1
|
Xu S, Wang J, Mao K, Jiao D, Li Z, Zhao H, Sun Y, Feng J, Lai Y, Peng R, Fu Y, Gan R, Chen S, Zhao HY, Wei HJ, Cheng Y. Generation and transcriptomic characterization of MIR137 knockout miniature pig model for neurodevelopmental disorders. Cell Biosci 2024; 14:86. [PMID: 38937838 PMCID: PMC11212353 DOI: 10.1186/s13578-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDD), such as autism spectrum disorders (ASD) and intellectual disorders (ID), are highly debilitating childhood psychiatric conditions. Genetic factors are recognized as playing a major role in NDD, with a multitude of genes and genomic regions implicated. While the functional validation of NDD-associated genes has predominantly been carried out using mouse models, the significant differences in brain structure and gene function between mice and humans have limited the effectiveness of mouse models in exploring the underlying mechanisms of NDD. Therefore, it is important to establish alternative animal models that are more evolutionarily aligned with humans. RESULTS In this study, we employed CRISPR/Cas9 and somatic cell nuclear transplantation technologies to successfully generate a knockout miniature pig model of the MIR137 gene, which encodes the neuropsychiatric disorder-associated microRNA miR-137. The homozygous knockout of MIR137 (MIR137-/-) effectively suppressed the expression of mature miR-137 and led to the birth of stillborn or short-lived piglets. Transcriptomic analysis revealed significant changes in genes associated with neurodevelopment and synaptic signaling in the brains of MIR137-/- miniature pig, mirroring findings from human ASD transcriptomic data. In comparison to miR-137-deficient mouse and human induced pluripotent stem cell (hiPSC)-derived neuron models, the miniature pig model exhibited more consistent changes in critical neuronal genes relevant to humans following the loss of miR-137. Furthermore, a comparative analysis identified differentially expressed genes associated with ASD and ID risk genes in both miniature pig and hiPSC-derived neurons. Notably, human-specific miR-137 targets, such as CAMK2A, known to be linked to cognitive impairments and NDD, exhibited dysregulation in MIR137-/- miniature pigs. These findings suggest that the loss of miR-137 in miniature pigs affects genes crucial for neurodevelopment, potentially contributing to the development of NDD. CONCLUSIONS Our study highlights the impact of miR-137 loss on critical genes involved in neurodevelopment and related disorders in MIR137-/- miniature pigs. It establishes the miniature pig model as a valuable tool for investigating neurodevelopmental disorders, providing valuable insights for potential applications in human research.
Collapse
Affiliation(s)
- Shengyun Xu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jiaoxiang Wang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Kexin Mao
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Li
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yifei Sun
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jin Feng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Yuanhao Lai
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruiqi Peng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Yu Fu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruoyi Gan
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Shuhan Chen
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
2
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
3
|
Pernold CPS, Lagumdzic E, Stadler M, Dolezal M, Jäckel S, Schmitt MW, Mair KH, Saalmüller A. Species comparison: human and minipig PBMC reactivity under the influence of immunomodulating compounds in vitro. Front Immunol 2024; 14:1327776. [PMID: 38264655 PMCID: PMC10803596 DOI: 10.3389/fimmu.2023.1327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Considering the similarities between swine and humans, it is a logical consequence to use swine as a translational model in research and drug development, including non-clinical safety. Here, we compared the reactivity of peripheral blood mononuclear cells (PBMCs) from humans and minipigs under the influence of different compounds in vitro. We conducted a flow cytometry-based proliferation assay that focused on the T-cell response to three different stimuli: concanavalin A (ConA), phytohemagglutinin-L (PHA-L), and staphylococcal Enterotoxin B (SEB). Furthermore, four approved immunosuppressive drugs-abatacept, belatacept, rapamycin, and tofacitinib-which are used for the treatment of rheumatoid arthritis or rejection in transplant recipients, were combined with the different stimuli. This allowed us to study the effect of suppressive drugs in comparison with the different stimuli in both species. We examined proliferating T cells (CD3+) and investigated the presence of TCR-αβ+ and TCR-γδ+ T cells. Differences in the response of T cells of the two species under these various conditions were evident. CD4+ T cells were more activated within humans, whereas CD8+ T cells were generally more abundant in swine. The effectiveness of the used humanized antibodies is most likely related to the conserved structure of CTLA-4 as abatacept induced a much stronger reduction in swine compared with belatacept. The reduction of proliferation of rapamycin and tofacitinib was highly dependent on the used stimuli. We further investigated the effect of the immunosuppressive compounds on antigen-specific restimulation of pigs immunized against porcine circovirus 2 (PCV2). Treatment with all four compounds resulted in a clear reduction of the proliferative response, with rapamycin showing the strongest effect. In conclusion, our findings indicate that the effectiveness of suppressive compounds is highly dependent on the stimuli used and must be carefully selected to ensure accurate results. The results highlight the importance of considering the response of T cells in different species when evaluating the potential of an immunomodulatory drug.
Collapse
Affiliation(s)
- Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sven Jäckel
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | | | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Kamińska K, Wiercigroch E, Małek K, Grzesiak M. Biomolecular composition of porcine ovarian follicles following in vitro treatment of vitamin D 3 and insulin alone or in combination. Reprod Biol 2023; 23:100818. [PMID: 37862827 DOI: 10.1016/j.repbio.2023.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The study aimed to analyze changes in biomolecular composition of granulosa and theca interna cells of porcine ovarian follicles following in vitro treatment of vitamin D3 and insulin alone or in combination. Medium antral follicles (n = 4/each group) were cultured alone (C; control) or in the presence of 1α,25(OH)2D3 (VD; 100 ng/mL) and insulin (I; 10 ng/mL) separately or in combination, VD and I (VD+I). Then paraplast-embedded ovarian follicles were used for Fourier Transform Infrared (FTIR) spectroscopy and respective histological stainings. FTIR analysis revealed changes in the content of fibrous proteins (mainly collagens) within theca interna following vitamin D3 and insulin co-administration that was verified by Masson's trichrome staining. Treatment-dependent differences were also observed in the secondary structure of proteins, indicating enhanced conversion to α-helices in response to vitamin D3 and insulin action/interaction in both follicular compartments. In the granulosa and theca interna layers, tendency to lower DNA content in the VD+I group was noted and confirmed by Fulgen's staining. Finally, altered monosaccharides production in both follicular layers was found. Based on FTIR results, it is possible to attribute the observed alterations to biological processes that could be regulated by vitamin D3 and insulin in the porcine ovarian follicles.
Collapse
Affiliation(s)
- Kinga Kamińska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Poland; Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Wiercigroch
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Małek
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
5
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Miller I, Gianazza E. Proteomic methods for the study of porcine acute phase proteins - anything new to detect? Vet Res Commun 2023; 47:1801-1815. [PMID: 37452983 DOI: 10.1007/s11259-023-10170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Acute phase proteins (APPs) reflect the health status of individuals and are important tools in diagnostics, as their altered levels are a sign of disturbed homeostasis. While, in most cases, quantitation of known serum APPs is routinely performed by immunoassays, proteomics is helpful in discovery of new biomarker candidates, especially in samples other than body fluids. Besides putting APP regulation into an overall context of differentially abundant proteins, this approach can detect further details or outright new features in protein structure or specific modifications, and help understand better their function. Thus, it can show up ways to make present diagnostic assays more sensitive and/or specific, or correlate regulations of disease-specific proteins. The APP repertoire is dependent on the species. The pig is both, an important farm animal and a model animal for human diseases, due to similarities in physiology. Besides reviewing existing literature, yet unpublished examples for two-dimensional electrophoresis in connection with pig APPs highlight some of the benefits of proteomics. Of further help would be the emerging targeted proteomics, offering the possibility to determine particular isoforms or proteoforms, without the need of specific antibodies, but this method is presently scarcely used in veterinary medicine.
Collapse
Affiliation(s)
- Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Wien, Austria.
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133, Milano, Italy
| |
Collapse
|
7
|
Allen LM, Murphy DA, Roldan V, Moussa MN, Draper A, Delgado A, Aguiar M, Capote MA, Jarome TJJ, Lee K, Mattfeld AT, Prather R, Allen TA. Testing spatial working memory in pigs using an automated T-maze. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad010. [PMID: 38596242 PMCID: PMC10913826 DOI: 10.1093/oons/kvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 04/11/2024]
Abstract
Pigs are an important large animal model for translational clinical research but underutilized in behavioral neuroscience. This is due, in part, to a lack of rigorous neurocognitive assessments for pigs. Here, we developed a new automated T-maze for pigs that takes advantage of their natural tendency to alternate. The T-maze has obvious cross-species value having served as a foundation for cognitive theories across species. The maze (17' × 13') was constructed typically and automated with flanking corridors, guillotine doors, cameras, and reward dispensers. We ran nine pigs in (1) a simple alternation task and (2) a delayed spatial alternation task. Our assessment focused on the delayed spatial alternation task which forced pigs to wait for random delays (5, 60, 120, and 240 s) and burdened spatial working memory. We also looked at self-paced trial latencies, error types, and coordinate-based video tracking. We found pigs naturally alternated but performance declined steeply across delays (R2 = 0.84). Self-paced delays had no effect on performance suggestive of an active interference model of working memory. Positional and head direction data could differentiate subsequent turns on short but not long delays. Performance levels were stable over weeks in diverse strains and sexes, and thus provide a benchmark for future neurocognitive assessments in pigs.
