1
|
Saldanha LL, Allard PM, Dilarri G, Codesido S, González-Ruiz V, Queiroz EF, Ferreira H, Wolfender JL. Metabolomic- and Molecular Networking-Based Exploration of the Chemical Responses Induced in Citrus sinensis Leaves Inoculated with Xanthomonas citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14693-14705. [PMID: 36350271 DOI: 10.1021/acs.jafc.2c05156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.
Collapse
Affiliation(s)
- Luiz Leonardo Saldanha
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pierre-Marie Allard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Departement of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Guilherme Dilarri
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Santiago Codesido
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Henrique Ferreira
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM. Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes. HORTICULTURE RESEARCH 2022; 9:uhac217. [PMID: 36479580 PMCID: PMC9720446 DOI: 10.1093/hr/uhac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Botrytis cinerea is responsible for the gray mold disease, severely affecting Vitis vinifera grapevine and hundreds of other economically important crops. However, many mechanisms of this fruit-pathogen interaction remain unknown. The combined analysis of the transcriptome and metabolome of green fruits infected with B. cinerea from susceptible and tolerant genotypes was never performed in any fleshy fruit, mostly because green fruits are widely accepted to be resistant to this fungus. In this work, peppercorn-sized fruits were infected in the field or mock-treated, and berries were collected at green (EL32) stage from a susceptible (Trincadeira) and a tolerant (Syrah) variety. RNAseq and GC-MS data suggested that Syrah exhibited a pre-activated/basal defense relying on specific signaling pathways, hormonal regulation, namely jasmonate and ethylene metabolisms, and linked to phenylpropanoid metabolism. In addition, putative defensive metabolites such as shikimic, ursolic/ oleanolic, and trans-4-hydroxy cinnamic acids, and epigallocatechin were more abundant in Syrah than Trincadeira before infection. On the other hand, Trincadeira underwent relevant metabolic reprogramming upon infection but was unable to contain disease progression. RNA-seq analysis of the fungus in planta revealed an opposite scenario with higher gene expression activity within B. cinerea during infection of the tolerant cultivar and less activity in infected Trincadeira berries. The results suggested an activated virulence state during interaction with the tolerant cultivar without visible disease symptoms. Together, this study brings novel insights related to early infection strategies of B. cinerea and the green berry defense against necrotrophic fungi.
Collapse
Affiliation(s)
- Flávio Soares
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Pimentel
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Catarina Neves
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Marcelo Pereira
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cecilia Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
3
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
4
|
Calderón-Pérez B, Ramírez-Pool JA, Núñez-Muñoz LA, Vargas-Hernández BY, Camacho-Romero A, Lara-Villamar M, Jiménez-López D, Xoconostle-Cázares B, Ruiz-Medrano R. Engineering Macromolecular Trafficking Into the Citrus Vasculature. FRONTIERS IN PLANT SCIENCE 2022; 13:818046. [PMID: 35178061 PMCID: PMC8844563 DOI: 10.3389/fpls.2022.818046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The plant vasculature is a central organ for long-distance transport of nutrients and signaling molecules that coordinate vegetative and reproductive processes, and adaptation response mechanisms to biotic and abiotic stress. In angiosperms, the sieve elements are devoid of nuclei, thus depending on the companion cells for the synthesis of RNA and proteins, which constitute some of the systemic signals that coordinate these processes. Massive analysis approaches have identified proteins and RNAs that could function as long-range signals in the phloem translocation stream. The selective translocation of such molecules could occur as ribonucleoprotein complexes. A key molecule facilitating this movement in Cucurbitaceae is the phloem protein CmPP16, which can facilitate the movement of RNA and other proteins into the sieve tube. The CmPP16 ortholog in Citrus CsPP16 was characterized in silico to determine its potential capacity to associate with other mobile proteins and its enrichment in the vascular tissue. The systemic nature of CsPP16 was approached by evaluating its capacity to provide phloem-mobile properties to antimicrobial peptides (AMPs), important in the innate immune defense. The engineering of macromolecular trafficking in the vasculature demonstrated the capacity to mobilize translationally fused peptides into the phloem stream for long-distance transport. The translocation into the phloem of AMPs could mitigate the growth of Candidatus Liberibacter asiaticus, with important implications for crop defense; this system also opens the possibility of translocating other molecules to modulate traits, such as plant growth, defense, and plant productivity.
