1
|
Mezquida ET, Olano JM. Spatial and Temporal Variation in the Antagonistic and Mutualistic Interactions among Seed Predator Arthropods, Seed-Dispersing Birds, and the Spanish Juniper. INSECTS 2024; 15:620. [PMID: 39194824 DOI: 10.3390/insects15080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Plants interact with both antagonistic and mutualistic animals during reproduction, with the outcomes of these interactions significantly influencing plant reproductive success, population dynamics, and the evolution of plant traits. Here, we investigated the spatial and temporal variations in the interactions between Juniperus thurifera, its seed-dispersing birds, and three specific arthropod species that attack the fleshy cones during the predispersal period. We assessed how plant traits affect levels of cone damage by arthropods and seed dispersal by birds, the occurrence of competition among arthropod species, and the impact of seed predators on the activity of frugivores. Plant traits, cone damage by arthropods, and seed dispersal by birds showed spatiotemporal variability. Fluctuation in cone abundance was the leading factor determining damage by arthropods and bird dispersal with a secondary role of cone traits. Large crops satiated predispersal seed predators, although the amount of frugivory did not increase significantly, suggesting a potential satiation of bird dispersers. Crop size and cone traits at individual trees determined preferences by seed predator species and the foraging activity of bird dispersers. Competition among arthropods increased during years of low cone production, and seed predators sometimes negatively affected bird frugivory. High supra-annual variations in cone production appear to be a key evolutionary mechanism enhancing J. thurifera reproductive success. This strategy reduces the impact of specialized seed predators during years of high seed production, despite the potential drawback of satiating seed dispersers.
Collapse
Affiliation(s)
- Eduardo T Mezquida
- Department of Ecology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
- Biodiversity and Global Change Research Center (CIBC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - José Miguel Olano
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Escuela de Ingeniería de la Industria Forestal, Agronómica y de la Bioenergía (EiFAB), Universidad de Valladolid, 42004 Soria, Spain
| |
Collapse
|
2
|
Woziwoda B, Dyderski MK, Gręda A, Frelich LE. Verified hypotheses on the "nurse" and "burial" effects on introduced Quercus rubra regeneration in a mesic Scots pine forest. Ecol Evol 2024; 14:e11185. [PMID: 38571810 PMCID: PMC10985384 DOI: 10.1002/ece3.11185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
A previous study on the encroachment of North American northern red oak Quercus rubra L. into the mesic Scots pine forest (in central Poland) revealed high abundances of seedlings and saplings under shrubs, with lower abundances in open areas or clumps of bilberry Vaccinium myrtillus L. It was unclear whether the regeneration success of Q. rubra is enhanced by the presence of shrubs due to their "nurse effect", and how burying acorns of different sizes in soil or moss affects the survival of oak seeds and seedlings (a "burial effect"). Results of a previous observational study were verified in an experimental study: a pool of 900 large-, medium-, and small-sized acorns was sown under moss cover in open areas and within bilberry clumps and in soil under shrubs in 2018 and monitored for 3 years in natural conditions. The majority of sown acorns were lost, mainly due to acorn pilferage, lack of germination and the death of sprouting acorns. However, acorn and seedling survival depended significantly on acorn size and differed among the microsites studied. Viable seedlings were twice as likely to develop from large- and medium-sized as from small-sized acorns, and they grew mainly from acorns sown under moss cover, confirming a positive "burial effect." Seedling survival was three times higher in bilberry and open areas, than under shrubs; however, seedlings "nursed" by shrubs were less threatened by large ungulates. Only a small part of the pool of sown acorns contributes to the reproductive success of Q. rubra in the mesic Scots pine forest. Microsites characteristic to this type of forest are suitable for northern red oak regeneration; however, bilberry favors acorn survival and germination and early seedling growth, moss cover favors acorn survival and germination, while shrubs protect surviving seedlings from herbivory.
Collapse
Affiliation(s)
- Beata Woziwoda
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental ProtectionUniversity of LodzŁódźPoland
| | - Marcin K. Dyderski
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
- Natural Hazards and Landscape (BFW)Austrian Federal Research Centre for ForestsViennaAustria
| | - Anastazja Gręda
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental ProtectionUniversity of LodzŁódźPoland
| | - Lee E. Frelich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
3
|
Schaeffer BM, Truman SS, Truscott TT, Dickerson AK. Maple samara flight is robust to morphological perturbation and united by a classic drag model. Commun Biol 2024; 7:248. [PMID: 38429358 PMCID: PMC10907639 DOI: 10.1038/s42003-024-05913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Winged, autorotating seeds from the genus Acer, have been the subject of study for botanists and aerodynamicists for decades. Despite this attention and the relative simplicity of these winged seeds, there are still considerable gaps in our understanding of how samara dynamics are informed by morphological features. Additionally, questions remain regarding the robustness of their dynamics to morphological alterations such as mass change by moisture or area change by damage. We here challenge the conventional approach of using wing-loading correlations and instead demonstrate the superiority of a classical aerodynamic model. Using allometry, we determine why some species deviate from interspecific aerodynamic behavior. We alter samara mass and wing area and measure corresponding changes to descent velocity, rotation rate, and coning angle, thereby demonstrating their remarkable ability to autorotate despite significant morphological alteration. Samaras endure mass changes greater than 100% while maintaining descent velocity changes of less than 15%, and are thus robust to changes in mass by moisture or damage. Additionally, samaras withstand up to a 40% reduction in wing area before losing their ability to autorotate, with the largest wings more robust to ablation. Thus, samaras are also robust to wing damage in their environment, a fact children joyfully exploit.
Collapse
Affiliation(s)
- Breanna M Schaeffer
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| | - Spencer S Truman
- Department of Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia
| | - Tadd T Truscott
- Department of Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia
| | - Andrew K Dickerson
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang CH, Xiang J, Ma H. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:228-251. [PMID: 38351714 DOI: 10.1111/jipb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708, NC, USA
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hongyi Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Yi Hu
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
5
|
Leal LC, Koski MH. Linking pollen limitation and seed dispersal effectiveness. Ecol Lett 2024; 27:e14347. [PMID: 38073068 DOI: 10.1111/ele.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023]
Abstract
Seed production and dispersal are crucial ecological processes impacting plant demography, species distributions and community assembly. Plant-animal interactions commonly mediate both seed production and seed dispersal, but current research often examines pollination and seed dispersal separately, which hinders our understanding of how pollination services affect downstream dispersal services. To fill this gap, we propose a conceptual framework exploring how pollen limitation can impact the effectiveness of seed dispersal for endozoochorous and myrmecochorous plant species. We summarize the quantitative and qualitative effects of pollen limitation on plant reproduction and use Optimal Foraging Theory to predict its impact on the foraging behaviour of seed dispersers. In doing so, we offer a new framework that poses numerous hypotheses and empirical tests to investigate links between pollen limitation and seed dispersal effectiveness and, consequently, post-dispersal ecological processes occurring at different levels of biological organization. Finally, considering the importance of pollination and seed dispersal outcomes to plant eco-evolutionary dynamics, we discussed the implications of our framework for future studies exploring the demographic and evolutionary impacts of pollen limitation for animal-dispersed plants.
