1
|
Ellsworth WH, Peacor SD, Chandler RB, Conner LM, Garrison EP, Miller KV, Cherry MJ. Measuring the benefit of a defensive trait: Vigilance and survival probability. Ecology 2024; 105:e4429. [PMID: 39350526 DOI: 10.1002/ecy.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 11/05/2024]
Abstract
Defensive traits are hypothesized to benefit prey by reducing predation risk from a focal predator but come at a cost to the fitness of the prey. Variation in the expression of defensive traits is seen among individuals within the same population, and in the same individual in response to changes in the environment (i.e., phenotypically plastic responses). It is the relative magnitude of the cost and benefit of the defensive trait that underlies the defensive trait expression and its consequences to the community. However, whereas the cost has received much attention in ecological research, the benefit is seldom examined. Even in a defensive trait as extensively studied as vigilance, there are few studies of the purported benefit of the behavior, namely that vigilance enhances survival. We examined whether prey vigilance increased survival and quantified that benefit in a natural system, with white-tailed deer (Odocoileus virginianus) experiencing unmanipulated levels of predation risk from Florida panther (Puma concolor coryi). Deer that spent more time vigilant (as measured by head position using camera trap data) had a higher probability of survival. Indeed, an individual deer that was vigilant 75% of the time was more than three times as likely to be killed by panthers over the course of a year than a deer that was vigilant 95% of the time. Our results therefore show that within-population variation in the expression of a defensive trait has profound consequences for the benefit it confers. Our results provide empirical evidence supporting a long-held but seldom-tested hypothesis, that vigilance is a behavior that reduces the probability of predation and quantifies the benefit of this defensive trait. Our work furthers an understanding of the net effects of a trait on prey fitness and predator-prey interactions, within-population variation in traits, and predation risk effects.
Collapse
Affiliation(s)
- William H Ellsworth
- Virginia Polytechnic Institute and State University, Department of Fish and Wildlife Conservation, Blacksburg, Virginia, USA
| | - Scott D Peacor
- Michigan State University, Department of Fisheries and Wildlife, East Lansing, Michigan, USA
| | - Richard B Chandler
- University of Georgia, Warnell School of Forestry and Natural Resources, Athens, Georgia, USA
| | | | - Elina P Garrison
- Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, USA
| | - Karl V Miller
- University of Georgia, Warnell School of Forestry and Natural Resources, Athens, Georgia, USA
| | - Michael J Cherry
- Texas A&M University-Kingsville, Caesar Kleberg Wildlife Research Institute, Kingsville, Texas, USA
| |
Collapse
|
2
|
Olejarz A, Augustsson E, Kjellander P, Ježek M, Podgórski T. Experience shapes wild boar spatial response to drive hunts. Sci Rep 2024; 14:19930. [PMID: 39198665 PMCID: PMC11358132 DOI: 10.1038/s41598-024-71098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
Human-induced disturbances of the environment are rapid and often unpredictable in space and time, exposing wildlife to strong selection pressure favouring plasticity in specific traits. Measuring wildlife behavioural plasticity in response to human-induced disturbances such as hunting pressures is crucial in understanding population expansion in the highly plastic wild boar species. We collected GPS-based movement data from 55 wild boars during drive hunts over three hunting seasons (2019-2022) in the Czech Republic and Sweden to identify behavioural plasticity in space use and movement strategies over a range of experienced hunting disturbances. Daily distance, daily range, and daily range overlap with hunting area were not affected by hunting intensity but were clearly related to wild boar hunting experience. On average, the post-hunt flight distance was 1.80 km, and the flight duration lasted 25.8 h until they returned to their previous ranging area. We detected no relationship in flight behaviour to hunting intensity or wild boar experience. Wild boar monitored in our study showed two behavioural responses to drive hunts, "remain" or "leave". Wild boars tended to "leave" more often with increasing hunting experience. Overall, this study highlights the behavioural plasticity of wild boar in response to drive hunts.
Collapse
Affiliation(s)
- Astrid Olejarz
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic.
| | - Evelina Augustsson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993, Riddarhyttan, Sweden
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993, Riddarhyttan, Sweden
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
| | - Tomasz Podgórski
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| |
Collapse
|
3
|
Dziki-Michalska K, Tajchman K, Kowalik S, Wójcik M. The Levels of Cortisol and Selected Biochemical Parameters in Red Deer Harvested during Stalking Hunts. Animals (Basel) 2024; 14:1108. [PMID: 38612347 PMCID: PMC11010865 DOI: 10.3390/ani14071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
As a reactive species, the red deer is sensitive to both negative exogenous and endogenous stimuli. An intensive hunting period may have a particularly negative impact on game animals. The aim of this study was to determine the plasma cortisol level and biochemical parameters in 25 wild red deer (Cervus elaphus) harvested during stalking hunts in correlation with the sex and age of the animals. The mean cortisol concentrations in the stags and hinds analyzed in this study were similar (20.2 and 21.5 ng/mL, respectively). Higher HDL cholesterol values were found in the blood of the hinds than in stags (p < 0.05). Similarly, the mean levels of LDL cholesterol, lactate dehydrogenase, and alanine aminotransferase were higher by 21%, 16%, and 42%, respectively, in the blood of the hinds. In contrast, the levels of alkaline phosphatase, bilirubin, and aspartate aminotransferase were higher in the stags (by 30%, 49%, and 36%, respectively). There was a negative correlation of the cortisol concentration with urea and bilirubin and a positive correlation between cortisol and aspartate aminotransferase in the stags (p < 0.05). In turn, a negative correlation was found between the cortisol and urea levels in the hinds (p < 0.05). In summary, the stress caused by stalking hunts and the characteristic behavior of red deer during the mating season had an impact on chosen biochemical parameters. The increased concentration of cortisol resulted in a decrease in the carcass mass, which may lead to the deterioration of the physical condition of animals on hunting grounds.
Collapse
Affiliation(s)
- Katarzyna Dziki-Michalska
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Katarzyna Tajchman
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Sylwester Kowalik
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Maciej Wójcik
- Regional Directorate of the State Forests in Lublin, Czechowska 4, 20-950 Lublin, Poland;
| |
Collapse
|
4
|
Dziki-Michalska K, Tajchman K, Kowalik S. Physiological response of roe deer (Capreolus capreolus) during stalking hunts depending on age. BMC Vet Res 2023; 19:266. [PMID: 38071359 PMCID: PMC10709921 DOI: 10.1186/s12917-023-03833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The European roe deer (Capreolus capreolus) is a species particularly reactive to all kinds of negative stimuli. Hunting activity is one of the most potent stressors that disturbs the welfare of wild animals. During stress, various endocrine responses are elicited to improve the physical performance of the affected individual. A commonly assessed hormone for overcoming stressful situations is cortisol (CORT). In this study, plasma CORT levels in roe deer were assessed during the season of the most intense stalking hunts in Poland (summer vs. late autumn), the sex of the harvested animals (males vs. females), and age of harvest animal. In addition, the health status of the roe doe was evaluated on the basis of selected indices of blood chemistry, which could be associated with circulating cortisol levels. RESULTS The mean cortisol levels were 58.066 ng/ml in the male group (summer) and 27.694 ng/ml in the female group (late autumn). Higher CORT levels were associated with a significantly lower of total cholesterol, lactate dehydrogenase, and uric acid (p < 0.05). Moreover, the mean concentration of uric acid was negatively correlated with the level of CORT in the male and female groups (p < 0.05). Together with the increase in mean CORT level, the HDL cholesterol of all the tested animals increased significantly (p < 0.05). CONCLUSIONS Higher CORT in males during the summer than in females during the late autumn were most likely due to the arousal with the mating season. The level of CORT increased with the animals' age. Uric acid and age are both predictors of roe deer's serum CORT level.
