1
|
Fitzgibbons E, Lastovich J, Scott S, Groth N, Grusz AL, Busta L. Herbarium specimens as tools for exploring the evolution of fatty acid-derived natural products in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:9-18. [PMID: 39171845 DOI: 10.1111/tpj.16989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Plants synthesize natural products via lineage-specific offshoots of their core metabolic pathways, including fatty acid synthesis. Recent studies have shed light on new fatty acid-derived natural products and their biosynthetic pathways in disparate plant species. Inspired by this progress, we set out to develop tools for exploring the evolution of fatty-acid derived products. We sampled multiple species from all major clades of euphyllophytes, including ferns, gymnosperms, and angiosperms (monocots and eudicots), and we show that the compositional profiles (though not necessarily the total amounts) of fatty-acid derived surface waxes from preserved plant specimens are consistent with those obtained from freshly collected tissue in a semi-quantitative and sometimes quantitative manner. We then sampled herbarium specimens representing 57 monocot species to assess the phylogenetic distribution and evolution, of two fatty acid-derived natural products found in that clade: beta-diketones and alkylresorcinols. These chemical data, combined with analyses of 26 monocot genomes, revealed a co-occurrence (though not necessarily a causal relationship) between whole genome duplication and the evolution of diketone synthases from an ancestral alkylresorcinol synthase-like polyketide synthase. Limitations of using herbarium specimen wax profiles as proxies for those of fresh tissue seem likely to include effects from loss of epicuticular wax crystals, effects from preservation techniques, and variation in wax chemical profiles due to genotype or environment. Nevertheless, this work reinforces the widespread utility of herbarium specimens for studying leaf surface waxes (and possibly other chemical classes) and reveals some of the evolutionary history of fatty acid-derived natural products within monocots.
Collapse
Affiliation(s)
- Emma Fitzgibbons
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Jacob Lastovich
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Samuel Scott
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Nicole Groth
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Amanda L Grusz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
2
|
Zhang Z, Mistry D, Jetter R. Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives. PLANT & CELL PHYSIOLOGY 2024; 65:1245-1260. [PMID: 38757823 PMCID: PMC11369817 DOI: 10.1093/pcp/pcae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The cuticle is a hydrophobic coating of most aerial plant surfaces crucial for limiting non-stomatal water loss. Plant cuticles consist of the lipid polyester cutin and associated waxes with compositions varying widely between plant species and organs. Here, we aimed to provide a comparative analysis of the dark-glossy adaxial and pale-glaucous abaxial sides of Drimys winteri (Winteraceae) leaves. Scanning electron microscopy showed nanotubular wax crystals lining the entire abaxial side of the leaf (including stomatal pores), while the adaxial side had patches of mixed platelet/tubule crystals and smooth areas between them. Consecutive treatments for wax removal and cutin depolymerization revealed that the waxes were deposited on a cutin network with micron-scale cavities across the entire abaxial surface including the stomata pores, and on a microscopically smooth cutin surface on the adaxial side of the leaf. Gas chromatography coupled to mass spectrometry and flame ionization detection showed that the wax mixtures on both sides of the leaf were complex mixtures of very-long-chain compounds dominated by the secondary alcohol nonacosan-10-ol and alkanediols with one hydroxyl on C-10. It is therefore very likely that the characteristic tubular wax crystals of both leaf sides are formed by these alcohols and diols. Further secondary alcohols and alkanediols, as well as ketols and alkanetriols with one functional group on C-10, were identified based on mass spectral fragmentation patterns. The similarities between all these mid-chain-functionalized compounds suggest that they are derived from nonacosan-10-ol via regio-specific hydroxylation reactions, likely catalyzed by three P450-dependent monooxygenases with different regio-specificities.
