1
|
Grunst M, Grunst A, Thys B, Pinxten R, Eens M. Anthropogenic noise and light pollution decrease the repeatability of activity patterns and dampen expression of chronotypes in a free-living songbird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176552. [PMID: 39353492 DOI: 10.1016/j.scitotenv.2024.176552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Anthropogenic environmental change is introducing a suite of novel disturbance factors, which can have wide-ranging effects on mean behavior and behavioral repeatability. For example, exposure to sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN), may affect consistent and repeatable individual-level timing of daily activity, which is referred to as chronotypes. Although chronotypes have been increasingly documented in wild animal populations and may affect fitness, evidence for long-term stability across life-history stages and seasons is notably lacking. Furthermore, how multiple anthropogenic stressors may interact to erode or magnify the expression of chronotypes remains unclear. We tested for existence of chronotypes across life-history stages and seasons in suburban female great tits (Parus major), using emergence time from nest boxes in the morning as a proxy for activity onset. We then examined joint effects of noise pollution and ALAN on expression of chronotypes, and tested for effects of noise, ALAN, and weather conditions on mean emergence time. We found repeatability of daily activity patterns (emergence times) across life-history stages and seasons, providing evidence of chronotypes, as well as interactive effects of anthropogenic disturbance factors and weather conditions on population mean behavior. Furthermore, across-season repeatability of emergence times was approximately double in magnitude in low light and low noise conditions, relative to in conditions with higher light and/or noise pollution. Thus, joint exposure to these sensory pollutants tends to erode expression of chronotypes. This effect was driven by higher among-individual variance in the relatively undisturbed environment and collapse of this variance in the more disturbed environments. Decreased repeatability in environments with high disturbance levels may reduce potential for behavioral traits, such as chronotype, to be the target of selection and limit adaptability.
Collapse
Affiliation(s)
- Melissa Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Department of Biology, Indiana State University, Terre Haute, IN, USA.
| | - Andrea Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Department of Biology, Indiana State University, Terre Haute, IN, USA
| | - Bert Thys
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Foppen K, Pinxten R, Meijdam M, Eens M. Artificial Light at Night Advances the Onset of Vocal Activity in Both Male and Female Great Tits During the Breeding Season, While Noise Pollution Has Less Impact and Only in Females. Animals (Basel) 2024; 14:3199. [PMID: 39595252 PMCID: PMC11590875 DOI: 10.3390/ani14223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial light at night (ALAN) and noise pollution are two important stressors associated with urbanisation that can have a profound impact on animal behaviour and physiology, potentially disrupting biological rhythms. Although the influence of ALAN and noise pollution on daily activity patterns of songbirds has been clearly demonstrated, studies often focus on males, and the few that examined females have not included the potential influence of males on female activity patterns. Using free-living pairs of great tits (Parus major) as a model, we examined for the first time the effects of ALAN and noise pollution and their interaction on the onset of (vocal) activity in both members of a pair. We focused on the egg-laying phase, when both sexes are most vocally active. The onset of male dawn song, female emergence time from the nest box and the onset of female calling in the nest box were measured and used as a proxy for the chronotype. The repeatabilities for all chronotype proxies were high, with higher repeatabilities for males. Consistent with previous studies, ALAN advanced the onset of male dawn song, while it did not elicit a strong response in female emergence time. Additionally, our results suggest an indirect effect of ALAN on the onset of female vocal activity via acoustic interaction with the male. Noise pollution advanced the emergence time in females, while an interaction between ALAN and noise pollution was found for the onset of female calling. In agreement with previous studies, several covariables were shown to have an influence on the activity onset. Taking several proxies for chronotype into account, this study has provided robust evidence of effects of ALAN on male and female cavity-nesting songbirds during the egg-laying period.
Collapse
Affiliation(s)
- Kim Foppen
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| | | | | | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| |
Collapse
|
3
|
Di Lecce I, Sudyka J, Perrier C, Szulkin M. Extra-pair paternity in two passerine birds breeding in a gradient of urbanisation. Mol Ecol 2024; 33:e17481. [PMID: 39044486 DOI: 10.1111/mec.17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Urbanisation has been increasing worldwide in recent decades, driving environmental change and exerting novel selective pressures on wildlife. Phenotypic differences between urban and rural individuals have been widely documented in several taxa. However, the extent to which urbanisation impacts mating strategies is less known. Here, we investigated extra-pair paternity variation in great tits (Parus major) and blue tits (Cyanistes caeruleus) breeding in nestboxes set in a gradient of urbanisation in Warsaw, Poland, over three breeding seasons. Urbanisation was quantified as the amount of light pollution, noise pollution, impervious surface area (ISA) and tree cover within a 100-m radius around each nestbox. We obtained genotypes for 1213 great tits at 7344 SNP markers and for 1299 blue tits at 9366 SNP markers with a genotyping-by-sequencing method, and inferred extra-pair paternity by computing a genomewide relatedness matrix. We report higher extra-pair paternity in blue tits breeding in more urbanised areas, for example, with higher light pollution and ISA, and lower tree cover. However, no such trend was found in great tits. Late-stage survival of individual nestlings in both species was not associated with paternity or urbanisation proxies, thus we were not able to detect fitness benefits or drawbacks of being an extra-pair offspring in relation to urbanisation. Our results contribute to the growing body of knowledge reporting on the effects of urbanisation on avian ecology and behaviour, and confirm species-specific and population-specific patterns of extra-pair paternity variation.
Collapse
Affiliation(s)
- Irene Di Lecce
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Sudyka
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Groningen, the Netherlands
| | - Charles Perrier
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Marta Szulkin
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Harding CD, Walker KMM, Hackett TD, Herwig A, Peirson SN, Vyazovskiy VV. Ultrasonic vocalisation rate tracks the diurnal pattern of activity in winter phenotype Djungarian hamsters (Phodopus sungorus). J Comp Physiol B 2024; 194:383-401. [PMID: 38733409 PMCID: PMC11233387 DOI: 10.1007/s00360-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Vocalisations are increasingly being recognised as an important aspect of normal rodent behaviour yet little is known of how they interact with other spontaneous behaviours such as sleep and torpor, particularly in a social setting. We obtained chronic recordings of the vocal behaviour of adult male and female Djungarian hamsters (Phodopus sungorus) housed under short photoperiod (8 h light, 16 h dark, square wave transitions), in different social contexts. The animals were kept in isolation or in same-sex sibling pairs, separated by a grid which allowed non-physical social interaction. On approximately 20% of days hamsters spontaneously entered torpor, a state of metabolic depression that coincides with the rest phase of many small mammal species in response to actual or predicted energy shortages. Animals produced ultrasonic vocalisations (USVs) with a peak frequency of 57 kHz in both social and asocial conditions and there was a high degree of variability in vocalisation rate between subjects. Vocalisation rate was correlated with locomotor activity across the 24-h light cycle, occurring more frequently during the dark period when the hamsters were more active and peaking around light transitions. Solitary-housed animals did not vocalise whilst torpid and animals remained in torpor despite overlapping with vocalisations in social-housing. Besides a minor decrease in peak USV frequency when isolated hamsters were re-paired with their siblings, changing social contexts did not influence vocalisation behaviour or structure. In rare instances, temporally overlapping USVs occurred when animals were socially-housed and were grouped in such a way that could indicate coordination. We did not observe broadband calls (BBCs) contemporaneous with USVs in this paradigm, corroborating their correlation with physical aggression which was absent from our experiment. Overall, we find little evidence to suggest a direct social function of hamster USVs. We conclude that understanding the effects of vocalisations on spontaneous behaviours, such as sleep and torpor, will inform experimental design of future studies, especially where the role of social interactions is investigated.
