1
|
Vergara IH, Geber MA, Moeller DA, Eckhart VM. Population histories of variable reproductive success and low winter precipitation correlate with risk-averse seed germination in a mediterranean-climate winter annual. AMERICAN JOURNAL OF BOTANY 2024; 111:e16412. [PMID: 39328075 DOI: 10.1002/ajb2.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/28/2024]
Abstract
PREMISE Seed germination involves risk; post-germination conditions might not allow survival and reproduction. Variable, stressful environments favor seeds with germination that avoids risk (e.g., germination in conditions predicting success), spreads risk (e.g., dormancy), or escapes risk (e.g., rapid germination). Germination studies often investigate trait correlations with climate features linked to variation in post-germination reproductive success. Rarely are long-term records of population reproductive success available. METHODS Supported by demographic and climate monitoring, we analyzed germination in the California winter-annual Clarkia xantiana subsp. xantiana. Sowing seeds of 10 populations across controlled levels of water potential and temperature, we estimated temperature-specific base water potential for 20% germination, germination time weighted by water potential above base (hydrotime), and a dormancy index (frequency of viable, ungerminated seeds). Mixed-effects models analyzed responses to (1) temperature, (2) discrete variation in reproductive success (presence or absence of years with zero seed production by a population), and (3) climate covariates, mean winter precipitation and coefficient of variation (CV) of spring precipitation. For six populations, records enabled analysis with a continuous metric of variable reproduction, the CV of per-capita reproductive success. RESULTS Populations with more variable reproductive success had higher base water potential and dormancy. Higher base water potential and faster germination occurred at warmer experimental temperatures and in seeds of populations with wetter winters. CONCLUSIONS Geographic variation in seed germination in this species suggests local adaptation to demographic risk and rainfall. High base water potential and dormancy may concentrate germination in years likely to allow reproduction, while spreading risk among years.
Collapse
Affiliation(s)
- Isabella H Vergara
- Grinnell College, Grinnell, IA, USA
- Donald Danforth Plant Science Center, Olivette, MO, USA
| | | | | | | |
Collapse
|
2
|
Siegmund GF, Moeller DA, Eckhart VM, Geber MA. Bet Hedging Is Not Sufficient to Explain Germination Patterns of a Winter Annual Plant. Am Nat 2023; 202:767-784. [PMID: 38033178 DOI: 10.1086/726785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.
Collapse
|
3
|
Waterton J, Mazer SJ, Cleland EE. When the neighborhood matters: contextual selection on seedling traits in native and non-native California grasses. Evolution 2023; 77:2039-2055. [PMID: 37393951 DOI: 10.1093/evolut/qpad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Plants interact extensively with their neighbors, but the evolutionary consequences of variation in neighbor identity are not well understood. Seedling traits are likely to experience selection that depends on the identity of neighbors because they influence competitive outcomes. To explore this, we evaluated selection on seed mass and emergence time in two California grasses, the native perennial Stipa pulchra, and the non-native annual Bromus diandrus, in the field with six other native and non-native neighbor grasses in single- and mixed-species treatments. We also quantified characteristics of each neighbor treatment to further investigate factors influencing their effects on fitness and phenotypic selection. Selection favored larger seeds in both focal species and this was largely independent of neighbor identity. Selection generally favored earlier emergence in both focal species, but neighbor identity influenced the strength and direction of selection on emergence time in S. pulchra, but not B. diandrus. Greater light interception, higher soil moisture, and greater productivity of neighbors were associated with more intense selection for earlier emergence and larger seeds. Our findings suggest that changes in plant community composition can alter patterns of selection in seedling traits, and that these effects can be associated with measurable characteristics of the community.
