1
|
Yoshiyama Y, Wakabayashi Y, Mercer KL, Kawabata S, Kobayashi T, Tabuchi T, Yamori W. Natural genetic variation in dynamic photosynthesis is correlated with stomatal anatomical traits in diverse tomato species across geographical habitats. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6762-6777. [PMID: 38606772 DOI: 10.1093/jxb/erae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 04/13/2024]
Abstract
Plants grown under field conditions experience fluctuating light. Understanding the natural genetic variations for a similarly dynamic photosynthetic response among untapped germplasm resources, as well as the underlying mechanisms, may offer breeding strategies to improve production using molecular approaches. Here, we measured gas exchange under fluctuating light, along with stomatal density and size, in eight wild tomato species and two tomato cultivars. The photosynthetic induction response showed significant diversity, with some wild species having faster induction rates than the two cultivars. Species with faster photosynthetic induction rates had higher daily integrated photosynthesis, but lower average water use efficiency because of high stomatal conductance under natural fluctuating light. The variation in photosynthetic induction was closely associated with the speed of stomatal responses, highlighting its critical role in maximizing photosynthesis under fluctuating light conditions. Moreover, stomatal size was negatively correlated with stomatal density within a species, and plants with smaller stomata at a higher density had a quicker photosynthetic response than those with larger stomata at lower density. Our findings show that the response of stomatal conductance plays a pivotal role in photosynthetic induction, with smaller stomata at higher density proving advantageous for photosynthesis under fluctuating light in tomato species. The interspecific variation in the rate of stomatal responses could offer an untapped resource for optimizing dynamic photosynthetic responses under field conditions.
Collapse
Affiliation(s)
- Yugo Yoshiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Yu Wakabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Kristin L Mercer
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
- Ohio State University, Department of Horticulture and Crop Science, Columbus, OH, USA
| | - Saneyuki Kawabata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Takayuki Kobayashi
- Department of Advanced Food Sciences, College of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Toshihito Tabuchi
- Department of Advanced Food Sciences, College of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| |
Collapse
|
2
|
Kang H, Yu Y, Ke X, Tomimatsu H, Xiong D, Santiago L, Han Q, Kardiman R, Tang Y. Initial stomatal conductance increases photosynthetic induction of trees leaves more from sunlit than from shaded environments: a meta-analysis. TREE PHYSIOLOGY 2024; 44:tpae128. [PMID: 39361922 DOI: 10.1093/treephys/tpae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
It has long been held that tree species/leaves from shaded environments show faster rate of photosynthetic induction than species/leaves from sunlit environments, but the evidence so far is conflicting and the underlying mechanisms are still under debate. To address the debate, we compiled a dataset for 87 tree species and compared the initial increasing slope during the first 2-min induction (SA) and stomatal and biochemical characteristics between sun and shade species from the same study, and those between sun and shade leaves within the same species. In 77% of between-species comparisons, the species with high steady-state photosynthetic rate in the high light (Af) exhibited a larger SA than the species with low Af. In 67% within-species comparisons, the sun leaves exhibited a larger SA than the shade leaves. However, in only a few instances did the sun species/leaves more rapidly achieve 50% of full induction, with an even smaller SA, than the shade species/leaves. At both the species and leaf level, SA increased with increasing initial stomatal conductance before induction (gsi). Despite exhibiting reduced intrinsic water-use efficiency in low light, a large SA proportionally enhances photosynthetic carbon gain during the first 2-min induction in the sun species and leaves. Thus, in terms of the increase in absolute rate of photosynthesis, tree species/leaves from sunlit environments display faster photosynthetic induction responses than those from shaded environments. Our results call for re-consideration of contrasting photosynthetic strategies in photosynthetic adaption/acclimation to dynamic light environments across species.
Collapse
Affiliation(s)
- Huixing Kang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuan Yu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinran Ke
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hajime Tomimatsu
- Graduate School of Life Sciences, Tohoku University, 980-8578, Aoba, Sendai, Japan
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Louis Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521-0124, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Reki Kardiman
- Department of Biology, Faculty of Mathematic and Natural Science, Universitas Negeri Padang35171, West Sumatra, Indonesia
| | - Yanhong Tang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Sun X, Kaiser E, Marcelis LFM, Li T. Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39494759 DOI: 10.1111/pce.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Although blue light is known to produce leaves with high photosynthetic capacity, the role of the blue-adjacent UV-A1 (350-400 nm) in driving leaf photosynthetic acclimation is less studied. Tomato plants were grown under hybrid red and blue (RB; 95/5 μmol m-2 s-1), as well as four treatments in which RB was supplemented with 50 μmol m-2 s-1 peaking at 365, 385, 410 and 450 nm, respectively. Acclimation to 365-450 nm led to a shallow gradient increase in trait values (i.e., photosynthetic capacity, pigmentation and dry mass content) as the peak wavelength increased. Furthermore, both UV-A1 and blue light grown leaves showed efficient photoprotection under high light intensity. When treated plants were transferred to fluctuating light for 5 days, leaves from all treatments showed increases in photosynthetic capacity, which were strongest in RB, followed by additional UV-A1 treatments; RB grown leaves showed reductions in maximum quantum yield of photosystem II, while UV-A1 grown leaves showed increases. We conclude that both UV-A1 and blue light effectively trigger photosynthetic and photoprotective acclimation, the extent of acclimation becoming stronger the longer the peak wavelength is. Acclimatory responses to UV-A1 and blue light are thus not distinct from one another, but follow a continuous gradient.
Collapse
Affiliation(s)
- Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Pelech EA, Stutz SS, Wang Y, Lochocki EB, Long SP. Have We Selected for Higher Mesophyll Conductance in Domesticating Soybean? PLANT, CELL & ENVIRONMENT 2024. [PMID: 39463010 DOI: 10.1111/pce.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
Soybean (Glycine max) is the single most important global source of vegetable protein. Yield improvements per unit land area are needed to avoid further expansion onto natural systems. Mesophyll conductance (gm) quantifies the ease with which CO2 can diffuse from the sub-stomatal cavity to Rubisco. Increasing gm is attractive since it increases photosynthesis without increasing water use. Most measurements of gm have been made during steady-state light saturated photosynthesis. In field crop canopies, light fluctuations are frequent and the speed with which gm can increase following shade to sun transitions affects crop carbon gain. Is there variability in gm within soybean germplasm? If so, indirect selection may have indirectly increased gm during domestication and subsequent breeding for sustainability and yield. A modern elite cultivar (LD11) was compared with four ancestor accessions of Glycine soja from the assumed area of domestication by concurrent measurements of gas exchange and carbon isotope discrimination (∆13C). gm was a significant limitation to soybean photosynthesis both at steady state and through light induction but was twice the value of the ancestors in LD11. This corresponded to a substantial increase in leaf photosynthetic CO2 uptake and water use efficiency.
Collapse
Affiliation(s)
- Elena A Pelech
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Samantha S Stutz
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Edward B Lochocki
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Wu XP, Gao X, Zhang R, Luan J, Wang Y, Liu S. Nitrogen addition alleviates water loss of Moso bamboo (Phyllostachys edulis) under drought by affecting light-induced stomatal responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173615. [PMID: 38815830 DOI: 10.1016/j.scitotenv.2024.173615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The combined climate-change-evoked drought and nitrogen (N) deposition have severely affected plant carbon and water relations governed by stomata. However, the interplay between steady-state and dynamic stomatal behavior responses to light remains unclear regarding its impact on plant water and carbon relations. The objective here was to investigate whether light-induced stomatal dynamics could mitigate the adverse effects of steady-state gas exchange on water conservation or photosynthesis under drought and N addition conditions. We conducted a manipulative experiment to investigate the impacts of throughfall reduction, N addition, and their combination on light-induced stomatal and photosynthetic dynamics in a Moso bamboo (Phyllostachys edulis) forest. We determined the influence of stomal response rate on water loss and photosynthesis, and further assessed whether it mitigated the effects of steady-state gas exchange (gs). We found that Moso bamboo decreased gs under throughfall reduction, while accelerated stomatal opening and biochemical activation when irradiance increased, which reduced the lag in photosynthesis during the induction period. In contrast, under the combined throughfall reduction and N addition condition, Moso bamboo increased gs but showed faster stomatal closure, which decreased the percentage of transpiration following a decrease in light intensity. Our findings indicate that stomatal dynamic behavior may depend on the effects of steady-state gas exchange on water conservation and carbon uptake under different soil water and N conditions. These discoveries contribute to our understanding of the coupling mechanisms of plant water use and carbon uptake in the context of global changes.
Collapse
Affiliation(s)
- Xi-Pin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruichang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an, Shaanxi 710069, China
| | - Junwei Luan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Yi Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
6
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Lazzarin M, Driever S, Wassenaar M, Marcelis LFM, van Ieperen W. Shining light on diurnal variation of non-photochemical quenching: Impact of gradual light intensity patterns on short-term NPQ over a day. PHYSIOLOGIA PLANTARUM 2024; 176:e14410. [PMID: 38945685 DOI: 10.1111/ppl.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 μmol m-2 s-1) while DC stayed constant at 300 μmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.
