1
|
Citron F, Ho IL, Balestrieri C, Liu Z, Yen EY, Cecchetto L, Perelli L, Zhang L, Montanez LC, Blazanin N, Dyke CA, Shah R, Attanasio S, Srinivasan S, Chen KC, Chen Z, Scognamiglio I, Pham N, Khan H, Jiang S, Pan J, Vanderkruk B, Leung CS, Mattohti M, Rai K, Chu Y, Wang L, Gao S, Deem AK, Carugo A, Wang H, Yao W, Tonon G, Xiong Y, Lorenzi PL, Bonini C, Anna Zal M, Hoffman BG, Heffernan T, Giuliani V, Jeter CR, Lissanu Y, Genovese G, Pilato MD, Viale A, Draetta GF. WRAD core perturbation impairs DNA replication fidelity promoting immunoediting in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619543. [PMID: 39484624 PMCID: PMC11526913 DOI: 10.1101/2024.10.21.619543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation. Consequently, in immunocompetent models, DPY30 loss induced T cell infiltration and immune-mediated clearance of highly proliferating cancer cells with complex karyotypes, thus improving anti-tumor efficacy upon anti-PD-1 treatment. In PDAC patients, DPY30 expression was associated with high tumor grade, worse prognosis, and limited response to immune checkpoint blockade. Together, our findings indicate that the WRAD core sustains genome stability and suggest that low intratumor DPY30 levels may identify PDAC patients who will benefit from immune checkpoint inhibitors.
Collapse
|
2
|
Khan B, Lanzuolo C, Rosti V, Santarelli P, Pich A, Kraft T, Amrute-Nayak M, Nayak A. Sorafenib induces cachexia by impeding transcriptional signaling of the SET1/MLL complex on muscle-specific genes. iScience 2024; 27:110913. [PMID: 39386761 PMCID: PMC11462028 DOI: 10.1016/j.isci.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Chemotherapeutics used in cancer therapy are often linked to muscle wasting or cachexia. Insights into the molecular basis of chemotherapy-induced cachexia is essential to improve treatment strategies. Here, we demonstrated that Sorafenib-tyrosine kinase inhibitor (TKI) class of chemotherapeutic agents-induced cachexia. System-wide analyses revealed that Sorafenib alters the global transcriptional program and proteostasis in muscle cells. Mechanistically, Sorafenib treatment reduced active epigenetic mark H3K4 methylation on distinct muscle-specific genes by impeding chromatin association of SET1A-catalytic component of the SET1/MLL histone methyltransferase complex. This mechanism favored transcriptional disorientation that led to disrupted sarcomere assembly, calcium homeostasis and mitochondrial respiration. Consequently, the contractile ability of muscle cells was severely compromised. Interestingly, the other prominent TKIs Nilotinib and Imatinib did not exert similar effects on muscle cell physiology. Collectively, we identified an unanticipated transcriptional mechanism underlying Sorafenib-induced cachexia. Our findings hold the potential to strategize therapy regimens to minimize chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Bushra Khan
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Chiara Lanzuolo
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Rosti
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Philina Santarelli
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Andreas Pich
- Institute of Toxicology, Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Mao X, Yang S, Zhang Y, Yang H, Yan D, Zhang L. The role of chromatin modulator DPY30 in glucose metabolism of colorectal cancer cells. Transl Cancer Res 2024; 13:4205-4218. [PMID: 39262496 PMCID: PMC11385247 DOI: 10.21037/tcr-24-366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Background Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related death. This study investigated the role of DPY30 in the development and progression of CRC cells, especially in the area of cellular glycolysis. Methods HT29 control cells and DPY30 knockdown cells were collected for tandem mass tag (TMT) labeling quantitative proteomics analysis of cellular total proteins (n=3). To further assess the accuracy of the differential expression profile, representative genes were selected and confirmed by quantitative real-time polymerase chain reaction (qPCR) and western blot (WB). Glycolytic flux was studied by detecting the extracellular acidification rate (ECAR) using the Seahorse XFe96. In view of the vital role of DPY30 on the H3K4me3 level, chromatin immunoprecipitation (ChIP) assays were performed. Results The results showed that the expression of HK1, a protein related to cellular glucose metabolism, was significantly down-regulated after DPY30 knockdown, while the expression of GSK3B was significantly increased. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated significant changes in several signaling pathways, with the PI3K-AKT signaling pathway being the most prominent. The data of Seahorse XFe96 revealed that DPY30 knockdown attenuated aerobic glycolysis. DPY30 knockdown repressed the establishment of H3K4me3 on promoters of HK1, PFKL, and ALDOA. Conclusions DPY30 promoted the glycolysis of CRC cells through two channels: influencing signaling pathways and gene transcription, thereby promoting the progression of CRC.