Collapse
Affiliation(s)
- Zhonghang Zhang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Dwiti Mistry
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
3
|
Negin B, Shachar L, Meir S, Ramirez CC, Rami Horowitz A, Jander G, Aharoni A. Fatty alcohols, a minor component of the tree tobacco surface wax, are associated with defence against caterpillar herbivory. PLANT, CELL & ENVIRONMENT 2024; 47:664-681. [PMID: 37927215 DOI: 10.1111/pce.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Despite decades of research resulting in a comprehensive understanding of epicuticular wax metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. In this study, we examined the effects of CRISPR-induced knockout mutations in four Nicotiana glauca (tree tobacco) wax metabolism genes. These mutations cause a wide range of changes in epicuticular wax composition, leading to altered interactions with insects and snails. Three interaction classes were examined: chewing herbivory by seven caterpillars and one snail species, phloem feeding by Myzus persicae (green peach aphid) and oviposition by Bemisia tabaci (whitefly). Although total wax load and alkane abundance did not affect caterpillar growth, a correlation across species, showed that fatty alcohols, a minor component of N. glauca surface waxes, negatively affected the growth of both a generalist caterpillar (Spodoptera littoralis) and a tobacco-feeding specialist (Manduca sexta). This negative correlation was overshadowed by the stronger effect of anabasine, a nicotine isomer, and was apparent when fatty alcohols were added to an artificial lepidopteran diet. By contrast, snails fed more on waxy leaves. Aphid reproduction and feeding activity were unaffected by wax composition but were potentially affected by altered cutin composition. Wax crystal morphology could explain the preference of B. tabaci to lay eggs on waxy wild-type plants relative to both alkane and fatty alcohol-deficient mutants. Together, our results suggest that the varied responses among herbivore classes and species are likely to be a consequence of the co-evolution that shaped the specific effects of different surface wax components in plant-herbivore interactions.
Collapse
Affiliation(s)
- Boaz Negin
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
- Boyce Thompson Institute, Ithaca, New York, USA
| | - Lior Shachar
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Meir
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - Claudio C Ramirez
- Centre for Molecular and Functional Ecology in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - A Rami Horowitz
- Department of Entomology, Agricultural Research Organization (ARO), Gilat Research Center for Arid and Semi-Arid Agricultural Research, Rishon Lezion, Israel
- Katif Research Center, Sedot Negev, Israel
- Ministry of Science and Technology, Netivot, Israel
| | | | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Diaz AEC, Herfindal L, Andersen HL, Fossen T. Cytotoxic Natural Products Isolated from Cryptogramma crispa (L.) R. Br. Molecules 2023; 28:7723. [PMID: 38067454 PMCID: PMC10708030 DOI: 10.3390/molecules28237723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Parsley fern, Cryptogramma crispa, is a common fern in arctic-alpine regions, and even though this species has been known since ancient times and has been presumed to cause the poisoning of horses, its natural products have not previously been investigated. Here, we characterise 15 natural products isolated from the aerial parts of Cryptogramma crispa, including the previously undescribed compound 3-malonyl pteroside D. The structure determinations were based on several advanced 1D and 2D NMR spectroscopic techniques, Circular Dichroism spectroscopy and high-resolution mass spectrometry. The pteroside derivatives exhibited selective moderate cytotoxic activity against the acute myeloid leukaemia MOLM13 cell line and no cytotoxicity against the normal heart and kidney cell lines, suggesting that their potential anticancer effect should be further investigated.
Collapse
Affiliation(s)
| | - Lars Herfindal
- Department of Clinical Science and Centre for Pharmacy, University of Bergen, N-5009 Bergen, Norway;
| | - Heidi Lie Andersen
- University Gardens, University of Bergen, Allégt. 41, N-5007 Bergen, Norway;
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, N-5007 Bergen, Norway;
| |
Collapse
|
5
|
Gozdzik J, Busta L, Jetter R. Leaf cuticular waxes of wild-type Welsh onion (Allium fistulosum L.) and a wax-deficient mutant: Compounds with terminal and mid-chain functionalities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107679. [PMID: 37121165 DOI: 10.1016/j.plaphy.2023.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.