Collapse
Affiliation(s)
- Laura C Leal
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
6
|
Drees TH, Shea K. Elevated temperatures shift flower head height distributions and seed dispersal patterns in two invasive thistle species. Ecology 2024; 105:e4201. [PMID: 37901946 DOI: 10.1002/ecy.4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Climate change may significantly alter how organisms disperse, with implications for population spread and species management. Wind-dispersed plants have emerged as a useful study system for investigating how climate change affects dispersal, although studies modeling wind dispersal often assume propagules are released from a single point on an individual. This simplifying assumption, while useful, may misestimate dispersal. Here, we investigate the effects of climate change on dispersal distances and spread rates, examining how these quantities shift when accounting for all points of seed release on an individual. Using the wind-dispersed invasive thistles Carduus nutans and Carduus acanthoides, we quantify temperature-driven shifts in the distribution of flower head heights using a passive warming field experiment, and estimate how these shifts affect dispersal using the Wald analytical long-distance (WALD) model; for C. nutans, we use existing demographic data to simulate how these shifts affect population spread rates. We also compare dispersal distances for both warmed and ambient temperature plants, considering the entire distribution of flower head heights versus the common assumption of point-source seed release at the maximum height. For experimentally grown individuals, an ~0.6°C higher growing temperature increased mean and maximum flower head height by 14.1 cm (15.0%) and 14.0 cm (13.2%), respectively, in C. nutans and by 21.2 cm (26.6%) and 31.8 cm (36.7%), respectively, in C. acanthoides. Seeds from warmed individuals were more likely to exceed a given dispersal distance than those from their unwarmed counterparts; warmed C. nutans and C. acanthoides seeds were on average 1.36 and 1.71 times as likely, respectively, to travel 10 m or more in dispersal simulations, with this disparity increasing at longer dispersal distances. For C. nutans, increased growing temperatures boosted simulated rates of population spread by 42.2%, while assuming dispersal from a maximum height point source rather than the true distribution of flower head heights increased simulated spread by up to 28.5%. Our results not only demonstrate faster population spread under increased temperatures, but also have substantial implications for modeling such spread, as the common simplifying assumption of dispersal from a single maximum height source may substantially overestimate spread rates.
Collapse
Affiliation(s)
- Trevor H Drees
- Department of Biology and IGDP in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katriona Shea
- Department of Biology and IGDP in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Zhang B, Hastings A, Grosholz ED, Zhai L. The comparison of dispersal rate between invasive and native species varied by plant life form and functional traits. MOVEMENT ECOLOGY 2023; 11:73. [PMID: 37924137 PMCID: PMC10623791 DOI: 10.1186/s40462-023-00424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/14/2023] [Indexed: 11/06/2023]
Abstract
A long dispersal distance is widely used to indicate high invasiveness, but it ignores the temporal dimensions of plant invasion. Faster dispersal rates (= distance/time) of invasive species than native ones have been widely used in modeling species invasion and planning control management. However, the comparison of dispersal rate between invasive and native plants, particularly for dispersal on a local or landscape scale, has not been tested with a comprehensive dataset. Moreover, both the effects of plant functional traits on the dispersal rate and variation in the functional-trait effects between invasive and native plants remain elusive. Compiling studies from 30 countries globally, we compared seed dispersal rates (km/year) on a local or landscape scale between 64 observations of invasive and 78 observations of native plants given effects of plant life forms, disturbance levels, and measurement methods. Furthermore, we compared the effects of functional traits on dispersal rate between invasive and native species. We found that: (1) Trait values were similar between the invasive and native plants except for the greater height of woody native plants than woody invasive ones; (2) Compared within the same plant life form, the faster dispersal rates of invasive species were found in herbaceous plants, not in woody plants, and disturbance level and measurement methods did not affect the rate comparison; (3) Plant height and seed length had significant effects on dispersal rates of both invasive and native plants, but the effect of leaf dry matter content (LDMC) was only significant on herbaceous invasive plants. The comparison of dispersal rate between invasive and native plants varied by plant life form. The convergent values but divergent dispersal effects of plant traits between invasive and native species suggest that the trait effects on invasiveness could be better understood by trait association with key factors in invasiveness, e.g., dispersal rate, than the direct trait comparison between invasive and native plants.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Edwin D Grosholz
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
8
|
Kassout J, Hmimsa Y, Fatehi SE, Kadaoui K, Houssni M, Chakkour S, Sahli A, El Chami MA, Ariza-Mateos D, Palacios-Rodríguez G, Navarro-Cerrillo RM, Ater M. Aridity Gradients Shape Intraspecific Variability of Morphological Traits in Native Ceratonia siliqua L. of Morocco. PLANTS (BASEL, SWITZERLAND) 2023; 12:3447. [PMID: 37836187 PMCID: PMC10575131 DOI: 10.3390/plants12193447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The carob tree (Ceratonia siliqua L.) is a significant fruit tree in the Mediterranean region with cultural, biological, and ecological importance. Despite its importance, intraspecific trait variability (ITV) in carob trees has been largely overlooked in previous studies. Understanding ITV and its relationship with environmental conditions is crucial for conservation and breeding programs. In this study, we investigated the variability of carob pod and seed-related traits across different ecological scales in 25 studied populations in Morocco. Significant differences in morphological traits were observed between carob populations at various ecological levels, and pod-related traits exhibited greater variability than seed traits. Correlation analysis revealed strong associations between carob morphological traits and environmental conditions, with altitude and aridity index playing an influential role. The aridity gradient was strongly related to changes in pod size, seed number, and size, as well as seed yield. Our findings highlight an important ITV reaching 45% at the intra-population level, 36.5% at the inter-geographic level, and 30% at the inter-population level. Overall, this study contributes valuable insights into the ecology and adaptation of carob trees, emphasizing the importance of considering intraspecific variability when studying this remarkable species. This knowledge is critical for addressing the challenges posed by climate change and human activities on the long-term survival and ecological functioning of carob populations.
Collapse
Affiliation(s)
- Jalal Kassout
- Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat Principale, Rabat 10090, Morocco
| | - Younes Hmimsa
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
- TEDAEEP Team Research, Polydisciplinary Faculty of Larache (FPL), University of Abdelmalek Essaâdi, P.O. Box 745, Larache 92000, Morocco
| | - Salama El Fatehi
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
- TEDAEEP Team Research, Polydisciplinary Faculty of Larache (FPL), University of Abdelmalek Essaâdi, P.O. Box 745, Larache 92000, Morocco
| | - Khalil Kadaoui
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Mhammad Houssni
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Soufian Chakkour
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Abdelouahab Sahli
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Mohamad Ali El Chami
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - David Ariza-Mateos
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Guillermo Palacios-Rodríguez
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Rafael M. Navarro-Cerrillo
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Mohamed Ater
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| |
Collapse
|
9
|
Isla J, Jácome-Flores M, Arroyo JM, Jordano P. The turnover of plant-frugivore interactions along plant range expansion: consequences for natural colonization processes. Proc Biol Sci 2023; 290:20222547. [PMID: 37221844 PMCID: PMC10206477 DOI: 10.1098/rspb.2022.2547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Plant-animal mutualisms such as seed dispersal are key interactions for sustaining plant range shifts. It remains elusive whether the organization of interactions with seed dispersers is reconfigured along the expansion landscape template and, if so, whether its effects accelerate or slow colonization. Here we analyse plant-frugivore interactions in a scenario of rapid population expansion of a Mediterranean juniper. We combined network analyses with field surveys, sampling interactions between individual plants and frugivores by DNA-barcoding and phototrapping over two seasons. We assess the role of intrinsic and extrinsic intraspecific variability in shaping interactions and we estimate the individual plant contributions to the seed rain. The whole interaction network was highly structured, with a distinct set of modules including individual plants and frugivore species arranged concordantly along the expansion gradient. The modular configuration was partially shaped by individual neighbourhood context (density and fecundity) and phenotypic traits (cone size). Interaction reconfiguration resulted in a higher and more uneven propagule contribution, with most effective dispersers having a prominent role at the colonization front stand, where a distinct subset of early arriving plants dominated the seed rain. Our study offers new insights into the key role of mutualistic interactions in colonization scenarios by promoting fast plant expansion processes.