Collapse
Affiliation(s)
- Joseph Waterton
- Ecology, Behavior and Evolution Section, University of California San Diego, La Jolla, CA, United States
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Elsa E Cleland
- Ecology, Behavior and Evolution Section, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Gya R, Geange SR, Lynn JS, Töpper JP, Wallevik Ø, Zernichow C, Vandvik V. A test of local adaptation to drought in germination and seedling traits in populations of two alpine forbs across a 2000 mm/year precipitation gradient. Ecol Evol 2023; 13:e9772. [PMID: 36778839 PMCID: PMC9905427 DOI: 10.1002/ece3.9772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Seed regeneration is a critical stage in the life histories of plants, affecting species' abilities to maintain local populations, evolve, and disperse to new sites. In this study, we test for local adaptations to drought in germination and seedling growth of two alpine forbs with contrasting habitat preferences: the alpine generalist Veronica alpina and the snowbed specialist Sibbaldia procumbens. We sampled seeds of each species from four populations spanning a precipitation gradient from 1200 to 3400 mm/year in western Norway. In a growth chamber experiment, we germinated seeds from each population at 10 different water potentials under controlled light and temperature conditions. Drought led to lower germination percentage in both species, and additionally, slower germination, and more investment in roots for V. alpina. These responses varied along the precipitation gradient. Seeds from the driest populations had higher germination percentage, shorter time to germination, and higher investments in the roots under drought conditions than the seeds from the wettest populations - suggesting local adaption to drought. The snowbed specialist, S. procumbens, had lower germination percentages under drought, but otherwise did not respond to drought in ways that indicate physiological or morphological adaptions to drought. S. procumbens germination also did not vary systematically with precipitation of the source site, but heavier-seeded populations germinated to higher rates and tolerated drought better. Our study is the first to test drought effects on seed regeneration in alpine plants populations from high-precipitation regions. We found evidence that germination and seedling traits may show adaptation to drought even in populations from wet habitats. Our results also indicate that alpine generalists might be more adapted to drought and show more local adaptations in drought responses than snowbed specialists.
Collapse
Affiliation(s)
- Ragnhild Gya
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | - Sonya Rita Geange
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | - Joshua Scott Lynn
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| | | | - Øystein Wallevik
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Vigdis Vandvik
- Department of Biological SciencesUniversity of BergenBergenNorway
- Bjerknes Center for Climate ResearchBergenNorway
| |
Collapse
|
5
|
Zettlemoyer MA, Peterson ML. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.
Collapse
|
6
|
Waterton J, Cleland EE. Vertebrate herbivory weakens directional selection for earlier emergence in competition. Evol Lett 2021; 5:265-276. [PMID: 34136274 PMCID: PMC8190447 DOI: 10.1002/evl3.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
The timing of seedling emergence is strongly linked with fitness because it determines the biotic and abiotic environment experienced by plants in this vulnerable life stage. Experiments and observations consistently find that earlier-emerging plants have a competitive advantage over those emerging later. However, substantial genetic and phenotypic variation in emergence timing is harbored within and among plant populations, making it important to characterize the selective agents-including biotic interactions-that contribute to this variation. In seasonal herbaceous communities, we hypothesized that consumption of early-emerging individuals by vertebrates could weaken the strength of directional selection for earlier emergence in competitive environments. To investigate this, we carried out phenotypic selection analyses on emergence timing in two California grass species, the native Stipa pulchra and non-native Bromus diandrus, growing in intraspecific competitive neighborhoods with and without vertebrate herbivore exclusion. Vertebrate herbivores consistently weakened directional selection for earlier emergence. Our results demonstrate that vertebrate herbivores play an underappreciated selective role on phenology in plant populations, with implications for contemporary evolution, such as the potential of species to adapt to global environmental changes.
Collapse
Affiliation(s)
- Joseph Waterton
- Department of Ecology, Behavior, and Evolution Section University of California San Diego La Jolla California 92093.,Current Address: Department of Biology Indiana University Bloomington Indiana 47405
| | - Elsa E Cleland
- Department of Ecology, Behavior, and Evolution Section University of California San Diego La Jolla California 92093
| |
Collapse
|
7
|
Waterton J, Mazer SJ, Meyer JR, Cleland EE. Trade-off drives Pareto optimality of within- and among-year emergence timing in response to increasing aridity. Evol Appl 2021; 14:658-673. [PMID: 33767742 PMCID: PMC7980269 DOI: 10.1111/eva.13145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Adaptation to current and future climates can be constrained by trade-offs between fitness-related traits. Early seedling emergence often enhances plant fitness in seasonal environments, but if earlier emergence in response to seasonal cues is genetically correlated with lower potential to spread emergence among years (i.e., bet-hedging), then this functional trade-off could constrain adaptive evolution. Consequently, selection favoring both earlier within-year emergence and greater spread of emergence among years-as is expected in more arid environments-may constrain adaptive responses to trait value combinations at which a performance gain in either function (i.e., evolving earlier within- or greater among-year emergence) generates a performance loss in the other. All such trait value combinations that cannot be improved for both functions simultaneously are described as Pareto optimal and together constitute the Pareto front. To investigate how this potential emergence timing trade-off might constrain adaptation to increasing aridity, we sourced seeds of two grasses, Stipa pulchra and Bromus diandrus, from multiple maternal lines within populations across an aridity gradient in California and examined their performance in a greenhouse experiment. We monitored emergence and assayed ungerminated seeds for viability to determine seed persistence, a metric of potential among-year emergence spread. In both species, maternal lines with larger fractions of persistent seeds emerged later, indicating a trade-off between within-year emergence speed and potential among-year emergence spread. In both species, populations on the Pareto front for both earlier emergence and larger seed persistence fraction occupied significantly more arid sites than populations off the Pareto front, consistent with the hypothesis that more arid sites impose the strongest selection for earlier within-year emergence and greater among-year emergence spread. Our results provide an example of how evaluating genetically based correlations within populations and applying Pareto optimality among populations can be used to detect evolutionary constraints and adaptation across environmental gradients.
