfactory, or echo-acoustic contrast with the background and through signalling the presence of pollinator rewards, either honestly (providing rewards for pollinators), or deceptively (attraction without reward or even trapping pollinators). However, studies in recent decades have demonstrated that bract evolution is also affected by agents other than pollinators. Bracts can protect flowers, fruits, or seeds from herbivores by displaying warning signals, camouflaging conspicuous reproductive organs, or by providing physical barriers or toxic chemicals. Reviews of published studies show that bracts can also promote seed dispersal and ameliorate the effects of abiotic stressors, such as low temperature, strong ultraviolet radiation, heavy rain, drought, and/or mechanical abrasion, on reproductive organs or for the plants' pollinators. In addition, green bracts and greening of colourful bracts after pollination promote photosynthetic activity, providing substantial carbon (photosynthates) for fruit or seed development, especially late in a plant's life cycle or season, when leaves have started to senesce. A further layer of complexity derives from the fact that the agents of selection driving the evolution of bracts vary between species and even between different developmental stages within a species, and selection by one agent can be reinforced or opposed by other agents. In summary, our survey of the literature reveals that bracts are multifunctional and subject to multiple agents of selection. To understand fully the functional and evolutionary significance of bracts, it is necessary to consider multiple selection agents throughout the life of the plant, using integrative approaches to data collection and analysis.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jiaqi Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Huannan Road, East of University Town, Chenggong New Area, Kunming, 650500, China
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Kiryat Tiv'on, 36006, Israel
| | - Yang Niu
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yongqian Gao
- Yunnan Forestry Technological College, 1 Jindian, Kunming, 650224, China
| | - Rong Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, PO Box 757000, Fairbanks, AK, 99775, USA
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
3
|
Lu NN, Ma Y, Hou M, Zhao ZG. The function of floral traits and phenotypic selection in Aconitum gymnandrum (Ranunculaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:931-938. [PMID: 34396652 DOI: 10.1111/plb.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Floral evolution in angiosperms is thought to be driven by pollinator-mediated selection. Understanding flower integration and adaptation requires resolving the additive and nonadditive contributions of floral pollinator attraction and pollination efficiency traits to fitness components. In this study, a flower manipulation experiment with a factorial design was used to study the adaptive significance of galea height (a putative attraction trait) and entrance width (a putative efficiency trait) in Aconitum gymnandrum Maxim. flowers. Simultaneously, phenotypic selection analysis was conducted to examine selection by pollinators on galea height, entrance width, nectar production and plant height. Increased galea height increased the pollinator visitation rate, which confirmed its attractiveness function. Increasing floral entrance width by spreading the lower sepals increased the seed number per fruit without affecting pollinator visitation. This suggests a pollination efficiency role for the entrance width. The phenotypic selection analysis, however, did not provide evidence of pollinator-mediated selection for either of these traist, but it did for plant height. According to the manipulation treatment and correlational selection results, the combined variation in galea height and entrance width of A. gymnandrum flowers did not have nonadditive effects on female reproductive success. This study demonstrated the adaptive value of A. gymnandrum flowers through manipulation of an attractiveness trait and an efficiency trait. However, neither trait was associated with pollinator-mediated selection. A combination of manipulating traits and determining current phenotypic selection could help to elucidate the mechanism of selection on floral traits involved in different functions and flower integration.