Collapse
Affiliation(s)
- Jorge Isla
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Miguel Jácome-Flores
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
- CONACYT-Centro del Cambio Global y la Sustentabilidad, 86080 Villahermosa, Tabasco, México
| | - Juan M. Arroyo
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Pedro Jordano
- Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain
- Dept. Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
10
|
Estrada-Villegas S, Stevenson PR, López O, DeWalt SJ, Comita LS, Dent DH. Animal seed dispersal recovery during passive restoration in a forested landscape. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210076. [PMID: 36373921 PMCID: PMC9661942 DOI: 10.1098/rstb.2021.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Seed dispersal by animals is key for restoration of tropical forests because it maintains plant diversity and accelerates community turnover. Therefore, changes in seed dispersal during forest restoration can indicate the recovery of species interactions, and yet these changes are rarely considered in forest restoration planning. In this study, we examined shifts in the importance of different seed dispersal modes during passive restoration in a tropical chronosequence spanning more than 100 years, by modelling the proportion of trees dispersed by bats, small birds, large birds, flightless mammals and abiotic means as a function of forest age. Contrary to expectations, tree species dispersed by flightless mammals dominated after 20 years of regeneration, and tree richness and abundance dispersed by each mode mostly recovered to old growth levels between 40 and 70 years post-abandonment. Seed dispersal by small birds declined over time during regeneration, while bat dispersal played a minor role throughout all stages of succession. Results suggest that proximity to old growth forests, coupled with low hunting, explained the prevalence of seed dispersal by animals, especially by flightless mammals at this site. We suggest that aspects of seed dispersal should be monitored when restoring forest ecosystems to evaluate the reestablishment of species interactions. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Sergio Estrada-Villegas
- Yale School of the Environment, Yale University, New Haven, CT 06511, USA
- New York Botanical Garden, Bronx, NY 10458, USA
- Smithsonian Tropical Research Institute, Balboa, Panamá
| | - Pablo R. Stevenson
- CIEM, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia 111711
| | - Omar López
- Smithsonian Tropical Research Institute, Balboa, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, Panamá
| | - Saara J. DeWalt
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Liza S. Comita
- Yale School of the Environment, Yale University, New Haven, CT 06511, USA
- Smithsonian Tropical Research Institute, Balboa, Panamá
| | - Daisy H. Dent
- Smithsonian Tropical Research Institute, Balboa, Panamá
- Max Planck Institute for Animal Behaviour, Konstanz 78315, Germany
- Department of Environmental Systems Science, ETH Zürich 8902, Switzerland
| |
Collapse
|
11
|
Quintero E, Rodríguez-Sánchez F, Jordano P. Reciprocity and interaction effectiveness in generalised mutualisms among free-living species. Ecol Lett 2023; 26:132-146. [PMID: 36450595 PMCID: PMC10099531 DOI: 10.1111/ele.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.
Collapse
Affiliation(s)
- Elena Quintero
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain
| | - Francisco Rodríguez-Sánchez
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
12
|
Emura N, Muranaka T, Iwasaki T, Honjo MN, Nagano AJ, Isagi Y, Kudoh H. Effects of fruit dimorphism on genetic structure and gene flow in the coastal shrub Scaevola taccada. ANNALS OF BOTANY 2022; 130:1029-1040. [PMID: 36534688 PMCID: PMC9851332 DOI: 10.1093/aob/mcac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Plant propagules often possess specialized morphologies that facilitate dispersal across specific landscapes. In the fruit dimorphism of a coastal shrub, Scaevola taccada, individual plants produce either cork-morph or pulp-morph fruits. The former is buoyant and common on sandy beaches, whereas the latter does not float, is bird-dispersed, and is common on elevated sites such as slopes on sea cliffs and behind rocky shores. We hypothesized that beach populations bridge the heterogeneous landscapes by serving as a source of both fruit types, while dispersal is biased for the pulp morph on elevated sites within the islands and for the cork morph between beaches of different islands. Based on this hypothesis, we predicted that populations in elevated sites would diverge genetically over time due to isolation by distance, whereas beach populations would maintain high genetic similarity via current gene flow. METHODS The genetic structure and gene flow in S. taccada were evaluated by investigating genome-wide single nucleotide polymorphisms in plants from 17 sampling sites on six islands (belonging to the Ryukyu, Daito and Ogasawara Islands) in Japan. KEY RESULTS Geographical isolation was detected among the three distant island groups. Analyses within the Ryukyu Islands suggested that sandy beach populations were characterized by genetic admixture, whereas populations in elevated sites were relatively isolated between the islands. Pairwise FST values between islands were lowest between sandy beaches, intermediate between sandy beaches and elevated sites, and highest between elevated sites. CONCLUSIONS Dispersal across the ocean by cork morphs is sufficiently frequent to prevent genetic divergence between beaches of different islands. Stronger genetic isolation of elevated sites between islands suggests that bird dispersal by pulp morphs is restricted mainly within islands. These contrasting patterns of gene flow realized by fruit dimorphism provide evidence that fruit characteristics can strongly mediate genetic structure.
Collapse
Affiliation(s)
- Naoko Emura
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Takaya Iwasaki
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| |
Collapse
|
13
|
Applestein C, Caughlin TT, Germino MJ. Post-fire seed dispersal of a wind-dispersed shrub declined with distance to seed source, yet had high levels of unexplained variation. AOB PLANTS 2022; 14:plac045. [PMID: 36380819 PMCID: PMC9661893 DOI: 10.1093/aobpla/plac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant-population recovery across large disturbance areas is often seed-limited. An understanding of seed dispersal patterns is fundamental for determining natural-regeneration potential. However, forecasting seed dispersal rates across heterogeneous landscapes remains a challenge. Our objectives were to determine (i) the landscape patterning of post-disturbance seed dispersal, and underlying sources of variation and the scale at which they operate, and (ii) how the natural seed dispersal patterns relate to a seed augmentation strategy. Vertical seed trapping experiments were replicated across 2 years and five burned and/or managed landscapes in sagebrush steppe. Multi-scale sampling and hierarchical Bayesian models were used to determine the scale of spatial variation in seed dispersal. We then integrated an empirical and mechanistic dispersal kernel for wind-dispersed species to project rates of seed dispersal and compared natural seed arrival to typical post-fire aerial seeding rates. Seeds were captured across the range of tested dispersal distances, up to a maximum distance of 26 m from seed-source plants, although dispersal to the furthest traps was variable. Seed dispersal was better explained by transect heterogeneity than by patch or site heterogeneity (transects were nested within patch within site). The number of seeds captured varied from a modelled mean of ~13 m-2 adjacent to patches of seed-producing plants, to nearly none at 10 m from patches, standardized over a 49-day period. Maximum seed dispersal distances on average were estimated to be 16 m according to a novel modelling approach using a 'latent' variable for dispersal distance based on seed trapping heights. Surprisingly, statistical representation of wind did not improve model fit and seed rain was not related to the large variation in total available seed of adjacent patches. The models predicted severe seed limitations were likely on typical burned areas, especially compared to the mean 95-250 seeds per m2 that previous literature suggested were required to generate sagebrush recovery. More broadly, our Bayesian data fusion approach could be applied to other cases that require quantitative estimates of long-distance seed dispersal across heterogeneous landscapes.