Collapse
Affiliation(s)
- L M Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - D A Murphy
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - V Roldan
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - M N Moussa
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - A Draper
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - A Delgado
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - M Aguiar
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - M A Capote
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - T J J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- School of Animal Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - K Lee
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - A T Mattfeld
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - R Prather
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - T A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
McLellan MJ, Stamper TI, Kimsey RB. Direct relationship between evapotranspiration rate (ET O) and vertebrate decomposition rate. Forensic Sci Int 2023; 350:111789. [PMID: 37499375 DOI: 10.1016/j.forsciint.2023.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
When vertebrate scavenging is excluded, the Evapotranspiration Rate (ETo) of a given geographic region directly regulates the decomposition rate of unclothed vertebrate carrion, with any deviation attributed to insect activity. We conducted four decomposition experiments using pig carrion (Sus scrofa domesticus) over the span of two years (2018-2020) at a location in Davis, California. We used ETo, a variable that accounts for five climatic parameters (wind, temperature, humidity, solar radiation, and altitude) as the rate-determining variable of the decomposition process. We found ETo to have a strong (R2 = 0.98) predictive relationship with the decomposition rate. To account for maggot activity decomposing the carrion, we measured maggot weight in 2019 and 2020 using a novel method, and in 2020 we used FLIR imagery to measure maggot mass temperatures as a surrogate measurement of total maggot activity. Maggot activity was a significant predictor (p < 0.0001) of the decomposition rate, while maggot weight was not (p > 0.1). We hope to show the forensic entomology community the potential of using ETo. Future projects can incorporate ETo as a baseline to decomposition studies to determine if ETo remains the most accurate descriptor of decomposition and ultimately increase certainty in the Postmortem Interval (PMI).
Collapse
Affiliation(s)
- Mark J McLellan
- University of California, Davis, Forensic Science Graduate Program, 1 Shields Avenue, Davis, CA 95616, USA.
| | - Trevor I Stamper
- formerly at Purdue University, Department of Entomology, West Lafayette, IN 47907, USA
| | - Robert B Kimsey
- University of California, Davis, Forensic Science Graduate Program, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
10
|
Schmelter C, Fomo KN, Brueck A, Perumal N, Markowitsch SD, Govind G, Speck T, Pfeiffer N, Grus FH. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A). Biomolecules 2023; 13:1161. [PMID: 37509196 PMCID: PMC10377047 DOI: 10.3390/biom13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Alina Brueck
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| |
Collapse
|
11
|
Nip Y, Bennett SR, Smith AA, Jones TI, Jones PL, Tapscott SJ. Human DUX4 and porcine DUXC activate similar early embryonic programs in pig muscle cells: implications for preclinical models of FSHD. Hum Mol Genet 2023; 32:1864-1874. [PMID: 36728804 PMCID: PMC10196675 DOI: 10.1093/hmg/ddad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Human DUX4 and its mouse ortholog Dux are normally expressed in the early embryo-the 4-cell or 2-cell cleavage stage embryo, respectively-and activate a portion of the first wave of zygotic gene expression. DUX4 is epigenetically suppressed in nearly all somatic tissue, whereas facioscapulohumeral dystrophy (FSHD)-causing mutations result in its aberrant expression in skeletal muscle, transcriptional activation of the early embryonic program and subsequent muscle pathology. Although DUX4 and Dux both activate an early totipotent transcriptional program, divergence of their DNA binding domains limits the use of DUX4 expressed in mice as a preclinical model for FSHD. In this study, we identify the porcine DUXC messenger ribonucleic acid expressed in early development and show that both pig DUXC and human DUX4 robustly activate a highly similar early embryonic program in pig muscle cells. These results support further investigation of pig preclinical models for FSHD.
Collapse
Affiliation(s)
- Yee Nip
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sean R Bennett
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew A Smith
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
12
|
Wang J, Ren J, Wang Q, Li C, Han Z, Chen T, Sun K, Feng G, Zhang Y, Han J, Zhou Q, Li W, Yu D, Hai T. Nanos3 knockout pigs to model transplantation and reconstruction of the germlin. Cell Prolif 2023; 56:e13463. [PMID: 37094948 DOI: 10.1111/cpr.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 04/26/2023] Open
Affiliation(s)
- Jing Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingwei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhiqiang Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianzhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ke Sun
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi Zhou
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
13
|
Li T, Morselli M, Su T, Million M, Larauche M, Pellegrini M, Taché Y, Yuan PQ. Comparative transcriptomics reveals highly conserved regional programs between porcine and human colonic enteric nervous system. Commun Biol 2023; 6:98. [PMID: 36693960 PMCID: PMC9872754 DOI: 10.1038/s42003-023-04478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
The porcine gut is increasingly regarded as a useful translational model. The enteric nervous system in the colon coordinates diverse functions. However, knowledge of the molecular profiling of porcine enteric nerve system and its similarity to that of human is still lacking. We identified the distinct transcriptional programs associated with functional characteristics between inner submucosal and myenteric ganglia in porcine proximal and distal colon using bulk RNA and single-cell RNA sequencing. Comparative transcriptomics of myenteric ganglia in corresponding colonic regions of pig and human revealed highly conserved programs in porcine proximal and distal colon, which explained >96% of their transcriptomic responses to vagal nerve stimulation, suggesting that porcine proximal and distal colon could serve as predictors in translational studies. The conserved programs specific for inflammatory modulation were displayed in pigs with vagal nerve stimulation. This study provides a valuable transcriptomic resource for understanding of human colonic functions and neuromodulation using porcine model.
Collapse
Affiliation(s)
- Tao Li
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Marco Morselli
- Department of Molecular, Cell, & Developmental Biology, UCLA, Los Angeles, USA
| | - Trent Su
- Department of Biological Chemistry, UCLA, Los Angeles, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, & Developmental Biology, UCLA, Los Angeles, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, USA.
- VA Greater Los Angeles Healthcare System, Los Angeles, USA.
| |
Collapse
|
14
|
Fomo KN, Schmelter C, Atta J, Beutgen VM, Schwarz R, Perumal N, Govind G, Speck T, Pfeiffer N, Grus FH. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein histone H3.1. Front Med (Lausanne) 2022; 9:993351. [PMID: 36313990 PMCID: PMC9613933 DOI: 10.3389/fmed.2022.993351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs) as well as their axons leading to irreversible loss of sight. Medical management of the intraocular pressure (IOP) still represents the gold standard in glaucoma therapy, which only manages a single risk factor and does not directly address the neurodegenerative component of this eye disease. Recently, our group showed that antibody-derived immunopeptides (encoding complementarity-determining regions, CDRs) provide attractive glaucoma medication candidates and directly interfere its pathogenic mechanisms by different modes of action. In accordance with these findings, the present study showed the synthetic complementary-determining region 2 (CDR2) peptide (INSDGSSTSYADSVK) significantly increased RGC viability in vitro in a concentration-dependent manner (p < 0.05 using a CDR2 concentration of 50 μg/mL). Employing state-of the-art immunoprecipitation experiments, we confirmed that synthetic CDR2 exhibited a high affinity toward the retinal target protein histone H3.1 (HIST1H3A) (p < 0.001 and log2-fold change > 3). Furthermore, molecular dynamics (MD) simulations along with virtual docking analyses predicted potential CDR2-specific binding regions of HIST1H3A, which might represent essential post-translational modification (PTM) sites for epigenetic regulations. Quantitative mass spectrometry (MS) analysis of retinas demonstrated 39 proteins significantly affected by CDR2 treatment (p < 0.05). An up-regulation of proteins involved in the energy production (e.g., ATP5F1B and MT-CO2) as well as the regulatory ubiquitin proteasome system (e.g., PSMC5) was induced by the synthetic CDR2 peptide. On the other hand, CDR2 reduced metabolic key enzymes (e.g., DDAH1 and MAOB) as well as ER stress-related proteins (e.g., SEC22B and VCP) and these data were partially confirmed by microarray technology. Our outcome measurements indicate that specific protein-peptide interactions influence the regulatory epigenetic function of HIST1H3A promoting the neuroprotective mechanism on RGCs in vitro. In addition to IOP management, such synthetic peptides as CDR2 might serve as a synergistic immunotherapy for glaucoma in the future.
Collapse
Affiliation(s)
- Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Joshua Atta
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Vanessa M. Beutgen
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Rebecca Schwarz
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany,*Correspondence: Franz H. Grus,
| |
Collapse
|
15
|
Van de Vliet M, Joossens M. The Resemblance between Bacterial Gut Colonization in Pigs and Humans. Microorganisms 2022; 10:1831. [PMID: 36144433 PMCID: PMC9500663 DOI: 10.3390/microorganisms10091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Thorough understanding of the initial colonization process of human intestines is important to optimize the prevention of microbiota-associated diseases, and also to further improve the current microbial therapies. In recent years, therefore, colonization of the human gut has gained renewed interest. However, due to a lack of standardization of life events that might influence this early colonization process in humans, many generally accepted insights are based on deduction and assumption. In our review, we compare knowledge on colonization in humans with research in piglets, because the intestinal tract of pigs is remarkably similar to that of humans and the early-life events are more standardized. We assess potential similarities and challenge some concepts that have been widely accepted in human microbiota research. Bacterial colonization of the human gut is characterized by successive waves in a progressive process, to a complex gut microbiota community. After re-analyzing available data from piglets, we found that the bacterial colonization process is very similar in terms of the wave sequence and functionality of each wave. Moreover, based on the piglet data, we found that, in addition to external factors such as suckling and nutrition, the bacterial community itself appears to have a major influence on the colonization success of additional bacteria in the intestine. Thus, the colonization process in piglets might rely, at least in part, on niche dependency, an ecological principle to be considered in the intestinal colonization process in humans.