Collapse
Affiliation(s)
- N-N Lu
- School of Life Science, North-West Normal University, Lanzhou, China
| | - Y Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - M Hou
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Z-G Zhao
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Fitch G, Vandermeer J. Can Conflicting Selection from Pollinators and Nectar-Robbing Antagonists Drive Adaptive Pollen Limitation? A Conceptual Model and Empirical Test. Am Nat 2021; 198:576-589. [PMID: 34648403 DOI: 10.1086/716637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractPollen limitation is widespread, despite predictions that it should not be. We propose a novel mechanism generating pollen limitation: conflicting selection by pollinators and antagonists on pollinator attraction traits. We introduce a heuristic model demonstrating antagonist-induced adaptive pollen limitation and present a field study illustrating its occurrence in a wild population. For antagonist-induced adaptive pollen limitation to occur, four criteria must be met: (1) correlated attraction of pollinators and antagonists; (2) greater response by antagonists than pollinators to altered investment in attraction traits; (3) reduced investment in pollinator attraction, leading to pollen limitation; and (4) higher fitness for plants with reduced investment in pollinator attraction. We surveyed nectar robbery and reproductive output for 109 Odontonema cuspidatum (Acanthaceae) plants in a pollen-limited population over 2 years and used experimental floral arrays to evaluate how flower number affects pollination and nectar robbery. Both pollinators and nectar robbers preferred larger floral displays and nectar robbery reduced reproductive output, suggesting conflicting selection. Survey and experimental data agreed closely on the optimum flower number under antagonist-induced pollen limitation; this number was substantially overrepresented in the population. While criteria for antagonist-induced adaptive pollen limitation are restrictive, the necessary conditions may often be realized. Considering interactions beyond the plant-pollinator dyad illuminates previously overlooked mechanisms generating pollen limitation.
Collapse
|
5
|
Ocampo‐Sandoval M, Arizmendi‐Arriaga MDC, Olson ME, Sánchez‐González LA. Geographical variation in the bill–flower fit in a plant–pollinator interaction in western Mexico. Biotropica 2021. [DOI: 10.1111/btp.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marisol Ocampo‐Sandoval
- Depto. de Biología Evolutiva Facultad de Ciencias Museo de Zoología “Alfonso L. Herrera” Universidad Nacional Autónoma de México Tlalnepantla México
| | | | - Mark E. Olson
- Instituto de Biología Universidad Nacional Autónoma de México Tlalnepantla México
| | - Luis A. Sánchez‐González
- Depto. de Biología Evolutiva Facultad de Ciencias Museo de Zoología “Alfonso L. Herrera” Universidad Nacional Autónoma de México Tlalnepantla México
| |
Collapse
|
6
|
Albertsen E, Opedal ØH, Bolstad GH, Pérez-Barrales R, Hansen TF, Pélabon C, Armbruster WS. Using ecological context to interpret spatiotemporal variation in natural selection. Evolution 2020; 75:294-309. [PMID: 33230820 DOI: 10.1111/evo.14136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Spatiotemporal variation in natural selection is expected, but difficult to estimate. Pollinator-mediated selection on floral traits provides a good system for understanding and linking variation in selection to differences in ecological context. We studied pollinator-mediated selection in five populations of Dalechampia scandens (Euphorbiaceae) in Costa Rica and Mexico. Using a nonlinear path-analytical approach, we assessed several functional components of selection, and linked variation in pollinator-mediated selection across time and space to variation in pollinator assemblages. After correcting for estimation error, we detected moderate variation in net selection on two out of four blossom traits. Both the opportunity for selection and the mean strength of selection decreased with increasing reliability of cross-pollination. Selection for pollinator attraction was consistently positive and stronger on advertisement than reward traits. Selection on traits affecting pollen transfer from the pollinator to the stigmas was strong only when cross-pollination was unreliable and there was a mismatch between pollinator and blossom size. These results illustrate how consideration of trait function and ecological context can facilitate both the detection and the causal understanding of spatiotemporal variation in natural selection.