Collapse
|
5
|
Zhang H, Ye Z, Liu Z, Sun Y, Li X, Wu J, Zhou G, Wan Y. The Cassava NBS-LRR Genes Confer Resistance to Cassava Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:790140. [PMID: 35178059 PMCID: PMC8844379 DOI: 10.3389/fpls.2022.790140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 05/25/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Genes encoding nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are among the most important disease resistance genes in plants that are specifically involved in the response to diverse pathogens. However, the in vivo roles of NBS-LRR remain unclear in cassava (Manihot esculenta). In this study, we isolated four MeLRR genes and assessed their expression under salicylic acid (SA) treatment and Xam inoculation. Four MeLRR genes positively regulate cassava disease general resistance against Xam via virus-induced gene silencing (VIGS) and transient overexpression. During cassava-Xam interaction, MeLRRs positively regulated endogenous SA and reactive oxygen species (ROS) accumulation and pathogenesis-related gene 1 (PR1) transcripts. Additionally, we revealed that MeLRRs positively regulated disease resistance in Arabidopsis. These pathogenic microorganisms include Pseudomonas syringae pv. tomato, Alternaria brassicicola, and Botrytis cinerea. Our findings shed light on the molecular mechanism underlying the regulation of cassava resistance against Xam inoculation.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zi Ye
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhixin Liu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinyu Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Jiao Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
6
|
Trehalose: A mycogenic cell wall elicitor elicit resistance against leaf spot disease of broccoli and acts as a plant growth regulator. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00690. [PMID: 34987982 PMCID: PMC8711064 DOI: 10.1016/j.btre.2021.e00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022]
Abstract
Mycogenic cell wall elicitor was isolated from trichoderma atroviride. The isolated elicitor was identified as trehalose by LC-MS analysis. Seed priming with elicitor enhanced early germination and vigour. Primed plants induced resistance against leaf spot disease of brocolli. Trehalose sugar act as a bio-stimulant for growth promotion and plant defence.
Elicitors are biochemicals, and the cell wall-derived elicitors from fungi can trigger defence mechanisms in plants by increasing the phytoalexin accumulation when they encounter the pathogens. The main objective of this research was to purify and characterize a cell wall elicitor from Trichoderma atroviride (TaCWE) and evaluate the seed priming effect of that elicitor for inducing systemic resistance in broccoli plants against leaf spot disease. Amongst the tested TaCWE concentrations of the seed priming (5, 10, & 25 mg ml−1), 10.0 mg ml−1 showed significantly (P < 0.05) improved early emergence, the rate of germination at 94%, and observed seedling vigour of 2601. Also, elicitor (10 mg ml−1) treatment alone induced 57% plant protection. On the contrary, the elicitor treated and pathogen inoculated plants induced a notable 72% protection against leaf spot disease of broccoli caused by A. brassicicola. Thus, the primed seeds with elicitor showed induced disease resistance and plant growth promotion. The prominent molecule present in the purified extracted cell wall elicitor is confirmed as trehalose. The AFM analysis indicated the trehalose length and width as 10.16 µm and 2.148 µm, respectively. FTIR chromatogram further confirmed trehalose in abundance with traces of carbon, hydrogen, nitrogen, oxygen, and LC-MS profile with a single peak eluted with a retention time of 3.78 min. The findings of this study contribute to understanding better the role of trehalose, a biogenic cell-wall elicitor that can induce systemic resistance against leaf spot disease and regulate plant growth in the broccoli plants.
Collapse
|
7
|
da Silva AR, S Pinto KN, Maserti BE, Santos-Filho HP, Gesteira ADS. Systematic review of defense responses against Phytophthora and strategies to manage Phytophthora diseases in citrus. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:963-972. [PMID: 34127178 DOI: 10.1071/fp20349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Phytophthora spp. are the causal agents of gummosis or foot rot, fibrous root rot, and fruit brown rot diseases that affect the roots, trunk, and fruits of citrus trees, causing severe economic losses. This work presents an updated systematic review addressing the defence responses in citrus against Phytophthora and the strategies to manage Phytophthora diseases. Applying a new method of search based on an explicit, rigorous, and transparent methodology. For this purpose, a systematic literature review was conducted using the databases available for academic research. The main plant defence mechanisms reported in the cited papers are the hypersensitivity response, cell wall reinforcement, production of pathogenesis-related proteins, and expression of defence-related genes. Moreover, the main strategies to manage Phytophthora root rot are organic compounds in the soil and biological control with fungi and bacteria. In addition, inhibition of Phytophthora gummosis or canker by applying new oomycota fungicides and reducing the incidence of brown fruit rot through the application of potassium phosphite have also been reported. Moreover, modern plant biotechnology techniques can help to accelerate the selection of resistant rootstocks in breeding programs, as controlled crossings for the generation of hybrids, somatic hybridisation, transgenic citrus plants, mapped genomic regions of Quantitative Trait Loci (QTLs), candidate genes, metabolic markers and comparative transcriptomic. These innovative techniques represent a suitable tool to breed new Phytophthora resistant rootstocks, which is widely recognised as the best strategy to face gummosis or foot rot, fibrous root rot and ultimately minimise the expensive use of pesticides in crop protection.