Collapse
Affiliation(s)
- Katarzyna Dziki-Michalska
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Katarzyna Tajchman
- Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
| | - Sylwester Kowalik
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|
5
|
Visscher DR, Walker PD, Flowers M, Kemna C, Pattison J, Kushnerick B. Human impact on deer use is greater than predators and competitors in a multiuse recreation area. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Moseby K, Van der Weyde L, Letnic M, Blumstein DT, West R, Bannister H. Addressing prey naivety in native mammals by accelerating selection for antipredator traits. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2780. [PMID: 36394506 DOI: 10.1002/eap.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Harnessing natural selection to improve conservation outcomes is a recent concept in ecology and evolutionary biology and a potentially powerful tool in species conservation. One possible application is the use of natural selection to improve antipredator responses of mammal species that are threatened by predation from novel predators. We investigated whether long-term exposure of an evolutionary naïve prey species to a novel predator would lead to phenotypic changes in a suite of physical and behavioral traits. We exposed a founder population of 353 burrowing bettongs (Bettongia lesueur) to feral cats (Felis catus) over 5 years and compared the physical and behavioral traits of this population (including offspring) to a control (non-predator exposed) population. We used selection analysis to investigate whether changes in the traits of bettongs were likely due to phenotypic plasticity or natural selection. We also quantified selection in both populations before and during major population crashes caused by drought (control) and high predation pressure (predator-exposed). Results showed that predator-exposed bettongs had longer flight initiation distances, larger hind feet, and larger heads than control bettongs. Trait divergence began soon after exposure and continued to intensify over time for flight initiation distance and hind foot length relative to control bettongs. Selection analysis found indicators of selection for larger hind feet and longer head length in predator-exposed populations. Results of a common garden experiment showed that the progeny of predator-exposed bettongs had larger feet than control bettongs. Results suggest that long-term, low-level exposure of naïve prey to novel predators can drive phenotypic changes that may assist with future conservation efforts.
Collapse
Affiliation(s)
- Katherine Moseby
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Arid Recovery, Roxby Downs, South Australia, Australia
| | - Leanne Van der Weyde
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mike Letnic
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, The University of California, Los Angeles, California, USA
| | - Rebecca West
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hannah Bannister
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Rohwäder M, Jeltsch F. Foraging personalities modify effects of habitat fragmentation on biodiversity. OIKOS 2022. [DOI: 10.1111/oik.09056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin Germany
| |
Collapse
|
8
|
Amin B, Jennings DJ, Norman A, Ryan A, Ioannidis V, Magee A, Haughey HA, Haigh A, Ciuti S. Neonate personality affects early-life resource acquisition in a large social mammal. Behav Ecol 2022; 33:1025-1035. [PMID: 36382227 PMCID: PMC9664924 DOI: 10.1093/beheco/arac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Although it is widely acknowledged that animal personality plays a key role in ecology, current debate focuses on the exact role of personality in mediating life-history trade-offs. Crucial for our understanding is the relationship between personality and resource acquisition, which is poorly understood, especially during early stages of development. Here we studied how among-individual differences in behavior develop over the first 6 months of life, and their potential association with resource acquisition in a free-ranging population of fallow deer (Dama dama). We related neonate physiological (heart rate) and behavioral (latency to leave at release) anti-predator responses to human handling to the proportion of time fawns spent scanning during their first summer and autumn of life. We then investigated whether there was a trade-off between scanning time and foraging time in these juveniles, and how it developed over their first 6 months of life. We found that neonates with longer latencies at capture (i.e., risk-takers) spent less time scanning their environment, but that this relationship was only present when fawns were 3-6 months old during autumn, and not when fawns were only 1-2 months old during summer. We also found that time spent scanning was negatively related to time spent foraging and that this relationship became stronger over time, as fawns gradually switch from a nutrition rich (milk) to a nutrition poor (grass) diet. Our results highlight a potential mechanistic pathway in which neonate personality may drive differences in early-life resource acquisition of a large social mammal.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Alison Norman
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Andrew Ryan
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Vasiliki Ioannidis
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alice Magee
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Hayley-Anne Haughey
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Bastille-Rousseau G, Wittemyer G. Simple metrics to characterize inter-individual and temporal variation in habitat selection behaviour. J Anim Ecol 2022; 91:1693-1706. [PMID: 35535017 DOI: 10.1111/1365-2656.13738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Individual variation in habitat selection and movement behavior is receiving growing attention, but primarily with respect to characterizing behaviors in different contexts as opposed to decomposing structure in behavior within populations. This focus may be limiting advances in understanding the diversity of individual behavior and its influence on population organization. We propose a framework for characterizing variation in space-use behavior with the aim of advancing interpretation of its form and function. Using outputs from integrated Step Selection Analyses of 20 years of telemetry data from African elephants (Loxodonta Africana), we developed four metrics characterizing differentiation in resource selection behavior within a population [specialization (magnitude of the response independent of direction), heterogeneity (inter-individual variation), consistency (temporal shift in response) and reversal (frequency of directional changes in the response)]. We contrast insight from the developed metrics relative to the mean population response using an example focused on two covariates. We then expanded this contrast by evaluating if the metrics identify structurally important information on seasonal shifts in resource selection behaviors in addition to that provided by mean selection coefficients through Principal Component Analyses (PCAs) and a random forest classification. The simplified example highlighted that for some covariates focusing on the population average failed to capture complex individual variation in behaviors. The PCAs revealed that the developed metrics provided additional information in explaining the patterns in elephant selection beyond that offered by population average covariate values. For elephants, specialization and heterogeneity were informative, with specialization often being a better descriptor of differences in seasonal resource selection behavior than population average responses. Summarizing these metrics spatially and temporally, we illustrate how these metrics can provide insights on overlooked aspects of animal behavior. Our work offers a new approach in how we conceptualize variation in space-use behavior (i.e., habitat selection and movement) by providing ways of encapsulating variation that enables diagnoses of the drivers of individual level variability in a population. The developed metrics explicitly distill how variation in a behavior is structured among individuals and over time which could facilitate comparative work across time, populations, or strata within populations.
Collapse
Affiliation(s)
- Guillaume Bastille-Rousseau
- Southern Illinois University, Cooperative Wildlife Research Laboratory, Carbondale, IL, USA.,Southern Illinois University, School of Biological Sciences, Carbondale, IL, USA.,Save the Elephants, Nairobi, Kenya
| | - George Wittemyer
- Save the Elephants, Nairobi, Kenya.,Colorado State University, Department of Fish, Wildlife, and Conservation Biology, Fort Collins, CO, USA
| |
Collapse
|
10
|
Dammhahn M, Lange P, Eccard JA. The landscape of fear has individual layers: an experimental test of among‐individual differences in perceived predation risk during foraging. OIKOS 2022. [DOI: 10.1111/oik.09124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melanie Dammhahn
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| | - Pauline Lange
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| | - Jana A. Eccard
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| |
Collapse
|
11
|
Marques AT, Palma L, Lourenço R, Cangarato R, Leitão A, Mascarenhas M, Tavares JT, Tomé R, Moreira F, Beja P. Individual variability in space use near power lines by a long-lived territorial raptor. Ecol Evol 2022; 12:e8811. [PMID: 35414898 PMCID: PMC8987490 DOI: 10.1002/ece3.8811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Evaluating species responses to anthropogenic infrastructures and other habitat changes is often used to assess environmental impacts and to guide conservation actions. However, such studies are generally carried out at the population level, disregarding inter-individual variability. Here, we investigate population- and individual-level responses toward power lines of a territorial raptor, the Bonelli's eagle Aquila fasciata. We used GPS-PTT tracking data of 17 adult eagles to model space use as a function of distance to transmission and distribution lines, while accounting for other habitat features known to affect this species. At population level, eagles increased the intensity of space use in the proximity of power lines (up to 1,000 m), suggesting an attraction effect. At individual level, some eagles shared the general population attraction pattern, while others showed reduced intensity of space use in the proximity of power lines. These differential responses were unrelated to the sex of individuals, but were affected by the characteristics of the power grid, with a tendency for apparent attraction to be associated with individuals occupying home ranges with a denser network of transmission lines and transmission pylons. However, the study could not rule out the operation of other potentially influential factors, such as individual idiosyncrasies, the spatial distribution of prey availability, and the availability of natural perches and nesting sites. Overall, these results suggest that power lines may drive different behaviors and have differential impacts across individuals, with those attracted to the proximity of power lines potentially facing increased risk of mortality through electrocution and collision, and those avoiding power lines being potentially subject to exclusion effects. More generally, our results reinforce the need to understand individual variability when assessing and mitigating impacts of anthropogenic infrastructures.