Collapse
Affiliation(s)
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology (WE10), Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Li X, Zhang X, Luo Y, Liu R, Sun Y, Zhao S, Yu M, Cao J. Large Fragment InDels Reshape Genome Structure of Porcine Alveolar Macrophage 3D4/21 Cells. Genes (Basel) 2022; 13:genes13091515. [PMID: 36140681 PMCID: PMC9498719 DOI: 10.3390/genes13091515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
The porcine monomyeloid cell line, or 3D4/21 cells, is an effective tool to study the immune characteristics and virus infection mechanism of pigs. Due to the introduction of the neomycin resistance gene and the SV40 large T antigen gene, its genome has undergone essential changes, which are still unknown. Studying the variation in genome structure, especially the large fragments of insertions and deletions (InDels), is one of the proper ways to reveal these issues. In this study, an All-seq method was established by combining Mate-pair and Shotgun sequencing methods, and the detection and verification of large fragments of InDels were performed on 3D4/21 cells. The results showed that there were 844 InDels with a length of more than 1 kb, of which 12 regions were deletions of more than 100 kb in the 3D4/21 cell genome. In addition, compared with porcine primary alveolar macrophages, 82 genes including the CD163 had lost transcription in 3D4/21 cells, and 72 genes gained transcription as well. Further referring to the Hi-C structure, it was found that the fusion of the topologically associated domains (TADs) caused by the deletion may lead to abnormal gene function. The results of this study provide a basis for elaborating the genome structure and functional variation in 3D4/21 cells, provide a method for rapid and convenient detection of large-scale InDels, and provide useful clues for the study of the porcine immune function genome and the molecular mechanism of virus infection.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yandong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
- 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
17
|
Reis LG, da Silva TH, Salles MSV, Andrade AFC, Martins SMMK, Takeuchi PL, Vidal AMC, Netto AS. Effect of cow's milk with different PUFA n-6: n-3 ratios on performance, serum lipid profile, and blood parameters of grower gilts. PLoS One 2022; 17:e0258629. [PMID: 35617293 PMCID: PMC9135250 DOI: 10.1371/journal.pone.0258629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The concern with human health has increased the interest in producing foods enriched with polyunsaturated fatty acids (PUFA), directly or naturally, by inclusion in the animals' diet. The positive effects such as antithrombotic, anti-inflammatory, and hypolipidemic have been observed in pigs and rats, used as human models for study. The present study evaluated the effect of cow's milk with different lipid profiles on performance, serum fatty acid profile, biochemical analysis, and a complete blood count of gilts used as a human model. At 34 days, thirty gilts were equally distributed in three treatments. Experimental treatments were milk from cows without the oil supplementation (C), milk from cows fed an enriched diet with linseed oil (n-3), and milk from cows fed an enriched diet with soybean oil (n-6). Milk supplementation was performed until 190 days old, provided once in the morning. The n-3 and n-6 milk reduced the concentration of myristic acid in the blood and increased the leukocytes. Milk enriched with n-3 compared to n-6 reduced the stearic acid. In conclusion, milk with a better PUFA profile can reduce saturated fatty acids in the blood and alter the concentration of cells in the defense system.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Thiago Henrique da Silva
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | - André Furugen Cesar Andrade
- Department of Animal Reproduction, School of Veterinary and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, Pirassununga, Brazil
| | - Simone Maria Massami Kitamura Martins
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Paula Lumy Takeuchi
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Brazil
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Arlindo Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Rua Duque de Caxias Norte, Pirassununga, SP, Brazil
| |
Collapse
|
18
|
ASK1 is a novel molecular target for preventing aminoglycoside-induced hair cell death. J Mol Med (Berl) 2022; 100:797-813. [PMID: 35471608 PMCID: PMC9110505 DOI: 10.1007/s00109-022-02188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 10/31/2022]
Abstract
Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: • ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. • Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. • A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. • ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.
Collapse
|
19
|
Effects of Sex Steroid Receptor Agonists and Antagonists on the Expression of the FOXL2 Transcription Factor and its Target Genes AMH and CYP19A1 in the Neonatal Porcine Ovary. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Recently, we have demonstrated that neonatal exposure to androgen and estrogen agonists or antagonists influenced the number of ovarian follicles in piglets. Since the FOXL2 transcription factor is required for proper ovarian follicle formation and activation, the objective of the study was to examine effects of exposure of the neonatal porcine ovary to testosterone propionate (TP; an androgen), flutamide (FLU; an antiandrogen), 4-tert-octylphenol (OP; compound with estrogenic activity), ICI 182,780 (ICI; an antiestrogen), and methoxychlor (MXC; compound with estrogenic, antiestrogenic and antiandrogenic properties) on FOXL2 expression and expression of its target genes, AMH and CYP19A1. Piglets were injected subcutaneously with TP, FLU, OP, ICI, MXC, or corn oil (control) between postnatal days 1 and 10 (n = 4/each group). Ovaries were excised from the 11-day-old piglets and the expression of FOXL2, AMH and CYP19A1 was examined using immunohistochemistry and/or real-time PCR and Western blot. FOXL2 was localized in stroma cells surrounding egg nests and in granulosa cells. TP, OP and MXC increased both FOXL2 and AMH mRNAs, while FLU and ICI decreased CYP19A1 mRNA. The increased FOXL2 protein abundance was found in all examined groups. In addition, TP, OP, ICI and MXC increased AMH protein abundance, while TP, FLU and OP decreased CYP19A1 protein abundance. In conclusion, neonatal exposure to sex steroid receptor agonists and antagonists increased FOXL2 expression at mRNA and/or protein levels and affected FOXL2 target genes in the ovaries of 11-day-old piglets. Therefore, it seems that impaired ovarian folliculogenesis induced by altered steroid milieu during the neonatal development period in pigs may, at least in part, involve FOXL2.
Collapse
|
20
|
Herrera-Marcos LV, Martínez-Beamonte R, Macías-Herranz M, Arnal C, Barranquero C, Puente-Lanzarote JJ, Gascón S, Herrero-Continente T, Gonzalo-Romeo G, Alastrué-Vera V, Gutiérrez-Blázquez D, Lou-Bonafonte JM, Surra JC, Rodríguez-Yoldi MJ, García-Gil A, Güemes A, Osada J. Hepatic galectin-3 is associated with lipid droplet area in non-alcoholic steatohepatitis in a new swine model. Sci Rep 2022; 12:1024. [PMID: 35046474 PMCID: PMC8770509 DOI: 10.1038/s41598-022-04971-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently a growing epidemic disease that can lead to cirrhosis and hepatic cancer when it evolves into non-alcoholic steatohepatitis (NASH), a gap not well understood. To characterize this disease, pigs, considered to be one of the most similar to human experimental animal models, were used. To date, all swine-based settings have been carried out using rare predisposed breeds or long-term experiments. Herein, we fully describe a new experimental swine model for initial and reversible NASH using cross-bred animals fed on a high saturated fat, fructose, cholesterol, cholate, choline and methionine-deficient diet. To gain insight into the hepatic transcriptome that undergoes steatosis and steatohepatitis, we used RNA sequencing. This process significantly up-regulated 976 and down-regulated 209 genes mainly involved in cellular processes. Gene expression changes of 22 selected transcripts were verified by RT-qPCR. Lipid droplet area was positively associated with CD68, GPNMB, LGALS3, SLC51B and SPP1, and negatively with SQLE expressions. When these genes were tested in a second experiment of NASH reversion, LGALS3, SLC51B and SPP1 significantly decreased their expression. However, only LGALS3 was associated with lipid droplet areas. Our results suggest a role for LGALS3 in the transition of NAFLD to NASH.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Macías-Herranz
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Puente-Lanzarote
- Servicio de Bioquímica Clínica. Hospital, Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Sonia Gascón
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Gonzalo Gonzalo-Romeo
- Servicio General de Apoyo a la Investigación. División de Experimentación Animal, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | - José M Lou-Bonafonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín García-Gil
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Güemes
- Departamento de Cirugía, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain. .,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Guan Z, Li Y, Hu S, Mo C, He D, Huang Z, Liao M. Screening and identification of differential metabolites in serum and urine of bamaxiang pigs bitten by trimeresurus stejnegeri based on UPLC-Q-TOF/MS metabolomics technology. J Toxicol Sci 2022; 47:389-407. [PMID: 36104186 DOI: 10.2131/jts.47.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trimeresurus stejnegeri is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases. Elucidating the metabolic changes of the body caused by Trimeresurus stejnegeri bite will be beneficial to the diagnosis and treatment of snakebite. Thus, an animal pig model of Trimeresurus stejnegeri bite was established, and then the metabolites of serum and urine were subsequently screened and identified in both ESI+ and ESI- modes identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods. There are 9 differential metabolites in serum, including Oleic acid, Lithocholic acid, Deoxycholic acid, Hypoxanthine, etc. There are 11 differential metabolites in urine, including Dopamine, Thiocysteine, Arginine, Indoleacetaldehyde, etc. Serum enrichment pathway analysis showed that 5 metabolic pathways, including Tryptophanuria, Liver disease due to cystic fibrosis, Hartnup disease, Hyperbaric oxygen exposure and Biliary cirrhosis, the core metabolites in these pathways, including deoxycholic acid, lithocholic acid, tryptophan and hypoxanthine, changed significantly. Urine enrichment pathway analysis showed that 4 metabolic pathways, including Aromatic L-Amino Acid Decarboxylase, Vitiligo, Blue Diaper Syndrome and Hyperargininemia, the core metabolites in these pathways including dopamine, 5-hydroxyindole acetic acid and arginine. Taken together, the current study has successfully established an animal model of Trimeresurus stejnegeri bite, and identified the metabolic markers and metabolic pathways of Trimeresurus stejnegeri bite. These metabolites and pathways may have potential application value and provide a therapeutic basis for the treatment of Trimeresurus stejnegeri bite.