Collapse
Affiliation(s)
- Martina Lazzarin
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Steven Driever
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, AA, The Netherlands
| | - Maarten Wassenaar
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| |
Collapse
|
8
|
Tanigawa K, Yuchen Q, Katsuhama N, Sakoda K, Wakabayashi Y, Tanaka Y, Sage R, Lawson T, Yamori W. C 4 monocots and C 4 dicots exhibit rapid photosynthetic induction response in contrast to C 3 plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14431. [PMID: 39041649 DOI: 10.1111/ppl.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Considering the prevalence of ever-changing conditions in the natural world, investigation of photosynthetic responses in C4 plants under fluctuating light is needed. Here, we studied the effect of dynamic illumination on photosynthesis in totally 10 C3, C3-C4 intermediate, C4-like and C4 dicots and monocots at CO2 concentrations of 400 and 800 μmol mol-1. C4 and C4-like plants had faster photosynthetic induction and light-induced stomatal dynamics than C3 plants at 400 μmol mol-1, but not at 800 μmol mol-1 CO2, at which the CO2 supply rarely limits photosynthesis. C4 and C4-like plants had a higher water use efficiency than C3 plants at both CO2 concentrations. There were positive correlations between photosynthetic induction and light-induced stomatal response, together with CO2 compensation point, which was a parameter of the CO2-concentrating mechanism of C4 photosynthesis. These results clearly show that C4 photosynthesis in both monocots and dicots adapts to fluctuating light conditions more efficiently than C3 photosynthesis. The rapid photosynthetic induction response in C4 plants can be attributed to the rapid stomatal dynamics, the CO2-concentrating mechanism or both.
Collapse
Affiliation(s)
- Keiichiro Tanigawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Qu Yuchen
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoya Katsuhama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo, Japan
| | - Yu Wakabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Tanaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Xiong Z, Xiao J, Zhao J, Liu S, Yang D, Xiong D, Cui K, Peng S, Huang J. Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1646. [PMID: 38931077 PMCID: PMC11207834 DOI: 10.3390/plants13121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Photosynthetic induction and stomatal kinetics are acknowledged as pivotal factors in regulating both plant growth and water use efficiency under fluctuating light conditions. However, the considerable variability in methodologies and light regimes used to assess the dynamics of photosynthesis (A) and stomatal conductance (gs) during light induction across studies poses challenges for comparison across species. Moreover, the influence of stomatal morphology on both steady-state and non-steady-state gs remains poorly understood. In this study, we show the strong impact of IRGA Chamber Illumination and Whole Plant Illumination on the photosynthetic induction of two rice species. Our findings reveal that these illuminations significantly enhance photosynthetic induction by modulating both stomatal and biochemical processes. Moreover, we observed that a higher density of smaller stomata plays a critical role in enhancing the stomatal opening and photosynthetic induction to fluctuating light conditions, although it exerts minimal influence on steady-state gs and A under constant light conditions. Therefore, future studies aiming to estimate photosynthetic induction and stomatal kinetics should consider the light environments at both the leaf and whole plant levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.X.); (S.L.); (D.X.); (K.C.); (S.P.)
| |
Collapse
|
10
|
Zhang Y, Kaiser E, Dutta S, Sharkey TD, Marcelis LFM, Li T. Short-term salt stress reduces photosynthetic oscillations under triose phosphate utilization limitation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2994-3008. [PMID: 38436737 DOI: 10.1093/jxb/erae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/02/2024] [Indexed: 03/05/2024]
Abstract
Triose phosphate utilization (TPU) limitation is one of the three biochemical limitations of photosynthetic CO2 assimilation rate in C3 plants. Under TPU limitation, abrupt and large transitions in light intensity cause damped oscillations in photosynthesis. When plants are salt-stressed, photosynthesis is often down-regulated particularly under dynamic light intensity, but how salt stress affects TPU-related dynamic photosynthesis is still unknown. To elucidate this, tomato (Solanum lycopersicum) was grown with and without sodium chloride (NaCl, 100 mM) stress for 13 d. Under high CO2 partial pressure, rapid increases in light intensity caused profound photosynthetic oscillations. Salt stress reduced photosynthetic oscillations in leaves initially under both low- and high-light conditions and reduced the duration of oscillations by about 2 min. Besides, salt stress increased the threshold for CO2 partial pressure at which oscillations occurred. Salt stress increased TPU capacity without affecting Rubisco carboxylation and electron transport capacity, indicating the up-regulation of end-product synthesis capacity in photosynthesis. Thus salt stress may reduce photosynthetic oscillations by decreasing leaf internal CO2 partial pressure and/or increasing TPU capacity. Our results provide new insights into how salt stress modulates dynamic photosynthesis as controlled by CO2 availability and end-product synthesis.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Satadal Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Delft, the Netherlands
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Li J, Zhang SB, Li YP. Photosynthetic response dynamics in the invasive species Tithonia diversifolia and two co-occurring native shrub species under fluctuating light conditions. PLANT DIVERSITY 2024; 46:265-273. [PMID: 38807905 PMCID: PMC11128914 DOI: 10.1016/j.pld.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 04/15/2023] [Indexed: 05/30/2024]
Abstract
To determine the invasiveness of invasive plants, many studies have compared photosynthetic traits or strategies between invasive and native species. However, few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations. We compared photosynthetic induction, relaxation dynamics and leaf traits between the invasive species, Tithonia diversifolia and two native species, Clerodendrum bungei and Blumea balsamifera, in full-sun and shady habitats. The photosynthetic dynamics and leaf traits differed among species. T. diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats. Thus, the slow induction response may be attributed to the longer stomatal length in T. diversifolia. Habitat had a significant effect on photosynthetic dynamics in T. diversifolia and B. balsamifera but not in C. bungei. In shady habitat, T. diversifolia had a faster photosynthetic induction response than in full-sun habitat, leading to a higher average stomatal conductance during photosynthetic induction in T. diversifolia than in the two native species. In contrast, B. balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat, resulting in higher carbon gain during photosynthetic relaxation. Nevertheless, in both habitats, T. diversifolia had an overall higher carbon gain during light fluctuations than the two native species. Our results indicated that T. diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain, which may contribute to its successful invasion.
Collapse
Affiliation(s)
- Ju Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Yang-Ping Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| |
Collapse
|
12
|
Zeng ZL, Wang XQ, Zhang SB, Huang W. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. PLANT PHYSIOLOGY 2024; 194:1498-1511. [PMID: 37956105 DOI: 10.1093/plphys/kiad605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Drought and heat stresses usually occur concomitantly in nature, with increasing frequency and intensity of both stresses expected due to climate change. The synergistic agricultural impacts of these compound climate extremes are much greater than those of the individual stresses. However, the mechanisms by which drought and heat stresses separately and concomitantly affect dynamic photosynthesis have not been thoroughly assessed. To elucidate this, we used tomato (Solanum lycopersicum) seedlings to measure dynamic photosynthesis under individual and compound stresses of drought and heat. Individual drought and heat stresses limited dynamic photosynthesis at the stages of diffusional conductance to CO2 and biochemistry, respectively. However, the primary limiting factor for photosynthesis shifted to mesophyll conductance under the compound stresses. Compared with the control, photosynthetic carbon gain in fluctuating light decreased by 38%, 73%, and 114% under the individual drought, heat, and compound stresses, respectively. Therefore, compound stresses caused a greater reduction in photosynthetic carbon gain in fluctuating light conditions than individual stress. These findings highlight the importance of mitigating the effects of compound climate extremes on crop productivity by targeting mesophyll conductance and improving dynamic photosynthesis.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shi-Bao Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Zhang J, Kaiser E, Marcelis LFM, Vialet-Chabrand S. Rapid spatial assessment of leaf-absorbed irradiance. THE NEW PHYTOLOGIST 2024; 241:1866-1876. [PMID: 38124293 DOI: 10.1111/nph.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.
Collapse
Affiliation(s)
- Jiayu Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
14
|
Song G, Wang Q, Zhuang J, Jin J. Timely estimation of leaf chlorophyll fluorescence parameters under varying light regimes by coupling light drivers to leaf traits. PHYSIOLOGIA PLANTARUM 2023; 175:e14048. [PMID: 37882289 DOI: 10.1111/ppl.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Unveiling informative chlorophyll a fluorescence (ChlF) parameters and leaf morphological/biochemical traits under varying light conditions is important in ecological studies but has less been investigated. In this study, the trait-ChlF relationship and regressive estimation of ChlF parameters from leaf traits under varying light conditions were investigated using a dataset of synchronous measurements of ChlF parameters and leaf morphological/biochemical traits in Mangifera indica L. The results showed that the relationships between ChlF parameters and leaf traits varied across light intensities, as indicated by different slopes and intercepts, highlighting the limitations of using leaf traits alone to capture the dynamics of ChlF parameters. Light drivers, on the other hand, showed a better predictive ability for light-dependent ChlF parameters compared to leaf traits, with light intensity having a large effect on light-dependent ChlF parameters. Furthermore, the responses of ФF and NPQ to light drivers differed between leaf types, with light intensity having an effect on ФF in shaded leaves, whereas it had a primary effect on NPQ in sunlit leaves. These results facilitate and deepen our understanding of how the light environment affects leaf structure and function and, therefore, provide the theoretical basis for understanding plant ecological strategies in response to the light environment.