Collapse
Affiliation(s)
- Ana Teresa Marques
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoInstituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Luís Palma
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoInstituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Rui Lourenço
- MEDInstituto Mediterrâneo para a AgriculturaAmbiente e Desenvolvimento, CHANGE Laboratório AssociadoLabOr – Laboratório de OrnitologiaIIFAUniversidade de ÉvoraÉvoraPortugal
| | | | | | | | | | | | - Francisco Moreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoInstituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Pedro Beja
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoInstituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| |
Collapse
|
12
|
Bista D, Baxter GS, Hudson NJ, Murray PJ. Seasonal resource selection of an arboreal habitat specialist in a human-dominated landscape: a case study using red panda. Curr Zool 2022; 69:1-11. [PMID: 36974152 PMCID: PMC10039176 DOI: 10.1093/cz/zoac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Human dominated landscapes provide heterogeneous wildlife habitat. Conservation of habitat specialists, like red pandas Ailurus fulgens, inhabiting such landscapes is challenging. Therefore information on resource use across spatial and temporal scales could enable informed-decision making with better conservation outcomes. We aimed to examine the effect of geo-physical, vegetation, and disturbance variables on fine-scale habitat selection of red pandas in one such landscape. We equipped 10 red pandas with GPS collars in eastern Nepal in 2019 and monitored them for one year. Our analysis was based on a generalized-linear-mixed model. We found the combined effect of geo-physical, vegetation and disturbance variables resulted in differences in resource selection of red pandas and that the degree of response to these variables varied across seasons. Human disturbances, especially road and cattle herding activities, affected habitat utilization throughout the year whereas other variables were important only during restricted periods. For instance, geo-physical variables were influential in the premating and cub-rearing seasons while vegetation variables were important in all seasons other than premating. Red pandas selected steeper slopes with high solar insolation in the premating season while they occupied elevated areas and preferred specific aspects in the cub-rearing season. Furthermore, the utilized areas had tall bamboo in the birthing and cub-rearing seasons while they also preferred diverse tree species and high shrub cover in the latter. Our study demonstrates the significance of season-specific management, suggests the importance of specific types of vegetation during biologically crucial periods, and emphasizes the necessity to minimize disturbances throughout the year.
Collapse
Affiliation(s)
- Damber Bista
- School of Agriculture and Food Sciences, The University of Queensland, Gatton QLD 4343, Australia
| | - Greg S Baxter
- School of Agriculture and Environmental Science, University of Southern Queensland, West St, Darling Heights QLD 4350, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, Gatton QLD 4343, Australia
| | - Peter J Murray
- School of Agriculture and Environmental Science, University of Southern Queensland, West St, Darling Heights QLD 4350, Australia
| |
Collapse
|
13
|
Gervais L, Morellet N, David I, Hewison AJM, Réale D, Goulard M, Chaval Y, Lourtet B, Cargnelutti B, Merlet J, Quéméré E, Pujol B. Quantifying heritability and estimating evolutionary potential in the wild when individuals that share genes also share environments. J Anim Ecol 2022; 91:1239-1250. [DOI: 10.1111/1365-2656.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Affiliation(s)
- L. Gervais
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
- PSL Université Paris : EHPE‐UPVD‐CNRS Perpignan France
| | - N. Morellet
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - I. David
- Université de Toulouse Castanet Tolosan France
| | - A. J. M. Hewison
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - D. Réale
- Département des sciences biologiques Université du Québec à Montréal QC Canada
| | - M. Goulard
- Université de Toulouse Castanet‐Tolosan France
| | - Y. Chaval
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - B. Lourtet
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - B. Cargnelutti
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - J. Merlet
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - E. Quéméré
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
- INRAE, DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER Rennes France
| | - B. Pujol
- PSL Université Paris : EHPE‐UPVD‐CNRS Perpignan France
| |
Collapse
|
14
|
Exploring the social network of European roe deer (Capreolus capreolus) in captivity. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2021.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Hagen R, Ortmann S, Elliger A, Arnold J. Advanced roe deer (
Capreolus capreolus
) parturition date in response to climate change. Ecosphere 2021. [DOI: 10.1002/ecs2.3819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Robert Hagen
- Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Andreas Elliger
- Wildlife Research Unit Agricultural Centre Baden‐Württemberg Aulendorf Germany
| | - Janosch Arnold
- Wildlife Research Unit Agricultural Centre Baden‐Württemberg Aulendorf Germany
| |
Collapse
|
16
|
Bridging animal personality with space use and resource use in a free-ranging population of an asocial ground squirrel. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Picardi S, Ranc N, Smith BJ, Coates PS, Mathews SR, Dahlgren DK. Individual Variation in Temporal Dynamics of Post-release Habitat Selection. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.703906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translocated animals undergo a phase of behavioral adjustment after being released in a novel environment, initially prioritizing exploration and gradually shifting toward resource exploitation. This transition has been termed post-release behavioral modification. Post-release behavioral modification may also manifest as changes in habitat selection through time, and these temporal dynamics may differ between individuals. We aimed to evaluate how post-release behavioral modification is reflected in temporal dynamics of habitat selection and its variability across individuals using a population of translocated female greater sage-grouse as a case study. Sage-grouse were translocated from Wyoming to North Dakota (USA) during the summers of 2018–2020. We analyzed individual habitat selection as a function of sagebrush cover, herbaceous cover, slope, and distance to roads. Herbaceous cover is a key foraging resource for sage-grouse during summer; thus, we expected a shift from exploration to exploitation to manifest as temporally-varying selection for herbaceous cover. For each individual sage-grouse (N = 26), we tested two competing models: a null model with no time-dependence and a model with time-dependent selection for herbaceous cover. We performed model selection at the individual level using an information-theoretic approach. Time-dependence was supported for five individuals, unsupported for seven, and the two models were indistinguishable based on AICc for the remaining fourteen. We found no association between the top-ranked model and individual reproductive status (brood-rearing or not). We showed that temporal dynamics of post-release habitat selection may emerge in some individuals but not in others, and that failing to account for time-dependence may hinder the detection of steady-state habitat selection patterns. These findings demonstrate the need to consider both temporal dynamics and individual variability in habitat selection when conducting post-release monitoring to inform translocation protocols.
Collapse
|
18
|
Dupke C, Peters A, Morellet N, Heurich M. Holling meets habitat selection: functional response of large herbivores revisited. MOVEMENT ECOLOGY 2021; 9:45. [PMID: 34488909 PMCID: PMC8422736 DOI: 10.1186/s40462-021-00282-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Holling (Can Entomol 91(5):293-320, 1959) was the first to describe a functional response between a predator's consumption-rate and the density of its prey. The same concept can be applied to the habitat selection of herbivores, specifically, the change in relative habitat use with the change in habitat availability. Functional responses in habitat selection at a home-range scale have been reported for several large herbivores. However, a link to Holling's original functional response types has never been drawn, although it could replace the current phenomenological view with a more mechanistically based understanding of functional responses. METHODS In this study, discrete choice models were implemented as mixed-effects baseline-category logit models to analyze the variation in habitat selection of a large herbivore at seasonal and diurnal scales. Thus, changes in the use of land cover types with respect to their availability were investigated by monitoring 11 land cover types commonly used by roe deer (Capreolus capreolus) in the Bavarian Forest National Park, Germany. Functional response curves were then fitted using Holling's formulas. RESULTS Strong evidence of non-linear functional responses was obtained for almost all of the examined land cover types. The shape of the functional response curves varied depending on the season, the time of day, and in some cases between sexes. These responses could be referenced to Holling's types, with a predominance of type II. CONCLUSIONS Our results indicate that Holling's types can be applied to describe general patterns of the habitat selection behavior of herbivores. Functional responses in habitat selection may occur in situations requiring a trade-off in the selection of land cover types offering different resources, such as due to the temporally varying physiological needs of herbivores. Moreover, two associated parameters defining the curves (prey density and predation rate) can aid in the identification of temporal variations and in determinations of the strength of the cost-benefit ratio for a specific land cover type. Application of our novel approach, using Holling's equations to describe functional responses in the habitat selection of herbivores, will allow the assignment of general land cover attraction values, independent of availability, thus facilitating the identification of suitable habitats.