Collapse
Affiliation(s)
| | - T Trevor Caughlin
- Department of Biology, Boise State University, 1910 W University Drive, Boise, ID 83725, USA
| | - Matthew J Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, 230 N Collins Rd, Boise, ID 83702, USA
| |
Collapse
|
14
|
Li N, Yang X, Ren Y, Wang Z. Importance of species traits on individual-based seed dispersal networks and dispersal distance for endangered trees in a fragmented forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1010352. [PMID: 36212316 PMCID: PMC9534520 DOI: 10.3389/fpls.2022.1010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Although mutualistic network analyses have sparked a renewed interest in the patterns and drivers of network structures within communities, few studies have explored structural patterns within populations. In an endangered tree species population, plant individuals share their bird seed dispersers; however, the factors affecting individual interaction patterns are poorly understood. In this study, four individual-based networks were built for the endangered Chinese yew, Taxus chinensis, in a fragmented forest based on bird foraging type (swallowing and pecking networks) and habitat type (networks in a bamboo patch and an evergreen broad-leaved forest patch). Species-level network metrics (species degree and specialization, d') were used to evaluate the effects of species traits (bird and plant traits) on species-level networks and dispersal distance for T. chinensis. It was revealed that the interaction networks between T. chinensis individuals and their bird partners were influenced by foraging type and the habitat of plant distribution. Compared to the other two networks, bird swallowing and bird-fruit networks in the evergreen broad-leaved patch habitat had higher nestedness and connectance but lower modules and specialization. Bird (body weight and wing and bill lengths) and plant traits (height, crop size, and cover) significantly affected species-level network metrics such as degree and specialization. Furthermore, seed dispersal distance was influenced by species traits and the species-level metrics of fruit-bird interaction networks. These results provide new insights into individual-based seed dispersal mutualistic networks of endangered plant species under habitat fragmentation. Moreover, these findings have relevant implications for conserving and managing individual endangered trees in increasingly disturbed ecosystems.
Collapse
Affiliation(s)
- Ning Li
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanhao Ren
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Zheng Wang
- College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Pepin KM, Davis AJ, Epanchin-Niell RS, Gormley AM, Moore JL, Smyser TJ, Shaffer HB, Kendall WL, Shea K, Runge MC, McKee S. Optimizing management of invasions in an uncertain world using dynamic spatial models. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2628. [PMID: 35397481 DOI: 10.1002/eap.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Dispersal drives invasion dynamics of nonnative species and pathogens. Applying knowledge of dispersal to optimize the management of invasions can mean the difference between a failed and a successful control program and dramatically improve the return on investment of control efforts. A common approach to identifying optimal management solutions for invasions is to optimize dynamic spatial models that incorporate dispersal. Optimizing these spatial models can be very challenging because the interaction of time, space, and uncertainty rapidly amplifies the number of dimensions being considered. Addressing such problems requires advances in and the integration of techniques from multiple fields, including ecology, decision analysis, bioeconomics, natural resource management, and optimization. By synthesizing recent advances from these diverse fields, we provide a workflow for applying ecological theory to advance optimal management science and highlight priorities for optimizing the control of invasions. One of the striking gaps we identify is the extremely limited consideration of dispersal uncertainty in optimal management frameworks, even though dispersal estimates are highly uncertain and greatly influence invasion outcomes. In addition, optimization frameworks rarely consider multiple types of uncertainty (we describe five major types) and their interrelationships. Thus, feedbacks from management or other sources that could magnify uncertainty in dispersal are rarely considered. Incorporating uncertainty is crucial for improving transparency in decision risks and identifying optimal management strategies. We discuss gaps and solutions to the challenges of optimization using dynamic spatial models to increase the practical application of these important tools and improve the consistency and robustness of management recommendations for invasions.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
| | - Amy J Davis
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
| | - Rebecca S Epanchin-Niell
- Resources for the Future, Washington, District of Columbia, USA
- Department of Agricultural and Resource Economics, University of Maryland, College Park, Maryland, USA
| | | | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Timothy J Smyser
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, and La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, USA
| | - William L Kendall
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, Colorado, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael C Runge
- U.S. Geological Survey Patuxent Wildlife Research Center, Laurel, Maryland, USA
| | - Sophie McKee
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
- Department of Economics, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
16
|
Morán-López T, Sánchez-Dávila J, Torre I, Navarro-Castilla A, Barja I, Díaz M. Ungulate presence and predation risks reduce acorn predation by mice in dehesas. PLoS One 2022; 17:e0260419. [PMID: 35969588 PMCID: PMC9377575 DOI: 10.1371/journal.pone.0260419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Foraging decisions by rodents are key for the long-term maintenance of oak populations in which avian seed dispersers are absent or inefficient. Decisions are determined by the environmental setting in which acorn-rodent encounters occur. In particular, seed value, competition and predation risks have been found to modify rodent foraging decisions in forest and human-modified habitats. Nonetheless, there is little information about their joint effects on rodent behavior, and hence, local acorn dispersal (or predation). In this work, we manipulate and model the mouse-oak interaction in a Spanish dehesa, an anthropogenic savanna system in which nearby areas can show contrasting levels of ungulate densities and antipredatory cover. First, we conducted a large-scale cafeteria field experiment, where we modified ungulate presence and predation risk, and followed mouse foraging decisions under contrasting levels of moonlight and acorn availability. Then, we estimated the net effects of competition and risk by means of a transition probability model that simulated mouse foraging decisions. Our results show that mice are able to adapt their foraging decisions to the environmental context, affecting initial fates of handled acorns. Under high predation risks mice foraged opportunistically carrying away large and small seeds, whereas under safe conditions large acorns tended to be predated in situ. In addition, in the presence of ungulates lack of antipredatory cover around trees reduced mice activity outside tree canopies, and hence, large acorns had a higher probability of survival. Overall, our results point out that inter-specific interactions preventing efficient foraging by scatter-hoarders can reduce acorn predation. This suggests that the maintenance of the full set of seed consumers as well as top predators in dehesas may be key for promoting local dispersal.
Collapse
Affiliation(s)
- Teresa Morán-López
- Laboratorio Ecotono, INIBIOMA-CONICET, Universidad Nacional del Comahue, Black River, Argentina
| | - Jesús Sánchez-Dávila
- Department of Biogeography and Global Change (BGC-MNCN-CSIC), National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Ignasi Torre
- Museu de Ciències Naturals de Granollers (MCNG), Granollers, Barcelona, Spain
| | - Alvaro Navarro-Castilla
- Departament of Biology, Unit of Zoology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Barja
- Departament of Biology, Unit of Zoology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario Díaz
- Department of Biogeography and Global Change (BGC-MNCN-CSIC), National Museum of Natural Sciences, CSIC, Madrid, Spain
| |
Collapse
|
17
|
Boyd JN, Anderson JT, Brzyski J, Baskauf C, Cruse-Sanders J. Eco-evolutionary causes and consequences of rarity in plants: a meta-analysis. THE NEW PHYTOLOGIST 2022; 235:1272-1286. [PMID: 35460282 DOI: 10.1111/nph.18172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Species differ dramatically in their prevalence in the natural world, with many species characterized as rare due to restricted geographic distribution, low local abundance and/or habitat specialization. We investigated the ecoevolutionary causes and consequences of rarity with phylogenetically controlled metaanalyses of population genetic diversity, fitness and functional traits in rare and common congeneric plant species. Our syntheses included 252 rare species and 267 common congeners reported in 153 peer-reviewed articles published from 1978 to 2020 and one manuscript in press. Rare species have reduced population genetic diversity, depressed fitness and smaller reproductive structures than common congeners. Rare species also could suffer from inbreeding depression and reduced fertilization efficiency. By limiting their capacity to adapt and migrate, these characteristics could influence contemporary patterns of rarity and increase the susceptibility of rare species to rapid environmental change. We recommend that future studies present more nuanced data on the extent of rarity in focal species, expose rare and common species to ecologically relevant treatments, including reciprocal transplants, and conduct quantitative genetic and population genomic analyses across a greater array of systems. This research could elucidate the processes that contribute to rarity and generate robust predictions of extinction risks under global change.