Collapse
Affiliation(s)
- Christian D Harding
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, San Diego, USA.
| | - Kerry M M Walker
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
5
|
Jones TM, Llamas AP, Phillips JN. Phenotypic signatures of urbanization? Resident, but not migratory, songbird eye size varies with urban-associated light pollution levels. GLOBAL CHANGE BIOLOGY 2023; 29:6635-6646. [PMID: 37728032 DOI: 10.1111/gcb.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Urbanization now exposes large portions of the earth to sources of anthropogenic disturbance, driving rapid environmental change and producing novel environments. Changes in selective pressures as a result of urbanization are often associated with phenotypic divergence; however, the generality of phenotypic change remains unclear. In this study, we examined whether morphological phenotypes in two residential species (Carolina Wren [Thryothorus ludovicianus] and Northern Cardinal [Cardinalis cardinalis]) and two migratory species (Painted Bunting [Passerina ciris], and White-eyed Vireo [Vireo griseus]), differed between urban core and edge habitats in San Antonio, Texas, USA. More specifically, we examined whether urbanization, associated sensory pollution (light and noise) and brightness (open, bright areas cause by anthropogenic land use) influenced measures of avian body (mass and frame size) and lateral eye size. We found no differences in body size between urban core and edge habitats for all species except the Painted Bunting, in which core-urban individuals were smaller. Rather than a direct effect of urbanization, this was due to differences in age structure between habitats, with urban-core areas consisting of higher proportions of younger buntings which are, on average, smaller than older birds. Residential birds inhabiting urban-core areas had smaller eyes compared to their urban-edge counterparts, resulting from a negative association between eye size and light pollution and brightness across study sites; notably, we found no such association in the two migratory species. Our findings demonstrate how urbanization may indirectly influence phenotypes by altering population demographics and highlight the importance of accounting for age when assessing factors driving phenotypic change. We also provide some of the first evidence that birds may adapt to urban environments through changes in their eye morphology, demonstrating the need for future research into relationships among eye size, ambient light microenvironment use, and disassembly of avian communities as a result of urbanization.
Collapse
Affiliation(s)
- Todd M Jones
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, USA
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Alfredo P Llamas
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, USA
| | - Jennifer N Phillips
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, USA
- School of the Environment, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Kobisk A, Kwiatkowski MA. Effects of anthropogenic light on anuran calling site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122005. [PMID: 37330191 DOI: 10.1016/j.envpol.2023.122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The natural environment can be negatively impacted by a variety of human activities, including the production of artificial light at night. Recent studies suggest that pollution from anthropogenic light alters animal behavior. Despite being highly nocturnal, little attention has been given to anurans and the effects artificial light at night has on their behavior. This study investigated whether artificial light influenced male call site selection in east Texas anurans. Ambient light levels were quantified at five sites that varied in urbanization and artificial light levels. Calling males were located and ambient light was then measured at the male's call location. Light levels at those call locations were compared to the general light environment as measured at random locations in the area. There was a consistent pattern where males at the brightest sites called from locations darker than the general light environment. However, male call locations at the brightest sites were generally brighter than those at the darker sites suggesting that, while male anurans avoid illuminated areas for calling, males in more urbanized populations may be unable to do so. As such, male anurans at sites with higher light pollution may experience a form of habitat loss where preferred darker habitat is not available.
Collapse
Affiliation(s)
- Ashley Kobisk
- Department of Biology, Stephen F. Austin State University, P.O. Box 13003, Nacogdoches, TX, 75962, USA
| | - Matthew A Kwiatkowski
- Department of Biology, Stephen F. Austin State University, P.O. Box 13003, Nacogdoches, TX, 75962, USA.
| |
Collapse
|
7
|
Santema P, Kempenaers B. Experimentally advancing morning emergence time does not increase extra-pair siring success in blue tit males. Behav Ecol 2023; 34:346-353. [PMID: 37192920 PMCID: PMC10183205 DOI: 10.1093/beheco/arad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/03/2023] Open
Abstract
Extra-pair paternity occurs frequently in socially monogamous birds, but there is substantial variation in extra-pair siring success among males. Several studies have shown that siring success relates to the timing of morning activity, with the earliest active males being more successful, suggesting that early activity is important for acquiring extra-pair copulations. However, these studies are correlational, and it, therefore, remains unclear whether the relationship between timing and extra-pair siring success is causal. An alternative explanation is that successful extra-pair sires tend to be active earlier (e.g., because they are of high quality or in good condition), but that early activity in itself does not increase siring success. We experimentally advanced the emergence time of male blue tits by exposing them to light about half an hour before their natural emergence time. Although males that were exposed to the light treatment emerged from their roost substantially earlier than males that were exposed to a control treatment, light-treated males were not more likely to sire extra-pair offspring. Furthermore, whereas control males showed the expected relation between emergence time and siring success (although not statistically significant), there was no relation between emergence time and extra-pair siring success among light-treated males. Our results suggest that the timing of emergence from the roost is not an important factor underlying extra-pair siring success.