Collapse
Affiliation(s)
- Adielle R da Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Kaliane N S Pinto
- Departamento de Ciências Agrárias, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia 44380-000, Brazil
| | - Bianca E Maserti
- Consiglio Nazionale delle Ricerche, Institute of Biophysics, Via S. Lorenzo, I-56100 Pisa, Italy
| | | | - Abelmon da S Gesteira
- Embrapa Mandioca e Fruticultura. Cruz das Almas, Bahia 44380-000, Brazil; and Corresponding author.
| |
Collapse
|
8
|
Gao Y, Wu Y, Huan T, Wang X, Xu J, Xu Q, Yu F, Shi H. The application of oncolytic viruses in cancer therapy. Biotechnol Lett 2021; 43:1945-1954. [PMID: 34448096 DOI: 10.1007/s10529-021-03173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Oncolytic therapy is a treatment method used to directly combat tumor cells by modifying the genes of naturally occurring low pathogenic viruses to form "rhizobia" virus. By taking the advantage of abnormal signal pathways in cancer cells, it selectively replicates in tumor cells leading to tumor cell lysis and death. At present, clinical studies widely employ biomolecular technology to transform oncolytic viruses to exert stronger oncolytic effects and reduce their adverse reactions. This review summarizes the current progresses and the molecular mechanism of oncolytic viruses towards tumor treatment and management.
Collapse
Affiliation(s)
- Yang Gao
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Yan Wu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Tian Huan
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Suqian, Jiangsu, People's Republic of China
| | - Jun Xu
- Department of Cognitive Neurology, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tian Tan Hospital, Affiliated to Capital Medical University, Beijing, People's Republic of China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Duan G, Li C, Liu Y, Ma X, Luo Q, Yang J. Magnaporthe oryzae systemic defense trigger 1 (MoSDT1)-mediated metabolites regulate defense response in Rice. BMC PLANT BIOLOGY 2021; 21:40. [PMID: 33430779 PMCID: PMC7802159 DOI: 10.1186/s12870-020-02821-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/25/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Some of the pathogenic effector proteins play an active role in stimulating the plant defense system to strengthen plant resistance. RESULTS In this study, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) was implemented to identify altered metabolites in transgenic rice containing over-expressed M. oryzae Systemic Defense Trigger 1 (MoSDT1) that was infected at three-time points. The characterized dominating metabolites were organic acids and their derivatives, organic oxygen compounds, lipids, and lipid-like molecules. Among the identified metabolites, shikimate, galactinol, trehalose, D-mannose, linolenic acid, dopamine, tyramine, and L-glutamine are precursors for the synthesis of many secondary defense metabolites Carbohydrate, as well as amino acid metabolic, pathways were revealed to be involved in plant defense responses and resistance strengthening. CONCLUSION The increasing salicylic acid (SA) and jasmonic acid (JA) content enhanced interactions between JA synthesis/signaling gene, SA synthesis/receptor gene, raffinose/fructose/sucrose synthase gene, and cell wall-related genes all contribute to defense response in rice. The symptoms of rice after M. oryzae infection were significantly alleviated when treated with six identified metabolites, i.e., galactol, tyramine, L-glutamine, L-tryptophan, α-terpinene, and dopamine for 72 h exogenously. Therefore, these metabolites could be utilized as an optimal metabolic marker for M. oryzae defense.
Collapse
Affiliation(s)
- Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201 China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201 China
| | - Yanfang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201 China
- Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201 China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201 China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
10
|
Cao J, Zhang Y, Chen Y, Liang S, Liu D, Fan W, Xu Y, Liu H, Zhou Z, Liu X, Hou S. Dynamic Transcriptome Reveals the Mechanism of Liver Injury Caused by DHAV-3 Infection in Pekin Duck. Front Immunol 2020; 11:568565. [PMID: 33240261 PMCID: PMC7677298 DOI: 10.3389/fimmu.2020.568565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023] Open
Abstract
Duck hepatitis A virus 3 (DHAV-3) is a wild endemic virus, which seriously endangers the duck industry in China. The present study aims to elucidate the mechanism of duck resistance to DHAV-3 infection. Both resistant and susceptible ducks were challenged with DHAV-3 in this experiment. The histopathological features and serum biochemical indices (ALT and AST) were analyzed to estimate liver injury status at 6, 12, 15, and 24 h post-infection (hpi). The dynamic transcriptomes of liver were analyzed to explain the molecular regulation mechanism in ducks against DHAV-3. The result showed that the liver injury in susceptible ducks was more serious than that in the resistant ducks throughout the four time points. A total of 2,127 differentially expressed genes (DEGs) were identified by comparing the transcriptome of the two populations. The expression levels of genes involved in innate immune response increased rapidly in susceptible ducks from 12 hpi. Similarly, the expression of genes involved in cytokine regulation also increased at the same time points, while the expression levels of these genes in resistant ducks remained similar between the various time points. KEGG enrichment analysis of the DEGs revealed that the genes involved in cytokine regulation and apoptosis were highly expressed in susceptible ducks than that in resistant ducks, suggesting that excessive cytokine storm and apoptosis may partially explain the mechanism of liver injury caused by DHAV-3 infection. Besides, we found that the FUT9 gene may contribute to resistance towards DHAV-3 in resistant ducklings. These findings will provide insight into duck resistance and susceptibility to DHAV-3 infection in the early phases, facilitate the development of a strategy for DHAV-3 prevention and treatment, and enhance genetic resistance via genetic selection in animal breeding.