Collapse
Affiliation(s)
- Jennifer Nagel Boyd
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN, 37403, USA
| | - Jill T Anderson
- Department of Genetics, University of Georgia, 120 Green Street, Athens, GA, 30602, USA
| | - Jessica Brzyski
- Department of Biology, Seton Hill University, 1 Seton Hill Drive, Greensburg, PA, 15601, USA
| | - Carol Baskauf
- Department of Biology, Austin Peay State University, PO Box 4718, Clarksville, TN, 37044, USA
| | - Jennifer Cruse-Sanders
- State Botanical Garden of Georgia, University of Georgia, 2450 S. Milledge Avenue, Athens, GA, 30605, USA
| |
Collapse
|
18
|
Hacket‐Pain A, Foest JJ, Pearse IS, LaMontagne JM, Koenig WD, Vacchiano G, Bogdziewicz M, Caignard T, Celebias P, van Dormolen J, Fernández‐Martínez M, Moris JV, Palaghianu C, Pesendorfer M, Satake A, Schermer E, Tanentzap AJ, Thomas PA, Vecchio D, Wion AP, Wohlgemuth T, Xue T, Abernethy K, Aravena Acuña M, Daniel Barrera M, Barton JH, Boutin S, Bush ER, Donoso Calderón S, Carevic FS, de Castilho CV, Manuel Cellini J, Chapman CA, Chapman H, Chianucci F, da Costa P, Croisé L, Cutini A, Dantzer B, Justin DeRose R, Dikangadissi J, Dimoto E, da Fonseca FL, Gallo L, Gratzer G, Greene DF, Hadad MA, Herrera AH, Jeffery KJ, Johnstone JF, Kalbitzer U, Kantorowicz W, Klimas CA, Lageard JGA, Lane J, Lapin K, Ledwoń M, Leeper AC, Vanessa Lencinas M, Lira‐Guedes AC, Lordon MC, Marchelli P, Marino S, Schmidt Van Marle H, McAdam AG, Momont LRW, Nicolas M, de Oliveira Wadt LH, Panahi P, Martínez Pastur G, Patterson T, Luis Peri P, Piechnik Ł, Pourhashemi M, Espinoza Quezada C, Roig FA, Peña Rojas K, Micaela Rosas Y, Schueler S, Seget B, Soler R, Steele MA, Toro‐Manríquez M, Tutin CEG, Ukizintambara T, White L, Yadok B, Willis JL, Zolles A, Żywiec M, Ascoli D. MASTREE+: Time-series of plant reproductive effort from six continents. GLOBAL CHANGE BIOLOGY 2022; 28:3066-3082. [PMID: 35170154 PMCID: PMC9314730 DOI: 10.1111/gcb.16130] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 05/31/2023]
Abstract
Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.
Collapse
Affiliation(s)
- Andrew Hacket‐Pain
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Jessie J. Foest
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science CenterFort CollinsColoradoUSA
| | | | - Walter D. Koenig
- Hastings ReservationUniversity of California BerkeleyCarmel ValleyCaliforniaUSA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental SciencesUniversity of MilanMilanItaly
| | - Michał Bogdziewicz
- Faculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- INRAELESSEMUniversity Grenoble AlpesGrenobleFrance
| | | | - Paulina Celebias
- Faculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | | | | | - Jose V. Moris
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| | | | - Mario Pesendorfer
- Department of Forest and Soil SciencesInstitute of Forest EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Eliane Schermer
- Aix Marseille UnivAvignon UniversitéCNRSIRDIMBEMarseilleFrance
| | - Andrew J. Tanentzap
- Ecosystems and Global Change GroupDepartment of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Davide Vecchio
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| | - Andreas P. Wion
- Graduate Degree Program in Ecology and The Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Tingting Xue
- College of Civil and Architecture and EngineeringChuzhou UniversityChina
| | - Katharine Abernethy
- Faculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Ecologie TropicaleCENARESTLibrevilleGabon
| | - Marie‐Claire Aravena Acuña
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | | | - Jessica H. Barton
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Stan Boutin
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | | | - Sergio Donoso Calderón
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | - Felipe S. Carevic
- Facultad de Recursos Naturales RenovablesUniversidad Arturo PratIquiqueChile
| | | | - Juan Manuel Cellini
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | - Colin A. Chapman
- Wilson CenterWashingtonDistrict of ColumbiaUSA
- Department of AnthropologyGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
- Shaanxi Key Laboratory for Animal ConservationNorthwest UniversityXi'anChina
| | - Hazel Chapman
- School of Biological SciencesUniversity of CanterburyCanterburyNew Zealand
- Nigerian Montane Forest Project (NMFP)Yelway VillageNigeria
| | | | - Patricia da Costa
- Brazilian Agricultural Research CorporationEmbrapa Meio AmbienteJaguariúnaBrazil
| | - Luc Croisé
- Département Recherche‐Développement‐InnovationOffice National des ForêtsFontainebleauFrance
| | - Andrea Cutini
- CREA—Research Centre for Forestry and WoodArezzoItaly
| | - Ben Dantzer
- Department of PsychologyDepartment of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - R. Justin DeRose
- Department of Wildland Resources and Ecology CenterUtah State UniversityLoganUtahUSA
| | | | - Edmond Dimoto
- Agence Nationale des Parcs Nationaux (ANPN)LibrevilleGabon
| | | | - Leonardo Gallo
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA—CONICETInstituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y TécnicasBarilocheArgentina
| | - Georg Gratzer
- Department of Forest and Soil SciencesInstitute of Forest EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - David F. Greene
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCaliforniaUSA
| | - Martín A. Hadad
- Laboratorio de Dendrocronología de Zonas ÁridasCIGEOBIO (CONICET‐UNSJ)RivadaviaArgentina
| | - Alejandro Huertas Herrera
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
- Ulterarius Consultores Ambientales y Científicos LtdaPunta ArenasChile
| | | | - Jill F. Johnstone
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Urs Kalbitzer
- Department for the Ecology of Animal SocietiesMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Władysław Kantorowicz
- Department of Silviculture and Genetics of Forest TreesForest Research InstituteRaszynPoland
| | - Christie A. Klimas
- Environmental Science and Studies DepartmentDePaul UniversityChicagoIllinoisUSA
| | | | - Jeffrey Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Mateusz Ledwoń
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
| | - Abigail C. Leeper
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Maria Vanessa Lencinas
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | - Michael C. Lordon
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Paula Marchelli
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA—CONICETInstituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y TécnicasBarilocheArgentina
| | - Shealyn Marino
- Department of Biology and Institute of the EnvironmentWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | | | - Andrew G. McAdam
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | | | - Manuel Nicolas
- Département Recherche‐Développement‐InnovationOffice National des ForêtsFontainebleauFrance
| | | | - Parisa Panahi
- Botany Research DivisionResearch Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | - Guillermo Martínez Pastur
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Thomas Patterson
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Pablo Luis Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA)Universidad Nacional de la Patagonia Austral (UNPA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Río GallegosArgentina
| | - Łukasz Piechnik
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Mehdi Pourhashemi
- Forest Research DivisionResearch Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | | | - Fidel A. Roig
- Laboratorio de Dendrocronología e Historia AmbientalIANIGLA—CONICET‐Universidad Nacional de CuyoMendozaArgentina
- Facultad de CienciasHémera Centro de Observación de la TierraEscuela de Ingeniería ForestalUniversidad MayorSantiagoChile
| | | | - Yamina Micaela Rosas
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | - Barbara Seget
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Rosina Soler
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Michael A. Steele
- Department of Biology and Institute of the EnvironmentWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Mónica Toro‐Manríquez
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
- Ulterarius Consultores Ambientales y Científicos LtdaPunta ArenasChile
| | | | | | - Lee White
- Faculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Ecologie TropicaleCENARESTLibrevilleGabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement chargé du Plan Climat, des Objectifs de Development Durable et du Plan d'Affectation des TerresBoulevard TriomphaleLibrevilleGabon
| | - Biplang Yadok
- Nigerian Montane Forest Project (NMFP)Yelway VillageNigeria
- Biosecurity NZMinistry for Primary IndustriesWellingtonNew Zealand
| | | | - Anita Zolles
- Austrian Research Centre for Forests BFWViennaAustria
| | - Magdalena Żywiec
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Davide Ascoli
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| |
Collapse
|
19
|
Vissoto M, Vizentin-Bugoni J, Sendoya SF, Gomes GC, Dias RA. Plant height and spatial context influence individual connectivity and specialization on seed dispersers in a tree population. Oecologia 2022; 198:721-731. [PMID: 35292859 DOI: 10.1007/s00442-022-05142-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
Abstract
While network analyses have stimulated a renewed interest in understanding patterns and drivers of specialization within communities, few studies have explored specialization within populations. Thus, in plant populations, causes and consequences of individual variation in their interactions with mutualistic animals remain poorly understood. Studying a Brazilian pepper (Schinus terebinthifolia) population, we measured the extent of individual variation in interactions with seed dispersers and tested whether connectivity (number of seed dispersers) and specialization (exclusiveness of partners) are associated with phenotypic and phenological traits of individuals and their spatial context. We found that: (i) individuals varied broadly in their connectivity and specialization on seed dispersers; (ii) phenotypic traits and spatial context matter more than fruiting duration in determining how many and how exclusive are seed dispersers of an individual; (iii) the individual-based network was nested and indicated that the less connected individuals were shorter, occurred in neighborhoods with fewer fruits, and tended to interact with a subset of the partners of more generalist individuals which, in turn, were taller and inserted in higher fruit density neighborhoods; (iv) modularity indicated the existence of subsets of individuals that interacted disproportionately with distinct groups of partners, which may occur due to differences in bird habitat use across the landscape. Our study underlines a remarkable interindividual variation that is overlooked when interactions are compiled to describe species-level interactions. Traits and spatial contexts that define variation among individuals may have important implications not only for fitness but also for sampling and description of interactions at species level.