Collapse
Affiliation(s)
- Joseph Waterton
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Justin R. Meyer
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| | - Elsa E. Cleland
- Ecology, Behavior & Evolution SectionUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
8
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Ten Brink H, Gremer JR, Kokko H. Optimal germination timing in unpredictable environments: the importance of dormancy for both among- and within-season variation. Ecol Lett 2020. [PMID: 31994356 DOI: 10.1111/ele.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For organisms living in unpredictable environments, timing important life-history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among- and within-season uncertainty. We use a modelling approach that considers among-season dormancy and within-season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among-season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter-intuitively select for less risk-spreading within the season. Furthermore, strong priority effects select for earlier within-season germination phenology which in turn increases the need for bet hedging through among-season dormancy.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
10
|
Gremer JR, Chiono A, Suglia E, Bontrager M, Okafor L, Schmitt J. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. AMERICAN JOURNAL OF BOTANY 2020; 107:350-363. [PMID: 32056208 DOI: 10.1002/ajb2.1425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. METHODS Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. RESULTS Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low-elevation populations germinated in the fall without chilling, whereas high-elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate-change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high-elevation populations. CONCLUSIONS The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence.
Collapse
Affiliation(s)
- Jennifer R Gremer
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Alec Chiono
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Department of Biology, University of San Francisco, 2310 Fulton Street, San Francisco, CA, 94117, USA
| | - Elena Suglia
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Population Biology Graduate Group, University of California-Davis, Davis, CA, 95616, USA
| | - Megan Bontrager
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| | - Lauren Okafor
- Department of Biology, Howard University, 415 College St. NW, Washington, D.C., 20059, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
11
|
Ten Brink H, Gremer JR, Kokko H. Optimal germination timing in unpredictable environments: the importance of dormancy for both among- and within-season variation. Ecol Lett 2020; 23:620-630. [PMID: 31994356 PMCID: PMC7079161 DOI: 10.1111/ele.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 12/22/2019] [Indexed: 01/19/2023]
Abstract
For organisms living in unpredictable environments, timing important life‐history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among‐ and within‐season uncertainty. We use a modelling approach that considers among‐season dormancy and within‐season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among‐season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter‐intuitively select for less risk‐spreading within the season. Furthermore, strong priority effects select for earlier within‐season germination phenology which in turn increases the need for bet hedging through among‐season dormancy.
Collapse
Affiliation(s)
- Hanna Ten Brink
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
12
|
Cochrane A. Temperature thresholds for germination in 20 short-range endemic plant species from a Greenstone Belt in southern Western Australia. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:103-112. [PMID: 30556244 DOI: 10.1111/plb.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The study of climate-driven effects on seed traits such as germination has gained momentum over the past decade as the impact of global warming becomes more apparent on the health and survival of plant diversity. Seed response to warming was evaluated in a suite of short-range endemic species from the biodiverse Greenstone Belt of southern Western Australia. The temperature dimensions for germination in 20 woody perennials were identified using small unreplicated samples over 6 weeks on a temperature gradient plate (constant and fluctuating temperatures between 5 and 40 °C). These data were subsequently modelled against current and forecast (2070) mean monthly minimum and maximum temperatures to illustrate seasonal changes to germination timing and final percentage germination. All but one species attained full germination in at least one cell on the gradient plate. Modelling of the data suggested only minimal changes to percentage germination despite a forecast rise in diurnal temperatures over the next 50 years. Nine species were predicted to experience declines of between <1% and 7%, whilst 11 species were predicted to increase their germination by <1% to 3%. Overall, the speed of germination is predicted to increase but the timing of germination for most species shifts seasonally (both advances and delays) as a result of changing diurnal temperatures. The capacity of this suite of species to cope with warmer temperatures during a critical early life stage shows a degree of adaptation to heterogeneous environments. Predicting the effects of global change on terrestrial plant communities is crucial to managing and conserving plant diversity.