Collapse
Affiliation(s)
- Junting Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Chen
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suyun Liang
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yaxi Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuisheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Dalio RJD, Maximo HJ, Roma-Almeida R, Barretta JN, José EM, Vitti AJ, Blachinsky D, Reuveni M, Pascholati SF. Tea Tree Oil Induces Systemic Resistance against Fusarium wilt in Banana and Xanthomonas Infection in Tomato Plants. PLANTS 2020; 9:plants9091137. [PMID: 32887438 PMCID: PMC7570017 DOI: 10.3390/plants9091137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
Abstract
The essential tea tree oil (TTO) derived from Melaleuca alternifolia plant is widely used as a biopesticide to protect crops from several plant-pathogens. Its activity raised queries regarding its ability to, not only act as a bio-fungicide or bio-bactericide, but also systemically inducing resistance in plants. This was examined by TTO application to banana plants challenged by Fusarium oxysporum f. sp. cubense (Foc, Race 1) causing Fusarium wilt and to tomato plants challenged by Xanthomonas campestris. Parameters to assess resistance induction included: disease development, enzymatic activity, defense genes expression correlated to systemic acquired resistance (SAR) and induced systemic resistance (ISR) and priming effect. Spraying TTO on field-grown banana plants infected with Foc and greenhouse tomato plants infected with Xanthomonas campestris led to resistance induction in both hosts. Several marker genes of salicylic acid, jasmonic acid and ethylene pathways were significantly up-regulated in parallel with symptoms reduction. For tomato plants, we have also recorded a priming effect following TTO treatment. In addition to fungicidal and bactericidal effect, TTO can be applied in more sustainable strategies to control diseases by enhancing the plants ability to defend themselves against pathogens and ultimately diminish chemical pesticides applications.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Departament of Plant Pathology and Nematology, University of São Paulo (USP/Esalq), Piracicaba 13400-900, Brazil; (R.J.D.D.); (H.J.M.); (R.R.-A.); (J.N.B.)
| | - Heros J. Maximo
- Departament of Plant Pathology and Nematology, University of São Paulo (USP/Esalq), Piracicaba 13400-900, Brazil; (R.J.D.D.); (H.J.M.); (R.R.-A.); (J.N.B.)
| | - Rafaela Roma-Almeida
- Departament of Plant Pathology and Nematology, University of São Paulo (USP/Esalq), Piracicaba 13400-900, Brazil; (R.J.D.D.); (H.J.M.); (R.R.-A.); (J.N.B.)
| | - Janaína N. Barretta
- Departament of Plant Pathology and Nematology, University of São Paulo (USP/Esalq), Piracicaba 13400-900, Brazil; (R.J.D.D.); (H.J.M.); (R.R.-A.); (J.N.B.)
| | - Eric M. José
- STK Bio-Ag Technologies Ltd., Petah Tikva 4922297, Israel; (E.M.J.); (A.J.V.); (D.B.); (M.R.)
| | - Agnelo J. Vitti
- STK Bio-Ag Technologies Ltd., Petah Tikva 4922297, Israel; (E.M.J.); (A.J.V.); (D.B.); (M.R.)
| | - Daphna Blachinsky
- STK Bio-Ag Technologies Ltd., Petah Tikva 4922297, Israel; (E.M.J.); (A.J.V.); (D.B.); (M.R.)
| | - Moshe Reuveni
- STK Bio-Ag Technologies Ltd., Petah Tikva 4922297, Israel; (E.M.J.); (A.J.V.); (D.B.); (M.R.)
- Shamir Research Institute, University of Haifa, Katzrin 12900, Israel
| | - Sérgio F. Pascholati
- Departament of Plant Pathology and Nematology, University of São Paulo (USP/Esalq), Piracicaba 13400-900, Brazil; (R.J.D.D.); (H.J.M.); (R.R.-A.); (J.N.B.)
- Correspondence:
| |
Collapse
|
12
|
Belabess Z, Sagouti T, Rhallabi N, Tahiri A, Massart S, Tahzima R, Lahlali R, Jijakli MH. Citrus Psorosis Virus: Current Insights on a Still Poorly Understood Ophiovirus. Microorganisms 2020; 8:microorganisms8081197. [PMID: 32781662 PMCID: PMC7465697 DOI: 10.3390/microorganisms8081197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Citrus psorosis was reported for the first time in Florida in 1896 and was confirmed as a graft-transmissible disease in 1934. Citrus psorosis virus (CPsV) is the presumed causal agent of this disease. It is considered as a type species of the genus Ophiovirus, within the family Aspiviridae. CPsV genome is a negative single-stranded RNA (-ssRNA) with three segments. It has a coat protein (CP) of 48 kDa and its particles are non-enveloped with naked filamentous nucleocapsids existing as either circular open structures or collapsed pseudo-linear forms. Numerous rapid and sensitive immuno-enzymatic and molecular-based detection methods specific to CPsV are available. CPsV occurrence in key citrus growing regions across the world has been spurred the establishment of the earliest eradication and virus-free budwood programs. Despite these efforts, CPsV remains a common and serious challenge in several countries and causes a range of symptoms depending on the isolate, the cultivar, and the environment. CPsV can be transmitted mechanically to some herbaceous hosts and back to citrus. Although CPsV was confirmed to be seedborne, the seed transmission is not efficient. CPsV natural spread has been increasing based on both CPsV surveys detection and specific CPsV symptoms monitoring. However, trials to ensure its transmission by a soil-inhabiting fungus and one aphid species have been unsuccessful. Psorosis disease control is achieved using CPsV-free buds for new plantations, launching budwood certification and indexing programs, and establishing a quarantine system for the introduction of new varieties. The use of natural resistance to control CPsV is very challenging. Transgenic resistance to at least some CPsV isolates is now possible in at least some sweet orange varieties and constitutes a promising biotechnological alternative to control CPsV. This paper provides an overview of the most remarkable achievements in CPsV research that could improve the understanding of the disease and lead the development of better control strategies.