Collapse
Affiliation(s)
- Guangman Song
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Quan Wang
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Jie Zhuang
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jia Jin
- Institute of Geography and Oceanography, Nanning Normal University, P. R. China
| |
Collapse
|
15
|
Li YT, Gao HY, Zhang ZS. Effects of Environmental and Non-Environmental Factors on Dynamic Photosynthetic Carbon Assimilation in Leaves under Changing Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2015. [PMID: 37653932 PMCID: PMC10223794 DOI: 10.3390/plants12102015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Major research on photosynthesis has been carried out under steady light. However, in the natural environment, steady light is rare, and light intensity is always changing. Changing light affects (usually reduces) photosynthetic carbon assimilation and causes decreases in biomass and yield. Ecologists first observed the importance of changing light for plant growth in the understory; other researchers noticed that changing light in the crop canopy also seriously affects yield. Here, we review the effects of environmental and non-environmental factors on dynamic photosynthetic carbon assimilation under changing light in higher plants. In general, dynamic photosynthesis is more sensitive to environmental and non-environmental factors than steady photosynthesis, and dynamic photosynthesis is more diverse than steady photosynthesis. Finally, we discuss the challenges of photosynthetic research under changing light.
Collapse
Affiliation(s)
- Yu-Ting Li
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Hui-Yuan Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Zi-Shan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
16
|
Ding H, Wang Z, Zhang Y, Li J, Jia L, Chen Q, Ding Y, Wang S. A Mechanistic Model for Estimating Rice Photosynthetic Capacity and Stomatal Conductance from Sun-Induced Chlorophyll Fluorescence. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0047. [PMID: 37228514 PMCID: PMC10204737 DOI: 10.34133/plantphenomics.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Enhancing the photosynthetic rate is one of the effective ways to increase rice yield, given that photosynthesis is the basis of crop productivity. At the leaf level, crops' photosynthetic rate is mainly determined by photosynthetic functional traits including the maximum carboxylation rate (Vcmax) and stomatal conductance (gs). Accurate quantification of these functional traits is important to simulate and predict the growth status of rice. In recent studies, the emerging sun-induced chlorophyll fluorescence (SIF) provides us an unprecedented opportunity to estimate crops' photosynthetic traits, owing to its direct and mechanistic links to photosynthesis. Therefore, in this study, we proposed a practical semimechanistic model to estimate the seasonal Vcmax and gs time-series based on SIF. We firstly generated the coupling relationship between the open ratio of photosystem II (qL) and photosynthetically active radiation (PAR), then estimate the electron transport rate (ETR) based on the proposed mechanistic relationship between SIF and ETR. Finally, Vcmax and gs were estimated by linking to ETR based on the principle of evolutionary optimality and the photosynthetic pathway. Validation with field observations showed that our proposed model can estimate Vcmax and gs with high accuracy (R2 > 0.8). Compared to simple linear regression model, the proposed model could increase the accuracy of Vcmax estimates by >40%. Therefore, the proposed method effectively enhanced the estimation accuracy of crops' functional traits, which sheds new light on developing high-throughput monitoring techniques to estimate plant functional traits, and also can improve our understating of crops' physiological response to climate change.
Collapse
Affiliation(s)
- Hao Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China,
Nanjing Agricultural University, Nanjing, China
| | - Zihao Wang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China,
Nanjing Agricultural University, Nanjing, China
| | - Yongguang Zhang
- International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,
Nanjing University, Nanjing, China
| | - Ji Li
- International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,
Nanjing University, Nanjing, China
| | - Li Jia
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100101, China
| | - Qiting Chen
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China,
Nanjing Agricultural University, Nanjing, China
| | - Songhan Wang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China,
Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Wang XQ, Sun H, Zeng ZL, Huang W. Within-branch photosynthetic gradients are more related to the coordinated investments of nitrogen and water than leaf mass per area. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107681. [PMID: 37054614 DOI: 10.1016/j.plaphy.2023.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) and water are key resources for leaf photosynthesis and the growth of whole plants. Within-branch leaves need different amounts of N and water to support their differing photosynthetic capacities according to light exposure. To test this scheme, we measured the within-branch investments of N and water and their effects on photosynthetic traits in two deciduous tree species Paulownia tomentosa and Broussonetia papyrifera. We found that leaf photosynthetic capacity gradually increased from branch bottom to top (i.e. from shade to sun leaves). Concomitantly, stomatal conductance (gs) and leaf N content gradually increased, owing to the symport of water and inorganic mineral from root to leaf. Variation of leaf N content led to large gradients of mesophyll conductance, maximum velocity of Rubisco for carboxylation, maximum electron transport rate and leaf mass per area (LMA). Correlation analysis indicated that the within-branch difference in photosynthetic capacity was mainly related to gs and leaf N content, with a relatively minor contribution of LMA. Furthermore, the simultaneous increases of gs and leaf N content enhanced photosynthetic N use efficiency (PNUE) but hardly affected water use efficiency. Therefore, within-branch adjustment of N and water investments is an important strategy used by plants to optimize the overall photosynthetic carbon gain and PNUE.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
18
|
Saha S, Purkayastha S, K N, Ganguly S, Das S, Ganguly S, Sinha Mahapatra N, Bhattacharya K, Das D, Saha AK, Biswas T, Bhattacharyya PK, Bhattacharyya S. Rice ( Oryza sativa) alleviates photosynthesis and yield loss by limiting specific leaf weight under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:267-276. [PMID: 36624487 DOI: 10.1071/fp22241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The physiological mechanisms of shade tolerance and trait plasticity variations under shade remain poorly understood in rice (Oryza sativa L.). Twenty-five genotypes of rice were evaluated under open and shade conditions. Various parameters to identify variations in the plasticity of these traits in growth irradiance were measured. We found wide variations in specific leaf weight (SLW) and net assimilation rate measured at 400µmolm-2 s-1 photosynthetic photon flux density (PPFD; referred to as A 400 ) among the genotypes. Under shade, tolerant genotypes maintained a high rate of net photosynthesis by limiting specific leaf weight accompanied by increased intercellular CO2 concentration (C i ) compared with open-grown plants. On average, net photosynthesis was enhanced by 20% under shade, with a range of 2-30%. Increased accumulation of biomass under shade was observed, but it showed no correlation with photosynthetic plasticity. Chlorophyll a /b ratio also showed no association with photosynthetic rate and yield. Analysis of variance showed that 11%, 16%, and 37% of the total variance of A 400 , SLW, and C i were explained due to differences in growth irradiance. SLW and A 400 plasticity in growth irradiance was associated with yield loss alleviation with R 2 values of 0.37 and 0.16, respectively. Biomass accumulation was associated with yield loss alleviation under shade, but no correlation was observed between A 400 and leaf-N concentration. Thus, limiting specific leaf weight accompanied by increased C i rather than leaf nitrogen concentration might have allowed rice genotypes to maintain a high net photosynthesis rate per unit leaf area and high yield under shade.
Collapse
Affiliation(s)
- Shoumik Saha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Shampa Purkayastha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Nimitha K
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Sebantee Ganguly
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Subhadeep Das
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Shamba Ganguly
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Nilanjan Sinha Mahapatra
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Kriti Bhattacharya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Dibakar Das
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Arup K Saha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Tirthankar Biswas
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Prabir K Bhattacharyya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| |
Collapse
|
19
|
Joubert D, Zhang N, Berman S, Kaiser E, Molenaar J, Stigter J. A small dynamic leaf-level model predicting photosynthesis in greenhouse tomatoes. PLoS One 2023; 18:e0275047. [PMID: 36927993 PMCID: PMC10019686 DOI: 10.1371/journal.pone.0275047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
The conversion of supplemental greenhouse light energy into biomass is not always optimal. Recent trends in global energy prices and discussions on climate change highlight the need to reduce our energy footprint associated with the use of supplemental light in greenhouse crop production. This can be achieved by implementing "smart" lighting regimens which in turn rely on a good understanding of how fluctuating light influences photosynthetic physiology. Here, a simple fit-for-purpose dynamic model is presented. It accurately predicts net leaf photosynthesis under natural fluctuating light. It comprises two ordinary differential equations predicting: 1) the total stomatal conductance to CO2 diffusion and 2) the CO2 concentration inside a leaf. It contains elements of the Farquhar-von Caemmerer-Berry model and the successful incorporation of this model suggests that for tomato (Solanum lycopersicum L.), it is sufficient to assume that Rubisco remains activated despite rapid fluctuations in irradiance. Furthermore, predictions of the net photosynthetic rate under both 400ppm and enriched 800ppm ambient CO2 concentrations indicate a strong correlation between the dynamic rate of photosynthesis and the rate of electron transport. Finally, we are able to indicate whether dynamic photosynthesis is Rubisco or electron transport rate limited.
Collapse
Affiliation(s)
- Dominique Joubert
- Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
- * E-mail:
| | - Ningyi Zhang
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Sarah.R. Berman
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Jaap Molenaar
- Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - J.D. Stigter
- Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
20
|
Taniyoshi K, Tanaka Y, Adachi S, Shiraiwa T. Anisohydric characteristics of a rice genotype 'ARC 11094' contribute to increased photosynthetic carbon fixation in response to high light. PHYSIOLOGIA PLANTARUM 2022; 174:e13825. [PMID: 36377050 DOI: 10.1111/ppl.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic induction, which is the response of the CO2 assimilation rate to a stepwise increase in light intensity, potentially affects plant carbon gain and crop productivity in field environments. Although natural variations in photosynthetic induction are determined by CO2 supply and its fixation, detailed factors, especially CO2 supply, are unclear. This study investigated photosynthesis at steady and non-steady states in three rice (Oryza sativa L.) genotypes: ARC 11094, Takanari and Koshihikari. Stomatal traits and water relations in the plants were evaluated to characterise CO2 supply. Photosynthetic induction in ARC 11094 and Takanari was superior to that in Koshihikari owing to an efficient CO2 supply. The CO2 supply in Takanari is attributed to its high stomatal density, small guard cell length and extensive root mass, whereas that in ARC 11094 is attributed to its high stomatal conductance per stoma and stomatal opening in leaves with insufficient water (i.e., anisohydric stomatal behaviour). Our results suggest that there are various mechanisms for realising an efficient CO2 supply during the induction response. These characteristics can be useful for improving photosynthetic induction and, thus, crop productivity in field environments in future breeding programmes.