Collapse
Affiliation(s)
- Peter Santema
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, Seewiesen, Germany
- Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Bart Kempenaers
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, Seewiesen, Germany
| |
Collapse
|
8
|
Grunst ML, Grunst AS. Endocrine effects of exposure to artificial light at night: A review and synthesis of knowledge gaps. Mol Cell Endocrinol 2023; 568-569:111927. [PMID: 37019171 DOI: 10.1016/j.mce.2023.111927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Animals have evolved with natural patterns of light and darkness, such that light serves as an important zeitgeber, allowing adaptive synchronization of behavior and physiology to external conditions. Exposure to artificial light at night (ALAN) interferes with this process, resulting in dysregulation of endocrine systems. In this review, we evaluate the endocrine effects of ALAN exposure in birds and reptiles, identify major knowledge gaps, and highlight areas for future research. There is strong evidence for ecologically relevant levels of ALAN acting as an environmental endocrine disruptor. However, most studies focus on the pineal hormone melatonin, corticosterone release via the hypothalamus-pituitary-adrenal axis, or regulation of reproductive hormones via the hypothalamus-pituitary-gonadal axis, leaving effects on other endocrine systems largely unknown. We call for more research spanning a diversity of hormonal systems and levels of endocrine regulation (e.g. circulating hormone levels, receptor numbers, strength of negative feedback), and investigating involvement of molecular mechanisms, such as clock genes, in hormonal responses. In addition, longer-term studies are needed to elucidate potentially distinct effects arising from chronic exposure. Other important areas for future research effort include investigating intraspecific and interspecific variability in sensitivity to light exposure, further distinguishing between distinct effects of different types of light sources, and assessing impacts of ALAN exposure early in life, when endocrine systems remain sensitive to developmental programming. The effects of ALAN on endocrine systems are likely to have a plethora of downstream effects, with implications for individual fitness, population persistence, and community dynamics, especially within urban and suburban environments.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
| |
Collapse
|
9
|
Dickerson AL, Hall ML, Jones TM. Effects of variation in natural and artificial light at night on acoustic communication: a review and prospectus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
10
|
Renthlei Z, Yatung S, Lalpekhlui R, Trivedi AK. Seasonality in tropical birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:952-966. [PMID: 35982509 DOI: 10.1002/jez.2649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The survival of offspring depends on environmental conditions. Many organisms have evolved with seasonality, characterized as initiation-termination-reinitiation of several physiological processes (i.e., body fattening, molt, plumage coloration, reproduction, etc). It is an adaptation for the survival of many species. Predominantly seasonal breeders use photoperiod as the most reliable environmental cue to adapt to seasonal changes but supplementary factors like temperature and food are synergistically involved in seasonal processes. Studies from diverse vertebrate systems have contributed to understanding the mechanism involved in seasonal reproduction at the molecular and endocrine levels. Long-day induced thyrotropin (thyroid-stimulating hormone) released from the pars tuberalis of the pituitary gland triggers local thyroid hormone activation within the mediobasal hypothalamus. This locally produced thyroid hormone, T3, regulates seasonal gonadotropin-releasing hormone secretion. Most of the bird species studied are seasonal in reproduction and linked behavior and, therefore, need to adjust reproductive decisions to environmental fluctuations. Reproductive strategies of the temperate zone breeders are well-documented, but less is known about tropical birds' reproduction and factors stimulating the annual breeding strategies. Here, we address seasonality in tropical birds with reference to seasonal reproduction and the various environmental factors influencing seasonal breeding.
Collapse
Affiliation(s)
| | - Subu Yatung
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Ruth Lalpekhlui
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | |
Collapse
|
11
|
Taylor LA, Thawley CJ, Pertuit OR, Dennis AJ, Carson IR, Tang C, Johnson MA. Artificial light at night alters diurnal and nocturnal behavior and physiology in green anole lizards. Physiol Behav 2022; 257:113992. [DOI: 10.1016/j.physbeh.2022.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
12
|
Cronin AD, Smit JAH, Halfwerk W. Anthropogenic noise and light alter temporal but not spatial breeding behavior in a wild frog. Behav Ecol 2022; 33:1115-1122. [PMID: 36518635 PMCID: PMC9735234 DOI: 10.1093/beheco/arac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2023] Open
Abstract
Increasing urbanization has led to large-scale land-use changes, exposing persistent populations to drastically altered environments. Sensory pollutants, including low-frequency anthropogenic noise and artificial light at night (ALAN), are typically associated with urban environments and known to impact animal populations in a variety of ways. Both ALAN and anthropogenic noise can alter behavioral and physiological processes important for survival and reproduction, including communication and circadian rhythms. Although noise and light pollution typically co-occur in urbanized areas, few studies have addressed their combined impact on species' behavior. Here, we assessed how anthropogenic noise and ALAN can influence spatial and temporal variation in breeding activity of a wild frog population. By exposing artificial breeding sites inside a tropical rainforest to multiple sensory environments, we found that both anthropogenic noise and ALAN impact breeding behavior of túngara frogs (Engystomops pustulosus), albeit in different ways. Males arrived later in the night at their breeding sites in response to anthropogenic noise. ALAN, on the other hand, led to an increase in calling effort. We found no evidence that noise or light pollution either attracted frogs to or repelled frogs from breeding sites. Thus, anthropogenic noise may negatively affect calling males by shifting the timing of sexual signaling. Conversely, ALAN may increase the attractiveness of calling males. These changes in breeding behavior highlight the complex ways that urban multisensory pollution can influence behavior and suggest that such changes may have important ecological implications for the wildlife that are becoming increasingly exposed to urban multisensory pollution.
Collapse
Affiliation(s)
- Andrew D Cronin
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan, HV, Amsterdam, The Netherlands
| | - Judith A H Smit
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan, HV, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan, HV, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Batra T, Buniyaadi A, Kumar V. Daytime restriction of feeding prevents illuminated night-induced impairment of metabolism and sleep in diurnal zebra finches. Physiol Behav 2022; 253:113866. [PMID: 35659511 DOI: 10.1016/j.physbeh.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
We investigated whether nocturnal eating was causal to the impairment of metabolism and sleep disruption in diurnal animals exposed to illuminated nights. Adult zebra finches hatched and raised in 12 h light: 12 h darkness (LD) were exposed to 5-lux dim light at night (dLAN, two groups), with a control group maintained on LD. For the next 3 weeks, the food availability to one of the dLAN groups was restricted to the 12 h light period (dLAN -F); the other dLAN (dLAN +F) and LD groups were continued on ad lib feeding. In spite of similar food intakes, dLAN +F condition led to the fat accumulation and weight gain. These birds showed concurrent changes in hepatic expression of genes associated with carbohydrate and lipid metabolism, suggesting an enhanced gluconeogenesis and impaired fatty acids synthesis. Increased sirt1 mRNA levels indicated the activation of molecular mechanisms to counter-balance the metabolic damage under dLAN +F. Furthermore, reduced bout length and total duration of the nocturnal sleep suggested a poorer sleep in dLAN +F condition. Negative sleep effects of dLAN were supported by the lower hypothalamic expression of sleep promoting sik3 and camkii genes, and higher mRNA expression of awake promoting achm3 gene in dLAN +F, compared to the LD condition. Importantly, dLAN-induced negative effects in metabolism and sleep were alleviated in the dLAN -F group. These results suggest the role of timed feeding in alleviating the negative impact of illuminated nights in metabolism and sleep in diurnal zebra finches.
Collapse
Affiliation(s)
- Twinkle Batra
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Amaan Buniyaadi
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Vinod Kumar
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
14
|
Erratum: A systematic review of research investigating the combined ecological impact of anthropogenic noise and artificial light at night. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.995057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Gaviraghi Mussoi J, Stanley MC, Cain KE. Importance of sleep for avian vocal communication. Biol Lett 2022; 18:20220223. [PMID: 35975628 PMCID: PMC9382451 DOI: 10.1098/rsbl.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sleep is one of the few truly ubiquitous animal behaviours, and though many animals spend enormous periods of time asleep, we have only begun to understand the consequences of sleep disturbances. In humans, sleep is crucial for effective communication. Birds are classic models for understanding the evolution and mechanisms of human language and speech. Bird vocalizations are remarkably diverse, critical, fitness-related behaviours, and the way sleep affects vocalizations is likely similarly varied. However, research on the effects of sleep disturbances on avian vocalizations is shockingly scarce. Consequently, there is a critical gap in our understanding of the extent to which sleep disturbances disrupt communication. Here, we argue that sleep disturbances are likely to affect all birds' vocal performance by interfering with motivation, memory consolidation and vocal maintenance. Further, we suggest that quality sleep is likely essential when learning new vocalizations and that sleep disturbances will have especially strong effects on learned vocalizations. Finally, we advocate for future research to address gaps in our understanding of how sleep influences vocal learning and performance in birds.