Collapse
Affiliation(s)
- Xiaomei Mao
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Taicang, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiqin Yang
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Taicang, China
| | - Ye Zhang
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Taicang, China
| | - Huajun Yang
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Taicang, China
| | - Danhong Yan
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Taicang, China
| | - Lingzhi Zhang
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
4
|
LaRue-Nolan KC, Arul GLR, Sigafoos AN, Shi J, Fernandez-Zapico ME. Insights into the mechanisms driven by H3K4 KMTs in pancreatic cancer. Biochem J 2024; 481:983-997. [PMID: 39078225 PMCID: PMC11332384 DOI: 10.1042/bcj20230374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic cancer is a malignancy arising from the endocrine or exocrine compartment of this organ. Tumors from exocrine origin comprise over 90% of all pancreatic cancers diagnosed. Of these, pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype. The five-year survival rate for PDAC ranged between 5 and 9% for over four decades, and only recently saw a modest increase to ∼12-13%, making this a severe and lethal disease. Like other cancers, PDAC initiation stems from genetic changes. However, therapeutic targeting of PDAC genetic drivers has remained relatively unsuccessful, thus the focus in recent years has expanded to the non-genetic factors underlying the disease pathogenesis. Specifically, it has been proposed that dynamic changes in the epigenetic landscape promote tumor growth and metastasis. Emphasis has been given to the re-organization of enhancers, essential regulatory elements controlling oncogenic gene expression, commonly marked my histone 3 lysine 4 monomethylation (H3K4me1). H3K4me1 is typically deposited by histone lysine methyltransferases (KMTs). While well characterized as oncogenes in other cancer types, recent work has expanded the role of KMTs as tumor suppressor in pancreatic cancer. Here, we review the role and translational significance for PDAC development and therapeutics of KMTs.
Collapse
Affiliation(s)
- Kayla C. LaRue-Nolan
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, U.S.A
| | | | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
| | - Jiaqi Shi
- Department of Pathology and Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, U.S.A
| | | |
Collapse
|
5
|
Woo H, Oh J, Cho YJ, Oh GT, Kim SY, Dan K, Han D, Lee JS, Kim T. N-terminal acetylation of Set1-COMPASS fine-tunes H3K4 methylation patterns. SCIENCE ADVANCES 2024; 10:eadl6280. [PMID: 38996018 PMCID: PMC11244526 DOI: 10.1126/sciadv.adl6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.
Collapse
Affiliation(s)
- Hyeonju Woo
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03082, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Wang H, Helin K. Roles of H3K4 methylation in biology and disease. Trends Cell Biol 2024:S0962-8924(24)00115-6. [PMID: 38909006 DOI: 10.1016/j.tcb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Epigenetic modifications, including posttranslational modifications of histones, are closely linked to transcriptional regulation. Trimethylated H3 lysine 4 (H3K4me3) is one of the most studied histone modifications owing to its enrichment at the start sites of transcription and its association with gene expression and processes determining cell fate, development, and disease. In this review, we focus on recent studies that have yielded insights into how levels and patterns of H3K4me3 are regulated, how H3K4me3 contributes to the regulation of specific phases of transcription such as RNA polymerase II initiation, pause-release, heterogeneity, and consistency. The conclusion from these studies is that H3K4me3 by itself regulates gene expression and its precise regulation is essential for normal development and preventing disease.
Collapse
Affiliation(s)
- Hua Wang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | |
Collapse
|
7
|
Aharonoff A, Kim J, Washington A, Ercan S. SMC-mediated dosage compensation in C. elegans evolved in the presence of an ancestral nematode mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595224. [PMID: 38826443 PMCID: PMC11142195 DOI: 10.1101/2024.05.21.595224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.
Collapse
Affiliation(s)
- Avrami Aharonoff
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Aaliyah Washington
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
8
|
Van HT, Xie G, Dong P, Liu Z, Ge K. KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions. J Mol Biol 2024; 436:168453. [PMID: 38266981 PMCID: PMC10957308 DOI: 10.1016/j.jmb.2024.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases are critical for gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the importance of KMT2C/D in enhancer regulation, differentiation, development, tumor suppression and highlighted KMT2C/D enzymatic activity-dependent and -independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent functions for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.