Collapse
Affiliation(s)
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | |
Collapse
|
21
|
Zheng T, Yu Y, Kang H. Short-term elevated temperature and CO 2 promote photosynthetic induction in the C 3 plant Glycine max, but not in the C 4 plant Amaranthus tricolor. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:995-1007. [PMID: 35908799 DOI: 10.1071/fp21363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The continuous increases of atmospheric temperature and CO2 concentration will impact global photosynthesis. However, there are few studies considering the interaction of elevated temperature (eT) and elevated CO2 (eCO2 ) on dynamic photosynthesis, particularly for C4 species. We examine dynamic photosynthesis under four different temperature and [CO2 ] treatments: (1) 400ppm×28°C (CT); (2) 400ppm×33°C (CT+); (3) 800ppm×28°C (C+T); and (4) 800ppm×33°C (C+T+). In Glycine max L., the time required to reach 50% (T 50%A ) and 90% (T 90%A ) of full photosynthetic induction was smaller under the CT+, C+T, and C+T+ treatments than those under the CT treatment. In Amaranthus tricolor L., however, neither T 50%A nor T 90%A was not significantly affected by eT or eCO2 . In comparison with the CT treatment, the achieved carbon gain was increased by 58.3% (CT+), 112% (C+T), and 136.6% (C+T+) in G. max and was increased by 17.1% (CT+), 2.6% (C+T) and 56.9% (C+T+) in A. tricolor . The increases of achieved carbon gain in G. max were attributable to both improved photosynthetic induction efficiency (IE) and enhanced steady-state photosynthesis, whereas those in A. tricolor were attributable to enhanced steady-state photosynthesis.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Yuan Yu
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Huixing Kang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Zhou R, Yu X, Song X, Rosenqvist E, Wan H, Ottosen CO. Salinity, waterlogging, and elevated [CO2] interact to induce complex responses in cultivated and wild tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5252-5263. [PMID: 35218649 DOI: 10.1093/jxb/erac080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The effects of individual climatic factors on crops are well documented, whereas the interaction of such factors in combination has received less attention. The frequency of salinity and waterlogging stress is increasing with climate change, accompanied by elevated CO2 concentration (e[CO2]). This study explored how these three variables interacted and affected two tomato genotypes. Cultivated and wild tomato (Solanum lycopersicum and Solanum pimpinellifolium) were grown at ambient [CO2] and e[CO2], and subjected to salinity, waterlogging, and combined stress. Leaf photosynthesis, chlorophyll fluorescence, quenching analysis, pigment, and plant growth were analyzed. The response of tomatoes depended on both genotype and stress type. In cultivated tomato, photosynthesis was inhibited by salinity and combined stress, whereas in wild tomato, both salinity and waterlogging stress, alone and in combination, decreased photosynthesis. e[CO2] increased photosynthesis and biomass of cultivated tomato under salinity and combined stress compared with ambient [CO2]. Differences between tomato genotypes in response to individual and combined stress were observed in key photosynthetic and growth parameters. Hierarchical clustering and principal component analysis revealed genetic variations of tomatoes responding to the three climatic factors. Understanding the interacting effects of salinity and waterlogging with e[CO2] in tomato will facilitate improvement of crop resilience to climate change.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
- College of Horticulture, Nanjing Agricultural University, Jiangsu, Nanjing, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Jiangsu, Nanjing, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Hongjian Wan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | |
Collapse
|
23
|
Sun H, Wang XQ, Zeng ZL, Yang YJ, Huang W. Exogenous melatonin strongly affects dynamic photosynthesis and enhances water-water cycle in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:917784. [PMID: 35991431 PMCID: PMC9381976 DOI: 10.3389/fpls.2022.917784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 06/09/2023]
Abstract
Melatonin (MT), an important phytohormone synthesized naturally, was recently used to improve plant resistance against abiotic and biotic stresses. However, the effects of exogenous melatonin on photosynthetic performances have not yet been well clarified. We found that spraying of exogenous melatonin (100 μM) to leaves slightly affected the steady state values of CO2 assimilation rate (A N ), stomatal conductance (g s ) and mesophyll conductance (g m ) under high light in tobacco leaves. However, this exogenous melatonin strongly delayed the induction kinetics of g s and g m , leading to the slower induction speed of A N . During photosynthetic induction, A N is mainly limited by biochemistry in the absence of exogenous melatonin, but by CO2 diffusion conductance in the presence of exogenous melatonin. Therefore, exogenous melatonin can aggravate photosynthetic carbon loss during photosynthetic induction and should be used with care for crop plants grown under natural fluctuating light. Within the first 10 min after transition from low to high light, photosynthetic electron transport rates (ETR) for A N and photorespiration were suppressed in the presence of exogenous melatonin. Meanwhile, an important alternative electron sink, namely water-water cycle, was enhanced to dissipate excess light energy. These results indicate that exogenous melatonin upregulates water-water cycle to facilitate photoprotection. Taking together, this study is the first to demonstrate that exogenous melatonin inhibits dynamic photosynthesis and improves photoprotection in higher plants.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
24
|
Zhang Y, Kaiser E, Li T, Marcelis LFM. NaCl affects photosynthetic and stomatal dynamics by osmotic effects and reduces photosynthetic capacity by ionic effects in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3637-3650. [PMID: 35218186 DOI: 10.1093/jxb/erac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
NaCl stress affects stomatal behavior and photosynthesis by a combination of osmotic and ionic components, but it is unknown how these components affect stomatal and photosynthetic dynamics. Tomato (Solanum lycopersicum) plants were grown in a reference nutrient solution [control; electrical conductivity (EC)=2.3 dS m-1], a solution containing additional macronutrients (osmotic effect; EC=12.6 dS m-1), or a solution with additional 100 mM NaCl (osmotic and ionic effects; EC=12.8 dS m-1). Steady-state and dynamic photosynthesis, and leaf biochemistry, were characterized throughout leaf development. The osmotic effect decreased steady-state stomatal conductance while speeding up stomatal responses to light intensity shifts. After 19 d of treatment, photosynthetic induction was reduced by the osmotic effect, which was attributable to lower initial stomatal conductance due to faster stomatal closing under low light. Ionic effects of NaCl were barely observed in dynamic stomatal and photosynthetic behavior, but led to a reduction in leaf photosynthetic capacity, CO2 carboxylation rate, and stomatal conductance in old leaves after 26 d of treatment. With increasing leaf age, rates of light-triggered stomatal movement and photosynthetic induction decreased across treatments. We conclude that NaCl impacts dynamic stomatal and photosynthetic kinetics by osmotic effects and reduces photosynthetic capacity by ionic effects.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Sakoda K, Adachi S, Yamori W, Tanaka Y. Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3109-3121. [PMID: 35298629 DOI: 10.1093/jxb/erac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Japan Society for the Promotion of Science, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
27
|
Murakami K, Jishi T. Appropriate time interval of PPFD measurement to estimate daily photosynthetic gain. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:452-462. [PMID: 33549153 DOI: 10.1071/fp20323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 05/09/2023]
Abstract
Photosynthetic models sometimes incorporate meteorological elements typically recorded at a time interval of 10 min or 1 h. Because these data are calculated by averaging instantaneous values over time, short-term environmental fluctuations are concealed, which may affect outputs of the model. To assess an appropriate time interval of photosynthetic photon flux density (PPFD) measurement for accurate estimation of photosynthetic gain under open field conditions, we simulated the daily integral net photosynthetic gain using photosynthetic models with or without considering induction kinetics in response to changes in PPFD. Compared with the daily gain calculated from 60-min-interval PPFD data using a steady-state model that ignored the induction kinetics (i.e. a baseline gain), the gains simulated using higher-resolution PPFD data (10-s, 1-min, and 10-min intervals) and using a dynamic model that considered slow induction kinetics were both smaller by ~2%. The gain estimated by the slow dynamic model with 10-s-interval PPFD data was smaller than the baseline gain by more than 5% with a probability of 66%. Thus, the use of low-resolution PPFD data causes overestimation of daily photosynthetic gain in open fields. An appropriate time interval for PPFD measurement is 1 min or shorter to ensure accuracy of the estimates.