Collapse
Affiliation(s)
- Elena Albertsen
- Norwegian Institute for Bioeconomy Research, Trondheim, 7031, Norway.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Øystein H Opedal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Biology, Lund University, Lund, SE-22362, Sweden
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, 7485, Norway
| | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Thomas F Hansen
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, 0316, Norway
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom.,Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
7
|
Tong ZY, Wang XP, Wu LY, Huang SQ. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma: implications for evolutionary transitions. ANNALS OF BOTANY 2019; 123:373-380. [PMID: 29878060 PMCID: PMC6344217 DOI: 10.1093/aob/mcy102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUNDS AND AIMS Gain or loss of floral nectar, an innovation in floral traits, has occurred in diverse lineages of flowering plants, but the causes of reverse transitions (gain of nectar) remain unclear. Phylogenetic studies show multiple gains and losses of floral nectar in the species-rich genus Pedicularis. Here we explore how experimental addition of nectar to a supposedly nectarless species, P. dichotoma, influences pollinator foraging behaviour. METHODS The liquid (nectar) at the base of the corolla tube in P. dichotoma was investigated during anthesis. Sugar components were measured by high-performance liquid chromatography. To understand evolutionary transitions of nectar, artificial nectar was added to corolla tubes and the reactions of bumble-bee pollinators to extra nectar were examined. KEY RESULTS A quarter of unmanipulated P. dichotoma plants contained measurable nectar, with 0.01-0.49 μL per flower and sugar concentrations ranging from 4 to 39 %. The liquid surrounding the ovaries in the corolla tubes was sucrose-dominant nectar, as in two sympatric nectariferous Pedicularis species. Bumble-bees collected only pollen from control (unmanipulated) flowers of P. dichotoma, adopting a sternotribic pollination mode, but switched to foraging for nectar in manipulated (nectar-supplemented) flowers, adopting a nototribic pollination mode as in nectariferous species. This altered foraging behaviour did not place pollen on the ventral side of the bees, and sternotribic pollination also decreased. CONCLUSION Our study is the first to quantify variation in nectar production in a supposedly 'nectarless' Pedicularis species. Flower manipulations by adding nectar suggested that gain (or loss) of nectar would quickly result in an adaptive behavioural shift in the pollinator, producing a new location for pollen deposition and stigma contact without a shift to other pollinators. Frequent gains of nectar in Pedicularis species would be beneficial by enhancing pollinator attraction in unpredictable pollination environments.
Collapse
Affiliation(s)
- Ze-Yu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiang-Ping Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ling-Yun Wu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuang-Quan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
8
|
Opedal ØH, Albertsen E, Pérez-Barrales R, Armbruster WS, Pélabon C. No evidence that seed predators constrain pollinator-mediated trait evolution in a tropical vine. AMERICAN JOURNAL OF BOTANY 2019; 106:145-153. [PMID: 30625241 DOI: 10.1002/ajb2.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Turnover in biotic communities across heterogeneous landscapes is expected to lead to variation in interactions among plants, their mutualists, and their antagonists. Across a fragmented landscape in northern Costa Rica, populations of the euphorb vine Dalechampia scandens vary widely in mating systems and associated blossom traits. Previous work suggested that populations are well adapted to the local reliability of pollination by apid and megachilid bees. We tested whether variation in the intensity of predispersal seed predation by seed weevils in the genus Nanobaris also contributes to the observed variation in blossom traits. METHODS We studied spatiotemporal variation in the relationships between floral advertisement and the probability of seed predation within three focal populations. Then we assessed among-population covariation of predation rate, pollination reliability, mating system, and blossom traits across 20 populations. KEY RESULTS The probability of seed predation was largely unrelated to variation in floral advertisement both within focal populations and among the larger sample of populations. The rate of seed predation was only weakly associated with the rate of cross-pollination (allogamy) in each population but tended to be proportionally greater in populations experiencing less reliable pollination. CONCLUSIONS These results suggest that geographic variation in the intensity of antagonistic interactions have had only minor modifying effects on the evolutionary trajectories of floral advertisement in plant populations in this system. Thus, pollinator-driven floral trait evolution in D. scandens in the study area appears not to be influenced by conflicting seed-predator-mediated selection.