Collapse
Affiliation(s)
- Zineb Belabess
- Plant Protection Laboratory. INRA, Centre Régional de la Recherche Agronomique (CRRA), Oujda 60000, Qualipole de Berkane, 63300 Berkane, Morocco;
| | - Tourya Sagouti
- Faculté des Sciences et Techniques de Mohammedia, Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, 20650 Mohammedia, Morocco; (T.S.); (N.R.)
| | - Naima Rhallabi
- Faculté des Sciences et Techniques de Mohammedia, Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, 20650 Mohammedia, Morocco; (T.S.); (N.R.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, 50001 Meknes, Morocco;
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro BioTech, University of Liege, 25030 Gembloux, Belgium; (S.M.); (R.T.); (M.H.J.)
| | - Rachid Tahzima
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro BioTech, University of Liege, 25030 Gembloux, Belgium; (S.M.); (R.T.); (M.H.J.)
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, 50001 Meknes, Morocco;
- Correspondence: ; Tel.: +212-55-30-02-39
| | - M. Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro BioTech, University of Liege, 25030 Gembloux, Belgium; (S.M.); (R.T.); (M.H.J.)
| |
Collapse
|
13
|
Restrepo-Montoya D, Brueggeman R, McClean PE, Osorno JM. Computational identification of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2020; 21:459. [PMID: 32620079 PMCID: PMC7333395 DOI: 10.1186/s12864-020-06844-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background In plants, the plasma membrane is enclosed by the cell wall and anchors RLK and RLP proteins, which play a fundamental role in perception of developmental and environmental cues and are crucial in plant development and immunity. These plasma membrane receptors belong to large gene/protein families that are not easily classified computationally. This detailed analysis of these plasma membrane proteins brings a new source of information to the legume genetic, physiology and breeding research communities. Results A computational approach to identify and classify RLK and RLP proteins is presented. The strategy was evaluated using experimentally-validated RLK and RLP proteins and was determined to have a sensitivity of over 0.85, a specificity of 1.00, and a Matthews correlation coefficient of 0.91. The computational approach can be used to develop a detailed catalog of plasma membrane receptors (by type and domains) in several legume/crop species. The exclusive domains identified in legumes for RLKs are WaaY, APH Pkinase_C, LRR_2, and EGF, and for RLP are L-lectin LPRY and PAN_4. The RLK-nonRD and RLCK subclasses are also discovered by the methodology. In both classes, less than 20% of the total RLK predicted for each species belong to this class. Among the 10-species evaluated ~ 40% of the proteins in the kinome are RLKs. The exclusive legume domain combinations identified are B-Lectin/PR5K domains in G. max, M. truncatula, V. angularis, and V. unguiculata and a three-domain combination B-lectin/S-locus/WAK in C. cajan, M. truncatula, P. vulgaris, V. angularis. and V. unguiculata. Conclusions The analysis suggests that about 2% of the proteins of each genome belong to the RLK family and less than 1% belong to RLP family. Domain diversity combinations are greater for RLKs compared with the RLP proteins and LRR domains, and the dual domain combination LRR/Malectin were the most frequent domain for both groups of plasma membrane receptors among legume and non-legume species. Legumes exclusively show Pkinase extracellular domains, and atypical domain combinations in RLK and RLP compared with the non-legumes evaluated. The computational logic approach is statistically well supported and can be used with the proteomes of other plant species.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, PO Box 6050, Dept. 7660, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
14
|
Fu H, Zhao M, Xu J, Tan L, Han J, Li D, Wang M, Xiao S, Ma X, Deng Z. Citron C-05 inhibits both the penetration and colonization of Xanthomonas citri subsp. citri to achieve resistance to citrus canker disease. HORTICULTURE RESEARCH 2020; 7:58. [PMID: 32377349 PMCID: PMC7193574 DOI: 10.1038/s41438-020-0278-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a serious bacterial disease that affects citrus production worldwide. Citron C-05 (Citrus medica) is the only germplasm in the Citrus genus that has been identified to exhibit strong resistance to Xcc. However, it has not been determined when, where, and how Xcc is restricted in the tissues of Citron C-05 during the infection process. In the present study, we investigated the spatiotemporal growth dynamics of an eGFP-labeled virulent Xcc (eGFP-Xcc) strain in Citron C-05 along with five susceptible biotypes (i.e., lemon, pummelo, sour orange, sweet orange, and ponkan mandarin) upon inoculation via the spraying or leaf infiltration of a bacterial suspension. The results from extensive confocal laser scanning microscopy analyses showed that while Xcc grew rapidly in plants of all five susceptible genotypes, Xcc was severely restricted in the epidermal and mesophyll cell layers of the leaves of Citron C-05 in the early stage of infection. Not surprisingly, resistance against Xcc in Citron C-05 was found to be associated with the production of reactive oxygen species and hypersensitive response-like cell death, as well as greater upregulation of several defense-related genes, including a pathogenesis-related gene (PR1) and a glutathione S-transferase gene (GST1), compared with sweet orange as a susceptible control. Taken together, our results not only provide further valuable details of the spatiotemporal dynamics of the host entry, propagation, and spread of Xcc in both resistant and susceptible citrus plants but also suggest that resistance to Xcc in Citron C-05 may be attributed to the activation of multiple defense mechanisms.