Collapse
Affiliation(s)
| | - Margaret C Stanley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Dickerson AL, Hall ML, Jones TM. The effect of natural and artificial light at night on nocturnal song in the diurnal willie wagtail. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151986. [PMID: 34843784 DOI: 10.1016/j.scitotenv.2021.151986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Artificial light at night (ALAN) has rapidly and drastically changed the global nocturnal environment. Evidence for the effect of ALAN on animal behaviour is mounting and animals are exposed to both point sources of light (street and other surrounding light sources) and broadscale illuminance in the form of skyglow. Research has typically taken a simplified approach to assessing the presence of ALAN, yet to fully understand the ecological impact requires consideration of the different scales and sources of light concurrently. Bird song has previously been well studied for its relationship with light, offering an opportunity to examine the relative impact of different sources of light on behaviour. In this study, we combine correlational and experimental approaches to examine how light at night affects the nocturnal song behaviour of the largely diurnal willie wagtail (Rhipidura leucophrys). Observations of willie wagtails across urban and rural locations in southeastern Australia demonstrated that nocturnal song behaviour increased with the intensity of moonlight in darker rural areas but decreased in areas with high sky glow. In addition, willie wagtails were half as likely to sing at night in the presence of localized light sources such as streetlights in urban and rural areas. Experimental introduction of streetlights to a previously dark area confirmed this relationship: willie wagtail song rates declined when lights were turned on and returned to their original rates following streetlight removal. Our findings show that scale, as well as intensity, are important when considering the impact of light at night as moonlight, sky glow, and localized sources of artificial light have different effects on nocturnal song behaviour.
Collapse
Affiliation(s)
- Ashton L Dickerson
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Michelle L Hall
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Bush Heritage Australia, 395 Collins Street, Melbourne, Vic 3000, Australia; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Therésa M Jones
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Halfwerk W, Jerem P. A Systematic Review of Research Investigating the Combined Ecological Impact of Anthropogenic Noise and Artificial Light at Night. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.765950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Levels of anthropogenic noise and artificial light at night (ALAN) are rapidly rising on a global scale. Both sensory pollutants are well known to affect animal behavior and physiology, which can lead to substantial ecological impacts. Most studies on noise or light pollution to date have focused on single stressor impacts, studying both pollutants in isolation despite their high spatial and temporal co-occurrence. However, few studies have addressed their combined impact, known as multisensory pollution, with the specific aim to assess whether the interaction between noise and light pollution leads to predictable, additive effects, or less predictable, synergistic or antagonistic effects. We carried out a systematic review of research investigating multisensory pollution and found 28 studies that simultaneously assessed the impact of anthropogenic noise and ALAN on animal function (e.g., behavior, morphology or life-history), physiology (e.g., stress, oxidative, or immune status), or population demography (e.g., abundance or species richness). Only fifteen of these studies specifically tested for possible interactive effects when both sensory pollutants were combined. Four out of eight experimental studies revealed a significant interaction effect, in contrast to only three out seven observational studies. We discuss the benefits and limitations of experimental vs. observational studies addressing multisensory pollution and call for more specific testing of the diverse ways in which noise and light pollution can interact to affect wildlife.
Collapse
|
18
|
Abstract
An increase in artificial night lighting has blurred the boundaries of day and night and transformed the natural day-night environment with alteration in the temporal niche of the animals. Male zebra finches were exposed to a dim light at night (dLAN) protocol (Light: dLAN, 12L = 200 lux: 12dLAN = 5 lux) with controls on darkness at night (Light: dark, 12L = 200 lux: 12D = 0 lux) for six weeks. We assayed sleep-wake, daily behaviors, mood, and cognition, as well as changes in physiological parameters. Dim light at night increased sleep frequency, delayed sleep onset, advanced awakening latency, and caused a reduction in total sleep duration. dLAN birds did not associate (physical association) with novel object and birds spent significantly lesser time on perch with novel object as compared to LD. In colour learning task, night illuminated birds took more time to learn and made more error, compared to LD. dLAN significantly altered the 24-h daily behavioral rhythm (amplitude and acrophase) of feeding, drinking, preening, and perch-hopping behavior. In particular, birds extended their feeding hours in the nighttime under dLAN, with no difference in total food intake. Birds under dLAN increased fattening and hence significantly increased body mass. Our results show that dim light at night altered feeding rhythm, caused decrease in sleep behavior, and negatively affected learning and memory performance in male zebra finches.
Collapse
|
19
|
Kumar J, Malik S, Bhardwaj SK, Rani S. Impact of Light at Night Is Phase Dependent: A Study on Migratory Redheaded Bunting (Emberiza bruniceps). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.751072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial light at night (LAN) alters the physiology and behavior of an organism; however, very little is known about phase-dependent effects of LAN, particularly, in night migratory songbirds. Therefore, in this study, we investigated whether the effects of LAN on daily activity and photoperiodic responses in the Palearctic Indian migratory songbird, redheaded buntings (Emberiza bruniceps), is dependent on the different phases of the night. Male buntings maintained under short photoperiod (8L:16D; L = 100 lux, D < 0.1 lux) in individual activity cages were exposed to LAN (2 lux) for 6 weeks either in 4 h bin given at the different phases of 16 h night (early, mid, or late at ZT 08–12, ZT 14–18, or ZT 20–24, respectively; n = 9 each group) or throughout 16 h night (all night light, n = 6, ZT 08–24, the time of lights ON was considered as Zeitgeber time 0, ZT 0). A group (n = 6) with no LAN served as control. The results showed that LAN at the different phases of night induced differential effects as shown by an intense activity during the night, altered melatonin and temperature rhythms, and showed an increase in body mass and body fattening, food intake, and gonadal size. Midnight light exposure has a greater impact on migration and reproduction linked phenotypes, which is similar to the ones that received light throughout the night. The highlights of this study are that (i) LAN impacts day-night activity behavior, (ii) its continuity with the day alters the perception of day length, (iii) birds showed differential sensitivity to LAN in a phase-dependent manner, (iv) the direction of placing LAN affects the daily responses, e.g., LAN in the early night was “accepted” as extended dusk but the late night was considered as early dawn, and (v) midnight LAN was most effective and induced similar responses as continuous LAN. Overall, LAN induces long day responses in short days and shows differential sensitivity of the different phases of the night toward the light. This information may be valuable in adopting a part-night lighting approach to help reduce the physiological burden, such as early migration and reproduction, of artificial lighting on the nocturnal migrants.