Collapse
Affiliation(s)
- Maiara Vissoto
- Programa de Pós-Graduação em Biologia Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil. .,Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Jeferson Vizentin-Bugoni
- Programa de Pós-Graduação em Biologia Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sebastian F Sendoya
- Programa de Pós-Graduação em Biologia Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gustavo C Gomes
- Programa de Pós-Graduação em Desenvolvimento Territorial e Sistemas Agroindustriais, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Rafael A Dias
- Programa de Pós-Graduação em Biologia Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Wyse SV, Hulme PE. Competition‐colonisation trade‐offs are found among but not within wind‐dispersed
Pinus
species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sarah V. Wyse
- Bio‐Protection Research Centre Lincoln University Lincoln 7647 Canterbury New Zealand
| | - Philip E. Hulme
- Bio‐Protection Research Centre Lincoln University Lincoln 7647 Canterbury New Zealand
| |
Collapse
|
21
|
Cheplick GP. Philomatry in plants: why do so many species have limited seed dispersal? AMERICAN JOURNAL OF BOTANY 2022; 109:29-45. [PMID: 34679185 DOI: 10.1002/ajb2.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Many have noted limited seed dispersal of plants in diverse environments and attempted evolutionary explanations for it. Although philopatric ("love of fatherland") is used by zoologists to describe organisms that remain near their place of origin, philomatric ("love of motherland") is proposed as more appropriate for plants because seeds develop on the maternal parent, fecundity and dispersal are maternally influenced characteristics, and the term dovetails with the mother-site hypothesis (MSH) for the evolution of restricted dispersal. Proximate reasons for philomatry include intrinsic drivers such as morphological features of diaspores and where on the maternal parent they are produced. Extrinsic drivers include local environmental conditions, surrounding vegetation, and ineffective dispersal agents. The MSH proposes that selection should favor philomatry in a population adapted to a particular habitat because offspring will likewise be adapted to that same habitat. Several studies show philomatry can mitigate distance-dependent costs of dispersing into surrounding inhospitable areas. Undispersed diaspores can eliminate energetic costs of accessory structures or biochemicals needed by dispersible diaspores, but it is unclear whether these costs are significant to the evolution of philomatry. Disadvantages of limited dispersal are inability to escape deteriorating habitat conditions, inability to colonize new habitats, and inbreeding among offspring. Heterocarpic species offset these disadvantages by producing dispersed plus undispersed diaspores. A conceptual framework is presented relating dispersal distance to the probability of seedling establishment. Future research should recognize dispersal as a covarying syndrome of multiple life history traits and focus on ecological selection agents that favor philomatry.
Collapse
Affiliation(s)
- Gregory P Cheplick
- Biology Program, Plant Science Subprogram, The Graduate Center, City University of New York, New York, NY, 10016, USA
| |
Collapse
|
22
|
Marques Dracxler C, Kissling WD. The mutualism-antagonism continuum in Neotropical palm-frugivore interactions: from interaction outcomes to ecosystem dynamics. Biol Rev Camb Philos Soc 2021; 97:527-553. [PMID: 34725900 PMCID: PMC9297963 DOI: 10.1111/brv.12809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Frugivory, that is feeding on fruits, pulp or seeds by animals, is usually considered a mutualism when interactions involve seed dispersal, and an antagonism when it results in the predation and destruction of seeds. Nevertheless, most frugivory interactions involve both benefits and disadvantages for plants, and the net interaction outcomes thus tend to vary along a continuum from mutualism to antagonism. Quantifying outcome variation is challenging and the ecological contribution of frugivorous animals to plant demography thus remains little explored. This is particularly true for interactions in which animals do not ingest entire fruits, that is in seed‐eating and pulp‐eating. Here, we provide a comprehensive review of Neotropical palm–frugivore interactions, with a focus on how frugivore consumption behaviour (i.e. digestive processing, fruit‐handling ability and caching behaviour) and feeding types (fruit‐eating, pulp‐eating and seed‐eating) influence interaction outcomes at different demographic stages of palms. We compiled a total of 1043 species‐level palm–frugivore interaction records that explicitly captured information on which parts of palm fruits are eaten by animals. These records showed consumption of fruits of 106 Neotropical palm species by 273 vertebrate species, especially birds (50%) and mammals (45%), but also fish (3%) and reptiles (2%). Fruit‐eating involved all four taxonomic vertebrate classes whereas seed‐eating and pulp‐eating were only recorded among birds and mammals. Most fruit‐eating interactions (77%) resulted in positive interaction outcomes for plants (e.g. gut‐passed seeds are viable or seeds are successfully dispersed), regardless of the digestive processing type of vertebrate consumers (seed defecation versus regurgitation). The majority of pulp‐eating interactions (91%) also resulted in positive interaction outcomes, for instance via pulp removal that promoted seed germination or via dispersal of intact palm seeds by external transport, especially if animals have a good fruit‐handling ability (e.g. primates, and some parrots). By contrast, seed‐eating interactions mostly resulted in dual outcomes (60%), where interactions had both negative effects on seed survival and positive outcomes through seed caching and external (non‐digestive) seed dispersal. A detailed synthesis of available field studies with qualitative and quantitative information provided evidence that 12 families and 27 species of mammals and birds are predominantly on the mutualistic side of the continuum whereas five mammalian families, six mammal and one reptile species are on the antagonistic side. The synthesis also revealed that most species can act as partial mutualists, even if they are typically considered antagonists. Our review demonstrates how different consumption behaviours and feeding types of vertebrate fruit consumers can influence seed dispersal and regeneration of palms, and thus ultimately affect the structure and functioning of tropical ecosystems. Variation in feeding types of animal consumers will influence ecosystem dynamics via effects on plant population dynamics and differences in long‐distance seed dispersal, and may subsequently affect ecosystem functions such as carbon storage. The quantification of intra‐ and inter‐specific variation in outcomes of plant–frugivore interactions – and their positive and negative effects on the seed‐to‐seedling transition of animal‐dispersed plants – should be a key research focus to understand better the mutualism–antagonism continuum and its importance for ecosystem dynamics.