Collapse
Affiliation(s)
- Keach Murakami
- Hokkaido Agricultural Research Center (HARC), National Agriculture and Food Research Organisation (NARO), 062-8555, 1 Hitsujigaoka, Toyohira, Sapporo, Japan; and Corresponding author
| | - Tomohiro Jishi
- Energy Innovation Center, Central Research Institute of Electric Power Industry, 270-1194, 1646 Abiko, Abiko, Chiba, Japan
| |
Collapse
|
28
|
Pan Y, Du H, Meng X, Guo S. Variation in photosynthetic induction between super hybrid rice and inbred super rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:105-115. [PMID: 35279007 DOI: 10.1016/j.plaphy.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
It is well documented that yield superiority of super hybrid rice is linked with its improved photosynthetic capacity and/or efficiency. In natural environments, the amounts of CO2 assimilated by plants was also impacted by the rapidity of leaf photosynthesis response to fluctuations of light. However, it remains unknow whether the high yield of super hybrid rice was associated with photosynthetic traits under dynamic state. Here, photosynthetic traits under steady-and dynamic state in two super hybrid rice varieties (Ylinagyou 3218 and Yliangyou 5867) with high yield and two inbred super rice varieties (Zhendao 11 and Nanjing 9108) with lower yield. Under steady state, the net photosynthetic rate (A*) in super hybrid rice was 25.3% larger compared with inbred super rice. During photosynthetic induction, there was no obvious association of the rapidity of net photosynthesis rate (A) to sunflecks with rice subpopulations. Stomatal conductance (gs) of super hybrid rice increased slower than that of inbred super rice. The cumulative CO2 fixation (CCF) during photosynthetic induction was 25.2% larger in super hybrid rice than that in inbred super rice. The primary limitation during induction was biochemical limitation rather than stomatal limitation. There was a significantly positive relationship between A* and CCF, while A* was not related with the induction response rate of A. Overall, A* and CCF in super hybrid rice have been improved together, which contributed to its yield superiority, whereas its yield potential still can be improved by increasing induction rate of A under fluctuations of irradiance.
Collapse
Affiliation(s)
- Yonghui Pan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Haisu Du
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
29
|
Xiong Z, Xiong D, Yang D, Cui K, Peng S, Huang J. Effects of contrasting N supplies on leaf photosynthetic induction under fluctuating light in rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13636. [PMID: 35122261 DOI: 10.1111/ppl.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most important nutrients for crop growth and yield formation, as it is an important constituent in a large amount of proteins, cell walls, and membranes related to photosynthesis. Recently, increasing studies have suggested the important roles of photosynthetic induction and stomatal movement under fluctuating light in regulating plant carbon assimilation and water use efficiency. How leaf N content affects photosynthetic induction remains uncertain. Here, we observed a significantly faster photosynthetic induction with the increasing supply of N under fluctuating light conditions. Photosynthetic induction was mainly limited by biochemical processes but not stomatal opening after a stepwise increase in irradiance across different N supplies. Higher N supply enhanced photosynthetic efficiency under constant and fluctuating light conditions but reduced leaf intrinsic water use efficiency (WUEi ). This study is mainly focused on clarifying the crucial limitation of photosynthetic induction under different N treatments, which may facilitate the improvement of photosynthetic efficiency under complicated environments in the future.
Collapse
Affiliation(s)
- Zhuang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Desheng Yang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
30
|
Taylor SH, Gonzalez-Escobar E, Page R, Parry MAJ, Long SP, Carmo-Silva E. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. NATURE PLANTS 2022; 8:118-124. [PMID: 35058608 PMCID: PMC8863576 DOI: 10.1038/s41477-021-01068-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/25/2021] [Indexed: 05/12/2023]
Abstract
Cowpea is the major source of vegetable protein for rural populations in sub-Saharan Africa and average yields are not keeping pace with population growth. Each day, crop leaves experience many shade events and the speed of photosynthetic adjustment to this dynamic environment strongly affects daily carbon gain. Rubisco activity is particularly important because it depends on the speed and extent of deactivation in shade and recovers slowly on return to sun. Here, direct biochemical measurements showed a much faster rate of Rubisco deactivation in cowpea than prior estimates inferred from dynamics of leaf gas exchange in other species1-3. Shade-induced deactivation was driven by decarbamylation, and half-times for both deactivation in shade and activation in saturating light were shorter than estimates from gas exchange (≤53% and 79%, respectively). Incorporating these half-times into a model of diurnal canopy photosynthesis predicted a 21% diurnal loss of productivity and suggests slowing Rubisco deactivation during shade is an unexploited opportunity for improving crop productivity.
Collapse
Affiliation(s)
- Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Rhiannon Page
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen P Long
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Departments of Plant Biology and of Crop Sciences, Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
31
|
Sakoda K, Taniyoshi K, Yamori W, Tanaka Y. Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions. PHYSIOLOGIA PLANTARUM 2022; 174:e13603. [PMID: 34807462 DOI: 10.1111/ppl.13603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is a major limiting factor for crop growth and yield. Water availability in the field can cyclically change between drought and rewatering conditions, depending on precipitation patterns. Concurrently, light intensity under field conditions can fluctuate, inducing dynamic photosynthesis and transpiration during the crop growth period. The present study aimed to characterize carbon gain and water use in fluctuating light under drought and rewatering conditions in two major crops, namely rice and soybean. We conducted gas exchange measurements under fluctuating light conditions with rice and soybean plants exposed to drought treatment (9-13 days) imposed by withholding water and subsequent rewatering treatment (8-9 days). Drought stress significantly reduced the maximum CO2 assimilation rate (A) in soybean but not in rice. Under drought conditions, A increased after a step increase in light and then gradually decreased in both crops, resulting in the significant reduction of steady-state A in rice and soybean. Moreover, drought stress delayed photosynthetic induction in both crops even when it had relatively small impact on maximum A. These results suggest that the drought effects on photosynthesis should be evaluated based on induction, maximum, and steady states. The delayed photosynthetic induction under drought owing to the reduced gas diffusional conductance via stomata resulted in a substantial loss of leaf carbon gain under fluctuating light conditions. Meanwhile, rewatering, after drought, completely recovered photosynthesis under fluctuating light in both crops. Therefore, the stability of photosynthetic induction can be a promising target to improve drought tolerance during crop breeding in the future.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Kazuki Taniyoshi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
32
|
Liu T, Barbour MM, Yu D, Rao S, Song X. Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. THE NEW PHYTOLOGIST 2022; 233:360-372. [PMID: 34601732 DOI: 10.1111/nph.17757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Past studies have established mesophyll diffusion conductance to CO2 (gm ) as a variable and significant limitation to plant photosynthesis under steady-state conditions. However, the role of gm in influencing photosynthesis (A) during the transient period of light induction is largely unknown. We combined gas exchange measurements with laser-enabled carbon isotope discrimination measurements to assess gm during photosynthetic induction, using Arabidopsis as the measurement species. Our measurements revealed three key findings: (1) we found that the rate at which gm approached steady state during induction was not necessarily faster than the induction rate of the carboxylation process, contradictory to what has been suggested in previous studies; (2) gm displayed a strong and consistent coordination with A under both induction and steady-state settings, hinting that the mechanism driving gm -A coupling does not require physiological stability as a prerequisite; and (3) photosynthetic limitation analysis of our data revealed that when integrated over the entire induction period, the relative limitation of A imposed by gm can be as high as > 35%. The present study provides the first demonstration of the important role of gm in limiting CO2 assimilation during photosynthetic induction, thereby pointing to a need for more research attention to be devoted to gm in future induction studies.
Collapse
Affiliation(s)
- Tao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Margaret M Barbour
- Te Aka Mātuatua - School of Science, The University of Waikato, Hamilton, 3240, New Zealand
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Sen Rao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
33
|
Kang H, Zhu T, Zhang Y, Ke X, Sun W, Hu Z, Zhu X, Shen H, Huang Y, Tang Y. Elevated CO 2 Enhances Dynamic Photosynthesis in Rice and Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:727374. [PMID: 34659292 PMCID: PMC8517259 DOI: 10.3389/fpls.2021.727374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Crops developed under elevated carbon dioxide (eCO2) exhibit enhanced leaf photosynthesis under steady states. However, little is known about the effect of eCO2 on dynamic photosynthesis and the relative contribution of the short-term (substrate) and long-term (acclimation) effects of eCO2. We grew an Oryza sativa japonica cultivar and a Triticum aestivum cultivar under 400 μmol CO2 mol-1 air (ambient, A) and 600 μmol CO2 mol-1 air (elevated, E). Regardless of growth [CO2], the photosynthetic responses to the sudden increase and decrease in light intensity were characterized under 400 (a) or 600 μmol CO2 mol-1 air (e). The Aa, Ae, Ea, and Ee treatments were employed to quantify the acclimation effect (Ae vs. Ee and Aa vs. Ea) and substrate effect (Aa vs. Ae and Ea vs. Ee). In comparison with the Aa treatment, both the steady-state photosynthetic rate (P N) and induction state (IS) were higher under the Ae and Ee treatments but lower under the Ea treatment in both species. However, IS reached at the 60 sec after the increase in light intensity, the time required for photosynthetic induction, and induction efficiency under Ae and Ee treatment did not differ significantly from those under Aa treatment. The substrate effect increased the accumulative carbon gain (ACG) during photosynthetic induction by 45.5% in rice and by 39.3% in wheat, whereas the acclimation effect decreased the ACG by 18.3% in rice but increased it by 7.5% in wheat. Thus, eCO2, either during growth or at measurement, enhances the dynamic photosynthetic carbon gain in both crop species. This indicates that photosynthetic carbon loss due to an induction limitation may be reduced in the future, under a high-CO2 world.