Collapse
|
20
|
Luo B, Xu R, Li Y, Zhou W, Wang W, Gao H, Wang Z, Deng Y, Liu Y, Feng J. Artificial light reduces foraging opportunities in wild least horseshoe bats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117765. [PMID: 34265558 DOI: 10.1016/j.envpol.2021.117765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0-15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
Collapse
Affiliation(s)
- Bo Luo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Rong Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Yunchun Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Wenyu Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Weiwei Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Huimin Gao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Zhen Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Yingchun Deng
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong, 637009, China
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
21
|
Bani Assadi S, Fraser KC. The Influence of Different Light Wavelengths of Anthropogenic Light at Night on Nestling Development and the Timing of Post-fledge Movements in a Migratory Songbird. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many different aspects of an animal’s lifecycle such as its behavior, patterns of hormone activity, and internal clock time, can be affected by anthropogenic light at night (ALAN). Exposing an organism to ALAN during its early life could also have an impact on its development. Since photoperiod can trigger or schedule the migration timing of long-distance migratory birds, there is great potential for anthropogenic light to interact with photoperiod to affect timing. However, very little has been investigated regarding the impacts of ALAN on post-hatching development and migration timing. We investigated the impact of ALAN during nestling development in a long-distance migratory songbird to determine the potential impact on the timing of post-breeding movements in the wild. We experimentally manipulated the light by using programmable lighting, in the nest boxes of free-living nestlings of purple martin (Progne subis) in Manitoba, Canada. We exposed two groups of developing nestlings, from hatch to fledge date, to green or white LED lights (5 lux) during the night. We also included a control group that experienced natural, ambient light at night. We found that some adults abandoned their nests shortly after starting the experiment (4 of 15 nests in the white light treatment). For the nests that remained active, nestlings exposed to the white light treatment had higher weights (at day 20 or 22), later fledge dates (1.54 ± 0.37, 95% CI 0.80–2.28), and later colony departure date (2.84 ± 1.00, 95% CI 0.88–4.81), than young of the control group. Moreover, nestlings of both white and green light groups had longer nesting duration than nestlings of the control group. This study demonstrates the impact of ALAN on the development of post-breeding movement timing in nestlings of wild migratory birds. However, our results also indicate that green light may have less of an impact as compared to white light.
Collapse
|
22
|
More than noise: light, moon phase, and singing behavior in a passerine. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
McNaughton EJ, Gaston KJ, Beggs JR, Jones DN, Stanley MC. Areas of ecological importance are exposed to risk from urban sky glow: Auckland, Aotearoa-New Zealand as a case study. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Alaasam VJ, Liu X, Niu Y, Habibian JS, Pieraut S, Ferguson BS, Zhang Y, Ouyang JQ. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117036. [PMID: 33838441 PMCID: PMC8184626 DOI: 10.1016/j.envpol.2021.117036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/28/2021] [Indexed: 05/17/2023]
Abstract
Artificial light is transforming the nighttime environment and quickly becoming one of the most pervasive pollutants on earth. Across taxa, light entrains endogenous circadian clocks that function to synchronize behavioral and physiological rhythms with natural photoperiod. Artificial light at night (ALAN) disrupts these photoperiodic cues and has consequences for humans and wildlife including sleep disruption, physiological stress and increased risk of cardiovascular disease. However, the mechanisms underlying organismal responses to dim ALAN, resembling light pollution, remain elusive. Light pollution exists in the environment at lower levels (<5 lux) than tested in many laboratory studies that link ALAN to circadian rhythm disruption. Few studies have linked dim ALAN to both the upstream regulators of circadian rhythms and downstream behavioral and physiological consequences. We exposed zebra finches (Taeniopygia gutatta) to dim ALAN (1.5 lux) and measured circadian expression of five pacemaker genes in central and peripheral tissues, plasma melatonin, locomotor activity, and biomarkers of cardiovascular health. ALAN caused an increase in nighttime activity and, for males, cardiac hypertrophy. Moreover, downstream effects were detectable after just short duration exposure (10 days) and at dim levels that mimic the intensity of environmental light pollution. However, ALAN did not affect circulating melatonin nor oscillations of circadian gene expression in the central clock (brain) or liver. These findings suggest that dim ALAN can alter behavior and physiology without strong shifts in the rhythmic expression of molecular circadian pacemakers. Approaches that focus on ecologically-relevant ALAN and link complex biological pathways are necessary to understand the mechanisms underlying vertebrate responses to light pollution.
Collapse
Affiliation(s)
- Valentina J Alaasam
- Department of Biology, University of Nevada, Reno, Reno, NV, USA; Program of Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Xu Liu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Ye Niu
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Justine S Habibian
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Program of Cellular and Molecular Biology, University of Nevada, Reno, Reno, NV, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Brad S Ferguson
- Department of Nutrition, University of Nevada, Reno, Reno, NV, USA; Center for Biomedical Research Excellence in Molecular and Cellular Signal Transduction in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
25
|
Ren Z, Chen Y, Liu F, Ma X, Ma J, Liu G. Effects of artificial light with different wavelengths and irradiances on the sleep behaviors of Chestnut buntings (Emberiza rutila). BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1958542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhuofei Ren
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Yuqi Chen
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Fangbo Liu
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Xinlong Ma
- Biomechanics Laboratory of Orthopaedics Institute, Tianjin Hospital, Tianjin, China
| | - Jianxiong Ma
- Biomechanics Laboratory of Orthopaedics Institute, Tianjin Hospital, Tianjin, China
| | - Gang Liu
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| |
Collapse
|
26
|
Evidence That Artificial Light at Night Induces Structure-Specific Changes in Brain Plasticity in a Diurnal Bird. Biomolecules 2021; 11:biom11081069. [PMID: 34439736 PMCID: PMC8394529 DOI: 10.3390/biom11081069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
We recently reported that artificial light at night (ALAN), at ecologically relevant intensities (1.5, 5 lux), increases cell proliferation in the ventricular zone and recruitment of new neurons in several forebrain regions of female zebra finches (Taeniopygia guttata), along with a decrease of total neuronal densities in some of these regions (indicating possible neuronal death). In the present study, we exposed male zebra finches to the same ALAN intensities, treated them with 5′-bromo-2′-deoxyuridine, quantified cell proliferation and neuronal recruitment in several forebrain regions, and compared them to controls that were kept under dark nights. ALAN increased cell proliferation in the ventricular zone, similar to our previous findings in females. We also found, for the first time, that ALAN increased new neuronal recruitment in HVC and Area X, which are part of the song system in the brain and are male-specific. In other brain regions, such as the medial striatum, nidopallium caudale, and hippocampus, we recorded an increased neuronal recruitment only in the medial striatum (unlike our previous findings in females), and relative to the controls this increase was less prominent than in females. Moreover, the effect of ALAN duration on total neuronal densities in the studied regions varied between the sexes, supporting the suggestion that males are more resilient to ALAN than females. Suppression of nocturnal melatonin levels after ALAN exhibited a light intensity-dependent decrease in males in contrast to females, another indication that males might be less affected by ALAN. Taken together, our study emphasizes the importance of studying both sexes when considering ALAN effects on brain plasticity.
Collapse
|
27
|
Mukai A, Yamaguchi K, Goto SG. Urban warming and artificial light alter dormancy in the flesh fly. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210866. [PMID: 34295533 PMCID: PMC8278053 DOI: 10.1098/rsos.210866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 05/23/2023]
Abstract
Seasonal changes in temperature and day length are distinct between rural and urban areas due to urban warming and the presence of artificial light at night. Many studies have focused on the impacts of these ubiquitous signatures on daily biological events, but empirical studies on their impacts on insect seasonality are limited. In the present study, we used the flesh fly Sarcophaga similis as a model insect to determine the impacts of urbanization on the incidence and timing of diapause (dormancy), not only in the laboratory but also in rural and urban conditions. In the laboratory, diapause entry was affected by night-time light levels as low as 0.01 lux. We placed fly cages on outdoor shelves in urban and rural areas to determine the timing of diapause entry; it was retarded by approximately four weeks in urban areas relative to that in rural areas. Moreover, almost all flies in the site facing an urban residential area failed to enter diapause, even by late autumn. Although an autumnal low temperature in the urban area would mitigate the negative effect of artificial light at night, strong light pollution seriously disrupts the flesh fly seasonal adaptation.