Collapse
Affiliation(s)
- ZheZhe Guan
- Institute of Life Sciences of Guangxi Medical University, China
| | - YaLan Li
- Institute of Life Sciences of Guangxi Medical University, China
| | - ShaoCong Hu
- Institute of Life Sciences of Guangxi Medical University, China
| | - CaiFeng Mo
- Institute of Life Sciences of Guangxi Medical University, China
| | - DongLing He
- Institute of Life Sciences of Guangxi Medical University, China
| | - Zhi Huang
- Institute of Life Sciences of Guangxi Medical University, China
| | - Ming Liao
- Institute of Life Sciences of Guangxi Medical University, China
| |
Collapse
|
22
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
23
|
Schmelter C, Fomo KN, Perumal N, Pfeiffer N, Grus FH. Regulation of the HTRA2 Protease Activity by an Inhibitory Antibody-Derived Peptide Ligand and the Influence on HTRA2-Specific Protein Interaction Networks in Retinal Tissues. Biomedicines 2021; 9:biomedicines9081013. [PMID: 34440217 PMCID: PMC8427973 DOI: 10.3390/biomedicines9081013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial serine protease HTRA2 has many versatile biological functions ranging from being an important regulator of apoptosis to being an essential component for neuronal cell survival and mitochondrial homeostasis. Loss of HTRA2 protease function is known to cause neurodegeneration, whereas overactivation of its proteolytic function is associated with cell death and inflammation. In accordance with this, our group verified in a recent study that the synthetic peptide ASGYTFTNYGLSWVR, encoding the hypervariable sequence part of an antibody, showed a high affinity for the target protein HTRA2 and triggered neuroprotection in an in vitro organ culture model for glaucoma. To unravel this neuroprotective mechanism, the present study showed for the first time that the synthetic CDR1 peptide significantly (p < 0.01) inhibited the proteolytic activity of HTRA2 up to 50% using a specific protease function assay. Furthermore, using state-of-the-art co-immunoprecipitation technologies in combination with high-resolution MS, we identified 50 significant protein interaction partners of HTRA2 in the retina of house swine (p < 0.01; log2 fold change > 1.5). Interestingly, 72% of the HTRA2-specific interactions (23 of 31 binders) were inhibited by additional treatment with UCF-101 (HTRA2 protease inhibitor) or the synthetic CDR peptide. On the other hand, the remaining 19 binders of HTRA2 were exclusively identified in the UCF101 and/or CDR group. However, many of the interactors were involved in the ER to Golgi anterograde transport (e.g., AP3D1), aggrephagy (e.g., PSMC1), and the pyruvate metabolism/citric acid cycle (e.g., SHMT2), and illustrated the complex protein interaction networks of HTRA2 in neurological tissues. In conclusion, the present study provides, for the first time, a comprehensive protein catalogue of HTRA2-specific interaction partners in the retina, and will serve as reference map in the future for studies focusing on HTRA2-mediated neurodegeneration.
Collapse
|
24
|
Larsen K. The porcine cerebellin gene family. Gene 2021; 799:145852. [PMID: 34274480 DOI: 10.1016/j.gene.2021.145852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Cerebellins (CBLN1-4), together with C1qTNF proteins, belong to the CBLN subfamily of C1q proteins. Cerebellin-1 (CBLN1) is active in synapse formation and functions at the parallel fiber-Purkinje cell synapses. Cerebellins form tripartite complexes with neurexins and the glutamate-receptor-related proteins GluD1 and GluD2, playing a role as trans-synaptic cell-adhesion molecules that critically contribute to both synapse formation and functioning and brain development. In this study, I present a molecular characterization of the four porcine CBLN genes. Experimental data and in silico analyses collectively describes the gene structure, chromosomal localization, and expression of CBLN1-4. Two cDNAs encoding the cerebellins CBLN1 and CBLN3 were RT-PCR cloned and sequenced. The nucleotide sequence of the CBLN1 clone contains an open reading frame of 582 nucleotides and encodes a protein of 193 amino acids. The deduced amino acid of the porcine CBLN1 protein was 99% identical to both mouse CBLN1 and to human CBLN1. The deduced CBLN1 protein contains a putative signal sequence of 21 residues, two conserved cysteine residues, and C1q domain. The nucleotide sequence of the CBLN3 cDNA clone comprises an open reading frame of 618 nucleotides and encodes a protein of 205 amino acids. The deduced amino acid sequence of the porcine CBLN3 protein was 88% identical to mouse CBLN3 and 94% identical to human CBLN3. The amino terminal ends of both the CBLN1 and CBLN3 proteins contain three possible N-linked glycosylation sites. The genomic organization of both porcine CBLN1 and CBLN3 is very similar to those of their human counterparts. The expression analyses demonstrated that CBLN1 and CBLN3 transcripts are predominantly expressed in the cerebellum. The sequences of the porcine precerebellin genes and cDNAs were submitted to DDBJ/EMBL/GenBank under the following accession numbers: CBLN1 gene (GenBank ID: FJ621565), CBLN1 cDNA (GenBank ID: EF577504), CBLN3 gene (GenBank ID: FJ621566), CBLN3 cDNA (GenBank ID: EF577505) and CBLN4 cDNA (GenBank ID: FJ196070).
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol Cell Proteomics 2021; 20:100096. [PMID: 34129941 PMCID: PMC8260874 DOI: 10.1016/j.mcpro.2021.100096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 01/16/2023] Open
Abstract
Despite the emergence of promising therapeutic approaches in preclinical studies, the failure of large-scale clinical trials leaves clinicians without effective treatments for acute spinal cord injury (SCI). These trials are hindered by their reliance on detailed neurological examinations to establish outcomes, which inflate the time and resources required for completion. Moreover, therapeutic development takes place in animal models whose relevance to human injury remains unclear. Here, we address these challenges through targeted proteomic analyses of cerebrospinal fluid and serum samples from 111 patients with acute SCI and, in parallel, a large animal (porcine) model of SCI. We develop protein biomarkers of injury severity and recovery, including a prognostic model of neurological improvement at 6 months with an area under the receiver operating characteristic curve of 0.91, and validate these in an independent cohort. Through cross-species proteomic analyses, we dissect evolutionarily conserved and divergent aspects of the SCI response and establish the cerebrospinal fluid abundance of glial fibrillary acidic protein as a biochemical outcome measure in both humans and pigs. Our work opens up new avenues to catalyze translation by facilitating the evaluation of novel SCI therapies, while also providing a resource from which to direct future preclinical efforts. • Targeted proteomic analysis of CSF and serum samples from 111 acute SCI patients. • Single- and multiprotein biomarkers of injury severity and recovery. • Parallel proteomic analysis in a large animal model identifies conserved biomarkers. • Evolutionary conservation and divergence of the proteomic response to SCI.
Collapse
|
26
|
Witek P, Enguita FJ, Grzesiak M, Costa MC, Gabriel A, Koziorowski M, Slomczynska M, Knapczyk-Stwora K. Effects of neonatal exposure to methoxychlor on corpus luteum in gilts: A transcriptomic analysis. Mol Reprod Dev 2021; 88:238-248. [PMID: 33655673 DOI: 10.1002/mrd.23463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
This study investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities, on luteal function in pigs. Piglets were injected subcutaneously with MXC (20 μg/kg body weight) or corn oil (control) between postnatal Days 1 and 10 (N = 5/group). Corpora lutea from sexually mature gilts were examined for luteal steroid and prostaglandin concentrations and processed for total RNA isolation and subsequent RNA sequencing. Intra-luteal concentrations of androstenedione and prostaglandin E2 were greater, while that of estrone was lower when compared to control. Fifty-three differentially expressed (DE) microRNAS (miRNAs) (p-adjusted <.05 and log2(fold change) ≥.5) and 359 DE genes (p-adjusted <.05 and log2(fold change) ≥1) were identified in luteal tissue in response to neonatal MXC treatment. MXC was found to affect the expression of genes related to lipogenesis, steroidogenesis, membrane transport, immune response, cell signaling and adhesion. These results suggest an earlier onset of structural luteolysis in pigs caused by MXC actions in neonates. Since negative correlation analysis showed the potential interactions of miRNAs with specific messenger RNAs, we propose that these miRNAs are potential mediators of the long-term MXC effect on the CL function in pigs.