Collapse
Affiliation(s)
- Claudia Dupke
- Department of Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
| | - Anne Peters
- Department of Visitor Managment and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany
- Chair of Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany
| | | | - Marco Heurich
- Department of Visitor Managment and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany
- Chair of Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Linking personality and health to use of space in the gray partridge: perspectives for management. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01526-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Le Balle R, Cote J, Fernandez FAS. Evidence for animal personalities in two Brazilian tortoises (Chelonoidis denticulatus and Chelonoidis carbonarius) and insights for their conservation. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Kerches-Rogeri P, Ramos DL, Siren J, de Oliveira Teles B, Alves RSC, Priante CF, Ribeiro MC, Araújo MS, Ovaskainen O. Movement syndromes of a Neotropical frugivorous bat inhabiting heterogeneous landscapes in Brazil. MOVEMENT ECOLOGY 2021; 9:35. [PMID: 34233767 PMCID: PMC8262009 DOI: 10.1186/s40462-021-00266-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND There is growing evidence that individuals within populations can vary in both habitat use and movement behavior, but it is still not clear how these two relate to each other. The aim of this study was to test if and how individual bats in a Stunira lilium population differ in their movement activity and preferences for landscape features in a correlated manner. METHODS We collected data on movements of 27 individuals using radio telemetry. We fitted a heterogeneous-space diffusion model to the movement data in order to evaluate signals of movement variation among individuals. RESULTS S. lilium individuals generally preferred open habitat with Solanum fruits, regularly switched between forest and open areas, and showed high site fidelity. Movement variation among individuals could be summarized in four movement syndromes: (1) average individuals, (2) forest specialists, (3) explorers which prefer Piper, and (4) open area specialists which prefer Solanum and Cecropia. CONCLUSIONS Individual preferences for landscape features plus food resource and movement activity were correlated, resulting in different movement syndromes. Individual variation in preferences for landscape elements and food resources highlight the importance of incorporating explicitly the interaction between landscape structure and individual heterogeneity in descriptions of animal movement.
Collapse
Affiliation(s)
- Patricia Kerches-Rogeri
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Danielle Leal Ramos
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Jukka Siren
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Viikinkaari 1, 00014 Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Beatriz de Oliveira Teles
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Rafael Souza Cruz Alves
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Camila Fátima Priante
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Milton Cezar Ribeiro
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Márcio Silva Araújo
- Departamento de Biodiversidade, Universidade Estadual Paulista – UNESP, Avenida 24 A,1515, Rio Claro, São Paulo, Brazil
| | - Otso Ovaskainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Viikinkaari 1, 00014 Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
22
|
Human disturbances increase vigilance levels in sika deer (Cervus nippon): A preliminary observation by camera-trapping. RUSSIAN JOURNAL OF THERIOLOGY 2021. [DOI: 10.15298/rusjtheriol.20.1.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Malagnino A, Marchand P, Garel M, Cargnelutti B, Itty C, Chaval Y, Hewison A, Loison A, Morellet N. Do reproductive constraints or experience drive age-dependent space use in two large herbivores? Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Building a shared vision of the future for multifunctional agricultural landscapes. Lessons from a long term socio-ecological research site in south-western France. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Honda T. Geographical personality gradient in herbivorous animals: Implications for selective culling to reduce crop damage. Ecol Res 2021. [DOI: 10.1111/1440-1703.12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Takeshi Honda
- Yamanashi Prefecture Agricultural Research Center Kai Japan
| |
Collapse
|
26
|
Yamaguchi S, Takeshita KM, Tanikawa K, Kaji K. Relationship Between Hunting Time Schedule and Sika Deer Spatial Displacement in Hunting with and Without Driving. WILDLIFE SOC B 2020. [DOI: 10.1002/wsb.1136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saya Yamaguchi
- Laboratory of Wildlife Management Tokyo University of Agriculture and Technology 3‐5‐8 Saiwai‐cho, Fuchu Tokyo 183‐8509 Japan
| | - Kazutaka M. Takeshita
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies 16‐2 Onogawa, Tsukuba Ibaraki 305‐8506 Japan
| | - Kiyoshi Tanikawa
- Kanagawa Prefecture Nature Conservation Center 657 Nanasawa Atsugi Kanagawa 243‐0121 Japan
| | - Koichi Kaji
- Laboratory of Wildlife Management Tokyo University of Agriculture and Technology 3‐5‐8 Saiwai‐cho, Fuchu Tokyo 183‐8509 Japan
| |
Collapse
|
27
|
Goumas M, Lee VE, Boogert NJ, Kelley LA, Thornton A. The Role of Animal Cognition in Human-Wildlife Interactions. Front Psychol 2020; 11:589978. [PMID: 33250826 PMCID: PMC7672032 DOI: 10.3389/fpsyg.2020.589978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Humans have a profound effect on the planet's ecosystems, and unprecedented rates of human population growth and urbanization have brought wild animals into increasing contact with people. For many species, appropriate responses toward humans are likely to be critical to survival and reproductive success. Although numerous studies have investigated the impacts of human activity on biodiversity and species distributions, relatively few have examined the effects of humans on the behavioral responses of animals during human-wildlife encounters, and the cognitive processes underpinning those responses. Furthermore, while humans often present a significant threat to animals, the presence or behavior of people may be also associated with benefits, such as food rewards. In scenarios where humans vary in their behavior, wild animals would be expected to benefit from the ability to discriminate between dangerous, neutral and rewarding people. Additionally, individual differences in cognitive and behavioral phenotypes and past experiences with humans may affect animals' ability to exploit human-dominated environments and respond appropriately to human cues. In this review, we examine the cues that wild animals use to modulate their behavioral responses toward humans, such as human facial features and gaze direction. We discuss when wild animals are expected to attend to certain cues, how information is used, and the cognitive mechanisms involved. We consider how the cognitive abilities of wild animals are likely to be under selection by humans and therefore influence population and community composition. We conclude by highlighting the need for long-term studies on free-living, wild animals to fully understand the causes and ecological consequences of variation in responses to human cues. The effects of humans on wildlife behavior are likely to be substantial, and a detailed understanding of these effects is key to implementing effective conservation strategies and managing human-wildlife conflict.
Collapse
Affiliation(s)
- Madeleine Goumas
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Victoria E. Lee
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Midlothian, United Kingdom
| | - Neeltje J. Boogert
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Laura A. Kelley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| |
Collapse
|
28
|
Carbillet J, Rey B, Palme R, Morellet N, Bonnot N, Chaval Y, Cargnelutti B, Hewison AJM, Gilot-Fromont E, Verheyden H. Under cover of the night: context-dependency of anthropogenic disturbance on stress levels of wild roe deer Capreolus capreolus. CONSERVATION PHYSIOLOGY 2020; 8:coaa086. [PMID: 32995004 PMCID: PMC7507870 DOI: 10.1093/conphys/coaa086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 05/21/2023]
Abstract
Wildlife populations are increasingly exposed to human-induced modifications of their habitats. To cope with anthropogenic stressors, animals can adjust their behaviour-for example, by shifting their activity to more sheltered habitats, or becoming more nocturnal. However, whether use of spatial and temporal adjustments in behaviour may regulate the endocrine response is poorly documented. Here, we analyzed faecal cortisol metabolites (FCMs) of wild roe deer (Capreolus capreolus) living in a human-dominated agro-ecosystem. Using Global Positioning System monitoring of 116 individuals, we assessed their spatial behaviour and tested whether proximity to anthropogenic structures (linear distance to built-up areas) and the use of refuge habitats (woodland and hedges) influenced FCM levels. In accordance with our predictions, individuals ranging closer to anthropogenic structures during daytime had higher FCM levels, but this relationship was buffered as use of refuge habitat increased. In addition, this link between proximity to anthropogenic structures and FCM levels disappeared when we analyzed spatial behaviour at night. Finally, FCM levels were higher when the ambient temperature was lower, and during years of low resource availability. Our results demonstrate that the stress levels of large mammals may be strongly influenced by their proximity to anthropogenic activities, but that these effects may be buffered by behavioural adjustments in terms of space use and circadian rhythm. Whereas most studies have focused on the influence of environmental heterogeneity, our analysis highlights the need to also consider the fine-scale spatial response of individuals when studying the hormonal response of wild animals to human disturbance. We emphasize the potential to mitigate this hormonal stress response, and its potential negative consequences on population dynamics, through the preservation or restoration of patches of refuge habitat in close proximity to human infrastructure.