Collapse
Affiliation(s)
- Ayumu Mukai
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka, Japan
| | - Koki Yamaguchi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Shin G. Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
28
|
|
29
|
Brunner N, Kühleitner M, Renner-Martin K. Bertalanffy-Pütter models for avian growth. PLoS One 2021; 16:e0250515. [PMID: 33901213 PMCID: PMC8075225 DOI: 10.1371/journal.pone.0250515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
This paper explores the ratio of the mass in the inflection point over asymptotic mass for 81 nestlings of blue tits and great tits from an urban parkland in Warsaw, Poland (growth data from literature). We computed the ratios using the Bertalanffy-Pütter model, because this model was more flexible with respect to the ratios than the traditional models. For them, there were a-priori restrictions on the possible range of the ratios. (Further, as the Bertalanffy-Pütter model generalizes the traditional models, its fit to the data was necessarily better.) For six birds there was no inflection point (we set the ratio to 0), for 19 birds the ratio was between 0 and 0.368 (lowest ratio attainable for the Richards model), for 48 birds it was above 0.5 (fixed ratio of logistic growth), and for the remaining eight birds it was in between; the maximal observed ratio was 0.835. With these ratios we were able to detect small variations in avian growth due to slight differences in the environment: Our results indicate that blue tits grew more slowly (had a lower ratio) in the presence of light pollution and modified impervious substrate, a finding that would not have been possible had we used traditional growth curve analysis.
Collapse
Affiliation(s)
- Norbert Brunner
- Department of Integrative Biology and Biodiversity Research (DIBB), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Manfred Kühleitner
- Department of Integrative Biology and Biodiversity Research (DIBB), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Katharina Renner-Martin
- Department of Integrative Biology and Biodiversity Research (DIBB), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
30
|
van Hasselt SJ, Hut RA, Allocca G, Vyssotski AL, Piersma T, Rattenborg NC, Meerlo P. Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116444. [PMID: 33453700 DOI: 10.1016/j.envpol.2021.116444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
In modern society the night sky is lit up not only by the moon but also by artificial light devices. Both of these light sources can have a major impact on wildlife physiology and behaviour. For example, a number of bird species were found to sleep several hours less under full moon compared to new moon and a similar sleep-suppressing effect has been reported for artificial light at night (ALAN). Cloud cover at night can modulate the light levels perceived by wildlife, yet, in opposite directions for ALAN and moon. While clouds will block moon light, it may reflect and amplify ALAN levels and increases the night glow in urbanized areas. As a consequence, cloud cover may also modulate the sleep-suppressing effects of moon and ALAN in different directions. In this study we therefore measured sleep in barnacle geese (Branta leucopsis) under semi-natural conditions in relation to moon phase, ALAN and cloud cover. Our analysis shows that, during new moon nights stronger cloud cover was indeed associated with increased ALAN levels at our study site. In contrast, light levels during full moon nights were fairly constant, presumably because of moonlight on clear nights or because of reflected artificial light on cloudy nights. Importantly, cloud cover caused an estimated 24.8% reduction in the amount of night-time NREM sleep from nights with medium to full cloud cover, particularly during new moon when sleep was unaffected by moon light. In conclusion, our findings suggest that cloud cover can, in a rather dramatic way, amplify the immediate effects of ALAN on wildlife. Sleep appears to be highly sensitive to ALAN and may therefore be a good indicator of its biological effects.
Collapse
Affiliation(s)
- Sjoerd J van Hasselt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Roelof A Hut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Giancarlo Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia; Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Theunis Piersma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands; NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, the Netherlands
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
31
|
Sánchez-González K, Aguirre-Obando OA, Ríos-Chelén AA. Urbanization levels are associated with the start of the dawn chorus in vermilion flycatchers in Colombia. ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1837963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Katherin Sánchez-González
- Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Carrera 15, Calle 12 Norte, Armenia, Colombia
| | - Oscar A. Aguirre-Obando
- Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Carrera 15, Calle 12 Norte, Armenia, Colombia
| | - Alejandro A. Ríos-Chelén
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla km 1.5, C.P. 90070, Tlaxcala, México
| |
Collapse
|
32
|
A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol 2020; 5:74-81. [DOI: 10.1038/s41559-020-01322-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/28/2020] [Indexed: 01/11/2023]
|
33
|
Malik I, Batra T, Das S, Kumar V. Light at night affects gut microbial community and negatively impacts host physiology in diurnal animals: Evidence from captive zebra finches. Microbiol Res 2020; 241:126597. [PMID: 32979783 DOI: 10.1016/j.micres.2020.126597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/14/2020] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract (GIT) hosts a large number of diverse microorganisms, with mutualistic interactions with the host. Here, in two separate experiments, we investigated whether light at night (LAN) would affect GIT microbiota and, in turn, the host physiology in diurnal zebra finches (Taeniopygia guttata). Experiment I assessed the effects of no-night (LL) and dimly illuminated night (dim light at night, dLAN) on fecal microbiota diversity and host physiology of birds born and raised under 12 h photoperiod (LD; 12 h light: 12 h darkness). Under LL and dLAN, compared to LD, we found a significant increase in the body mass, subcutaneous fat deposition and hepatic accumulation of lipids. Although we found no difference in total 24 h food consumption, LL/ dLAN birds ate also at night, suggesting LAN-induced alteration in daily feeding times. Concurrently, there were marked differences in amplicon sequence and bacterial species richness between LD and LAN, with notable decline in Lactobacillus richness in birds under LL and dLAN. We attributed declined Lactobacillus population as causal (at least partially) to negative effects on the host metabolism. Therefore, in experiment II with similar protocol, birds under LL and dLAN were fed on diet with or without Lactobacillus rhamnosus GG (LGG) supplement. Clearly, LGG supplement ameliorated LL- and dLAN-induced negative effects in zebra finches. These results demonstrate adverse effects of unnatural lighting on GIT bacterial diversity and host physiology, and suggest the role of GIT microbiota in the maintenance of metabolic homeostasis in response to LAN environment in diurnal animals.