Collapse
Affiliation(s)
- Patrycja Witek
- Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Malgorzata Grzesiak
- Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - André Gabriel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marek Koziorowski
- Department of Physiology and Reproduction of Animals, Institute of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| | - Maria Slomczynska
- Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
| | | |
Collapse
|
27
|
Chen J, An B, Yu B, Peng X, Yuan H, Yang Q, Chen X, Yu T, Wang L, Zhang X, Wang H, Zou X, Pang D, Ouyang H, Tang X. CRISPR/Cas9-mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica 2021; 106:829-837. [PMID: 31974191 PMCID: PMC7927883 DOI: 10.3324/haematol.2019.224063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Hemophilia B is an X-linked recessive bleeding disorder caused by abnormalities in the coagulation factor IX gene. Without prophylactic treatment, patients experience frequent spontaneous bleeding episodes. Well-characterized animal models are valuable for determining the pathobiology of the disease and for testing novel therapeutic innovations. Here, we generated a porcine model of hemophilia B (HB) using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. We also tested the possibility of HB therapy by gene insertion. Frequent spontaneous joint bleeding episodes that occurred in HB pigs allowed a thorough investigation of the pathological process of hemophilic arthropathy. In contrast to the HB pigs, which showed a severe bleeding tendency and joint damage, the transgenic pigs carrying human coagulation factor IX exhibited a partial improvement in bleeding. In summary, this study not only offers a translational HB model for exploring the pathological process of hemophilic arthropathy, but also provides a possibility for the permanent correction of hemophilia in the future by genome editing in situ.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Beiying An
- Department of Medical Laboratory, the First Hospital of Jilin University, Changchun, China
| | - Biao Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaohuan Peng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Qiangbing Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tingting Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lingyu Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xinwei Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - He Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
| | | | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
28
|
Dietary synbiotic alters plasma biochemical parameters and fecal microbiota and metabolites in sows. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Ziegler AL, Pridgen TA, Blikslager AT. Environmental stressors affect intestinal permeability and repair responses in a pig intestinal ischemia model. Tissue Barriers 2020; 8:1832421. [PMID: 33100144 PMCID: PMC7714481 DOI: 10.1080/21688370.2020.1832421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pig is a powerful model for intestinal barrier studies, and it is important to carefully plan animal care and handling for optimal study design as psychological and physiological stressors significantly impact intestinal mucosal barrier function. Here, we report the effects of a period of environmental acclimation versus acute transport stress on mucosal barrier repair after intestinal ischemic injury. Jejunal ischemia was induced in young pigs which had been allowed to acclimate to a biomedical research housing environment or had been transported immediately prior to experimental injury (non-acclimated). Mucosa was then incubated ex vivo on Ussing chambers. In uninjured mucosa, there was no difference in transepithelial electrical resistance (TEER) or epithelial integrity between groups. However, acclimated pigs had increased macromolecular flux as compared to non-acclimated pigs during the first hour of ex vivo incubation. Ischemia induced greater epithelial loss in non-acclimated pigs as compared to acclimated pigs, yet this group achieved greater wound healing during recovery. Non-acclimated pigs had more robust TEER recovery ex vivo following injury versus acclimated pigs. The expression pattern of the tight junction protein claudin-4 was disrupted in acclimated pigs following recovery but showed enhanced localization to the apical membrane in non-acclimated pigs following recovery. Acute transport stress increases mucosal susceptibility to epithelial loss but also primes the tissue for a more robust barrier repair response. Alternatively, environmental acclimation increases leak pathway and diminishes barrier repair responses after ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Ziegler
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
| | - Tiffany A. Pridgen
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
| | - Anthony T. Blikslager
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
- Contact Amanda L. Ziegler North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
| |
Collapse
|
30
|
Xu W, Li H, Zhang M, Shi J, Wang Z. Locus-specific analysis of DNA methylation patterns in cloned and in vitro fertilized porcine embryos. J Reprod Dev 2020; 66:505-514. [PMID: 32908081 PMCID: PMC7768172 DOI: 10.1262/jrd.2019-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) is currently inefficient, as 1–3.95% of reconstructed embryos survive to term; inadequate or erroneous epigenetic
reprogramming of the specialized donor somatic nucleus could be a primary reason. Therefore, a locus-specific analysis of DNA methylation dynamics in
embryogenesis and the DNA methylation status of gametes and donor cells used for SCNT were conducted in the following developmentally important gene loci:
POU5F1, NANOG, SOX2, H19, IGF2, IGF2R,
XIST; and the retrotransposon LINE-1. There were significant epigenetic differences between the gametes and the somatic
donor cells. Three gamete-specific differentially methylated regions (DMRs) in POU5F1, XIST, and LINE-1 were
identified. A delayed demethylation process at POU5F1 and LINE-1 loci occurred after three successive cleavages, compared to
the in vitro fertilized (IVF) embryos. Although cloned embryos could undergo de-methylation and re-methylation dynamics at the DMRs of
imprinted genes (H19,IGF2R, and XIST), the re-methylation process was compromised, unlike in fertilized
embryos. LINE-1 loci are widely dispersed across the whole genome, and LINE-1 DMR might be a potential porcine nuclear
reprogramming epi-marker. Data from observations in our present and previous studies, and two published articles were pooled to produce a schematic diagram of
locus-specific, DNA methylation dynamics of cloned and IVF embryos during porcine early embryogenesis. This also indicated aberrant DNA methylation
reprogramming events, including inadequate DNA demethylation and insufficient re-methylation in cloned embryos. Further research should focus on mechanisms
underlying demethylation during the early cleavage of embryos and de novo DNA methylation at the blastocyst stage.
Collapse
Affiliation(s)
- Weihua Xu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China.,Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongyi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Mao Zhang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Junsong Shi
- Guangdong Provincial Wen's Research Institute, Yunfu 527400, P. R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
31
|
Consequences of parenteral iron-dextran loading investigated in minipigs. A new model of transfusional iron overload. Blood Cells Mol Dis 2020; 83:102440. [PMID: 32353700 DOI: 10.1016/j.bcmd.2020.102440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022]
Abstract
Patients with blood transfusion-dependent anemias develop transfusional iron overload (TIO), which may cause cardiosiderosis. In patients with an ineffective erythropoiesis, such as thalassemia major, common transfusion regimes aim at suppression of erythropoiesis and of enteral iron loading. Recent data suggest that maintaining residual, ineffective erythropoiesis may protect from cardiosiderosis. We investigated the common consequences of TIO, including cardiosiderosis, in a minipig model of iron overload with normal erythropoiesis. TIO was mimicked by long-term, weekly iron-dextran injections. Iron-dextran loading for around one year induced very high liver iron concentrations, but extrahepatic iron loading, and iron-induced toxicities were mild and did not include fibrosis. Iron deposits were primarily in reticuloendothelial cells, and parenchymal cardiac iron loading was mild. Compared to non-thalassemic patients with TIO, comparable cardiosiderosis in minipigs required about 4-fold greater body iron loads. It is suggested that this resistance against extrahepatic iron loading and toxicity in minipigs may at least in part be explained by a protective effect of the normal erythropoiesis, and additionally by a larger total iron storage capacity of RES than in patients with TIO. Parenteral iron-dextran loading of minipigs is a promising and feasible large-animal model of iron overload, that may mimic TIO in non-thalassemic patients.
Collapse
|
32
|
Olumee-Shabon Z, Chattopadhaya C, Myers MJ. Proteomics profiling of swine serum following lipopolysaccharide stimulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8639. [PMID: 31659824 DOI: 10.1002/rcm.8639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE There are no approved animal drugs for management of inflammation in swine due to lack of validated animal models. To assess efficacy, it was essential to develop proteomics approaches to identify suitable biomarkers of inflammation as presented in this study. METHODS Serum samples were collected from a group of four pigs prior to (baseline) and 24 and 48 h following lipopolysaccharide (LPS) stimulation to reveal proteomic changes during inflammation. Two other pigs served as untreated controls. Proteins were separated by either one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or two-dimensional (2D) gel electrophoresis (2DE) prior to analysis by nano-flow liquid chromatography (nLC) coupled to tandem mass spectrometry (MS/MS). RESULTS We identified 165 proteins using SDS-PAGE, of which 47 proteins were also detected by 2DE prior to nLC/MS/MS. More than half (72%) of all characterized proteins were modulated as a result of LPS stimulation, many of which are known to be involved with innate and adaptive immunity. Pig serum samples obtained 24 h after LPS initiation of inflammation showed protein modulations of serum albumin, serotransferrin, light and heavy immunoglobulin chains (IGs), and major acute phase proteins including haptoglobin (HPT), serum amyloid A2 (SAA2), C-reactive protein (CRP), β-2-glycoprotein 1 (B-2GP1), alpha-2-HS-glycoprotein (A2HS), α-1-antitrypsin (A1AT), and α-1-acid glycoprotein (A1AG). SAA2 was distinguished from the other SAA isoforms by the unique peptide sequence of SAA2. CONCLUSIONS The results provided proteomics analysis of swine serum due to LPS stimulation and indicated the importance of SAA2, which appears to be unique and may be regarded as a potential clinical diagnostic biomarker of inflammation.
Collapse
Affiliation(s)
- Zohra Olumee-Shabon
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Chaitali Chattopadhaya
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Michael J Myers
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
33
|
Does Maternal Stress Affect the Early Embryonic Microenvironment? Impact of Long-Term Cortisol Stimulation on the Oviduct Epithelium. Int J Mol Sci 2020; 21:ijms21020443. [PMID: 32284519 PMCID: PMC7014231 DOI: 10.3390/ijms21020443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Maternal stress before or during the sensitive preimplantation phase is associated with reproduction failure. Upon real or perceived threat, glucocorticoids (classic stress hormones) as cortisol are synthesized. The earliest “microenvironment” of the embryo consists of the oviduct epithelium and the oviductal fluid generated via the epithelial barrier. However, to date, the direct effects of cortisol on the oviduct are largely unknown. In the present study, we used a compartmentalized in vitro system to test the hypothesis that a prolonged stimulation with cortisol modifies the physiology of the oviduct epithelium. Porcine oviduct epithelial cells were differentiated at the air–liquid interface and basolaterally stimulated with physiological levels of cortisol representing moderate and severe stress for 21 days. Epithelium structure, transepithelial bioelectric properties, and gene expression were assessed. Furthermore, the distribution and metabolism of cortisol was examined. The polarized oviduct epithelium converted basolateral cortisol to cortisone and thereby reduced the amount of bioactive cortisol reaching the apical compartment. However, extended cortisol stimulation affected its barrier function and the expression of genes involved in hormone signaling and immune response. We conclude that continuing maternal stress with long-term elevated cortisol levels may alter the early embryonic environment by modification of basic oviductal functions.