Collapse
Affiliation(s)
- A Cochrane
- Biodiversity Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
- Ecology, Evolution and Genetics, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Martins AA, Opedal ØH, Armbruster WS, Pélabon C. Rainfall seasonality predicts the germination behavior of a tropical dry-forest vine. Ecol Evol 2019; 9:5196-5205. [PMID: 31110672 PMCID: PMC6509399 DOI: 10.1002/ece3.5108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022] Open
Abstract
Seed dormancy is considered to be an adaptive strategy in seasonal and/or unpredictable environments because it prevents germination during climatically favorable periods that are too short for seedling establishment. Tropical dry forests are seasonal environments where seed dormancy may play an important role in plant resilience and resistance to changing precipitation patterns. We studied the germination behavior of seeds from six populations of the Neotropical vine Dalechampia scandens (Euphorbiaceae) originating from environments of contrasting rainfall seasonality. Seeds produced by second greenhouse-generation plants were measured and exposed to a favorable wet environment at different time intervals after capsule dehiscence and seed dispersal. We recorded the success and the timing of germination. All populations produced at least some dormant seeds, but seeds of populations originating from more seasonal environments required longer periods of after-ripening before germinating. Within populations, larger seeds tended to require longer after-ripening periods than did smaller seeds. These results indicate among-population genetic differences in germination behavior and suggest that these populations are adapted to local environmental conditions. They also suggest that seed size may influence germination timing within populations. Ongoing changes in seasonality patterns in tropical dry forests may impose strong selection on these traits.
Collapse
Affiliation(s)
- Adriana A. Martins
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
| | - Øystein H. Opedal
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
- Faculty of Biological and Environmental Sciences, Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| | - William Scott Armbruster
- School of Biological SciencesUniversity of PortsmouthPortsmouthUK
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaska
| | - Christophe Pélabon
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
| |
Collapse
|
14
|
Finch J, Walck JL, Hidayati SN, Kramer AT, Lason V, Havens K. Germination niche breadth varies inconsistently among three Asclepias congeners along a latitudinal gradient. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:425-438. [PMID: 29779252 DOI: 10.1111/plb.12843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Species responses to climate change will be primarily driven by their environmental tolerance range, or niche breadth, with the expectation that broad niches will increase resilience. Niche breadth is expected to be larger in more heterogeneous environments and moderated by life history. Niche breadth also varies across life stages. Therefore, the life stage with the narrowest niche may serve as the best predictor of climatic vulnerability. To investigate the relationship between niche breadth, climate and life stage we identify germination niche breadth for dormant and non-dormant seeds in multiple populations of three milkweed (Asclepias) species. Complementary trials evaluated germination under conditions simulating historic and predicted future climate by varying cold-moist stratification temperature, length and incubation temperature. Germination niche breadth was derived from germination evenness across treatments (Levins Bn ), with stratified seeds considered less dormant than non-stratified seeds. Germination response varies significantly among species, populations and treatments. Cold-moist stratification ≥4 weeks (1-3 °C) followed by incubation at 25/15 °C+ achieves peak germination for most populations. Germination niche breadth significantly expands following stratification and interacts significantly with latitude of origin. Interestingly, two species display a positive relationship between niche breadth and latitude, while the third presents a concave quadratic relationship. Germination niche breadth significantly varies by species, latitude and population, suggesting an interaction between source climate, life history and site-specific factors. Results contribute to our understanding of inter- and intraspecific variation in germination, underscore the role of dormancy in germination niche breadth, and have implications for prioritising and conserving species under climate change.
Collapse
Affiliation(s)
- J Finch
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL, USA
- Deparment of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL, USA
| | - J L Walck
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - S N Hidayati
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - A T Kramer
- Deparment of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL, USA
| | - V Lason
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - K Havens
- Deparment of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, IL, USA
| |
Collapse
|
15
|
Torres‐Martínez L, McCarten N, Emery NC. The adaptive potential of plant populations in response to extreme climate events. Ecol Lett 2019; 22:866-874. [DOI: 10.1111/ele.13244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Lorena Torres‐Martínez
- Department of Biological Sciences Purdue University 915 W. State Street West Lafayette IN47907‐2054 USA
- Department of Evolution, Ecology and Organismal Biology University of California Riverside CA92521 USA
| | - Niall McCarten
- Department of Land, Air and Water Resources University of California Davis CA95616 USA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Campus Box 334 Boulder CO80309‐0334 USA
| |
Collapse
|
16
|
Tittes SB, Walker JF, Torres-Martínez L, Emery NC. Grow Where You Thrive, or Where Only You Can Survive? An Analysis of Performance Curve Evolution in a Clade with Diverse Habitat Affinities. Am Nat 2019; 193:530-544. [PMID: 30912965 DOI: 10.1086/701827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Performance curves are valuable tools for quantifying the fundamental niches of organisms and testing hypotheses about evolution, life-history trade-offs, and the drivers of variation in species' distribution patterns. Here, we present a novel Bayesian method for characterizing performance curves that facilitates comparisons among species. We then use this model to quantify and compare the hydrological performance curves of 14 different taxa in the genus Lasthenia, an ecologically diverse clade of plants that collectively occupy a variety of habitats with unique hydrological features, including seasonally flooded wetlands called vernal pools. We conducted a growth chamber experiment to measure each taxon's fitness across five hydrological treatments that ranged from severe drought to extended flooding, and we identified differences in hydrological performance curves that explain their associations with vernal pool and terrestrial habitats. Our analysis revealed that the distribution of vernal pool taxa in the field does not reflect their optimal hydrological environments: all taxa, regardless of habitat affinity, have highest fitness under similar hydrological conditions of saturated soil without submergence. We also found that a taxon's relative position across flood gradients within vernal pools is best predicted by the height of its performance curve. These results demonstrate the utility of our approach for generating insights into when and how performance curves evolve among taxa as they diversify into distinct environments. To facilitate its use, the modeling framework has been developed into an R package.