Collapse
Affiliation(s)
- Indu Malik
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Subhajit Das
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
34
|
Moaraf S, Heiblum R, Vistoropsky Y, Okuliarová M, Zeman M, Barnea A. Artificial Light at Night Increases Recruitment of New Neurons and Differentially Affects Various Brain Regions in Female Zebra Finches. Int J Mol Sci 2020; 21:E6140. [PMID: 32858878 PMCID: PMC7503983 DOI: 10.3390/ijms21176140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 11/16/2022] Open
Abstract
Despite growing evidence that demonstrate adverse effects of artificial light at night (ALAN) on many species, relatively little is known regarding its effects on brain plasticity in birds. We recently showed that although ALAN increases cell proliferation in brains of birds, neuronal densities in two brain regions decreased, indicating neuronal death, which might be due to mortality of newly produced neurons or of existing ones. Therefore, in the present study we studied the effect of long-term ALAN on the recruitment of newborn neurons into their target regions in the brain. Accordingly, we exposed zebra finches (Taeniopygia guttata) to 5 lux ALAN, and analysed new neuronal recruitment and total neuronal densities in several brain regions. We found that ALAN increased neuronal recruitment, possibly as a compensatory response to ALAN-induced neuronal death, and/or due to increased nocturnal locomotor activity caused by sleep disruption. Moreover, ALAN also had a differential temporal effect on neuronal densities, because hippocampus was more sensitive to ALAN and its neuronal densities were more affected than in other brain regions. Nocturnal melatonin levels under ALAN were significantly lower compared to controls, indicating that very low ALAN intensities suppress melatonin not only in nocturnal, but also in diurnal species.
Collapse
Affiliation(s)
- Stan Moaraf
- School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| | - Rachel Heiblum
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| | - Yulia Vistoropsky
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| | - Monika Okuliarová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovak Republic; (M.O.); (M.Z.)
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovak Republic; (M.O.); (M.Z.)
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana 43710, Israel; (R.H.); (Y.V.); (A.B.)
| |
Collapse
|
35
|
|
36
|
Bermúdez-Cuamatzin E, Delamore Z, Verbeek L, Kremer C, Slabbekoorn H. Variation in Diurnal Patterns of Singing Activity Between Urban and Rural Great Tits. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Zhang FS, Wang Y, Wu K, Xu WY, Wu J, Liu JY, Wang XY, Shuai LY. Effects of artificial light at night on foraging behavior and vigilance in a nocturnal rodent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138271. [PMID: 32268292 DOI: 10.1016/j.scitotenv.2020.138271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Artificial light at night has greatly changed the physical environment for many organisms on a global scale. As an energy efficient light resource, light emitting diodes (LEDs) have been widely used in recent years. As LEDs often have a broad spectrum, many biological processes may be potentially affected. In this study, we conducted manipulated experiments in rat-proof enclosures to explore the effects of LED night lighting on behavior of a nocturnal rodent, the Mongolian five-toed jerboa (Allactaga sibirica). We adopted the giving-up density (GUD) method and camera video trapping to study behavioral responses in terms of patch use, searching efficiency and vigilance. With the presence of white LED lighting, jerboas spent less time in patches, foraged less intensively (with higher GUDs) and became vigilant more frequently, while their searching efficiency was higher than under dark treatment. Although both positive and negative effects of LEDs on foraging were detected, the net effect of LEDs on jerboas is negative, which may further translate into changes in population dynamics, inter-specific interaction and community structure. To our knowledge, this is the first field study to explore how LED lighting affect foraging behavior and searching efficiency in rodents. Our results may have potential implications for practices such as pest control.
Collapse
Affiliation(s)
- Fu-Shun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Yun Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ke Wu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Yan Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jing Wu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jun-Yao Liu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Yin Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ling-Ying Shuai
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
38
|
Evens R, Kowalczyk C, Norevik G, Ulenaers E, Davaasuren B, Bayargur S, Artois T, Åkesson S, Hedenström A, Liechti F, Valcu M, Kempenaers B. Lunar synchronization of daily activity patterns in a crepuscular avian insectivore. Ecol Evol 2020; 10:7106-7116. [PMID: 32760515 PMCID: PMC7391349 DOI: 10.1002/ece3.6412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022] Open
Abstract
Biological rhythms of nearly all animals on earth are synchronized with natural light and are aligned to day-and-night transitions. Here, we test the hypothesis that the lunar cycle affects the nocturnal flight activity of European Nightjars (Caprimulgus europaeus). We describe daily activity patterns of individuals from three different countries across a wide geographic area, during two discrete periods in the annual cycle. Although the sample size for two of our study sites is small, the results are clear in that on average individual flight activity was strongly correlated with both local variation in day length and with the lunar cycle. We highlight the species' sensitivity to changes in ambient light and its flexibility to respond to such changes in different parts of the world.
Collapse
Affiliation(s)
- Ruben Evens
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologyStarnbergGermany
| | - Céline Kowalczyk
- Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| | - Gabriel Norevik
- Department of BiologyCentre for Animal Movement ResearchLund UniversityLundSweden
| | | | | | | | - Tom Artois
- Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and ToxicologyHasselt UniversityDiepenbeekBelgium
| | - Susanne Åkesson
- Department of BiologyCentre for Animal Movement ResearchLund UniversityLundSweden
| | - Anders Hedenström
- Department of BiologyCentre for Animal Movement ResearchLund UniversityLundSweden
| | | | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologyStarnbergGermany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologyStarnbergGermany
| |
Collapse
|
39
|
Batra T, Malik I, Prabhat A, Bhardwaj SK, Kumar V. Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proc Biol Sci 2020; 287:20192952. [PMID: 32517617 DOI: 10.1098/rspb.2019.2952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We investigated the effects of exposure at ecologically relevant levels of dim light at night (dLAN) on sleep and the 24 h hypothalamic expression pattern of genes involved in the circadian timing (per2, bmal1, reverb-β, cry1, ror-α, clock) and sleep regulatory pathways (cytokines: tlr4, tnf-α, il-1β, nos; Ca2+-dependent pathway: camk2, sik3, nr3a; cholinergic receptor, achm3) in diurnal female zebra finches. Birds were exposed to 12 h light (150 lux) coupled with 12 h of absolute darkness or of 5 lux dim light for three weeks. dLAN fragmented the nocturnal sleep in reduced bouts, and caused sleep loss as evidenced by reduced plasma oxalate levels. Under dLAN, the 24 h rhythm of per2, but not bmal1 or reverb-β, showed a reduced amplitude and altered peak expression time; however, clock, ror-α and cry1 expressions showed an abolition of the 24 h rhythm. Decreased tlr4, il-1β and nos, and the lack of diurnal difference in achm3 messenger RNA levels suggested an attenuated inhibition of the arousal system (hence, awake state promotion) under dLAN. Similarly, changes in camk2, sik3 and nr3a expressions suggested dLAN-effects on Ca2+-dependent sleep-inducing pathways. These results demonstrate dLAN-induced negative effects on sleep and associated hypothalamic molecular pathways, and provide insights into health risks of illuminated night exposures to diurnal animals.
Collapse
Affiliation(s)
- Twinkle Batra
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
40
|
Aulsebrook AE, Lesku JA, Mulder RA, Goymann W, Vyssotski AL, Jones TM. Streetlights Disrupt Night-Time Sleep in Urban Black Swans. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
41
|
Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. SUSTAINABILITY 2020. [DOI: 10.3390/su12062551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Collapse
|
42
|
Dominoni DM, Halfwerk W, Baird E, Buxton RT, Fernández-Juricic E, Fristrup KM, McKenna MF, Mennitt DJ, Perkin EK, Seymoure BM, Stoner DC, Tennessen JB, Toth CA, Tyrrell LP, Wilson A, Francis CD, Carter NH, Barber JR. Why conservation biology can benefit from sensory ecology. Nat Ecol Evol 2020; 4:502-511. [PMID: 32203474 DOI: 10.1038/s41559-020-1135-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms-masking, distracting and misleading-that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of 'sensory danger zones', hotspots of conservation concern where sensory pollutants overlap in space and time with an organism's activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.