Collapse
Affiliation(s)
- Jeffrey Carbillet
- INRAE, CEFS, Université de Toulouse, F-31326, Castanet Tolosan, France
- VetAgro Sup Campus vétérinaire de Lyon, Université de Lyon, F-69280, Marcy-l’Etoile, France
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, 1210, Austria
| | - Nicolas Morellet
- INRAE, CEFS, Université de Toulouse, F-31326, Castanet Tolosan, France
| | | | - Yannick Chaval
- INRAE, CEFS, Université de Toulouse, F-31326, Castanet Tolosan, France
| | - Bruno Cargnelutti
- INRAE, CEFS, Université de Toulouse, F-31326, Castanet Tolosan, France
| | - A J M Hewison
- INRAE, CEFS, Université de Toulouse, F-31326, Castanet Tolosan, France
| | - Emmanuelle Gilot-Fromont
- VetAgro Sup Campus vétérinaire de Lyon, Université de Lyon, F-69280, Marcy-l’Etoile, France
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, F-69622 Villeurbanne, France
| | - Hélène Verheyden
- INRAE, CEFS, Université de Toulouse, F-31326, Castanet Tolosan, France
| |
Collapse
|
29
|
Gaynor KM, Cherry MJ, Gilbert SL, Kohl MT, Larson CL, Newsome TM, Prugh LR, Suraci JP, Young JK, Smith JA. An applied ecology of fear framework: linking theory to conservation practice. Anim Conserv 2020. [DOI: 10.1111/acv.12629] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaitlyn M. Gaynor
- National Center for Ecological Analysis and Synthesis University of California, Santa Barbara Santa Barbara CA USA
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
| | - Michael J. Cherry
- Caesar Kleberg Wildlife Research Institute Texas A&M University‐Kingsville Kingsville Texas USA
| | - Sophie L. Gilbert
- Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho USA
| | - Michel T. Kohl
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia USA
| | | | - Thomas M. Newsome
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Laura R. Prugh
- School of Environmental and Forest Sciences University of Washington Seattle WA USA
| | - Justin P. Suraci
- Center for Integrated Spatial Research Environmental Studies Department University of California Santa Cruz CA USA
| | - Julie K. Young
- Predator Research Facility USDA‐National Wildlife Research Center Millville Utah USA
| | - Justine A. Smith
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
- Department of Wildlife, Fish, and Conservation Biology University of California, Davis Davis CA USA
| |
Collapse
|
30
|
Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Sci Rep 2020; 10:11946. [PMID: 32686691 PMCID: PMC7371708 DOI: 10.1038/s41598-020-68046-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
The link between spatio-temporal resource patterns and animal movement behaviour is a key ecological process, however, limited experimental support for this connection has been produced at the home range scale. In this study, we analysed the spatial responses of a resident large herbivore (roe deer Capreolus capreolus) using an in situ manipulation of a concentrated food resource. Specifically, we experimentally altered feeding site accessibility to roe deer and recorded (for 25 animal-years) individual responses by GPS tracking. We found that, following the loss of their preferred resource, roe deer actively tracked resource dynamics leading to more exploratory movements, and larger, spatially-shifted home ranges. Then, we showed, for the first time experimentally, the importance of site fidelity in the maintenance of large mammal home ranges by demonstrating the return of individuals to their familiar, preferred resource despite the presence of alternate, equally-valuable food resources. This behaviour was modulated at the individual level, where roe deer characterised by a high preference for feeding sites exhibited more pronounced behavioural adjustments during the manipulation. Together, our results establish the connections between herbivore movements, space-use, individual preference, and the spatio-temporal pattern of resources in home ranging behaviour.
Collapse
|
31
|
Hertel AG, Niemelä PT, Dingemanse NJ, Mueller T. A guide for studying among-individual behavioral variation from movement data in the wild. MOVEMENT ECOLOGY 2020; 8:30. [PMID: 32612837 PMCID: PMC7325061 DOI: 10.1186/s40462-020-00216-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 05/19/2023]
Abstract
Animal tracking and biologging devices record large amounts of data on individual movement behaviors in natural environments. In these data, movement ecologists often view unexplained variation around the mean as "noise" when studying patterns at the population level. In the field of behavioral ecology, however, focus has shifted from population means to the biological underpinnings of variation around means. Specifically, behavioral ecologists use repeated measures of individual behavior to partition behavioral variability into intrinsic among-individual variation and reversible behavioral plasticity and to quantify: a) individual variation in behavioral types (i.e. different average behavioral expression), b) individual variation in behavioral plasticity (i.e. different responsiveness of individuals to environmental gradients), c) individual variation in behavioral predictability (i.e. different residual within-individual variability of behavior around the mean), and d) correlations among these components and correlations in suites of behaviors, called 'behavioral syndromes'. We here suggest that partitioning behavioral variability in animal movements will further the integration of movement ecology with other fields of behavioral ecology. We provide a literature review illustrating that individual differences in movement behaviors are insightful for wildlife and conservation studies and give recommendations regarding the data required for addressing such questions. In the accompanying R tutorial we provide a guide to the statistical approaches quantifying the different aspects of among-individual variation. We use movement data from 35 African elephants and show that elephants differ in a) their average behavior for three common movement behaviors, b) the rate at which they adjusted movement over a temporal gradient, and c) their behavioral predictability (ranging from more to less predictable individuals). Finally, two of the three movement behaviors were correlated into a behavioral syndrome (d), with farther moving individuals having shorter mean residence times. Though not explicitly tested here, individual differences in movement and predictability can affect an individual's risk to be hunted or poached and could therefore open new avenues for conservation biologists to assess population viability. We hope that this review, tutorial, and worked example will encourage movement ecologists to examine the biology of individual variation in animal movements hidden behind the population mean.
Collapse
Affiliation(s)
- Anne G. Hertel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø i Telemark, Norway
| | - Petri T. Niemelä
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt (Main), Germany
| |
Collapse
|
32
|
McClure KM, Gilbert AT, Chipman RB, Rees EE, Pepin KM. Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus. J Anim Ecol 2020; 89:1375-1386. [PMID: 31957005 PMCID: PMC7317853 DOI: 10.1111/1365-2656.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Animal movement influences the spatial spread of directly transmitted wildlife disease through host-host contact structure. Wildlife disease hosts vary in home range-associated foraging and social behaviours, which may increase the spread and intensity of disease outbreaks. The consequences of variation in host home range movement and space use on wildlife disease dynamics are poorly understood, but could help to predict disease spread and determine more effective disease management strategies. We developed a spatially explicit individual-based model to examine the effect of spatiotemporal variation in host home range size on the spatial spread rate, persistence and incidence of rabies virus (RABV) in raccoons (Procyon lotor). We tested the hypothesis that variation in home range size increases RABV spread and decreases vaccination effectiveness in host populations following pathogen invasion into a vaccination zone. We simulated raccoon demography and RABV dynamics across a range of magnitudes and variances in weekly home range size for raccoons. We examined how variable home range size influenced the relative effectiveness of three components of oral rabies vaccination (ORV) programmes targeting raccoons-timing and frequency of bait delivery, width of the ORV zone and proportion of hosts immunized. Variability in weekly home range size increased RABV spread rates by 1.2-fold to 5.2-fold compared to simulations that assumed a fixed home range size. More variable host home range sizes decreased relative vaccination effectiveness by 71% compared to less variable host home range sizes under conventional vaccination conditions. We found that vaccination timing was more influential for vaccination effectiveness than vaccination frequency or vaccination zone width. Our results suggest that variation in wildlife home range movement behaviour increases the spatial spread and incidence of RABV. Our vaccination results underscore the importance of prioritizing individual-level space use and movement data collection to understand wildlife disease dynamics and plan their effective control and elimination.