Collapse
Affiliation(s)
- Hongyan Fu
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Mingming Zhao
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Jing Xu
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Limei Tan
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Jian Han
- Hunan Horticultural Research Institute, 410125 Changsha, Hunan China
| | - Dazhi Li
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Meijun Wang
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850 USA
| | - Xianfeng Ma
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Ziniu Deng
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| |
Collapse
|
15
|
Gene silencing of Diaphorina citri candidate effectors promotes changes in feeding behaviors. Sci Rep 2020; 10:5992. [PMID: 32265528 PMCID: PMC7138822 DOI: 10.1038/s41598-020-62856-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Insect effectors are mainly secreted by salivary glands, modulate plant physiology and favor the establishment and transmission of pathogens. Feeding is the principal vehicle of transmission of Candidatus Liberibacter asiaticus (Ca. Las) by the Asian citrus psyllid (ACP), Diaphorina citri. This study aimed to predict putative ACP effectors that may act on the Huanglongbing (HLB) pathosystem. Bioinformatics analysis led to the identification of 131 candidate effectors. Gene expression investigations were performed to select genes that were overexpressed in the ACP head and modulated by Ca. Las. To evaluate the actions of candidate effectors on D. citri feeding, six effectors were selected for gene silencing bioassays. Double-stranded RNAs (dsRNAs) of the target genes were delivered to D. citri adults via artificial diets for five days. RNAi silencing caused a reduction in the ACP lifespan and decreased the salivary sheath size and honeydew production. Moreover, after dsRNA delivery of the target genes using artificial diet, the feeding behaviors of the insects were evaluated on young leaves from citrus seedlings. These analyses proved that knockdown of D. citri effectors also interfered with ACP feeding abilities in planta, causing a decrease in honeydew production and reducing ACP survival. Electrical penetration graph (EPG) analysis confirmed the actions of the effectors on D. citri feeding behaviors. These results indicate that gene silencing of D. citri effectors may cause changes in D. citri feeding behaviors and could potentially be used for ACP control.
Collapse
|
16
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|
17
|
Maximo HJ, Dalio RJD, Dias RO, Litholdo CG, Felizatti HL, Machado MA. PpCRN7 and PpCRN20 of Phythophthora parasitica regulate plant cell death leading to enhancement of host susceptibility. BMC PLANT BIOLOGY 2019; 19:544. [PMID: 31810451 PMCID: PMC6896422 DOI: 10.1186/s12870-019-2129-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phytophthora species secrete cytoplasmic effectors from a family named Crinkler (CRN), which are characterised by the presence of conserved specific domains in the N- and C-terminal regions. P. parasitica causes disease in a wide range of host plants, however the role of CRN effectors in these interactions remains unclear. Here, we aimed to: (i) identify candidate CRN encoding genes in P. parasitica genomes; (ii) evaluate the transcriptional expression of PpCRN (Phytophthora parasitica Crinkler candidate) during the P. parasitica interaction with Citrus sunki (high susceptible) and Poncirus trifoliata (resistant); and (iii) functionally characterize two PpCRNs in the model plant Nicotiana benthamiana. RESULTS Our in silico analyses identified 80 putative PpCRN effectors in the genome of P. parasitica isolate 'IAC 01/95.1'. Transcriptional analysis revealed differential gene expression of 20 PpCRN candidates during the interaction with the susceptible Citrus sunki and the resistant Poncirus trifoliata. We have also found that P. parasitica is able to recognize different citrus hosts and accordingly modulates PpCRNs expression. Additionally, two PpCRN effectors, namely PpCRN7 and PpCRN20, were further characterized via transient gene expression in N. benthamiana leaves. The elicitin INF-1-induced Hypersensitivity Response (HR) was increased by an additive effect driven by PpCRN7 expression, whereas PpCRN20 expression suppressed HR response in N. benthamiana leaves. Despite contrasting functions related to HR, both effectors increased the susceptibility of plants to P. parasitica. CONCLUSIONS PpCRN7 and PpCRN20 have the ability to increase P. parasitica pathogenicity and may play important roles at different stages of infection. These PpCRN-associated mechanisms are now targets of biotechnological studies aiming to break pathogen's virulence and to promote plant resistance.