Collapse
Affiliation(s)
- Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. .,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Wouter Halfwerk
- Department of Ecological Science, Section Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rachel T Buxton
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Kurt M Fristrup
- National Park Service, Natural Sounds and Night Skies Division, Fort Collins, CO, USA
| | - Megan F McKenna
- National Park Service, Natural Sounds and Night Skies Division, Fort Collins, CO, USA
| | | | - Elizabeth K Perkin
- Environmental Monitoring and Assessment Group, Hatfield Consultants, Calgary, Alberta, Canada
| | - Brett M Seymoure
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - David C Stoner
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | | | - Cory A Toth
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, Quebec, Canada
| | - Luke P Tyrrell
- Department of Biological Sciences, State University of New York at Plattsburgh, Plattsburgh, NY, USA
| | - Ashley Wilson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Clinton D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Neil H Carter
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Jesse R Barber
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
43
|
Dominoni D, Smit JAH, Visser ME, Halfwerk W. Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113314. [PMID: 31761596 DOI: 10.1016/j.envpol.2019.113314] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 05/15/2023]
Abstract
Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Collapse
Affiliation(s)
- Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Judith A H Smit
- Department of Ecological Science, VU University, Amsterdam, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Wouter Halfwerk
- Department of Ecological Science, VU University, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Moaraf S, Vistoropsky Y, Pozner T, Heiblum R, Okuliarová M, Zeman M, Barnea A. Artificial light at night affects brain plasticity and melatonin in birds. Neurosci Lett 2020; 716:134639. [DOI: 10.1016/j.neulet.2019.134639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
|
45
|
Malek I, Haim A, Izhaki I. Melatonin mends adverse temporal effects of bright light at night partially independent of its effect on stress responses in captive birds. Chronobiol Int 2019; 37:189-208. [DOI: 10.1080/07420528.2019.1698590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- I. Malek
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A. Haim
- The Israeli Centre for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| | - I. Izhaki
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
46
|
Santema P, Valcu M, Kempenaers B. Exposure to predator models during the fertile period leads to higher levels of extra-pair paternity in blue tits. J Anim Ecol 2019; 89:647-657. [PMID: 31561275 DOI: 10.1111/1365-2656.13114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022]
Abstract
The perceived risk of predation can affect breeding behaviour and reduce reproductive success in prey species. Individuals exposed to predators may also adopt different mating tactics with potential consequences for the distribution of paternity in socially monogamous species that engage in extra-pair copulations. We experimentally increased perceived predation risk during the fertile period in blue tits Cyanistes caeruleus. Every morning between nest completion and the onset of egg laying, we presented a model of either a predator or a non-predator (control) near active nestboxes. Broods from pairs exposed to predators had higher levels of extra-pair paternity than control broods. This mainly resulted from a higher proportion of extra-pair offspring in broods with at least one extra-pair young. Females exposed to predators first emerged from the nestbox later in the morning, stayed away from the nestbox for longer and were less likely to be visited at the nest by their social mate, but we detected no behavioural differences once the model was removed. Our results suggest that the higher rates of extra-pair paternity resulted from the disruption of morning routines, which may have inhibited within-pair copulations or increased opportunities for females to engage in extra-pair copulations. We conclude that the perceived risk of predation can have substantial effects on levels of extra-pair paternity.
Collapse
Affiliation(s)
- Peter Santema
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
47
|
Falchi F, Furgoni R, Gallaway TA, Rybnikova NA, Portnov BA, Baugh K, Cinzano P, Elvidge CD. Light pollution in USA and Europe: The good, the bad and the ugly. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109227. [PMID: 31362173 DOI: 10.1016/j.jenvman.2019.06.128] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Light pollution is a worldwide problem that has a range of adverse effects on human health and natural ecosystems. Using data from the New World Atlas of Artificial Night Sky Brightness, VIIRS-recorded radiance and Gross Domestic Product (GDP) data, we compared light pollution levels, and the light flux to the population size and GDP at the State and County levels in the USA and at Regional (NUTS2) and Province (NUTS3) levels in Europe. We found 6800-fold differences between the most and least polluted regions in Europe, 120-fold differences in their light flux per capita, and 267-fold differences in flux per GDP unit. Yet, we found even greater differences between US counties: 200,000-fold differences in sky pollution, 16,000-fold differences in light flux per capita, and 40,000-fold differences in light flux per GDP unit. These findings may inform policy-makers, helping to reduce energy waste and adverse environmental, cultural and health consequences associated with light pollution.
Collapse
Affiliation(s)
- F Falchi
- ISTIL - Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy.
| | - R Furgoni
- ISTIL - Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy
| | - T A Gallaway
- Economics Department, Missouri State University, USA
| | - N A Rybnikova
- Remote Sensing Laboratory, the Center for Spatial Analysis Research, Department of Geography and Environmental Studies, University of Haifa, Israel
| | - B A Portnov
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Israel
| | - K Baugh
- Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, USA
| | - P Cinzano
- ISTIL - Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy
| | - C D Elvidge
- Earth Observation Group, Payne Institute, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
48
|
Ulgezen ZN, Käpylä T, Meerlo P, Spoelstra K, Visser ME, Dominoni DM. The preference and costs of sleeping under light at night in forest and urban great tits. Proc Biol Sci 2019; 286:20190872. [PMID: 31213184 PMCID: PMC6599990 DOI: 10.1098/rspb.2019.0872] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact.
Collapse
Affiliation(s)
- Zeynep N. Ulgezen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Animal Breeding and Genetics, Wageningen University, Wageningen, The Netherlands
| | - Teemu Käpylä
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Animal Breeding and Genetics, Wageningen University, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Davide M. Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Hoffmann J, Schirmer A, Eccard JA. Light pollution affects space use and interaction of two small mammal species irrespective of personality. BMC Ecol 2019; 19:26. [PMID: 31215409 PMCID: PMC6582560 DOI: 10.1186/s12898-019-0241-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark–light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. Results We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. Conclusions Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level. Electronic supplementary material The online version of this article (10.1186/s12898-019-0241-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Hoffmann
- Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany.
| | - Annika Schirmer
- Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
| | - Jana Anja Eccard
- Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
| |
Collapse
|
50
|
Santema P, Valcu M, Clinchy M, Zanette L, Kempenaers B. Playback of predator calls inhibits and delays dawn singing in a songbird community. Behav Ecol 2019. [DOI: 10.1093/beheco/arz075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Songbirds sing less and start singing later when faced with an increase in perceived predation risk. Perceived predation risk can have substantial behavioral effects on prey species, but whether or not it affects dawn singing – an important sexual signal - remains unknown. We played back predator calls in a songbird community throughout the breeding season to simulate increased predation risk and found that the majority of species inhibited or delayed their dawn song.
Collapse
Affiliation(s)
- Peter Santema
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Michael Clinchy
- Department of Biology, Western University, London, ON, Canada
| | - Liana Zanette
- Department of Biology, Western University, London, ON, Canada
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| |
Collapse
|