Collapse
Affiliation(s)
- Katherine M. McClure
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
- Present address:
Cornell Atkinson Center for Sustainability and the Cornell Wildlife Health CenterCornell UniversityIthacaNYUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Rabies Management ProgramConcordNHUSA
| | - Erin E. Rees
- Land and Sea Systems Analysis Inc.GranbyQCCanada
- National Microbiology LaboratoryPublic Health Risk Sciences DivisionPublic Health Agency of CanadaSaint‐HyacintheQCCanada
| | - Kim M. Pepin
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
| |
Collapse
|
33
|
Gervais L, Hewison AJM, Morellet N, Bernard M, Merlet J, Cargnelutti B, Chaval Y, Pujol B, Quéméré E. Pedigree-free quantitative genetic approach provides evidence for heritability of movement tactics in wild roe deer. J Evol Biol 2020; 33:595-607. [PMID: 31985133 DOI: 10.1111/jeb.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
Assessing the evolutionary potential of animal populations in the wild is crucial to understanding how they may respond to selection mediated by rapid environmental change (e.g. habitat loss and fragmentation). A growing number of studies have investigated the adaptive role of behaviour, but assessments of its genetic basis in a natural setting remain scarce. We combined intensive biologging technology with genome-wide data and a pedigree-free quantitative genetic approach to quantify repeatability, heritability and evolvability for a suite of behaviours related to the risk avoidance-resource acquisition trade-off in a wild roe deer (Capreolus capreolus) population inhabiting a heterogeneous, human-dominated landscape. These traits, linked to the stress response, movement and space-use behaviour, were all moderately to highly repeatable. Furthermore, the repeatable among-individual component of variation in these traits was partly due to additive genetic variance, with heritability estimates ranging from 0.21 ± 0.08 to 0.70 ± 0.11 and evolvability ranging from 1.1% to 4.3%. Changes in the trait mean can therefore occur under hypothetical directional selection over just a few generations. To the best of our knowledge, this is the first empirical demonstration of additive genetic variation in space-use behaviour in a free-ranging population based on genomic relatedness data. We conclude that wild animal populations may have the potential to adjust their spatial behaviour to human-driven environmental modifications through microevolutionary change.
Collapse
Affiliation(s)
- Laura Gervais
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Aidan J M Hewison
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Nicolas Morellet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Maria Bernard
- INRAE, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, SIGENAE, Jouy-en-Josas, France
| | - Joël Merlet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Bruno Cargnelutti
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Yannick Chaval
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France.,USR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, Perpignan Cedex, France
| | - Erwan Quéméré
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,ESE, Ecology and Ecosystems Health, Ouest, INRAE, Rennes, France
| |
Collapse
|
34
|
Bonnot NC, Couriot O, Berger A, Cagnacci F, Ciuti S, De Groeve JE, Gehr B, Heurich M, Kjellander P, Kröschel M, Morellet N, Sönnichsen L, Hewison AJM. Fear of the dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across Europe. J Anim Ecol 2019; 89:132-145. [DOI: 10.1111/1365-2656.13161] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Nadège C. Bonnot
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
- UR EFNO Irstea Nogent‐sur‐Vernisson France
| | | | - Anne Berger
- Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre San Michele all’Adige Italy
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour School of Biology and Environmental Science University College Dublin Dublin Ireland
| | - Johannes E. De Groeve
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre San Michele all’Adige Italy
- Department of Geography Ghent University Gent Belgium
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Marco Heurich
- Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
| | - Petter Kjellander
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - Max Kröschel
- Division of Wildlife Ecology Forest Research Institute of Baden‐Württemberg Freiburg Germany
- Chair of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg Germany
| | | | - Leif Sönnichsen
- Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | | |
Collapse
|
35
|
Wat KKY, Herath APHM, Rus AI, Banks PB, Mcarthur C. Space use by animals on the urban fringe: interactive effects of sex and personality. Behav Ecol 2019. [DOI: 10.1093/beheco/arz194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Personality traits shape individual perceptions of risks and rewards, and so, should affect how animals value and use their environment. Evidence is emerging that personality affects foraging, space use, and exploitation of novel environments such as urban habitat. But the influence of personality is also hypothesized to be sex-dependent when primary motivation for space use differs between sexes, as often occurs in polygynous species. We tested the influence of personality traits, interacting with sex, on space use by the polygynous common brushtail possum, Trichosurus vulpecula, in an urban-woodland boundary in Sydney, Australia. We quantified personality traits, including exploration, using behavioral assays in an artificial arena. We also GPS-tracked free-ranging individuals, and measured range size, core area: home range, and proportional urban range. We found that personality traits affected space use either as a main effect or, as predicted, an interaction with sex. More exploratory animals, regardless of sex, had higher core area: home range ratios and proportionally larger ranges within urban habitat. However, less exploratory females yet more exploratory males had larger ranges. Our findings provide new insight into movement ecology by demonstrating, for the first time, the sex-dependent influence of personality. The demonstrated influence of personality on urban use by possums also suggests a personality filter for wildlife, as populations transition into urban areas. Finally, as individuals at the interface between urban and natural habitat are also a conduit between the two, a corollary of our findings is that there may be personality-mediated spread of disease across this boundary.
Collapse
Affiliation(s)
- Katie K Y Wat
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Anushika P H M Herath
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Adrian I Rus
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Clare Mcarthur
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Carbillet J, Rey B, Lavabre T, Chaval Y, Merlet J, Débias F, Régis C, Pardonnet S, Duhayer J, Gaillard JM, Hewison AJM, Lemaître JF, Pellerin M, Rannou B, Verheyden H, Gilot-Fromont E. The neutrophil to lymphocyte ratio indexes individual variation in the behavioural stress response of wild roe deer across fluctuating environmental conditions. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2755-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Hutfluss A, Dingemanse NJ. Human recreation reduces clutch size in great tits Parus major regardless of risk-taking personality. Behav Ecol 2019. [DOI: 10.1093/beheco/arz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractRecreation negatively affects wildlife by influencing animal behavior vital to reproduction and survival. Such nonconsumptive effects of perceived predation risk are mainly studied in ground-breeding birds. However, if antipredator responses characterize bird species generally, so should nonconsumptive effects of perceived predation associated with human recreation. Moreover, as individuals consistently differ in behaviors linked to antipredator responses, they should also differ in responses to recreation, with bolder birds being less affected. To test this key prediction, we quantified effects of human recreation pressure on a cavity-breeding passerine. We uniquely quantified human recreation pressure over a substantial (8-year) period within 12 nest box populations of the great tit Parus major, assayed annually for reproductive parameters. We detected considerable spatial variation in recreation pressure. In plots with high recreation pressure, we found strong support for birds breeding further away from highly frequented paths and birds producing smaller clutches; we also found moderate support for birds producing fewer fledglings. These detrimental effects did not vary with behavioral proxies of an individual’s risk-taking phenotype (exploratory activity). This implies that effects of recreation pressure apply to the average bird, and extend to species (like forest birds) not previously considered.