Collapse
Affiliation(s)
- Hieu T Van
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Guojia Xie
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Ding Y, Zhang C, Zuo Q, Jin K, Li B. lncCPSET1 acts as a scaffold for MLL2/COMPASS to regulate Bmp4 and promote the formation of chicken primordial germ cells. Mol Genet Genomics 2024; 299:41. [PMID: 38551742 DOI: 10.1007/s00438-024-02127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
Primordial germ cells (PGCs) are the ancestors of female and male germ cells. Recent studies have shown that long non-coding RNA (lncRNA) and histone methylation are key epigenetic factors affecting PGC formation; however, their joint regulatory mechanisms have rarely been studied. Here, we explored the mechanism by which lncCPSET1 and H3K4me2 synergistically regulate the formation of chicken PGCs for the first time. Combined with chromatin immunoprecipitation (CHIP) sequencing and RNA-seq of PGCs transfected with the lncCPSET1 overexpression vector, GO annotation and KEGG enrichment analysis revealed that Wnt and TGF-β signaling pathways were significantly enriched, and Fzd2, Id1, Id4, and Bmp4 were identified as candidate genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that ASH2L, DPY30, WDR5, and RBBP5 overexpression significantly increased the expression of Bmp4, which was up-regulated after lncCPSET1 overexpression as well. It indicated that Bmp4 is a target gene co-regulated by lncCPSET1 and MLL2/COMPASS. Interestingly, co-immunoprecipitation results showed that ASH2L, DPY30 and WDR5 combined and RBBP5 weakly combined with DPY30 and WDR5. lncCPSET1 overexpression significantly increased Dpy30 expression and co-immunoprecipitation showed that interference/overexpression of lncCPSET1 did not affect the binding between the proteins in the complexes, but interference with lncCPSET1 inhibited DPY30 expression, which was confirmed by RNA immunoprecipitation that lncCPSET1 binds to DPY30. Additionally, CHIP-qPCR results showed that DPY30 enriched in the Bmp4 promoter region promoted its transcription, thus promoting the formation of PGCs. This study demonstrated that lncCPSET1 and H3K4me2 synergistically promote PGC formation, providing a reference for the study of the regulatory mechanisms between lncRNA and histone methylation, as well as a molecular basis for elucidating the formation mechanism of PGCs in chickens.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chen Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- RNA Medicine Center, International Institutes of Medicine, Zhejiang University, Hangzhou, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Zhang B, Wang Z, Dai X, Gao J, Zhao J, Ma R, Chen Y, Sun Y, Ma H, Li S, Zhou C, Wang JP, Li W. A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 241:1950-1972. [PMID: 38095236 DOI: 10.1111/nph.19481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Histone H3 lysine-4 trimethylation (H3K4me3) activating drought-responsive genes in plants for drought adaptation has long been established, but the underlying regulatory mechanisms are unknown. Here, using yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa, we unveiled in this adaptation a regulatory interplay between chromatin regulation and gene transactivation mediated by an epigenetic determinant, a PtrSDG2-1-PtrCOMPASS (complex proteins associated with Set1)-like H3K4me3 complex, PtrSDG2-1-PtrWDR5a-1-PtrRbBP5-1-PtrAsh2-2 (PtrSWRA). Under drought conditions, a transcription factor PtrAREB1-2 interacts with PtrSWRA, forming a PtrSWRA-PtrAREB1-2 pentamer, to recruit PtrSWRA to specific promoter elements of drought-tolerant genes, such as PtrHox2, PtrHox46, and PtrHox52, for depositing H3K4me3 to promote and maintain activated state of such genes for tolerance. CRISPR-edited defects in the pentamer impaired drought tolerance and elevated expression of PtrHox2, PtrHox46, or PtrHox52 improved the tolerance as well as growth in P. trichocarpa. Our findings revealed the identity of the underlying H3K4 trimethyltransferase and its interactive arrangement with the COMPASS for catalysis specificity and efficiency. Furthermore, our study uncovered how the H3K4 trimethyltransferase-COMPASS complex is recruited to the effector genes for elevating H3K4me3 marks for improved drought tolerance and growth/biomass production in plants.