Collapse
Affiliation(s)
- Caroline Marques Dracxler
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| |
Collapse
|
23
|
Maternal Environmental Light Conditions Affect the Morphological Allometry and Dispersal Potential of Acer palmatum Samaras. FORESTS 2021. [DOI: 10.3390/f12101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seed dispersal plays critical roles in determining species survival and community structures. Since the dispersal is biologically under maternal control, it is hypothesized that intraspecific variation of dispersal potential and associated traits of seeds (diaspores) should be influenced by maternal habitat quality. We tested this hypothesis by examining the effects of maternal environmental light condition on morphological traits and descending performance of nearly 1800 wind-dispersed samaras collected from maple species Acer palmatum. Results showed that samaras produced by trees from shaded microhabitats had greater dispersal potential, in terms of slower terminal velocity of descent, than those produced in open microhabitats. This advantage was largely attributed to morphological plasticity. On average, samaras produced in shaded microhabitats, as compared to those produced in open habitats, had lower wing loading by only reducing weight but not area. In allometric details, in the large size range, samaras from shaded microhabitats had larger areas than those from open microhabitats; in the small size range, samaras from shaded microhabitats had wider wings. These findings suggest that greater dispersal potential of samaras in response to stressful maternal light environment reflected an active maternal control through the morphological allometry of samaras.
Collapse
|
24
|
Tonos J, Razafindratsima OH, Fenosoa ZSE, Dunham AE. Individual‐based networks reveal the highly skewed interactions of a frugivore mutualist with individual plants in a diverse community. OIKOS 2021. [DOI: 10.1111/oik.08539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jadelys Tonos
- Rice Univ., Biosciences Dept Houston TX USA
- Centre ValBio, Ranomafana National Park Ifanadiana Madagascar
| | - Onja H. Razafindratsima
- Centre ValBio, Ranomafana National Park Ifanadiana Madagascar
- Dept of Integrative Biology, Univ. of California Berkeley CA USA
| | - Zo Samuel Ella Fenosoa
- Centre ValBio, Ranomafana National Park Ifanadiana Madagascar
- Ecole Doctorale Sciences de la Vie et de l'Environnement, Univ. d'Antananarivo Antananarivo Madagascar
| | - Amy E. Dunham
- Rice Univ., Biosciences Dept Houston TX USA
- Centre ValBio, Ranomafana National Park Ifanadiana Madagascar
| |
Collapse
|
25
|
Fruit secondary metabolites shape seed dispersal effectiveness. Trends Ecol Evol 2021; 36:1113-1123. [PMID: 34509316 DOI: 10.1016/j.tree.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Plant secondary metabolites (PSMs) play a central role in seed dispersal and fruit defense, with potential for large impacts on plant fitness and demography. Yet because PSMs can have multiple interactive functions across seed dispersal stages, we must systematically study their effects to determine the net consequences for plant fitness. To tackle this issue, we integrate the role of fruit PSMs into the seed dispersal effectiveness (SDE) framework. We describe PSM effects on the quantity and quality of animal-mediated seed dispersal, both in pairwise interactions and diverse disperser communities, as well as trade-offs that occur across dispersal stages. By doing so, this review provides structure to a rapidly growing field and yields insights into a critical process shaping plant populations.
Collapse
|
26
|
Rehling F, Jaroszewicz B, Braasch LV, Albrecht J, Jordano P, Schlautmann J, Farwig N, Schabo DG. Within-Species Trait Variation Can Lead to Size Limitations in Seed Dispersal of Small-Fruited Plants. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inability of small-gaped animals to consume very large fruits may limit seed dispersal of the respective plants. This has often been shown for large-fruited plant species that remain poorly dispersed when large-gaped animal species are lost due to anthropogenic pressure. Little is known about whether gape-size limitations similarly influence seed dispersal of small-fruited plant species that can show a large variation in fruit size within species. In this study, fruit sizes of 15 plant species were compared with the gape sizes of their 41 animal dispersers in the temperate, old-growth Białowieża Forest, Poland. The effect of gape-size limitations on fruit consumption was assessed at the plant species level, and for a subset of nine plant species, also at the individual level, and subindividual level (i.e., fruits of the same plant individual). In addition, for the species subset, fruit-seed trait relationships were investigated to determine whether a restricted access of small-gaped animals to large fruits results in the dispersal of fewer or smaller seeds per fruit. Fruit sizes widely varied among plant species (74.2%), considerably at the subindividual level (17.1%), and to the smallest extent among plant individuals (8.7%). Key disperser species should be able to consume fruits of all plant species and all individuals (except those of the largest-fruited plant species), even if they are able to consume only 28-55% of available fruits. Fruit and seed traits were positively correlated in eight out of nine plant species, indicating that gape size limitations will result in 49% fewer (in one) or 16–21% smaller seeds (in three plant species) dispersed per fruit by small-gaped than by large-gaped main dispersers, respectively. Our results show that a large subindividual variation in fruit size is characteristic for small-fruited plant species, and increases their connectedness with frugivores at the level of plants species and individuals. Simultaneously, however, the large variation in fruit size leads to gape-size limitations that may induce selective pressures on fruit size if large-gaped dispersers become extinct. This study emphasizes the mechanisms by which gape-size limitation at the species, individual and subindividual level shape plant-frugivore interactions and the co-evolution of small-fruited plants.
Collapse
|
27
|
Lamperty T, Karubian J, Dunham AE. Ecological drivers of intraspecific variation in seed dispersal services of a common neotropical palm. Biotropica 2021. [DOI: 10.1111/btp.12966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Therese Lamperty
- Department of Biosciences Rice University Houston TX USA
- Department of Biology University of Washington Seattle WA USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
- Fundación para la Conservación de los Andes Tropicales Quito Ecuador
| | - Amy E. Dunham
- Department of Biosciences Rice University Houston TX USA
| |
Collapse
|
28
|
Palacio FX, Cataudela JF, Montalti D, Ordano M. Do frugivores exert selection on fruiting phenology? Potential scenarios across three plant populations of a Neotropical vine, Passiflora caerulea. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10121-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Dent DH, Estrada-Villegas S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol Evol 2021; 36:700-708. [PMID: 33966918 DOI: 10.1016/j.tree.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Tropical secondary forests are increasingly important for carbon sequestration and biodiversity conservation worldwide; yet, we still cannot accurately predict community turnover during secondary succession. We propose that integrating niche differentiation and dispersal limitation will generate an improved theoretical explanation of tropical forest succession. The interaction between seed sources and dispersers regulates seed movement throughout succession, and recent technological advances in animal tracking and molecular analyses enable us to accurately monitor seed movement as never before. We propose a framework to bridge the gap between niche differentiation and dispersal limitation. The Source-Disperser Limitation Framework (SDLF) provides a way to better predict secondary tropical forest succession across gradients of landscape disturbance by integrating seed sources and frugivore behavior.
Collapse
Affiliation(s)
- Daisy H Dent
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK; Smithsonian Tropical Research Institute, Balboa, Panama; Max Planck Institute for Animal Behavior, Konstanz, Germany.
| | - Sergio Estrada-Villegas
- Smithsonian Tropical Research Institute, Balboa, Panama; Yale School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Aziz SA, McConkey KR, Tanalgo K, Sritongchuay T, Low MR, Yong JY, Mildenstein TL, Nuevo-Diego CE, Lim VC, Racey PA. The Critical Importance of Old World Fruit Bats for Healthy Ecosystems and Economies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641411] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite extensive documentation of the ecological and economic importance of Old World fruit bats (Chiroptera: Pteropodidae) and the many threats they face from humans, negative attitudes towards pteropodids have persisted, fuelled by perceptions of bats as being pests and undesirable neighbours. Such long-term negativity towards bats is now further exacerbated by more recent disease-related concerns, particularly associated with the current COVID-19 pandemic. There remains an urgent need to investigate and highlight the positive and beneficial aspects of bats across the Old World. While previous reviews have summarised these extensively, numerous new studies conducted over the last 36 years have provided further valuable data and insights which warrant an updated review. Here we synthesise research on pteropodid-plant interactions, comprising diet, ecological roles, and ecosystem services, conducted during 1985-2020. We uncovered a total of 311 studies covering 75 out of the known 201 pteropodid species (37%), conducted in 47 countries. The majority of studies documented diet (52% of all studies; 67 pteropodid species), followed by foraging movement (49%; 50 pteropodid species), with fewer studies directly investigating the roles played by pteropodids in seed dispersal (24%; 41 pteropodid species), pollination (14%; 19 pteropodid species), and conflict with fruit growers (12%; 11 pteropodid species). Pteropodids were recorded feeding on 1072 plant species from 493 genera and 148 families, with fruits comprising the majority of plant parts consumed, followed by flowers/nectar/pollen, leaves, and other miscellaneous parts. Sixteen pteropodid species have been confirmed to act as pollinators for a total of 21 plant species, and 29 pteropodid species have been confirmed to act as seed dispersers for a total of 311 plant species. Anthropogenic threats disrupting bat-plant interactions in the Old World include hunting, direct persecution, habitat loss/disturbance, invasive species, and climate change, leading to ecosystem-level repercussions. We identify notable research gaps and important research priorities to support conservation action for pteropodids.