Collapse
Affiliation(s)
- A Hutfluss
- Behavioural Ecology Group, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Munich, Germany
| | - N J Dingemanse
- Behavioural Ecology Group, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
38
|
Chassagneux A, Calenge C, Siat V, Mortz P, Baubet E, Saïd S. Proximity to the risk and landscape features modulate female red deer movement patterns over several days after drive hunts. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Agathe Chassagneux
- Agathe Chassagneux (https://orcid.org/0000-0002-6265-710X) , V. Siat, E. Baubet and S. Saïd, Office National de la Chasse et de la Faune sauvage, DRE-Unité Ongulés Sauvages, FR-01330 Birieux, France
| | - Clément Calenge
- C. Calenge, Office National de la Chasse et de la Faune sauvage, DRE-Cellule d'Appui Méthodologique, Saint Benoist, Le Perray en Yvelines Cedex, France
| | - Vivien Siat
- Agathe Chassagneux (https://orcid.org/0000-0002-6265-710X) , V. Siat, E. Baubet and S. Saïd, Office National de la Chasse et de la Faune sauvage, DRE-Unité Ongulés Sauvages, FR-01330 Birieux, France
| | - Philippe Mortz
- P. Mortz, Office National des Forêts, Agence Territoriale Nord Alsace, Saverne Cedex, France
| | - Eric Baubet
- Agathe Chassagneux (https://orcid.org/0000-0002-6265-710X) , V. Siat, E. Baubet and S. Saïd, Office National de la Chasse et de la Faune sauvage, DRE-Unité Ongulés Sauvages, FR-01330 Birieux, France
| | - Sonia Saïd
- Agathe Chassagneux (https://orcid.org/0000-0002-6265-710X) , V. Siat, E. Baubet and S. Saïd, Office National de la Chasse et de la Faune sauvage, DRE-Unité Ongulés Sauvages, FR-01330 Birieux, France
| |
Collapse
|
39
|
Fattebert J, Morelle K, Jurkiewicz J, Ukalska J, Borkowski J. Safety first: seasonal and diel habitat selection patterns by red deer in a contrasted landscape. J Zool (1987) 2019. [DOI: 10.1111/jzo.12657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J. Fattebert
- School of Life Sciences University of KwaZulu‐Natal Durban South Africa
| | - K. Morelle
- Mammal Research Institute Polish Academy of Science Bialowieza Poland
| | - J. Jurkiewicz
- Wildlife Monitoring Project Jolanta Jurkiewicz Mogilany Poland
| | - J. Ukalska
- Department of Econometrics and Statistics Warsaw Agricultural University Warsaw Poland
| | - J. Borkowski
- Department of Forestry and Forest Ecology University of Warmia and Mazury in Olsztyn Olsztyn Poland
| |
Collapse
|
40
|
Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS. Landscapes of Fear: Spatial Patterns of Risk Perception and Response. Trends Ecol Evol 2019; 34:355-368. [PMID: 30745252 DOI: 10.1016/j.tree.2019.01.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Animals experience varying levels of predation risk as they navigate heterogeneous landscapes, and behavioral responses to perceived risk can structure ecosystems. The concept of the landscape of fear has recently become central to describing this spatial variation in risk, perception, and response. We present a framework linking the landscape of fear, defined as spatial variation in prey perception of risk, to the underlying physical landscape and predation risk, and to resulting patterns of prey distribution and antipredator behavior. By disambiguating the mechanisms through which prey perceive risk and incorporate fear into decision making, we can better quantify the nonlinear relationship between risk and response and evaluate the relative importance of the landscape of fear across taxa and ecosystems.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA. https://twitter.com/@kaitlyngaynor%20
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street (MC 066), Chicago, IL 60607, USA; Department of Integrated Mathematical Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA; These authors contributed equally to this work
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA; These authors contributed equally to this work
| | - Mary E Power
- Department of Integrative Biology, University of California Berkeley, 3060 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA; These authors contributed equally to this work
| | - Justin S Brashares
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Blanchard P, Lauzeral C, Chamaillé-Jammes S, Brunet C, Lec'hvien A, Péron G, Pontier D. Coping with change in predation risk across space and time through complementary behavioral responses. BMC Ecol 2018; 18:60. [PMID: 30572866 PMCID: PMC6302475 DOI: 10.1186/s12898-018-0215-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background Our picture of behavioral management of risk by prey remains fragmentary. This partly stems from a lack of studies jointly analyzing different behavioral responses developed by prey, such as habitat use and fine-scale behavior, although they are expected to complement each other. We took advantage of a simple system on the Kerguelen archipelago, made of a prey species, European rabbit Oryctolagus cuniculus, a predator, feral cat Felis catus, and a mosaic of closed and open foraging patches, allowing reliable assessment of spatio-temporal change in predation risk. We investigated the way such a change triggered individual prey decisions on where, when and how to perform routine activities. Results Rabbit presence and behavior were recorded both day and night in patches with similar foraging characteristics, but contrasted in terms of openness. Cats, individually recognizable, were more active at night and in closed patches, in line with their expected higher hunting success in those conditions. Accordingly, rabbits avoided using closed patches at night and increased their vigilance if they did. Both day and night, rabbits increased their use of closed patches as compared to open patches in windy conditions, thereby probably reducing the thermoregulatory costs expected under such harsh environmental conditions. Conclusions Overall, our data map the landscape of fear in this study system and indicate that prey habitat use and vigilance complement each other. Solely focusing on one or the other tactic may lead to erroneous conclusions regarding the way predation risk triggers prey decisions. Finally, future studies should investigate inter-individual variability in the relative use of these different types of complementary behavioral responses to perceived risk, along with the determinants and outcomes of such tactics.
Collapse
Affiliation(s)
- Pierrick Blanchard
- Laboratoire Evolution et Diversité Biologique, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, Toulouse, France.
| | - Christine Lauzeral
- Laboratoire Evolution et Diversité Biologique, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Simon Chamaillé-Jammes
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul Valéry Montpellier, Ecole Pratiques des Hautes Etudes (EPHE), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Clément Brunet
- Laboratoire Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université de Lyon, Université Lyon I Claude Bernard, Villeurbanne, France
| | - Arnaud Lec'hvien
- Laboratoire Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université de Lyon, Université Lyon I Claude Bernard, Villeurbanne, France
| | - Guillaume Péron
- Laboratoire Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université de Lyon, Université Lyon I Claude Bernard, Villeurbanne, France
| | - Dominique Pontier
- Laboratoire Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université de Lyon, Université Lyon I Claude Bernard, Villeurbanne, France
| |
Collapse
|
42
|
Campos-Candela A, Palmer M, Balle S, Álvarez A, Alós J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol Lett 2018; 22:213-232. [PMID: 30467933 DOI: 10.1111/ele.13187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Consistent between-individual differences in movement are widely recognised across taxa. In addition, foraging plasticity at the within-individual level suggests a behavioural dependency on the internal energy demand. Because behaviour co-varies with fast-slow life history (LH) strategies in an adaptive context, as theoretically predicted by the pace-of-life syndrome hypothesis, mass/energy fluxes should link behaviour and its plasticity with physiology at both between- and within-individual levels. However, a mechanistic framework driving these links in a fluctuating ecological context is lacking. Focusing on home range behaviour, we propose a novel behavioural-bioenergetics theoretical model to address such complexities at the individual level based on energy balance. We propose explicit mechanistic links between behaviour, physiology/metabolism and LH by merging two well-founded theories, the movement ecology paradigm and the dynamic energetic budget theory. Overall, our behavioural-bioenergetics model integrates the mechanisms explaining how (1) behavioural between- and within-individual variabilities connect with internal state variable dynamics, (2) physiology and behaviour are explicitly interconnected by mass/energy fluxes, and (3) different LHs may arise from both behavioural and physiological variabilities in a given ecological context. Our novel theoretical model reveals encouraging opportunities for empiricists and theoreticians to delve into the eco-evolutionary processes that favour or hinder the development of between-individual differences in behaviour and the evolution of personality-dependent movement syndromes.