Collapse
|
34
|
A Porcine Model of Zika Virus Infection to Profile the In Utero Interferon Alpha Response. Methods Mol Biol 2020; 2142:181-195. [PMID: 32367368 DOI: 10.1007/978-1-0716-0581-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pigs are highly relevant to model human in utero Zika virus (ZIKV) infection because both species have similar physiology, genetics, immunity, fetal brain development, and postnatal brain growth. The virus causes persistent in utero infection and replicates in the fetal brain, fetal membranes, and placenta. Subclinical persistent in utero infection in mid-gestation also increases interferon alpha (IFN-α) levels in fetal blood plasma and amniotic fluid. Moreover, we demonstrated altered IFN-α responses in porcine offspring affected with subclinical in utero ZIKV infection. Elevated levels of in utero type I interferons were suggested to play a role in fetal pathology. Thus, the porcine model may provide an understanding of ZIKV-induced immunopathology in fetuses and sequelae in offspring, which is important for the development of targeted interventions. Here, we describe surgery, ultrasound-guided in utero injection, postoperative monitoring, sampling, and cytokine testing protocols.
Collapse
|
35
|
Trus I, Udenze D, Cox B, Berube N, Nordquist RE, van der Staay FJ, Huang Y, Kobinger G, Safronetz D, Gerdts V, Karniychuk U. Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and sex-specific molecular brain pathology in asymptomatic porcine offspring. PLoS Pathog 2019; 15:e1008038. [PMID: 31725819 PMCID: PMC6855438 DOI: 10.1371/journal.ppat.1008038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) infection during human pregnancy may lead to severe fetal pathology and debilitating impairments in offspring. However, the majority of infections are subclinical and not associated with evident birth defects. Potentially detrimental life-long health outcomes in asymptomatic offspring evoke high concerns. Thus, animal models addressing sequelae in offspring may provide valuable information. To induce subclinical infection, we inoculated selected porcine fetuses at the mid-stage of development. Inoculation resulted in trans-fetal virus spread and persistent infection in the placenta and fetal membranes for two months. Offspring did not show congenital Zika syndrome (e.g., microcephaly, brain calcifications, congenital clubfoot, arthrogryposis, seizures) or other visible birth defects. However, a month after birth, a portion of offspring exhibited excessive interferon alpha (IFN-α) levels in blood plasma in a regular environment. Most affected offspring also showed dramatic IFN-α shutdown during social stress providing the first evidence for the cumulative impact of prenatal ZIKV exposure and postnatal environmental insult. Other eleven cytokines tested before and after stress were not altered suggesting the specific IFN-α pathology. While brains from offspring did not have histopathology, lesions, and ZIKV, the whole genome expression analysis of the prefrontal cortex revealed profound sex-specific transcriptional changes that most probably was the result of subclinical in utero infection. RNA-seq analysis in the placenta persistently infected with ZIKV provided independent support for the sex-specific pattern of in utero-acquired transcriptional responses. Collectively, our results provide strong evidence that two hallmarks of fetal ZIKV infection, altered type I IFN response and molecular brain pathology can persist after birth in offspring in the absence of congenital Zika syndrome. A number of studies showed that Zika virus (ZIKV) can cause severe abnormalities in fetuses, e.g., brain lesions, and subsequently life-long developmental and cognitive impairment in children. However, the majority of infections in pregnant women are subclinical and are not associated with developmental abnormalities in fetuses and newborns. It is known that disruptions to the in utero environment during fetal development can program increased risks for disease in adulthood. For this reason, children affected in utero even by mild ZIKV infection can appear deceptively healthy at birth but develop immune dysfunction and brain abnormalities during postnatal development. Here, we used the porcine model of subclinical fetal ZIKV infection to determine health sequelae in offspring which did not show apparent signs of the disease. We demonstrated that subclinical fetal infection was associated with abnormal immunological responses in apparently healthy offspring under normal environmental conditions and during social stress. We also showed silent sex-specific brain pathology as represented by altered gene expression. Our study provides new insights into potential outcomes of subclinical in utero ZIKV infection. It also emphasizes that further attempts to better understand silent pathology and develop alleviative interventions in ZIKV-affected offspring should take into account interactions of host factors, like sex, and environmental insults, like social stress.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Brian Cox
- Department of Physiology, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Rebecca E. Nordquist
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
| | | | | | - David Safronetz
- Canada National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
36
|
Comparative Quantitative Analysis of Porcine Optic Nerve Head and Retina Subproteomes. Int J Mol Sci 2019; 20:ijms20174229. [PMID: 31470587 PMCID: PMC6747248 DOI: 10.3390/ijms20174229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Optic nerve head (ONH) and retina (RET) are the main sites of damage in neurodegenerative optic neuropathies including glaucoma. Up to date, little is known about the molecular interplay between these two adjoining ocular components in terms of proteomics. To close this gap, we investigated ONH and RET protein extracts derived from porcine eyes (n = 12) (Sus scrofa domestica Linnaeus 1758) using semi-quantitative mass spectrometry (MS)-based proteomics comprising bottom-up LC–ESI MS/MS and targeted SPE-MALDI-TOF MS analysis. In summary, more than 1600 proteins could be identified from the ONH/RET tissue complex. Moreover, ONH and RET displayed tissue-specific characteristics regarding their qualitative and semi-quantitative protein compositions. Gene ontology (GO)-based functional and protein–protein interaction analyses supported a close functional connection between the metabolic-related RET and the structural-associated ONH subproteomes, which could be affected under disease conditions. Inferred from the MS findings, stress-associated proteins including clusterin, ceruloplasmin, and endoplasmin can be proposed as extracellular mediators of the ONH/ RET proteome interface. In conclusion, ONH and RET show obvious proteomic differences reflecting characteristic functional features which have to be considered for future protein biomarker profiling studies.
Collapse
|
37
|
OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia. J Genet Genomics 2019; 46:379-387. [PMID: 31451425 DOI: 10.1016/j.jgg.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotype-phenotype associations, the OSBPL2-disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL) with degeneration/apoptosis of cochlea hair cells (HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
Collapse
|
38
|
Gao QS, Xuan MF, Luo ZB, Paek HJ, Kang JD, Yin XJ. Hairless-knockout piglets generated using the clustered regularly interspaced short palindromic repeat/CRISPR-associated-9 exhibit abnormalities in the skin and thymus. Exp Anim 2019; 68:519-529. [PMID: 31308290 PMCID: PMC6842791 DOI: 10.1538/expanim.19-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptor corepressor Hairless (HR) interacts with nuclear receptors and
controls expression of specific target genes involved in hair morphogenesis and hair
follicle cycling. Patients with HR gene mutations exhibit atrichia, and
in rare cases, immunodeficiency. Pigs with HR gene mutations may provide
a useful model for developing therapeutic strategies because pigs are highly similar to
humans in terms of anatomy, genetics, and physiology. The present study aimed to knockout
the HR gene in pigs using the clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated-9 (Cas9) system and to investigate the
molecular and structural alterations in the skin and thymus. We introduced a biallelic
mutation into the HR gene in porcine fetal fibroblasts and generated nine
piglets via somatic cell nuclear transfer. These piglets exhibited a lack of hair on the
eyelids, abnormalities in the thymus and peripheral blood, and altered expression of
several signaling factors regulated by HR. Our results indicate that introduction of the
biallelic mutation successfully knocked out the HR gene, resulting in
several molecular and structural changes in the skin and thymus. These pigs will provide a
useful model for studying human hair disorders associated with HR gene
mutations and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qing-Shan Gao
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Mei-Fu Xuan
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Zhao-Bo Luo
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Hyo-Jin Paek
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Jin-Dan Kang
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| | - Xi-Jun Yin
- Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China.,Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China
| |
Collapse
|
39
|
Zhuang Z, Li S, Ding R, Yang M, Zheng E, Yang H, Gu T, Xu Z, Cai G, Wu Z, Yang J. Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations. PLoS One 2019; 14:e0218263. [PMID: 31188900 PMCID: PMC6561594 DOI: 10.1371/journal.pone.0218263] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Loin muscle area (LMA) and loin muscle depth (LMD) are important traits influencing the production performance of breeding pigs. However, the genetic architecture of these two traits is still poorly understood. To discern the genetic architecture of LMA and LMD, a material consisting of 6043 Duroc pigs belonging to two populations with different genetic backgrounds was collected and applied in genome-wide association studies (GWAS) with a genome-wide distributed panel of 50K single nucleotide polymorphisms (SNPs). To improve the power of detection for common SNPs, we conducted a meta-analysis in these two pig populations and uncovered additional significant SNPs. As a result, we identified 75 significant SNPs for LMA and LMD on SSC6, 7, 12, 16, and 18. Among them, 25 common SNPs were associated with LMA and LMD. One pleiotropic quantitative trait locus (QTL), which was located on SSC7 with a 283 kb interval, was identified to affect LMA and LMD. Marker ALGA0040260 is a key SNP for this QTL, explained 1.77% and 2.48% of the phenotypic variance for LMA and LMD, respectively. Another genetic region on SSC16 (709 kb) was detected and displayed prominent association with LMA and the peak SNP, WU_10.2_16_35829257, contributed 1.83% of the phenotypic variance for LMA. Further bioinformatics analysis determined eight promising candidate genes (GCLC, GPX8, DAXX, FGF21, TAF11, SPDEF, NUDT3, and PACSIN1) with functions in glutathione metabolism, adipose and muscle tissues development and lipid metabolism. This study provides the first GWAS for the LMA and LMD of Duroc breed to analyze the underlying genetic variants through a large sample size. The findings further advance our understanding and help elucidate the genetic architecture of LMA, LMD and growth-related traits in pigs.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shaoyun Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Huaqiang Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group Co., Ltd, Guangdong, P.R. China
- * E-mail: (JY); (ZW)
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
- * E-mail: (JY); (ZW)
| |
Collapse
|
40
|
León M, Ferreira CR, Eberlin LS, Jarmusch AK, Pirro V, Rodrigues ACB, Favaron PO, Miglino MA, Cooks RG. Metabolites and Lipids Associated with Fetal Swine Anatomy via Desorption Electrospray Ionization - Mass Spectrometry Imaging. Sci Rep 2019; 9:7247. [PMID: 31076607 PMCID: PMC6510765 DOI: 10.1038/s41598-019-43698-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical imaging by mass spectrometry (MS) has been largely used to study diseases in animals and humans, especially cancer; however, this technology has been minimally explored to study the complex chemical changes associated with fetal development. In this work, we report the histologically-compatible chemical imaging of small molecules by desorption electrospray ionization (DESI) - MS of a complete swine fetus at 50 days of gestation. Tissue morphology was unperturbed by morphologically-friendly DESI-MS analysis while allowing detection of a wide range of small molecules. We observed organ-dependent localization of lipids, e.g. a large diversity of phosphatidylserine lipids in brain compared to other organs, as well as metabolites such as N-acetyl-aspartic acid in the developing nervous system and N-acetyl-L-glutamine in the heart. Some lipids abundant in the lungs, such as PC(32:0) and PS(40:6), were similar to surfactant composition reported previously. Sulfatides were highly concentrated in the fetus liver, while hexoses were barely detected at this organ but were abundant in lung and heart. The chemical information on small molecules recorded via DESI-MS imaging coupled with traditional anatomical evaluation is a powerful source of bioanalytical information which reveals the chemical changes associated with embryonic and fetal development that, when disturbed, causes congenital diseases such as spina bifida and cleft palate.