Collapse
Affiliation(s)
- Huixing Kang
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ting Zhu
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xinran Ke
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Hu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xinguang Zhu
- Center of Excellence for Molecular Plant Sciences, State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yao Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Tang
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Liu J, Zhang J, Estavillo GM, Luo T, Hu L. Leaf N content regulates the speed of photosynthetic induction under fluctuating light among canola genotypes (Brassica napus L.). PHYSIOLOGIA PLANTARUM 2021; 172:1844-1852. [PMID: 33748976 DOI: 10.1111/ppl.13390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 05/18/2023]
Abstract
Nitrogen is an essential element for plant growth, and the relationship between leaf N content and photosynthesis has been widely studied in different species under steady-state light. However, under natural conditions, the light intensity at the leaf level is always changing, inherently heterogeneous in time and space. Therefore, the effect of leaf N content on photosynthesis under dynamic light conditions needs further study. At present, the effects of leaf N content on leaf non-steady-state photosynthesis have not been reported in canola (Brassica napus L.). To clarify the relationship between leaf N content and the speed of the response leaf gas exchange to variations in light intensity, eight genotypes of canola varying in leaf N content were used to study the temporal response of gas exchange to a step increase in irradiance. We found there were significant differences in non-steady-state photosynthesis, physiological characteristics, and anatomical traits across genotypes (the maximum amplitude was about fivefold), despite the lack of contrast under normal, steady-state photosynthesis. In addition, initial stomatal conductance to water vapor in the darkness and leaf N content per leaf area were negatively correlated with the time required to achieve 50% and 100% of the maximum photosynthetic rate. Contrarily, the time required to reach 50% of the maximum stomatal conductance was positively correlated with the time required to achieve 90% of the maximum photosynthetic rate across genotypes. It is concluded that the genotypes of canola with higher N content per leaf area show a faster induction of photosynthesis to fluctuating light conditions.
Collapse
Affiliation(s)
- Jiahuan Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Tao Luo
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyong Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Acevedo‐Siaca LG, Dionora J, Laza R, Paul Quick W, Long SP. Dynamics of photosynthetic induction and relaxation within the canopy of rice and two wild relatives. Food Energy Secur 2021; 10:e286. [PMID: 34594547 PMCID: PMC8459282 DOI: 10.1002/fes3.286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Wild rice species are a source of genetic material for improving cultivated rice (Oryza sativa) and a means to understand its evolutionary history. Renewed interest in non-steady-state photosynthesis in crops has taken place due its potential in improving sustainable productivity. Variation was characterized for photosynthetic induction and relaxation at two leaf canopy levels in three rice species. The wild rice accessions had 16%-40% higher rates of leaf CO2 uptake (A) during photosynthetic induction relative to the O. sativa accession. However, O. sativa had an overall higher photosynthetic capacity when compared to accessions of its wild progenitors. Additionally, O. sativa had a faster stomatal closing response, resulting in higher intrinsic water-use efficiency during high-to-low light transitions. Leaf position in the canopy had a significant effect on non-steady-state photosynthesis, but not steady-state photosynthesis. The results show potential to utilize wild material to refine plant models and improve non-steady-state photosynthesis in cultivated rice for increased productivity.
Collapse
Affiliation(s)
- Liana G. Acevedo‐Siaca
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)Mexico DFMexico
| | | | - Rebecca Laza
- C4 Rice CenterInternational Rice Research InstituteLos BañosPhilippines
| | - William Paul Quick
- C4 Rice CenterInternational Rice Research InstituteLos BañosPhilippines
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Stephen P. Long
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
36
|
Rivas A, Liu K, Heuvelink E. LED Intercanopy Lighting in Blackberry During Spring Improves Yield as a Result of Increased Number of Fruiting Laterals and Has a Positive Carryover Effect on Autumn Yield. FRONTIERS IN PLANT SCIENCE 2021; 12:620642. [PMID: 34386022 PMCID: PMC8354201 DOI: 10.3389/fpls.2021.620642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
High market price and low availability of local winter and spring production has stimulated production of blackberries in glasshouses at northern latitudes. For this production, light is the main limiting factor. We investigated the potential of intercanopy lighting (ICL) using light emitting diodes (LEDs) to improve blackberry fruit yield in a crop with a spring and an autumn production cycle. During the spring production cycle three light treatments were applied: only natural light (no ICL), 93 or 185 μmol m-2 s-1 ICL In summer the lateral shoots were cut back and 93 μmol m-2 s-1 ICL was applied to all plants after cutting back, investigating a possible carryover effect of supplemental light in spring on autumn production. Fresh fruit yield in spring increased by 79 and 122% with 93 and 185 μmol m-2 s-1 ICL, respectively, compared to no ICL. This represents 3.6 and 2.8% increase in harvestable product for every additional 1% of light. A yield component analysis and leaf photosynthesis measurements were conducted. Maximum photosynthetic capacity (A max) for leaves at 185 μmol m-2 s-1 ICL was about 50% higher, and LAI was 41% higher compared to no ICL. ICL increased the number of fruiting laterals per cane, and this explained 75% of the increase in yield. ICL at 185 μmol m-2 s-1 resulted in a higher yield compared to no ICL, primarily as a result of higher total dry matter production. Furthermore, a higher fraction of dry matter partitioned to the fruits (0.59 compared to 0.52) contributed to yield increase, whereas fruit dry matter content and fruit quality (sugar and acid content) was not affected by ICL. Averaged over the three light treatments autumn yield was 47% lower than spring yield. Autumn yield was 10% higher for plants at ICL 93 μmol m-2 s-1 in spring and 36% higher for plants at 185 μmol m-2 s-1 in spring compared to no ICL in spring. This increased autumn yield was caused by more fruiting laterals (less necrotic buds). It is concluded that management practices in spring can have a carryover effect on the autumn production. This is the first scientific paper on the potential for applying LED ICL in blackberries. Further research should focus on optimal intensity of ICL, positioning of supplementary lighting and economic feasibility.
Collapse
|
37
|
Sakoda K, Yamori W, Groszmann M, Evans JR. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. PLANT PHYSIOLOGY 2021; 185:146-160. [PMID: 33631811 PMCID: PMC8133641 DOI: 10.1093/plphys/kiaa011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 05/07/2023]
Abstract
The dynamics of leaf photosynthesis in fluctuating light affects carbon gain by plants. Mesophyll conductance (gm) limits CO2 assimilation rate (A) under the steady state, but the extent of this limitation under non-steady-state conditions is unknown. In the present study, we aimed to characterize the dynamics of gm and the limitations to A imposed by gas diffusional and biochemical processes under fluctuating light. The induction responses of A, stomatal conductance (gs), gm, and the maximum rate of RuBP carboxylation (Vcmax) or electron transport (J) were investigated in Arabidopsis (Arabidopsis thaliana (L.)) and tobacco (Nicotiana tabacum L.). We first characterized gm induction after a change from darkness to light. Each limitation to A imposed by gm, gs and Vcmax or J was significant during induction, indicating that gas diffusional and biochemical processes limit photosynthesis. Initially, gs imposed the greatest limitation to A, showing the slowest response under high light after long and short periods of darkness, assuming RuBP-carboxylation limitation. However, if RuBP-regeneration limitation was assumed, then J imposed the greatest limitation. gm did not vary much following short interruptions to light. The limitation to A imposed by gm was the smallest of all the limitations for most of the induction phase. This suggests that altering induction kinetics of mesophyll conductance would have little impact on A following a change in light. To enhance the carbon gain by plants under naturally dynamic light environments, attention should therefore be focused on faster stomatal opening or activation of electron transport.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo 188-0002, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo 188-0002, Tokyo, Japan
| | - Michael Groszmann
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Territory 2601, Australia
| | - John R Evans
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Territory 2601, Australia
| |
Collapse
|
38
|
Barratt GE, Sparkes DL, McAusland L, Murchie EH. Anisohydric sugar beet rapidly responds to light to optimize leaf water use efficiency utilizing numerous small stomata. AOB PLANTS 2021; 13:plaa067. [PMID: 33442465 PMCID: PMC7780706 DOI: 10.1093/aobpla/plaa067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
Under conditions of high transpiration and low soil water availability, the demand for water can exceed supply causing a reduction in water potential and a loss of cell turgor (wilting). Regulation of stomatal aperture mediates the loss of water vapour (g s), which in turn is dependent in part on the anatomical characteristics of stomatal density (SD) and stomatal size (SS). Anisohydric sugar beet (Beta vulgaris) is atypical, exhibiting wilting under high soil water availability. Spinach (Spinacia oleracea) belongs to the same family Chenopodiaceae s.s., but demonstrates a more typical wilting response. To investigate the role of stomatal dynamics in such behaviours, sugar beet and spinach leaves were exposed to step-changes in photosynthetic photon flux density (PPFD) from 250 to 2500 µmol m-2 s-1. Using a four log-logistic function, the maximum rate of stomatal opening was estimated. Concurrent measurements of SD and SS were taken for both species. While sugar beet coupled faster opening with smaller, more numerous stomata, spinach showed the converse. After exposure to drought, maximum g s was reduced in sugar beet but still achieved a similar speed of opening. It is concluded that sugar beet stomata respond rapidly to changes in PPFD with a high rate and magnitude of opening under both non-droughted and droughted conditions. Such a response may contribute to wilting, even under high soil water availability, but enables photosynthesis to be better coupled with increasing PPFD.
Collapse
Affiliation(s)
| | - Debbie L Sparkes
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Loughborough, UK
- Corresponding author’s e-mail address:
| |
Collapse
|
39
|
Taylor SH, Orr DJ, Carmo-Silva E, Long SP. During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops. PLANT, CELL & ENVIRONMENT 2020; 43:2623-2636. [PMID: 32740963 DOI: 10.1111/pce.13862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Interventions to increase crop radiation use efficiency rely on understanding of how biochemical and stomatal limitations affect photosynthesis. When leaves transition from shade to high light, slow increases in maximum Rubisco carboxylation rate and stomatal conductance limit net CO2 assimilation for several minutes. However, as stomata open intercellular [CO2 ] increases, so electron transport rate could also become limiting. Photosynthetic limitations were evaluated in three important Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. Measurements of induction after a period of shade showed that net CO2 assimilation by B. rapa and B. napus saturated by 10 min. A new method of analyzing limitations to induction by varying intercellular [CO2 ] showed this was due to co-limitation by Rubisco and electron transport. By contrast, in B. oleracea persistent Rubisco limitation meant that CO2 assimilation was still recovering 15 min after induction. Correspondingly, B. oleracea had the lowest Rubisco total activity. The methodology developed, and its application here, shows a means to identify the basis of variation in photosynthetic efficiency in fluctuating light, which could be exploited in breeding and bioengineering to improve crop productivity.