Collapse
Affiliation(s)
- Jedrzej Gozdzik
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Yang J, Busta L, Jetter R, Sun Y, Wang T, Zhang W, Ni Y, Guo Y. Diversified chemical profiles of cuticular wax on alpine meadow plants of the Qinghai-Tibet Plateau. PLANTA 2023; 257:74. [PMID: 36879182 DOI: 10.1007/s00425-023-04107-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The alpine meadow plants showed great intra- and inter-genera variations of chemical profiles of cuticular waxes. Developing an understanding of wax structure-function relationships that will help us tackle global climate change requires a detailed understanding of plant wax chemistry. The goal in this study was to provide a catalog of wax structures, abundances, and compositions on alpine meadow plants. Here, leaf waxes from 33 plant species belonging to 11 families were sampled from alpine meadows of the east side of the Qinghai-Tibet Plateau. Across these species, total wax coverage varied from 2.30 μg cm-2 to 40.70 μg cm-2, showing variation both within as well as between genera and suggesting that wax variation is subject to both environmental and genetic effects. Across all wax samples, more than 140 wax compounds belonging to 13 wax compound classes were identified, including both ubiquitous wax compounds and lineage-specific compounds. Among the ubiquitous compounds (primary alcohols, alkyl esters, aldehydes, alkanes, and fatty acids), chain length profiles across a wide range of species point to key differences in the chain length specificity of alcohol and alkane formation machinery. The lineage-specific wax compound classes (diols, secondary alcohols, lactones, iso-alkanes, alkyl resorcinols, phenylethyl esters, cinnamate esters, alkyl benzoates, and triterpenoids) nearly all consisted of isomers with varying chain lengths or functional group positions, making the diversity of specialized wax compounds immense. The comparison of species relationships between chemical data and genetic data highlighted the importance of inferring phylogenetic relationships from data sets that contain a large number of variables that do not respond to environmental stimuli.
Collapse
Affiliation(s)
- Jianfeng Yang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yingpeng Sun
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianyu Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenlan Zhang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China.
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Zhu J, Huang K, Cheng D, Zhang C, Li R, Liu F, Wen H, Tao L, Zhang Y, Li C, Liu S, Wei C. Characterization of Cuticular Wax in Tea Plant and Its Modification in Response to Low Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13849-13861. [PMID: 36268795 DOI: 10.1021/acs.jafc.2c05470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cuticular wax ubiquitously covers the outer layer of plants and protects them against various abiotic and biotic stresses. Nevertheless, the characteristics of cuticular wax and its role in cold resistance in tea plants remain unclear. In our study, cuticular wax from different tissues, cultivars, and leaves during different spatio-temporal growth stages were characterized and compared in tea plants. The composition, distribution pattern, and structural profile of cuticular wax showed considerable tissue specificity, particularly in petals and seeds. During the spatial development of tea leaves, total wax content increased from the first to fifth leaf in June, while a decreasing pattern was observed in September. Additionally, the total wax content and number of wax compounds were enhanced, and the wax composition significantly varied with leaf growth from June to September. Ten cultivars showed considerable differences in total wax content and composition, such as the predominance of saturated fatty acids and primary alcohols in SYH and HJY cultivars, respectively. Correlation analysis suggested that n-hexadecanoic acid is positively related to cold resistance in tea plants. Further transcriptome analysis from cold-sensitive AJBC, cold-tolerant CYQ, and EC 12 cultivars indicated that the inducible expression of wax-related genes was associated with the cold tolerance of different cultivars in response to cold stress. Our results revealed the characterization of cuticular wax in tea plants and provided new insights into its modification in cold tolerance.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Daojie Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Cao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Rui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Fangbin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Huilin Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Youze Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Cuihong Li