Collapse
Affiliation(s)
- Marisol León
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Ana Clara Bastos Rodrigues
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Angelica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
41
|
Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev 2019; 6:402-420. [PMID: 34691891 PMCID: PMC8291540 DOI: 10.1093/nsr/nwz013] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Large animals (non-human primates, livestock and dogs) are playing important roles in biomedical research, and large livestock animals serve as important sources of meat and milk. The recently developed programmable DNA nucleases have revolutionized the generation of gene-modified large animals that are used for biological and biomedical research. In this review, we briefly introduce the recent advances in nuclease-meditated gene editing tools, and we outline these editing tools' applications in human disease modeling, regenerative medicine and agriculture. Additionally, we provide perspectives regarding the challenges and prospects of the new genome editing technology.
Collapse
Affiliation(s)
- Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Liangxue Lai
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai 200031, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Gad A, Nemcova L, Murin M, Kanka J, Laurincik J, Benc M, Pendovski L, Prochazka R. microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Mol Reprod Dev 2019; 86:426-439. [PMID: 30756429 DOI: 10.1002/mrd.23121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
Oocyte developmental competence is acquired during folliculogenesis and regulated by complex molecular mechanisms. Several molecules are involved in these mechanisms, including microRNAs (miRNAs) that are essential for oocyte-specific processes throughout the development. The objective of this study was to identify the expression profile of miRNAs in porcine oocytes derived from follicles of different sizes using RNA deep sequencing. Oocytes were aspirated from large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) follicles and tested for developmental competence and chromatin configurations. Small RNA libraries were constructed from both groups and then sequenced in an Illumina NextSeq. 500. Oocytes from the LO group exhibited higher developmental competence and different chromatin configuration compared with oocytes from the SO group. In total, 167 and 162 known miRNAs were detected in the LO and SO groups, respectively. MiR-205, miR-16, miR-148a-3p, and miR-125b were among the top 10 highly expressed miRNAs in both groups. Eight miRNAs were differentially expressed (DE) between both groups. Target gene prediction and pathway analysis revealed 46 pathways that were enriched with miRNA-target genes. The oocyte meiosis pathway and signaling pathways including FoxO, PI3K-Akt, and cAMP were predictably targeted by DE miRNAs. These results give more insights into the potential role of miRNAs in regulating the oocyte development.
Collapse
Affiliation(s)
- Ahmed Gad
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Matej Murin
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jozef Laurincik
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Michal Benc
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Biology of Reproduction Department, Institute of Animal Science, Prague, Uhrineves, Czech Republic
| | - Lazo Pendovski
- Department of Functional Morphology, Ss. Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine, Republic of Macedonia
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
43
|
Successful genetic modification of porcine spermatogonial stem cells via an electrically responsive Au nanowire injector. Biomaterials 2019; 193:22-29. [DOI: 10.1016/j.biomaterials.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
|
44
|
Pan S, Cui Y, Fu Z, Zhang L, Xing H. MicroRNA-128 is involved in dexamethasone-induced lipid accumulation via repressing SIRT1 expression in cultured pig preadipocytes. J Steroid Biochem Mol Biol 2019; 186:185-195. [PMID: 30394333 DOI: 10.1016/j.jsbmb.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
In this study, pig preadipocytes were firstly treated with 10-6 M DEX for 48 h to explore the role of dexamethasone (DEX, a chemically synthesized long-acting glucocorticoid) on lipid accumulation. Then, miRNA scrambled control (miR-SC), miR-128 overexpression plasmid and miR-128 inhibitor were respectively transfected into pig preadipocytes at 24 h before DEX treatment for 48 h (miR-SC-DEX, miR-128-DEX and miR-128-inhibitor-DEX) to illustrate the regulatory role of miR-128 on DEX-induced lipid accumulation. Compared with control preadipocytes, 10-6 M Dex significantly increased triglyceride (TG) level, whereas the cell proliferation did not change. Moreover, 10-6 M Dex obviously decreased sirtuin 1 (SIRT1) and its related lipolysis genes adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) mRNA expression and enzyme activity, while significantly increased expression of adipogenesis genes peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α (C/EBP-α) and fatty acid synthase (FAS). In addition, 10-6 M DEX significantly upregulated miR-128 expression, which was confirmed to directly target SIRT1 by bioinformatics analysis and dual-luciferase reporter assay. Gain- and loss-of-function study also showed that when compared with miR-SC-DEX cells, miR-128-DEX cells showed significantly reduced SIRT1 expression and increased TG level, as well as elevated cellular levels of PPAR-γ, C/EBP-α and FAS and suppressed ATGL and HSL expression and enzyme activity. In contrast, miR-128-inhibitor-DEX cells precisely presented the opposite results. Collectively, these results indicate that miR-128 plays a role in the pathogenesis of glucocorticoid-related abnormal lipid accumulation via repressing SIRT1 expression, consequently, miR-128 inhibition may represent a novel potential therapeutic target in preventing DEX-induced abnormal lipid accumulation.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yixin Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Zhiliang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
45
|
Schmelter C, Funke S, Treml J, Beschnitt A, Perumal N, Manicam C, Pfeiffer N, Grus FH. Comparison of Two Solid-Phase Extraction (SPE) Methods for the Identification and Quantification of Porcine Retinal Protein Markers by LC-MS/MS. Int J Mol Sci 2018; 19:E3847. [PMID: 30513899 PMCID: PMC6321002 DOI: 10.3390/ijms19123847] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023] Open
Abstract
Proper sample preparation protocols represent a critical step for liquid chromatography-mass spectrometry (LC-MS)-based proteomic study designs and influence the speed, performance and automation of high-throughput data acquisition. The main objective of this study was to compare two commercial solid-phase extraction (SPE)-based sample preparation protocols (comprising SOLAµTM HRP SPE spin plates from Thermo Fisher Scientific and ZIPTIP® C18 pipette tips from Merck Millipore) for analytical performance, reproducibility, and analysis speed. The house swine represents a promising animal model for studying human eye diseases including glaucoma and provides excellent requirements for the qualitative and quantitative MS-based comparison in terms of ocular proteomics. In total six technical replicates of two protein fractions [extracted with 0.1% dodecyl-ß-maltoside (DDM) or 1% trifluoroacetic acid (TFA)] of porcine retinal tissues were subjected to in-gel trypsin digestion and purified with both SPE-based workflows (N = 3) prior to LC-MS analysis. On average, 550 ± 70 proteins (1512 ± 199 peptides) and 305 ± 48 proteins (806 ± 144 peptides) were identified from DDM and TFA protein fractions, respectively, after ZIPTIP® C18 purification, and SOLAµTM workflow resulted in the detection of 513 ± 55 proteins (1347 ± 180 peptides) and 300 ± 33 proteins (722 ± 87 peptides), respectively (FDR < 1%). Venn diagram analysis revealed an average overlap of 65 ± 2% (DDM fraction) and 69 ± 4% (TFA fraction) in protein identifications between both SPE-based methods. Quantitative analysis of 25 glaucoma-related protein markers also showed no significant differences (P > 0.05) regarding protein recovery between both SPE methods. However, only glaucoma-associated marker MECP2 showed a significant (P = 0.02) higher abundance in ZIPTIP®-purified replicates in comparison to SOLAµTM-treated study samples. Nevertheless, this result was not confirmed in the verification experiment using in-gel trypsin digestion of recombinant MECP2 (P = 0.24). In conclusion, both SPE-based purification methods worked equally well in terms of analytical performance and reproducibility, whereas the analysis speed and the semi-automation of the SOLAµTM spin plates workflow is much more convenient in comparison to the ZIPTIP® C18 method.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Sebastian Funke
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Jana Treml
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Anja Beschnitt
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
46
|
Penso-Dolfin L, Moxon S, Haerty W, Di Palma F. The evolutionary dynamics of microRNAs in domestic mammals. Sci Rep 2018; 8:17050. [PMID: 30451897 PMCID: PMC6242877 DOI: 10.1038/s41598-018-34243-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
MiRNAs are crucial regulators of gene expression found across both the plant and animal kingdoms. While the number of annotated miRNAs deposited in miRBase has greatly increased in recent years, few studies provided comparative analyses across sets of related species, or investigated the role of miRNAs in the evolution of gene regulation. We generated small RNA libraries across 5 mammalian species (cow, dog, horse, pig and rabbit) from 4 different tissues (brain, heart, kidney and testis). We identified 1676 miRBase and 413 novel miRNAs by manually curating the set of computational predictions obtained from miRCat and miRDeep2. Our dataset spanning five species has enabled us to investigate the molecular mechanisms and selective pressures driving the evolution of miRNAs in mammals. We highlight the important contributions of intronic sequences (366 orthogroups), duplication events (135 orthogroups) and repetitive elements (37 orthogroups) in the emergence of new miRNA loci. We use this framework to estimate the patterns of gains and losses across the phylogeny, and observe high levels of miRNA turnover. Additionally, the identification of lineage-specific losses enables the characterisation of the selective constraints acting on the associated target sites. Compared to the miRBase subset, novel miRNAs tend to be more tissue specific. 20 percent of novel orthogroups are restricted to the brain, and their target repertoires appear to be enriched for neuron activity and differentiation processes. These findings may reflect an important role for young miRNAs in the evolution of brain expression plasticity. Many seed sequences appear to be specific to either the cow or the dog. Analyses on the associated targets highlight the presence of several genes under artificial positive selection, suggesting an involvement of these miRNAs in the domestication process. Altogether, we provide an overview on the evolutionary mechanisms responsible for miRNA turnover in 5 domestic species, and their possible contribution to the evolution of gene regulation.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, United Kingdom.