Collapse
Affiliation(s)
- Baofeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinfeng Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Rong Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yanjie Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
11
|
Jiang H, Su W, Wang H, Luo C, Wang Y, Zhang L, Luo L, Lu Z, Shen D, Su G. DPY30 knockdown suppresses colorectal carcinoma progression via inducing Raf1/MST2-mediated apoptosis. Heliyon 2024; 10:e24807. [PMID: 38314299 PMCID: PMC10837565 DOI: 10.1016/j.heliyon.2024.e24807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Colorectal Carcinoma (CRC) is one of the most common malignant tumors of the digestive tract, with a high mortality rate. DPY30 is one of the core subunits of the histone methyltransferase complex, which was involved in many cancer processes. However, the role of DPY30 in the occurrence and progression of CRC remains unclear. In this study, we sought to evaluate the role and mechanism of DPY30 in CRC cells apoptosis. Here, we identified that knockdown of DPY30 significantly inhibited the HT29 and HCT116 cells proliferation in vitro. Moreover, the knockdown of DPY30 significantly increased the apoptosis rate and promoted the expression of apoptosis-related proteins in CRC cells. Meanwhile, DPY30 knockdown promoted CRC cells apoptosis through endogenous programmed death and in a caspase activation-dependent manner. Furthermore, RNA-seq analysis revealed that the action of DPY30 is closely related to the apoptosis biological processes, and screened its potential effectors Raf1. Mechanistically, DPY30 downregulation promotes MST2-induced apoptosis by inhibiting Raf1 transcriptional activity through histone H3 lysine 4 trimethylation (H3K4me3). In vivo experiments showed that DPY30 was correlated with Raf1 in nude mouse subcutaneous xenografts tissues significantly. Clinical colorectal specimens further confirmed that overexpression of DPY30 in malignant tissues was significantly correlated with Raf1 level. The vital role of the DPY30/Raf1/MST2 signaling axis in the cell death and survival rate of CRC cells was disclosed, which provides potential new targets for early diagnosis and clinical treatment of CRC.
Collapse
Affiliation(s)
- HaiFeng Jiang
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
- Department of Critical Care Medicine, Second People's Hospital of Yibin City, Yibin, 644000, Sichuan Province, China
| | - WeiChao Su
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, 361012, China
| | - HaiXing Wang
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - ChunYing Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - YaTao Wang
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - LinJun Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - LingTao Luo
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - ZeBin Lu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - DongYan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - GuoQiang Su
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
12
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Thakur A, Park K, Cullum R, Fuglerud BM, Khoshnoodi M, Drissler S, Stephan TL, Lotto J, Kim D, Gonzalez FJ, Hoodless PA. HNF4A guides the MLL4 complex to establish and maintain H3K4me1 at gene regulatory elements. Commun Biol 2024; 7:144. [PMID: 38297077 PMCID: PMC10830483 DOI: 10.1038/s42003-024-05835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Hepatocyte nuclear factor 4A (HNF4A/NR2a1), a transcriptional regulator of hepatocyte identity, controls genes that are crucial for liver functions, primarily through binding to enhancers. In mammalian cells, active and primed enhancers are marked by monomethylation of histone 3 (H3) at lysine 4 (K4) (H3K4me1) in a cell type-specific manner. How this modification is established and maintained at enhancers in connection with transcription factors (TFs) remains unknown. Using analysis of genome-wide histone modifications, TF binding, chromatin accessibility and gene expression, we show that HNF4A is essential for an active chromatin state. Using HNF4A loss and gain of function experiments in vivo and in cell lines in vitro, we show that HNF4A affects H3K4me1, H3K27ac and chromatin accessibility, highlighting its contribution to the establishment and maintenance of a transcriptionally permissive epigenetic state. Mechanistically, HNF4A interacts with the mixed-lineage leukaemia 4 (MLL4) complex facilitating recruitment to HNF4A-bound regions. Our findings indicate that HNF4A enriches H3K4me1, H3K27ac and establishes chromatin opening at transcriptional regulatory regions.