Collapse
Affiliation(s)
- Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Stephen P Long
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Departments of Plant Biology and of Crop Sciences, Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
40
|
Sakoda K, Yamori W, Shimada T, Sugano SS, Hara-Nishimura I, Tanaka Y. Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2020; 11:589603. [PMID: 33193542 PMCID: PMC7641607 DOI: 10.3389/fpls.2020.589603] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/29/2020] [Indexed: 05/02/2023]
Abstract
Stomatal density (SD) is closely associated with photosynthetic and growth characteristics in plants. In the field, light intensity can fluctuate drastically within a day. The objective of the present study is to examine how higher SD affects stomatal conductance (g s ) and CO2 assimilation rate (A) dynamics, biomass production and water use under fluctuating light. Here, we compared the photosynthetic and growth characteristics under constant and fluctuating light among three lines of Arabidopsis thaliana (L.): the wild type (WT), STOMAGEN/EPFL9-overexpressing line (ST-OX), and EPIDERMAL PATTERNING FACTOR 1 knockout line (epf1). ST-OX and epf1 showed 268.1 and 46.5% higher SD than WT (p < 0.05). Guard cell length of ST-OX was 10.0% lower than that of WT (p < 0.01). There were no significant variations in gas exchange parameters at steady state between WT and ST-OX or epf1, although these parameters tended to be higher in ST-OX and epf1 than WT. On the other hand, ST-OX and epf1 showed faster A induction than WT after step increase in light owing to the higher g s under initial dark condition. In addition, ST-OX and epf1 showed initially faster g s induction and, at the later phase, slower g s induction. Cumulative CO2 assimilation in ST-OX and epf1 was 57.6 and 78.8% higher than WT attributable to faster A induction with reduction of water use efficiency (WUE). epf1 yielded 25.6% higher biomass than WT under fluctuating light (p < 0.01). In the present study, higher SD resulted in faster photosynthetic induction owing to the higher initial g s . epf1, with a moderate increase in SD, achieved greater biomass production than WT under fluctuating light. These results suggest that higher SD can be beneficial to improve biomass production in plants under fluctuating light conditions.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shigeo S. Sugano
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- JST, PRESTO, Kyoto, Japan
| |
Collapse
|
41
|
Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. ANNALS OF BOTANY 2020; 126:511-537. [PMID: 31641747 PMCID: PMC7489092 DOI: 10.1093/aob/mcz171] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
| | - Dušan Lazár
- Department of Biophysics, Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
- University of Missouri, Columbia, MO, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
42
|
Zhang Y, Kaiser E, Marcelis LFM, Yang Q, Li T. Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass. PLANT, CELL & ENVIRONMENT 2020; 43:2192-2206. [PMID: 32463133 DOI: 10.1111/pce.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m-2 s-1 ) or FL (5-650 μmol m-2 s-1 ), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
43
|
Kang HX, Zhu XG, Yamori W, Tang YH. Concurrent Increases in Leaf Temperature With Light Accelerate Photosynthetic Induction in Tropical Tree Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:1216. [PMID: 32849753 PMCID: PMC7427472 DOI: 10.3389/fpls.2020.01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 05/30/2023]
Abstract
Leaf temperature changes with incident light intensity, but it is unclear how the concurrent changes influence leaf photosynthesis. We examined the time courses of CO2 gas exchanges and chlorophyll fluorescence of seedling leaves in four tropical tree species in response to lightflecks under three different temperature conditions. The three conditions were two constant temperatures at 30°C (T 30) and 40°C (T 40), and a simulated gradually changing temperature from 30 to 40°C (T dyn). The time required to reach 50% of the full photosynthetic induction under T 40 was similar to, or even larger than, that under T 30. However, the induction of assimilation rate (A) and electron transport rate of photosystem II (ETR II) and Rubisco activation process were generally accelerated under T dyn compared to those at either T 30 or T 40. The acceleration in photosynthetic induction under T dyn was significantly greater in the shade-tolerant species than in the shade-intolerant species. A modified photosynthetic limitation analysis indicated that the acceleration was likely to be mainly due to ETR II at the early stage of photosynthetic induction. The study suggests that concurrent increases in leaf temperature with light may increase leaf carbon gain under highly fluctuating light in tropical tree seedlings, particularly in shade-tolerant species.
Collapse
Affiliation(s)
- Hui-Xing Kang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences and State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, China
| | - Wataru Yamori
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yan-Hong Tang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
44
|
Acevedo‐Siaca LG, Coe R, Wang Y, Kromdijk J, Quick WP, Long SP. Variation in photosynthetic induction between rice accessions and its potential for improving productivity. THE NEW PHYTOLOGIST 2020; 227:1097-1108. [PMID: 32124982 PMCID: PMC7383871 DOI: 10.1111/nph.16454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
Photosynthetic induction describes the transient increase in leaf CO2 uptake with an increase in light. During induction, efficiency is lower than at steady state. Under field conditions of fluctuating light, this lower efficiency during induction may cost > 20% of potential crop assimilation. Accelerating induction would boost photosynthetic and resource-use efficiencies. Variation between rice accessions and potential for accelerating induction was analysed by gas exchange. Induction during shade to sun transitions of 14 accessions representing five subpopulations from the 3000 Rice Genome Project Panel (3K RGP) was analysed. Differences of 109% occurred in the CO2 fixed during the first 300 s of induction, 117% in the half-time to completion of induction, and 65% in intrinsic water-use efficiency during induction, between the highest and lowest performing accessions. Induction in three accessions with contrasting responses (AUS 278, NCS 771 A and IR64-21) was compared for a range of [CO2 ] to analyse limitations. This showed in vivo capacity for carboxylation at Rubisco (Vc,max ), and not stomata, as the primary limitation to induction, with significant differences between accessions. Variation in nonsteady-state efficiency greatly exceeded that at steady state, suggesting a new and more promising opportunity for selection of greater crop photosynthetic efficiency in this key food crop.
Collapse
Affiliation(s)
| | - Robert Coe
- C4 Rice CenterInternational Rice Research InstituteLos BañosLaguna4031Philippines
- High Resolution Plant Phenomics CentreCommonwealth Scientific and Industrial Research Organization (CSIRO)Plant IndustryCanberraACT2601Australia
| | - Yu Wang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - W. Paul Quick
- C4 Rice CenterInternational Rice Research InstituteLos BañosLaguna4031Philippines
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Stephen P. Long
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
45
|
Li YT, Li Y, Li YN, Liang Y, Sun Q, Li G, Liu P, Zhang ZS, Gao HY. Dynamic light caused less photosynthetic suppression, rather than more, under nitrogen deficit conditions than under sufficient nitrogen supply conditions in soybean. BMC PLANT BIOLOGY 2020; 20:339. [PMID: 32680459 PMCID: PMC7368695 DOI: 10.1186/s12870-020-02516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/23/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plants are always exposed to dynamic light. The photosynthetic light use efficiency of leaves is lower in dynamic light than in uniform irradiance. Research on the influence of environmental factors on dynamic photosynthesis is very limited. Nitrogen is critical for plants, especially for photosynthesis. Low nitrogen (LN) decreases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and thus limits photosynthesis. The decrease in Rubisco also delays photosynthetic induction in LN leaves; therefore, we hypothesized that the difference of photosynthetic CO2 fixation between uniform and dynamic light will be greater in LN leaves compared to leaves with sufficient nitrogen supply. RESULTS To test this hypothesis, soybean plants were grown under low or high nitrogen (HN), and the photosynthetic gas exchange, enzyme activity and protein amount in leaves were measured under uniform and dynamic light. Unexpectedly, dynamic light caused less photosynthetic suppression, rather than more, in LN leaves than in HN leaves. The underlying mechanism was also clarified. Short low-light (LL) intervals did not affect Rubisco activity but clearly deactivated fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase), indicating that photosynthetic induction after a LL interval depends on the reactivation of FBPase and SBPase rather than Rubisco. In LN leaves, the amount of Rubisco decreased more than FBPase and SBPase, so FBPase and SBPase were present in relative excess. A lower fraction of FBPase and SBPase needs to be activated in LN leaves for photosynthesis recovery during the high-light phase of dynamic light. Therefore, photosynthetic recovery is faster in LN leaves than in HN leaves, which relieves the photosynthetic suppression caused by dynamic light in LN leaves. CONCLUSIONS Contrary to our expectations, dynamic light caused less photosynthetic suppression, rather than more, in LN leaves than in HN leaves of soybean. This is the first report of a stress condition alleviating the photosynthetic suppression caused by dynamic light.