- Tianfang Tea Company Limited by Share, Tianfang Industrial Park, Chizhou 245100, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
8
|
Mendonça Filho SF, Queiroz de Brito G, Rodrigues de Melo Murta J, Salemi LF. Invasion in the riparian zone: What is the effect of Pteridium arachnoideum on topsoil permeability? ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Scott S, Cahoon EB, Busta L. Variation on a theme: the structures and biosynthesis of specialized fatty acid natural products in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:954-965. [PMID: 35749584 PMCID: PMC9546235 DOI: 10.1111/tpj.15878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants are able to construct lineage-specific natural products from a wide array of their core metabolic pathways. Considerable progress has been made toward documenting and understanding, for example, phenylpropanoid natural products derived from phosphoenolpyruvate via the shikimate pathway, terpenoid compounds built using isopentyl pyrophosphate, and alkaloids generated by the extensive modification of amino acids. By comparison, natural products derived from fatty acids have received little attention, except for unusual fatty acids in seed oils and jasmonate-like oxylipins. However, scattered but numerous reports show that plants are able to generate many structurally diverse compounds from fatty acids, including some with highly elaborate and unique structural features that have novel bioproduct functionalities. Furthermore, although recent work has shed light on multiple new fatty acid natural product biosynthesis pathways and products in diverse plant species, these discoveries have not been reviewed. The aims of this work, therefore, are to (i) review and systematize our current knowledge of the structures and biosynthesis of fatty acid-derived natural products that are not seed oils or jasmonate-type oxylipins, specifically, polyacetylenic, very-long-chain, and aromatic fatty acid-derived natural products, and (ii) suggest priorities for future investigative steps that will bring our knowledge of fatty acid-derived natural products closer to the levels of knowledge that we have attained for other phytochemical classes.
Collapse
Affiliation(s)
- Samuel Scott
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| | - Edgar B. Cahoon
- Department of BiochemistryUniversity of Nebraska LincolnLincoln68588NEUSA
- Center for Plant Science InnovationUniversity of Nebraska LincolnLincoln68588NEUSA
| | - Lucas Busta
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| |
Collapse
|
10
|
Chaudhary K, Geeta R, Panjabi P. Origin and diversification of ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) genes in land plants and phylogenetic evidence that the ancestral CER1/3 gene resulted from the fusion of pre-existing domains. Mol Phylogenet Evol 2021; 159:107101. [PMID: 33592235 DOI: 10.1016/j.ympev.2021.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are key genes in synthesis of alkanes, a major component of cuticular waxes in land plants. The genes share extensive similarity, including the N-terminal (ERG3/FAH) and C-terminal (WAX2) domains. This study, traces the origin, evolutionary history, phylogenetic relationships and variation in copy number of the two genes within and beyond the Viridiplantae (green plants). Protein homologs of both CER1 and CER3 were identified across most Embryophyta (land plants), a single homolog (CER1/3) in charophytes and prasinophytes, and none in the other green, red or brown algae. Ancestral state reconstructions in 100 sequenced Archaeplastida using presence/absence of CER1/3 family genes revealed that the CER1/3 gene probably originated in the common ancestor of Viridiplantae. Phylogenetic analysis of CER1 and CER3 protein sequences from 146 plant species strongly suggests that the two genes originated by duplication of CER1/3 in the ancestral embryophyte. The evolution of CER1 and CER3 genes involved differential divergence of the two domains. Outside Embryophyta, CER1/3 similar sequences identified in diatoms and a cryptophyte, were the closest relatives of the CER1/3 family proteins. Proteins harbouring WAX2-wxAR (WAX2 associated region) similar regions were identified in proteins of bacteria, Archaea, cryptophytes, dinoflagellates and Stramenopiles. The independent existence of both ERG3/FAH and WAX2-wxAR domains in diverse lineages strongly points to the origin of CER1/3 gene in green plants by the fusion of pre-existing domains.
Collapse
Affiliation(s)
- Komal Chaudhary
- Department of Botany, University of Delhi, Delhi 110007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi 110007, India.