Collapse
Affiliation(s)
- Øystein H Opedal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Elena Albertsen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| |
Collapse
|
9
|
Youngsteadt E, Irwin RE, Fowler A, Bertone MA, Giacomini SJ, Kunz M, Suiter D, Sorenson CE. Venus Flytrap Rarely Traps Its Pollinators. Am Nat 2018; 191:539-546. [DOI: 10.1086/696124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Chen L, Zhang B, Li Q. Pollinator-mediated selection on flowering phenology and floral display in a distylous herb Primula alpicola. Sci Rep 2017; 7:13157. [PMID: 29030594 PMCID: PMC5640686 DOI: 10.1038/s41598-017-13340-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
The targets and causes of phenotypic selection are crucial to understanding evolutionary ecology. However, few studies have examined selection quantitatively from multiple sources on the same trait identified the agent of natural selection experimentally. Here we quantified phenotypic selection on traits, including flowering phenology and aspects of floral display via female fitness, in the distylous perennial herb Primula alpicola. To determine the role of pollinators in generating selection effects on floral traits, we compared the phenotypic selection gradients in open-pollinated and hand-pollinated plants. Our results show that pollinator-mediated linear selection on flowering start and correlational selection on the number of flowers and scape height explains most of the net phenotypic selection on these traits suggesting pollinators played an important role in shaping floral diversity. We used path analysis and structural equation modeling (SEM) to examine how herbivores affected the relationship between floral traits and female fitness, but no significant selection was caused by seed predators. These results suggest pollinators, not herbivores maybe the significant agent of selection on flora traits.
Collapse
Affiliation(s)
- Lingling Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, 666303, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Bo Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qingjun Li
- Laboratory of Ecology and Evolution Biology, State Key Laboratory in Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
11
|
Mu J, Yang Y, Luo Y, Su R, Niklas KJ. Pollinator preference and pollen viability mediated by flower color synergistically determine seed set in an Alpine annual herb. Ecol Evol 2017; 7:2947-2955. [PMID: 28479994 PMCID: PMC5415513 DOI: 10.1002/ece3.2899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 11/20/2022] Open
Abstract
Gentiana leucomelaena manifests dramatic flower color polymorphism, with both blue‐ and white‐flowered individuals (pollinated by flies and bees) both within a population and on an individual plant. Previous studies of this species have shown that pollinator preference and flower temperature change as a function of flower color throughout the flowering season. However, few if any studies have explored the effects of flower color on both pollen viability (mediated by anther temperature) and pollinator preference on reproductive success (seed set) in a population or on individual plants over the course of the entire flowering season. Based on prior observations, we hypothesized that flower color affects both pollen viability (as a function of anther temperature) and pollen deposition (as a function of pollinator preference) to synergistically determine reproductive success during the peak of the flowering season. This hypothesis was tested by field observations and hand pollination experiments in a Tibetan alpine meadow. Generalized linear model and path analyses showed that pollen viability was determined by flower color, flowering season, and anther temperature. Anther temperature correlated positively with pollen viability during the peak of the early flowering season, but negatively affected pollen viability during the peak of the mid‐ to late flowering season. Pollen deposition was determined by flower color, flowering season (early, or mid‐ to late season), and pollen viability. Pollen viability and pollen deposition were affected by flower color that in turn affected seed set across the peak of the flowering season (i.e., when the greatest number of flowers were being pollinated). Hand pollination experiments showed that pollen viability and pollen deposition directly influenced seed set. These data collectively indicate that the preference of pollinators for flower color and pollen viability changed during the flowering season in a manner that optimizes successful reproduction in G. leucomelaena. This study is one of a few that have simultaneously considered the effects of both pollen viability and pollen deposition on reproductive success in the same population and on individual plants.
Collapse
Affiliation(s)
- Junpeng Mu
- Ecological Security and Protection Key Laboratory of Sichuan Province Mianyang Normal University Mianyang China
| | - Yulian Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province Mianyang Normal University Mianyang China
| | - Yanling Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province Mianyang Normal University Mianyang China
| | - Ruijun Su
- Ecological Security and Protection Key Laboratory of Sichuan Province Mianyang Normal University Mianyang China
| | - Karl J Niklas
- Plant Biology Section School of Integrative Plant Science Cornell University Ithaca NY USA
| |
Collapse
|
12
|
Jogesh T, Overson RP, Raguso RA, Skogen KA. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts. AOB PLANTS 2016; 9:plw088. [PMID: 28011456 PMCID: PMC5499749 DOI: 10.1093/aobpla/plw088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 05/09/2023]
Abstract
Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination.
Collapse
Affiliation(s)
- Tania Jogesh
- Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, IL 60022 USA
| | - Rick P Overson
- Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, IL 60022 USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd., Ithaca, NY 14853, USA
| | - Krissa A Skogen
- Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, IL 60022 USA
| |
Collapse
|