| | - Simon Moxon
- University of East Anglia, Norwich Research Park, Norwich, NR47TJ, United Kingdom
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, United Kingdom
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, United Kingdom.
| |
Collapse
|
47
|
Miao Z, Wang S, Zhang J, Wei P, Guo L, Liu D, Wang Y, Shi M. Identification and comparison of long non-conding RNA in Jinhua and Landrace pigs. Biochem Biophys Res Commun 2018; 506:765-771. [DOI: 10.1016/j.bbrc.2018.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/27/2022]
|
48
|
Effects of 1-Methyltryptophan on Immune Responses and the Kynurenine Pathway after Lipopolysaccharide Challenge in Pigs. Int J Mol Sci 2018; 19:ijms19103009. [PMID: 30279361 PMCID: PMC6213023 DOI: 10.3390/ijms19103009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
An enhanced indoleamine 2,3-dioxygenase 1 (IDO1) activity is associated with an increased mortality risk in sepsis patients. Thus, the preventive inhibition of IDO1 activity may be a promising strategy to attenuate the severity of septic shock. 1-methyltryptophan (1-MT) is currently in the interest of research due to its potential inhibitory effects on IDO1 and immunomodulatory properties. The present study aims to investigate the protective and immunomodulatory effects of 1-methyltryptophan against endotoxin-induced shock in a porcine in vivo model. Effects of 1-MT were determined on lipopolysaccharide (LPS)-induced tryptophan (TRP) degradation, immune response and sickness behaviour. 1-MT increased TRP and its metabolite kynurenic acid (KYNA) in plasma and tissues, suppressed the LPS-induced maturation of neutrophils and increased inactivity of the animals. 1-MT did not inhibit the LPS-induced degradation of TRP to kynurenine (KYN)-a marker for IDO1 activity-although the increase in KYNA indicates that degradation to one branch of the KYN pathway is facilitated. In conclusion, our findings provide no evidence for IDO1 inhibition but reveal the side effects of 1-MT that may result from the proven interference of KYNA and 1-MT with aryl hydrocarbon receptor signalling. These effects should be considered for therapeutic applications of 1-MT.
Collapse
|
49
|
Ziegler AL, Pridgen TA, Mills JK, Gonzalez LM, Van Landeghem L, Odle J, Blikslager AT. Epithelial restitution defect in neonatal jejunum is rescued by juvenile mucosal homogenate in a pig model of intestinal ischemic injury and repair. PLoS One 2018; 13:e0200674. [PMID: 30138372 PMCID: PMC6107120 DOI: 10.1371/journal.pone.0200674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Intestinal ischemic injury results sloughing of the mucosal epithelium leading to host sepsis and death unless the mucosal barrier is rapidly restored. Volvulus and neonatal necrotizing enterocolitis (NEC) in infants have been associated with intestinal ischemia, sepsis and high mortality rates. We have characterized intestinal ischemia/repair using a highly translatable porcine model in which juvenile (6-8-week-old) pigs completely and efficiently restore barrier function by way of rapid epithelial restitution and tight junction re-assembly. In contrast, separate studies showed that younger neonatal (2-week-old) pigs exhibited less robust recovery of barrier function, which may model an important cause of high mortality rates in human infants with ischemic intestinal disease. Therefore, we aimed to further refine our repair model and characterize defects in neonatal barrier repair. Here we examine the defect in neonatal mucosal repair that we hypothesize is associated with hypomaturity of the epithelial and subepithelial compartments. Following jejunal ischemia in neonatal and juvenile pigs, injured mucosa was stripped from seromuscular layers and recovered ex vivo while monitoring transepithelial electrical resistance (TEER) and 3H-mannitol flux as measures of barrier function. While ischemia-injured juvenile mucosa restored TEER above control levels, reduced flux over the recovery period and showed 93±4.7% wound closure, neonates exhibited no change in TEER, increased flux, and a 11±23.3% increase in epithelial wound size. Scanning electron microscopy revealed enterocytes at the wound margins of neonates failed to assume the restituting phenotype seen in restituting enterocytes of juveniles. To attempt rescue of injured neonatal mucosa, neonatal experiments were repeated with the addition of exogenous prostaglandins during ex vivo recovery, ex vivo recovery with full thickness intestine, in vivo recovery and direct application of injured mucosal homogenate from neonates or juveniles. Neither exogenous prostaglandins, intact seromuscular intestinal layers, nor in vivo recovery enhanced TEER or restitution in ischemia-injured neonatal mucosa. However, ex vivo exogenous application of injured juvenile mucosal homogenate produced a significant increase in TEER and enhanced histological restitution to 80±4.4% epithelial coverage in injured neonatal mucosa. Thus, neonatal mucosal repair can be rescued through direct contact with the cellular and non-cellular milieu of ischemia-injured mucosa from juvenile pigs. These findings support the hypothesis that a defect in mucosal repair in neonates is due to immature repair mechanisms within the mucosal compartment. Future studies to identify and rescue specific defects in neonatal intestinal repair mechanisms will drive development of novel clinical interventions to reduce mortality in infants affected by intestinal ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tiffany A. Pridgen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Juliana K. Mills
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jack Odle
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Amin L, Hashim H, Mahadi Z, Che Ngah A, Ismail K. Determinants of stakeholders' attitudes to xenotransplantation. Xenotransplantation 2018; 25:e12430. [PMID: 29932474 DOI: 10.1111/xen.12430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Advances in xenotransplantation have the potential to resolve the issue of organ shortages. Despite this, the procedure is expected to meet with a degree of resistance from the public. The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards xenotransplantation. METHODS A multidimensional survey instrument measuring attitudes to xenotransplantation, including the factors that predict such attitudes, was developed based on earlier studies and validated. It was then completed by 469 respondents who were stratified in accordance with stakeholder groups in Malaysia. A single-step SEM analysis was then conducted to estimate the measurement and create a structural model using IBM SPSS Amos version 20 with a maximum-likelihood function. RESULTS The attitudes of Malaysian stakeholders towards xenotransplantation were moderately positive (mean score of 4.20). The most important direct predictor of attitude to xenotransplantation was perceived benefit (β = 0.59, P < .001) followed by perceived moral concern (β = -0.32, P < .001). Perceived risk had a strong positive association with moral concern (β = 0.65, P < .001), while attitude to nature had a positive association with perceived benefit (β = 0.16, P < .01) and a negative association with perceived risk (β = -0.19, P < .01). Religiosity had a positive relationship with perceived risk (β = 0.13, P < .05) while engagement with biotechnology had a positive relationship with perceived benefits (β = 0.26, P < .001) and a negative association with risks (β = -0.15, P < .05) and moral issues (β = -0.11, P < .05). CONCLUSION The Malaysian stakeholders were cautious about xenotransplantation. This study showed that their views regarding the application are complex and multifaceted.
Collapse
Affiliation(s)
- Latifah Amin
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hasrizul Hashim
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zurina Mahadi
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Anisah Che Ngah
- Faculty of Law, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Khaidzir Ismail
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Faculty of Social Science and Humanities, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|