Collapse
|
31
|
Song YB, Shen-Tu XL, Dong M. Intraspecific Variation of Samara Dispersal Traits in the Endangered Tropical Tree Hopea hainanensis (Dipterocarpaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:599764. [PMID: 33281856 PMCID: PMC7691252 DOI: 10.3389/fpls.2020.599764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Propagule dispersal is a crucial life history stage, which affects population recruitment and regeneration as well as community structure and functions. The windborne process of samara dispersal is affected not only by samara traits and other plant traits, but also by environmental factors. Therefore, studying samara traits related to its dispersal and intraspecific variation in relation to other plant traits and environmental factors could help to understand population distribution and dynamics. Hopea hainanensis, a Dipterocarpaceae tree species dominant in lowland rainforests in Hainan (China) but endangered due to anthropogenic disturbances, is dispersed mainly by wind because of its sepal-winged samara. Here, we measured dispersal-related intraspecific samara traits of H. hainanensis, and analyzed their variation and correlation in relation to plant height, DBH (diameter at breast height), and elevation plant location. Great variations in the samara traits existed, and the variations were larger within than among individuals, which indicated a "bet-hedging" strategy of this species. Plant height, DBH, and elevation explained slight variation in the samara traits. Samara dispersal potential is mainly affected by the samara mass and morphological traits. Samara settling velocity was significantly positively correlated with fruit mass, seed mass, length and width, as well as samara wing loading, and negatively correlated with wing mass ratio, wing area, and wing aspect ratio. Substantial proportions of intraspecific variation in samara dispersal are explained by the samara mass and morphological traits. Natural regeneration with human-aided dispersal is necessary for recovering the H. hainanensis population. This finding contributes to the generalization of trait-based plant ecology, modeling of seed dispersal in tropical forests, and conservation and recovery of rare and endangered species such as H. hainanensis.
Collapse
|
32
|
Schreiber SJ, Beckman NG. Individual variation in dispersal and fecundity increases rates of spatial spread. AOB PLANTS 2020; 12:plaa001. [PMID: 32528638 PMCID: PMC7273335 DOI: 10.1093/aobpla/plaa001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/08/2020] [Indexed: 05/06/2023]
Abstract
Dispersal and fecundity are two fundamental traits underlying the spread of populations. Using integral difference equation models, we examine how individual variation in these fundamental traits and the heritability of these traits influence rates of spatial spread of populations along a one-dimensional transect. Using a mixture of analytic and numerical methods, we show that individual variation in dispersal rates increases spread rates and the more heritable this variation, the greater the increase. In contrast, individual variation in lifetime fecundity only increases spread rates when some of this variation is heritable. The highest increases in spread rates occur when variation in dispersal positively co-varies with fecundity. Our results highlight the importance of estimating individual variation in dispersal rates, dispersal syndromes in which fecundity and dispersal co-vary positively and heritability of these traits to predict population rates of spatial spread.
Collapse
Affiliation(s)
- Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
- Corresponding author’s email address:
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
33
|
Beckman NG, Aslan CE, Rogers HS. Introduction to the Special Issue: The role of seed dispersal in plant populations: perspectives and advances in a changing world. AOB PLANTS 2020; 12:plaa010. [PMID: 32337017 PMCID: PMC7164217 DOI: 10.1093/aobpla/plaa010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/05/2020] [Indexed: 05/06/2023]
Abstract
Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal. To tackle these important knowledge gaps, we established the CoDisperse Network and convened an interdisciplinary, NSF-sponsored Seed Dispersal Workshop in 2016, during which we explored the role of seed dispersal in plant population dynamics (NSF DEB Award # 1548194). In this Special Issue, we consider the current state of seed dispersal ecology and identify the following collaborative research needs: (i) the development of a mechanistic understanding of the movement process influencing dispersal of seeds; (ii) improved quantification of the relative influence of seed dispersal on plant fitness compared to processes occurring at other life history stages; (iii) an ability to scale from individual plants to ecosystems to quantify the influence of dispersal on ecosystem function; and (iv) the incorporation of seed dispersal ecology into conservation and management strategies.
Collapse
Affiliation(s)
- Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Clare E Aslan
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
34
|
Beckman NG, Aslan CE, Rogers HS, Kogan O, Bronstein JL, Bullock JM, Hartig F, HilleRisLambers J, Zhou Y, Zurell D, Brodie JF, Bruna EM, Cantrell RS, Decker RR, Efiom E, Fricke EC, Gurski K, Hastings A, Johnson JS, Loiselle BA, Miriti MN, Neubert MG, Pejchar L, Poulsen JR, Pufal G, Razafindratsima OH, Sandor ME, Shea K, Schreiber S, Schupp EW, Snell RS, Strickland C, Zambrano J. Advancing an interdisciplinary framework to study seed dispersal ecology. AOB PLANTS 2020; 12:plz048. [PMID: 32346468 PMCID: PMC7179845 DOI: 10.1093/aobpla/plz048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.
Collapse
Affiliation(s)
- Noelle G Beckman
- Department of Biology & Ecology Center, Utah State University, Logan, UT, USA
| | - Clare E Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford, UK
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| | - Damaris Zurell
- Swiss Federal Research Institute WSL, Dept. Land Change Science, Birmensdorf, Switzerland
- Humboldt-University Berlin, Geography Dept., Berlin, Germany
| | - Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio M Bruna
- Department of Wildlife Ecology & Conservation & Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | | | - Robin R Decker
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Edu Efiom
- REDD+ Unit, Cross River State Forestry Commission, Calabar, Nigeria
- Biology Department, Lund University, Lund, Sweden
| | - Evan C Fricke
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA
| | - Katherine Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Bette A Loiselle
- Center for Latin American Studies and Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Maria N Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Michael G Neubert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Gesine Pufal
- Natur Conservation and Landscape Ecology, University of Freiburg Freiburg, Germany
| | | | - Manette E Sandor
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sebastian Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Eugene W Schupp
- Department of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USA
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Jenny Zambrano
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
35
|
Snell RS, Beckman NG, Fricke E, Loiselle BA, Carvalho CS, Jones LR, Lichti NI, Lustenhouwer N, Schreiber SJ, Strickland C, Sullivan LL, Cavazos BR, Giladi I, Hastings A, Holbrook KM, Jongejans E, Kogan O, Montaño-Centellas F, Rudolph J, Rogers HS, Zwolak R, Schupp EW. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AOB PLANTS 2019; 11:plz016. [PMID: 31346404 PMCID: PMC6644487 DOI: 10.1093/aobpla/plz016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
Collapse
Affiliation(s)
- Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bette A Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Center for Latin American Studies, University of Florida, Gainsville, FL, USA
| | | | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Christopher Strickland
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Lauren L Sullivan
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Itamar Giladi
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | | - Eelke Jongejans
- Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Javiera Rudolph
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|