Collapse
Affiliation(s)
- Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kwangjin Park
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Bettina M Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Donghwan Kim
- Center of Cancer Research, National Cancer Institute, Bethesda, 2089, USA
| | - Frank J Gonzalez
- Center of Cancer Research, National Cancer Institute, Bethesda, 2089, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
14
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
15
|
Barsoum M, Sayadi-Boroujeni R, Stenzel AT, Bussmann P, Lüscher-Firzlaff J, Lüscher B. Sequential deregulation of histone marks, chromatin accessibility and gene expression in response to PROTAC-induced degradation of ASH2L. Sci Rep 2023; 13:22565. [PMID: 38114530 PMCID: PMC10730889 DOI: 10.1038/s41598-023-49284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
The trithorax protein ASH2L is essential for organismal and tissue development. As a subunit of COMPASS/KMT2 complexes, ASH2L is necessary for methylation of histone H3 lysine 4 (H3K4). Mono- and tri-methylation at this site mark active enhancers and promoters, respectively, although the functional relevance of H3K4 methylation is only partially understood. ASH2L has a long half-life, which results in a slow decrease upon knockout. This has made it difficult to define direct consequences. To overcome this limitation, we employed a PROTAC system to rapidly degrade ASH2L and address direct effects. ASH2L loss resulted in inhibition of proliferation of mouse embryo fibroblasts. Shortly after ASH2L degradation H3K4me3 decreased with its half-life varying between promoters. Subsequently, H3K4me1 increased at promoters and decreased at some enhancers. H3K27ac and H3K27me3, histone marks closely linked to H3K4 methylation, were affected with considerable delay. In parallel, chromatin compaction increased at promoters. Of note, nascent gene transcription was not affected early but overall RNA expression was deregulated late after ASH2L loss. Together, these findings suggest that downstream effects are ordered but relatively slow, despite the rapid loss of ASH2L and inactivation of KMT2 complexes. It appears that the systems that control gene transcription are well buffered and strong effects are only beginning to unfold after considerable delay.
Collapse
Affiliation(s)
- Mirna Barsoum
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Roksaneh Sayadi-Boroujeni
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789, Monheim am Rhein, Germany
| | - Alexander T Stenzel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Human Genetics, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Bussmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
16
|
Luo CY, Su WC, Jiang HF, Luo LT, Shen DY, Su GQ. DPY30 promotes colorectal carcinoma metastasis by upregulating ZEB1 transcriptional expression. Cancer Cell Int 2023; 23:333. [PMID: 38115111 PMCID: PMC10731791 DOI: 10.1186/s12935-023-03126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
DPY30 belongs to the core subunit of components of the histone lysine methyltransferase complex, which is implicated in tumorigenesis, cell senescence, and other biological events. However, its contribution to colorectal carcinoma (CRC) progression and metastasis has yet to be elucidated. Therefore, this study aimed to investigate the biological function of DPY30 in CRC metastasis both in vitro and in vivo. Herein, our results revealed that DPY30 overexpression is significantly positively correlated with positive lymph nodes, epithelial-mesenchymal transition (EMT), and CRC metastasis. Moreover, DPY30 knockdown in HT29 and SW480 cells markedly decreased EMT progression, as well as the migratory and invasive abilities of CRC cells in vitro and lung tumor metastasis in vivo. Mechanistically, DPY30 increased histone H3K4me3 level and promoted EMT and CRC metastasis by upregulating the transcriptional expression of ZEB1. Taken together, our findings indicate that DPY30 may serve as a therapeutic target and prognostic marker for CRC.
Collapse
Affiliation(s)
- Chun-Ying Luo
- Medical College, Guangxi University, Nanning, 530004, Guangxi Province, People's Republic of China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, People's Republic of China
| | - Wei-Chao Su
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xianyue Hospital, Xianyue Hospital Affiliated With Xiamen Medical College, No. 55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Hai-Feng Jiang
- Department of Colorectal Tumor Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Ling-Tao Luo
- Department of Colorectal Tumor Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China.
| | - Guo-Qiang Su
- Medical College, Guangxi University, Nanning, 530004, Guangxi Province, People's Republic of China.
- Department of Colorectal Tumor Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China.