Collapse
Affiliation(s)
- Heros J. Maximo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Ronaldo J. D. Dalio
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Renata O. Dias
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Celso G. Litholdo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Henrique L. Felizatti
- Instituto de Matemática, Física e Computação Científica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Marcos A. Machado
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| |
Collapse
|
18
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
19
|
Qin T, Liu S, Zhang Z, Sun L, He X, Lindsey K, Zhu L, Zhang X. GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17. PLANT MOLECULAR BIOLOGY 2019; 99:379-393. [PMID: 30671725 DOI: 10.1007/s11103-019-00824-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/12/2019] [Indexed: 05/02/2023]
Abstract
A U-box E3 ubiquitin ligase GhPUB17 is inhibited by GhCyP3 with antifungal activity and acts as a negative regulator involved in cotton resistance to Verticillium dahliae. E3 ubiquitin ligases, the key component enzymes of the ubiquitin-proteasome system, which contains the most diverse structural and functional members involved in the determination of target specificity and the regulation of metabolism, have been well documented in previous studies. Here, we identify GhPUB17, a U-box E3 ligase in cotton that has ubiquitination activity and is involved in the cotton immune response to Verticillium dahliae. The expression level of GhPUB17 is downregulated in the ssn mutant with a constitutively activated immune response (Sun et al., Nat Commun 5:5372, 2014). Infection with V. dahliae or exogenous hormone treatment, including jasmonic acid and salicylic acid, significantly upregulated GhPUB17 in cotton roots, which suggested a possible role for this E3 ligase in the plant immune response to pathogens. Moreover, GhPUB17-knockdown cotton plants are more resistant to V. dahliae, whereas GhPUB17-overexpressing plants are more susceptible to the pathogen, which indicated that GhPUB17 is a negative regulator of cotton resistance to V. dahliae. A yeast two-hybrid (Y2H) assay identified GhCyP3 as a protein that interacts with GhPUB17, and this finding was confirmed by further protein interaction assays. The downregulation of GhCyP3 in cotton seedlings attenuated the plants' resistance to V. dahliae. In addition, GhCyP3 showed antifungal activity against V. dahliae, and the E3 ligase activity of GhPUB17 was repressed by GhCyP3 in vitro. These results suggest that GhPUB17 negatively regulates cotton immunity to V. dahliae and that the antifungal protein GhCyP3 likely interacts with and inhibits the ligase activity of GhPUB17 and plays an important role in the cotton-Verticillium interaction.
Collapse
Affiliation(s)
- Tao Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhennan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
20
|
Pagliari L, Buoso S, Santi S, Van Bel AJE, Musetti R. What Slows Down Phytoplasma Proliferation? Speculations on the Involvement of AtSEOR2 Protein in Plant Defence Signalling. PLANT SIGNALING & BEHAVIOR 2018; 13:e1473666. [PMID: 29969363 PMCID: PMC6103281 DOI: 10.1080/15592324.2018.1473666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 05/13/2023]
Abstract
Considering the crude methods used to control phytoplasma diseases, a deeper knowledge on the defence mechanisms recruited by the plant to face phytoplasma invasion is required. Recently, we demonstrated that Arabidopsis mutants lacking AtSEOR1 gene showed a low phytoplasma titre. In wild type plants AtSEOR1 and AtSEOR2 are tied in filamentous proteins. Knockout of the AtSEOR1 gene may pave the way for an involvement of free AtSEOR2 proteins in defence mechanisms. Among the proteins conferring resistance against pathogenic bacteria, AtRPM1-interacting protein has been found to interact with AtSEOR2 in a high-quality, matrix-based yeast-two hybrid assay. For this reason, we investigated the expression levels of Arabidopsis AtRIN4, and the associated AtRPM1 and AtRPS2 genes in healthy and Chrysanthemum yellows-infected wild-type and Atseor1ko lines.