| | - Priya Panjabi
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Xiao Y, Li X, Yao L, Xu D, Li Y, Zhang X, Li Z, Xiao Q, Ni Y, Guo Y. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:596-604. [PMID: 32846395 DOI: 10.1016/j.plaphy.2020.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Sorghum bicolor is widely cultivated in arid and semi-arid areas. This paper reports the chemical profiles of cuticular waxes on adaxial and abaxial sides of common leaf, flag leaf, sheath and stem from six sorghum cultivars and the variations of leaf cuticular waxes at seedling, jointing and filling stages. Then, the bioassay of leaf and sheath wax were evaluated against Penicillium sp and Alternaria alternata. The six sorghum cultivars had similar wax profiles. In total, eight wax compounds were identified, including fatty acids, aldehydes, primary alcohols, alkanes, secondary alcohols, ketones, sterols and minor triterpenoids. Leaf wax coverage increased from 2.2 to 3.1 μg/cm2 at seedling stages to 6.5-14.0 μg/cm2 at jointing and filling stages, respectively. The relative abundance of primary alcohols decreased from 51 to 62% at seedling stage to 17-33% at jointing stage whereas alkanes increased from 5-9% to 19-33%. Leaf was dominated with alkanes (28.4%) and aldehydes (28.4%), sheath with acids (42.8%), and stem with aldehydes (80.8%). Epicuticular wax of leaf and sheath contained higher proportions of alkanes whereas the intracuticular waxes contained higher proportions of sterols. The leaf wax improved the growth of Penicillium but reduced that of A. alternaria, whereas sheath wax reduced the growth of Penicillium but unchanged A. alternaria. The detailed sorghum wax profiles improve our understanding of the physiological roles of these waxes and their diversified potential usages in industries.
Collapse
Affiliation(s)
- Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaoting Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Luhua Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Daixiang Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xuefeng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhen Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qainlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
12
|
Weber J, Schwark L. Epicuticular wax lipid composition of endemic European Betula species in a simulated ontogenetic/diagenetic continuum and its application to chemotaxonomy and paleobotany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138324. [PMID: 32388385 DOI: 10.1016/j.scitotenv.2020.138324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Plants are excellent climate indicators and their macro-remains or pollen accumulating in geological archives serve as recorders of environmental change. In Europe birch trees contribute importantly to Holocene plant successions. They constitute the dwarf species Betula nana and B. humilis, representing colder and two tree birches, B. pubescens and B. pendula indicative of more temperate climate. Birch pollen is highly similar preventing species differentiation. We obtained unambiguous chemotaxonomic differentiation of four European birch species via cuticular wax lipids. Dominating lipid classes in recent epicuticular birch waxes were n-alkanes (nC23 to nC33), n-alcohols and n-alkanoic acids (nC20 to nC32), and long-chain wax ester (nC36 to nC48) differing in amount and distribution. After plant senescence and in geological archives lipids undergo diagenetic alteration modifying the distributions found in recent plants. Long-chain wax esters via hydrolysis release bound n-alcohols and n-fatty acids, adding to their free analogues. Simulated release of bound lipids increased the pool of n-alcohol and n-fatty acids up to 400%. Such modification of primary lipid patterns is unaccounted for in most paleovegetation studies. Proceeding diagenesis, e.g. by decarboxylation will convert these functionalized primary and secondary lipids into their corresponding n-alkanes, the compound class mostly applied in paleoenvironment reconstruction. The simulated n-alkane pattern changed significantly, evidenced by an increase of mid-chain (nC23,nC25) homologues. Release of bound lipids may not only alter molecular but also isotopic composition, which may cause errors in paleoclimate reconstruction. We assessed the potential contribution of secondary (free lipid decarboxylation) and tertiary (bound lipid decarboxylation) wax metabolites and compared the cumulative n-alkane patterns with birch n-alkane distributions reported in the literature. Two statistically different patterns were separated, one dominated by primary, the other by secondary and tertiary formed n-alkanes. This may explain the inconsistency in previous birch wax analysis reported and needs consideration in paleoenvironment reconstruction.
Collapse
Affiliation(s)
- Jan Weber
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Lorenz Schwark
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany; Department of Earth Sciences, WA-OIGC, Curtin University, Perth, Australia.
| |
Collapse
|
13
|
Cerón-Carpio AB, Pérez-García B, Monribot Villanueva JL, Kiel-Martínez AL, Espinosa-Matias S, Guerrero-Analco JA, Mehltreter K. Chemical composition and micromorphological structure of cuticular leaf waxes of eight tropical fern species of Mexico. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|