Collapse
|
17
|
Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia 2019; 189:407-419. [PMID: 30604086 DOI: 10.1007/s00442-018-04328-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023]
Abstract
Plant establishment and subsequent persistence are strongly influenced by germination strategy, especially in temporally and spatially heterogeneous environments. Germination strategy determines the plant's ability to synchronise germination timing and seedling emergence to a favourable growing season and thus variation in germination strategy within species may be key to persistence under more extreme and variable future climates. However, the determinants of variation in germination strategy are not well resolved. To understand the variation of germination strategy and the climate drivers, we assessed seed traits, germination patterns, and seedling establishment traits of Oreomyrrhis eriopoda from 29 populations across its range. Germination patterns were then analysed against climate data to determine the strongest climate correlates influencing the germination strategy. Oreomyrrhis eriopoda exhibits a striking range of germination strategies among populations: varying from immediate to staggered, postponed, and postponed-deep. Seeds from regions with lower temperature variability were more likely to exhibit an immediate germination strategy; however, those patterns depended on the timescale of climatic assessment. In addition, we show that these strategy differences extend to seedling establishment traits: autumn seedlings (from populations with an immediate or staggered germination strategy) exhibited a higher leaf production rate than spring seedlings (of staggered or postponed strategy). Our results demonstrate not only substantial within-species variation in germination strategy across the species distribution range, but also that this variation correlates with environmental drivers. Given that these differences also extend to establishment traits, they may reflect a critical mechanism for persistence in changing climate.
Collapse
|
18
|
Metz J, Freundt H, Jeltsch F. Stable germination behavior but partly changing seed–seed interactions along a steep rainfall gradient. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Climate variability affects the germination strategies exhibited by arid land plants. Oecologia 2017; 185:437-452. [DOI: 10.1007/s00442-017-3958-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
20
|
Harrison S, Noss R. Endemism hotspots are linked to stable climatic refugia. ANNALS OF BOTANY 2017; 119:207-214. [PMID: 28064195 PMCID: PMC5321063 DOI: 10.1093/aob/mcw248] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Centres of endemism have received much attention from evolutionists, biogeographers, ecologists and conservationists. Climatic stability is often cited as a major reason for the occurrences of these geographic concentrations of species which are not found anywhere else. The proposed linkage between endemism and climatic stability raises unanswered questions about the persistence of biodiversity during the present era of rapidly changing climate. KEY QUESTIONS The current status of evidence linking geographic centres of endemism to climatic stability over evolutionary time was examined. The following questions were asked. Do macroecological analyses support such an endemism-stability linkage? Do comparative studies find that endemic species display traits reflecting evolution in stable climates? Will centres of endemism in microrefugia or macrorefugia remain relatively stable and capable of supporting high biological diversity into the future? What are the implications of the endemism-stability linkage for conservation? CONCLUSIONS Recent work using the concept of climate change velocity supports the classic idea that centres of endemism occur where past climatic fluctuations have been mild and where mountainous topography or favourable ocean currents contribute to creating refugia. Our knowledge of trait differences between narrow endemics and more widely distributed species remains highly incomplete. Current knowledge suggests that centres of endemism will remain relatively climatically buffered in the future, with the important caveat that absolute levels of climatic change and species losses in these regions may still be large.
Collapse
Affiliation(s)
- Susan Harrison
- Department of Environmental Science and Policy, University of California-Davis, Davis, CA, USA
| | - Reed Noss
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|