Collapse
Affiliation(s)
- L. Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - S. Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - S. Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - A. J. E. Van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - R. Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
21
|
Cheng Z, Yu X, Li S, Wu Q. Genome-wide transcriptome analysis and identification of benzothiadiazole-induced genes and pathways potentially associated with defense response in banana. BMC Genomics 2018; 19:454. [PMID: 29898655 PMCID: PMC6001172 DOI: 10.1186/s12864-018-4830-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/25/2018] [Indexed: 01/04/2023] Open
Abstract
Background Bananas (Musa spp.) are the most important fruit crops worldwide due to their high nutrition value. Fusarium wilt of banana, caused by fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc 4), is considered as the most destructive disease in the world and results in extensive damage leading to productivity loss. The widespread use of plant resistance inducers (PRIs), such as benzothiadiazole (BTH), is a novel strategy to stimulate defense responses in banana plants to protect against pathogens infection. The recent focus on the crop defense against fungal infections has led to a renewed interest on understanding the molecular mechanisms of specific PRIs-mediated resistance. This transcriptome study aimed to identify genes that are associated with BTH-induced resistance. Patterns of gene expression in the leaves and roots of BTH-sprayed banana plants were studied using RNA-Seq. Results In this study, 18 RNA-Seq libraries from BTH-sprayed and untreated leaves and roots of the Cavendish plants, the most widely grown banana cultivar, were used for studying the transcriptional basis of BTH-related resistance. Comparative analyses have revealed that 6689 and 3624 differentially expressed genes were identified in leaves and roots, respectively, as compared to the control. Approximately 80% of these genes were differentially expressed in a tissue-specific manner. Further analysis showed that signaling perception and transduction, transcription factors, disease resistant proteins, plant hormones and cell wall organization-related genes were stimulated by BTH treatment, especially in roots. Interestingly, the ethylene and auxin biosynthesis and response genes were found to be up-regulated in leaves and roots, respectively, suggesting a choice among BTH-responsive phytohormone regulation. Conclusions Our data suggests a role for BTH in enhancing banana plant defense responses to Foc 4 infection, and demonstrates that BTH selectively affect biological processes associated with plant defenses. The genes identified in the study could be further studied and exploited to develop Foc 4-resistant banana varieties. Electronic supplementary material The online version of this article (10.1186/s12864-018-4830-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qiong Wu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, China.
| |
Collapse
|
22
|
Tomassetti M, Garavaglia BS, Vranych CV, Gottig N, Ottado J, Gramajo H, Diacovich L. 3-methylcrotonyl Coenzyme A (CoA) carboxylase complex is involved in the Xanthomonas citri subsp. citri lifestyle during citrus infection. PLoS One 2018; 13:e0198414. [PMID: 29879157 PMCID: PMC5991677 DOI: 10.1371/journal.pone.0198414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023] Open
Abstract
Citrus canker is a disease caused by the phytopathogen Xanthomonas citri subsp. citri (Xcc), bacterium which is unable to survive out of the host for extended periods of time. Once established inside the plant, the pathogen must compete for resources and evade the defenses of the host cell. However, a number of aspects of Xcc metabolic and nutritional state, during the epiphytic stage and at different phases of infection, are poorly characterized. The 3-methylcrotonyl-CoA carboxylase complex (MCC) is an essential enzyme for the catabolism of the branched-chain amino acid leucine, which prevents the accumulation of toxic intermediaries, facilitates the generation of branched chain fatty acids and/or provides energy to the cell. The MCC complexes belong to a group of acyl-CoA carboxylases (ACCase) enzymes dependent of biotin. In this work, we have identified two ORFs (XAC0263 and XAC0264) encoding for the α and β subunits of an acyl-CoA carboxylase complex from Xanthomonas and demonstrated that this enzyme has MCC activity both in vitro and in vivo. We also found that this MCC complex is conserved in a group of pathogenic gram negative bacteria. The generation and analysis of an Xcc mutant strain deficient in MCC showed less canker lesions in the interaction with the host plant, suggesting that the expression of these proteins is necessary for Xcc fitness during infection.
Collapse
Affiliation(s)
- Mauro Tomassetti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia V. Vranych
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
23
|
Miller RNG, Costa Alves GS, Van Sluys MA. Plant immunity: unravelling the complexity of plant responses to biotic stresses. ANNALS OF BOTANY 2017; 119:681-687. [PMID: 28375427 PMCID: PMC5378191 DOI: 10.1093/aob/mcw284] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants are constantly exposed to evolving pathogens and pests, with crop losses representing a considerable threat to global food security. As pathogen evolution can overcome disease resistance that is conferred by individual plant resistance genes, an enhanced understanding of the plant immune system is necessary for the long-term development of effective disease management strategies. Current research is rapidly advancing our understanding of the plant innate immune system, with this multidisciplinary subject area reflected in the content of the 18 papers in this Special Issue. SCOPE Advances in specific areas of plant innate immunity are highlighted in this issue, with focus on molecular interactions occurring between plant hosts and viruses, bacteria, phytoplasmas, oomycetes, fungi, nematodes and insect pests. We provide a focus on research across multiple areas related to pathogen sensing and plant immune response. Topics covered are categorized as follows: binding proteins in plant immunity; cytokinin phytohormones in plant growth and immunity; plant-virus interactions; plant-phytoplasma interactions; plant-fungus interactions; plant-nematode interactions; plant immunity in Citrus; plant peptides and volatiles; and assimilate dynamics in source/sink metabolism. CONCLUSIONS Although knowledge of the plant immune system remains incomplete, the considerable ongoing scientific progress into pathogen sensing and plant immune response mechanisms suggests far reaching implications for the development of durable disease resistance against pathogens and pests.
Collapse
Affiliation(s)
- Robert Neil Gerard Miller
- Universidade de Brasília, Instituto de Ciências Biológicas, 70910-900, Brasilia, DF, Brazil
- For correspondence. Email
| | | | - Marie-Anne Van Sluys
- Universidade de São Paulo, Instituto de Biociências, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|