Collapse
Affiliation(s)
- Yu-Ting Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Ying Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Yue-Nan Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Ying Liang
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Qiang Sun
- Tai'an Testing Center For Food And Drug Control, Tai'an, Shandong Province, China
| | - Geng Li
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province, China.
| | - Peng Liu
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province, China.
| | - Zi-Shan Zhang
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China.
| | - Hui-Yuan Gao
- State Key Lab of Crop Biology, Tai'an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| |
Collapse
|
46
|
Wilson S, Ruban AV. Rethinking the Influence of Chloroplast Movements on Non-photochemical Quenching and Photoprotection. PLANT PHYSIOLOGY 2020; 183:1213-1223. [PMID: 32404415 PMCID: PMC7333707 DOI: 10.1104/pp.20.00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 05/25/2023]
Abstract
Under blue light, plant chloroplasts relocate to different areas of the cell. The photoreceptor phototropin2 (phot2) mediates the chloroplast movement mechanism under excess blue light alongside the chloroplast unusual positioning1 (chup1) protein. Recently, it has been proposed that leaf transmittance changes associated with chloroplast relocation affect measurements of nonphotochemical quenching (NPQ), resulting in kinetic differences due to these movements (termed "qM"). We evaluated these claims using Arabidopsis (Arabidopsis thaliana) knock-out mutants lacking either phot2 or chup1 and analyzed the kinetics of both the onset and recovery of NPQ under equivalent intensities of both red and blue light. We also evaluated the photoprotective ability of chloroplast movements both during the early onset of photoinhibition and under sustained excess light. We monitored photoinhibition using the chlorophyll fluorescence parameter of photochemical quenching in the dark, which measures the redox state of QA within PSII without any of the complications of traditional F v /F m measurements. While there were noticeable differences between the responses under red and blue light, the chloroplast movement mechanism had no effect on the rate or amplitude of NPQ onset or recovery. Therefore, we were unable to replicate the "qM" component and its corresponding influence on the kinetics of NPQ in Arabidopsis grown under "shade" conditions. Furthermore, chloroplast relocation had no effect on the high-light tolerance of these plants. These data cast doubt upon the existence of a chloroplast movement-dependent component of NPQ Therefore, the influence of chloroplast movements on photoprotection should be thoroughly reevaluated.
Collapse
Affiliation(s)
- Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
47
|
Zhang Q, Peng S, Li Y. Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5259-5269. [PMID: 31145797 PMCID: PMC6793446 DOI: 10.1093/jxb/erz267] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/22/2019] [Indexed: 05/02/2023]
Abstract
The rapid response of stomatal conductance (gs) to fluctuating irradiance is of great importance to maximize carbon assimilation while minimizing water loss. Smaller stomata have been proven to have a faster response rate than larger ones, but most of these studies have been conducted with forest trees. In the present study, the effects of stomatal anatomy on the kinetics of gs and photosynthesis were investigated in 16 Oryza genotypes. Light-induced stomatal opening includes an initial time lag (λ) followed by an exponential increase. Smaller stomata had a larger maximum stomatal conductance increase rate (Slmax) during the exponential increase phase, but showed a longer time lag and a lower initial stomatal conductance (gs,initial) at low light. Stomatal size was, surprisingly, negatively correlated with the time required to reach 50% of maximum gs and photosynthesis (T50%gs and T50%A), which was shown to be positively correlated with λ and negatively correlated with gs,initial. With a lower gs,initial and a larger λ, small stomata showed a faster decrease of intercellular CO2 concentration (Ci) during the induction process, which may have led to a slower apparent Rubisco activation rate. Therefore, smaller stomata do not always benefit photosynthesis as reported before; the influence of stomatal size on dynamic photosynthesis is also correlated with λ and gs,initial.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | |
Collapse
|
48
|
Adachi S, Tanaka Y, Miyagi A, Kashima M, Tezuka A, Toya Y, Kobayashi S, Ohkubo S, Shimizu H, Kawai-Yamada M, Sage RF, Nagano AJ, Yamori W. High-yielding rice Takanari has superior photosynthetic response to a commercial rice Koshihikari under fluctuating light. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5287-5297. [PMID: 31257443 PMCID: PMC6793460 DOI: 10.1093/jxb/erz304] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/20/2019] [Indexed: 05/13/2023]
Abstract
Leaves within crop canopies experience variable light over the course of a day, which greatly affects photosynthesis and crop productivity. Little is known about the mechanisms of the photosynthetic response to fluctuating light and their genetic control. Here, we examined gas exchange, metabolite levels, and chlorophyll fluorescence during the photosynthetic induction response in an Oryza sativa indica cultivar with high yield (Takanari) and a japonica cultivar with lower yield (Koshihikari). Takanari had a faster induction response to sudden increases in light intensity than Koshihikari, as demonstrated by faster increases in net CO2 assimilation rate, stomatal conductance, and electron transport rate. In a simulated light regime that mimicked a typical summer day, the faster induction response in Takanari increased daily CO2 assimilation by 10%. The faster response of Takanari was explained in part by its maintenance of a larger pool of Calvin-Benson cycle metabolites. Together, the rapid responses of electron transport rate, metabolic flux, and stomatal conductance in Takanari contributed to the greater daily carbon gain under fluctuating light typical of natural environments.
Collapse
Affiliation(s)
- Shunsuke Adachi
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Yu Tanaka
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani, Seta Oe-cho, Otsu, Shiga, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani, Seta Oe-cho, Otsu, Shiga, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Shunzo Kobayashi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Satoshi Ohkubo
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Atsushi J Nagano
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
- Faculty of Agriculture, Ryukoku University, Yokotani, Seta Oe-cho, Otsu, Shiga, Japan
| | - Wataru Yamori
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
49
|
Zhang MM, Fan DY, Murakami K, Badger MR, Sun GY, Chow WS. Partially Dissecting Electron Fluxes in Both Photosystems in Spinach Leaf Disks during Photosynthetic Induction. PLANT & CELL PHYSIOLOGY 2019; 60:2206-2219. [PMID: 31271439 DOI: 10.1093/pcp/pcz114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Photosynthetic induction, a gradual increase in photosynthetic rate on a transition from darkness or low light to high light, has ecological significance, impact on biomass accumulation in fluctuating light and relevance to photoprotection in strong light. However, the experimental quantification of the component electron fluxes in and around both photosystems during induction has been rare. Combining optimized chlorophyll fluorescence, the redox kinetics of P700 [primary electron donor in Photosystem I (PSI)] and membrane inlet mass spectrometry in the absence/presence of inhibitors/mediator, we partially estimated the components of electron fluxes in spinach leaf disks on transition from darkness to 1,000 �mol photons�m-2�s-1 for up to 10 min, obtaining the following findings: (i) the partitioning of energy between both photosystems did not change noticeably; (ii) in Photosystem II (PSII), the combined cyclic electron flow (CEF2) and charge recombination (CR2) to the ground state decreased gradually toward 0 in steady state; (iii) oxygen reduction by electrons from PSII, partly bypassing PSI, was small but measurable; (iv) cyclic electron flow around PSI (CEF1) peaked before becoming somewhat steady; (v) peak magnitudes of some of the electron fluxes, all probably photoprotective, were in the descending order: CEF1 > CEF2 + CR2 > chloroplast O2 uptake; and (vi) the chloroplast NADH dehydrogenase-like complex appeared to aid the antimycin A-sensitive CEF1. The results are important for fine-tuning in silico simulation of in vivo photosynthetic electron transport processes; such simulation is, in turn, necessary to probe partial processes in a complex network of interactions in response to environmental changes.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- Department of Plant Physiology, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Da-Yong Fan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Keach Murakami
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
- National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center (HARC), Hitsujigaoka 1, Toyohira, Sapporo, Japan
| | - Murray R Badger
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Guang-Yu Sun
- Department of Plant Physiology, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Wah Soon Chow
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
50
|
Zhang Y, Kaiser E, Zhang Y, Yang Q, Li T. Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). PHYSIOLOGIA PLANTARUM 2019; 167:144-158. [PMID: 30426522 DOI: 10.1111/ppl.12876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 05/09/2023]
Abstract
Plants are often subjected to rapidly alternating light intensity and quality. While both short- and long-term changes in red and blue light affect leaf photosynthesis, their impact on dynamic photosynthesis is not well documented. It was tested how dynamic and steady-state photosynthetic traits were affected by red/blue ratios, either during growth or during measurements, in tomato leaves. Four red/blue ratios were used: monochromatic red (R100 ), monochromatic blue (B100 ), a red/blue light ratio of 9:1 (R90 B10 ) and a red/blue light ratio of 7:3 (R70 B30 ). R100 grown leaves showed decreased photosynthetic capacity (maximum rates of light-saturated photosynthesis, carboxylation, electron transport and triose phosphate use), leaf thickness and nitrogen concentrations. Acclimation to various red/blue ratios had limited effects on photosynthetic induction in dark-adapted leaves. B100 -grown leaves had a approximately 15% larger initial NPQ transient than the other treatments, which may be beneficial for photoprotection under fluctuating light. B100 -grown leaves also showed faster stomatal closure when exposed to low light intensity, which likely resulted from smaller stomata and higher stomatal density. When measured under different red/blue ratios, stomatal opening rate and photosynthetic induction rate were hardly accelerated by increased fractions of blue light in both growth chamber-grown leaves and greenhouse-grown leaves. However, steady-state photosynthesis rate 30 min after photosynthetic induction was strongly reduced in leaves exposed to B100 during the measurement. We conclude that varying red/blue light ratios during growth and measurement strongly affects steady-state photosynthesis, but has limited effects on photosynthetic induction rate.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
- Regulation of Photosynthesis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, Germany
| | - Yating Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| |
Collapse
|