Collapse
Affiliation(s)
- Andrea Campos-Candela
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.,Department of Marine Sciences and Applied Biology, University of Alicante, P. O. Box 99, 03080, Alicante, Spain
| | - Miquel Palmer
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Salvador Balle
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Alberto Álvarez
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Josep Alós
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.,Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
43
|
Montgomery RA, Redilla KM, Ortiz‐Calo W, Smith T, Keller B, Millspaugh JJ. Evaluating the individuality of animal-habitat relationships. Ecol Evol 2018; 8:10893-10901. [PMID: 30519415 PMCID: PMC6262913 DOI: 10.1002/ece3.4554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/25/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022] Open
Abstract
Examining the ways in which animals use habitat and select resources to satisfy their life history requirements has important implications for ecology, evolution, and conservation. The advent of radio-tracking in the mid-20th century greatly expanded the scope of animal-habitat modeling. Thereafter, it became common practice to aggregate telemetry data collected on a number of tagged individuals and fit one model describing resource selection at the population level. This convention, however, runs the risk of masking important individuality in the nature of associations between animals and their environment. Here, we investigated the importance of individual variation in animal-habitat relationships via the study of a highly gregarious species. We modeled elk (Cervus elaphus) location data, collected from Global Positioning System (GPS) collars, using Bayesian discrete choice resource selection function (RSF) models. Using a high-performance computing cluster, we batch-processed these models at the level of each individual elk (n = 88) and evaluated the output with respect to: (a) the composition of parameters in the most supported models, (b) the estimates of the parameters featured in the global models, and (c) spatial maps of the predicted relative probabilities of use. We detected considerable individual variation across all three metrics. For instance, the most supported models varied with respect to parameter composition with a range of seven to 17 and an average of 14.4 parameters per individual elk. The estimates of the parameters featured in the global models also varied greatly across individual elk with little conformity detected across age or sex classes. Finally, spatial mapping illustrated stark differences in the predicted relative probabilities of use across individual elk. Our analysis identifies that animal-habitat relationships, even among the most gregarious of species, can be highly variable. We discuss the implications of our results for ecology and present some guiding principles for the development of RSF models at the individual-animal level.
Collapse
Affiliation(s)
- Robert A. Montgomery
- The Research on the Ecology of Carnivores and their Prey LaboratoryDepartment of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Kyle M. Redilla
- The Research on the Ecology of Carnivores and their Prey LaboratoryDepartment of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Waldemar Ortiz‐Calo
- The Research on the Ecology of Carnivores and their Prey LaboratoryDepartment of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Trenton Smith
- School of Natural ResourcesUniversity of MissouriColumbiaMissouri
| | | | - Joshua J. Millspaugh
- Wildlife Biology Program, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMontana
| |
Collapse
|
44
|
Bonnot NC, Goulard M, Hewison AM, Cargnelutti B, Lourtet B, Chaval Y, Morellet N. Boldness-mediated habitat use tactics and reproductive success in a wild large herbivore. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Bonnot NC, Bergvall UA, Jarnemo A, Kjellander P. Who's afraid of the big bad wolf? Variation in the stress response among personalities and populations in a large wild herbivore. Oecologia 2018; 188:85-95. [PMID: 29804203 PMCID: PMC6096777 DOI: 10.1007/s00442-018-4174-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/21/2018] [Indexed: 10/29/2022]
Abstract
Faced with rapid environmental changes, individuals may express different magnitude and plasticity in their response to a given stressor. However, little is known about the causes of variation in phenotypic plasticity of the stress response in wild populations. In the present study, we repeatedly captured individual roe deer (Capreolus capreolus) from two wild populations in Sweden exposed to differing levels of predation pressure and measured plasma concentrations of stress-induced cortisol and behavioral docility. While controlling for the marked effects of habituation, we found clear between-population differences in the stress-induced cortisol response. Roe deer living in the area that was recently recolonized by lynx (Lynx lynx) and wolves (Canis lupus) expressed cortisol levels that were around 30% higher than roe deer in the human-dominated landscape free of large carnivores. In addition, for the first time to our knowledge, we investigated the stress-induced cortisol response in free-ranging newborn fawns and found no evidence for hypo-responsiveness during early life in this species. Indeed, stress-induced cortisol levels were of similar magnitude and differed between populations to a similar extent in both neonates and adults. Finally, at an individual level, we found that both cortisol and docility levels were strongly repeatable, and weakly negatively inter-correlated, suggesting that individuals differed consistently in how they respond to a stressor, and supporting the existence of a stress-management syndrome in roe deer.
Collapse
Affiliation(s)
- Nadège C Bonnot
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91, Riddarhyttan, Sweden.
| | - Ulrika A Bergvall
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91, Riddarhyttan, Sweden.,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Anders Jarnemo
- School of Business and Engineering, Halmstad University, P. O. Box 823, 301 18, Halmstad, Sweden
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91, Riddarhyttan, Sweden
| |
Collapse
|
46
|
Sih A, Spiegel O, Godfrey S, Leu S, Bull CM. Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Cabrera D, Andres D, McLoughlin PD, Debeffe L, Medill SA, Wilson AJ, Poissant J. Island tameness and the repeatability of flight initiation distance in a large herbivore. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antipredator behaviours can be lost relatively quickly in populations that are relieved of predation, as is known for several species inhabiting islands. Flight initiation distance (FID) is often studied in the context of island tameness; however, little is known about the factors that influence and maintain FID variation in predation-free populations. Here, we studied FID in foals of an isolated predator-free population of feral horses (Equus caballus L., 1758) on Sable Island, Canada, to determine if FID could be used for research on consistent individual differences in risk aversion and island tameness. In addition to testing for temporal, spatial, and sex effects on FID, we compared repeatability estimates at two temporal scales (within and among days). Similar FID for measurements obtained on the same day and for males and females indicated an absence of short-term desensitization and sex effects. In contrast, FID decreased for measurements made on subsequent days and from east to west, which could reflect habituation to human presence and (or) other temporal and spatial processes. Repeatability was high (0.42 ± 0.06), but tended to decrease with increasing time intervals. This study highlights the potential of FID for individual-based research on the ecology and evolutionary dynamics of risk aversion in predation-free populations.
Collapse
Affiliation(s)
- Doreen Cabrera
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom
| | - Daniel Andres
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Philip D. McLoughlin
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Lucie Debeffe
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Sarah A. Medill
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom
| | - Jocelyn Poissant
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom
| |
Collapse
|
48
|
Thurfjell H, Ciuti S, Boyce MS. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS One 2017; 12:e0178082. [PMID: 28614406 PMCID: PMC5470680 DOI: 10.1371/journal.pone.0178082] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/07/2017] [Indexed: 11/19/2022] Open
Abstract
In animal behaviour, there is a dichotomy between innate behaviours (e.g., temperament or personality traits) versus those behaviours shaped by learning. Innate personality traits are supposedly less evident in animals when confounded by learning acquired with experience through time. Learning might play a key role in the development and adoption of successful anti-predator strategies, and the related adaptation has the potential to make animals that are more experienced less vulnerable to predation. We carried out a study in a system involving a large herbivorous mammal, female elk, Cervus elaphus, and their primary predator, i.e., human hunters. Using fine-scale satellite telemetry relocations, we tested whether differences in behaviour depending on age were due solely to selection pressure imposed by human hunters, meaning that females that were more cautious were more likely to survive and become older. Or whether learning also was involved, meaning that females adjusted their behaviour as they aged. Our results indicated that both human selection and learning contributed to the adoption of more cautious behavioural strategies in older females. Whereas human selection of behavioural traits has been shown in our previous research, we here provide evidence of additive learning processes being responsible for shaping the behaviour of individuals in this population. Female elk are indeed almost invulnerable to human hunters when older than 9-10 y.o., confirming that experience contributes to their survival. Female elk monitored in our study showed individually changing behaviours and clear adaptation as they aged, such as reduced movement rates (decreased likelihood of encountering human hunters), and increased use of secure areas (forest and steeper terrain), especially when close to roads. We also found that elk adjusted behaviours depending on the type of threat (bow and arrow vs. rifle hunters). This fine-tuning by elk to avoid hunters, rather than just becoming more cautious during the hunting season, highlights the behavioural plasticity of this species. Selection on behavioural traits and/or behavioural shifts via learning are an important but often-ignored consequence of human exploitation of wild animals. Such information is a critical component of the effects of human exploitation of wildlife populations with implications for improving their management and conservation.
Collapse
Affiliation(s)
- Henrik Thurfjell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simone Ciuti
- Department of Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
| | - Mark S. Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
49
|
Challenges and science-based implications for modern management and conservation of European ungulate populations. MAMMAL RES 2017. [DOI: 10.1007/s13364-017-0321-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
|