| |
Collapse
|
17
|
Gilan O, Talarmain L, Bell CC, Neville D, Knezevic K, Ferguson DT, Boudes M, Chan YC, Davidovich C, Lam EYN, Dawson MA. CRISPR-ChIP reveals selective regulation of H3K79me2 by Menin in MLL leukemia. Nat Struct Mol Biol 2023; 30:1592-1606. [PMID: 37679565 DOI: 10.1038/s41594-023-01087-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Chromatin regulation involves the selective recruitment of chromatin factors to facilitate DNA repair, replication and transcription. Here we demonstrate the utility of coupling unbiased functional genomics with chromatin immunoprecipitation (CRISPR-ChIP) to identify the factors associated with active chromatin modifications in mammalian cells. Specifically, an integrated reporter containing a cis-regulatory element of interest and a single guide RNA provide a chromatinized template for a direct readout for regulators of histone modifications associated with actively transcribed genes such as H3K4me3 and H3K79me2. With CRISPR-ChIP, we identify all the nonredundant COMPASS complex members required for H3K4me3 and demonstrate that RNA polymerase II is dispensable for the maintenance of H3K4me3. As H3K79me2 has a putative oncogenic function in leukemia cells driven by MLL translocations, using CRISPR-ChIP we reveal a functional partitioning of H3K79 methylation into two distinct regulatory units: an oncogenic DOT1L complex directed by the MLL fusion protein in a Menin-dependent manner and a separate endogenous DOT1L complex, where catalytic activity is directed by MLLT10. Overall, CRISPR-ChIP provides a powerful tool for the unbiased interrogation of the mechanisms underpinning chromatin regulation.
Collapse
Affiliation(s)
- Omer Gilan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | - Laure Talarmain
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Neville
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Kathy Knezevic
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel T Ferguson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- EMBL-Australia, Clayton, Victoria, Australia
| | - Enid Y N Lam
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Chang JY, Neugebauer C, Schmeing S, Amrahova G, 't Hart P. Macrocyclic peptides as inhibitors of WDR5-lncRNA interactions. Chem Commun (Camb) 2023; 59:10656-10659. [PMID: 37581220 DOI: 10.1039/d3cc03221c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
WDR5 is an adaptor protein involved in the regulation of various epigenetic modifier complexes. Various inhibitors have been described but only as inhibitors of its protein-protein interactions. Here we describe peptidic macrocycles that act as inhibitors of the interaction between WDR5 and long non-coding RNAs. The findings provide a new strategy to modulate the biological function of WDR5 as an RNA binding epigenetic regulator.
Collapse
Affiliation(s)
- Jen-Yao Chang
- Chemical Genomics Centre of the Max Planck, Society Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Cora Neugebauer
- Chemical Genomics Centre of the Max Planck, Society Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Stefan Schmeing
- Chemical Genomics Centre of the Max Planck, Society Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Gulshan Amrahova
- Chemical Genomics Centre of the Max Planck, Society Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck, Society Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
19
|
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 2023:10.1038/s41582-023-00811-4. [PMID: 37202496 DOI: 10.1038/s41582-023-00811-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia-parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus-dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.
Collapse
|
20
|
Han QL, Zhang XL, Ren PX, Mei LH, Lin WH, Wang L, Cao Y, Li K, Bai F. Discovery, evaluation and mechanism study of WDR5-targeted small molecular inhibitors for neuroblastoma. Acta Pharmacol Sin 2023; 44:877-887. [PMID: 36207403 PMCID: PMC10043273 DOI: 10.1038/s41401-022-00999-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Neuroblastoma is the most common and deadliest tumor in infancy. WDR5 (WD Repeat Domain 5), a critical factor supporting an N-myc transcriptional complex via its WBM site and interacting with chromosome via its WIN site, promotes the progression of neuroblastoma, thus making it a potential anti-neuroblastoma drug target. So far, a few WIN site inhibitors have been reported, and the WBM site disruptors are rare to see. In this study we conducted virtual screening to identify candidate hit compounds targeting the WBM site of WDR5. As a result, 60 compounds were selected as candidate WBM site inhibitors. Cell proliferation assay demonstrated 6 structurally distinct WBM site inhibitors, numbering as compounds 4, 7, 11, 13, 19 and 22, which potently suppressed 3 neuroblastoma cell lines (MYCN-amplified IMR32 and LAN5 cell lines, and MYCN-unamplified SK-N-AS cell line). Among them, compound 19 suppressed the proliferation of IMR32 and LAN5 cells with EC50 values of 12.34 and 14.89 μM, respectively, and exerted a moderate inhibition on SK-N-AS cells, without affecting HEK293T cells at 20 μM. Analysis of high-resolution crystal complex structure of compound 19 against WDR5 revealed that it competitively occupied the hydrophobic pocket where V264 was located, which might disrupt the interaction of MYC with WDR5 and further MYC-medicated gene transcription. By performing RNA-seq analysis we demonstrated the differences in molecular action mechanisms of the compound 19 and a WIN site inhibitor OICR-9429. Most interestingly, we established the particularly high synergy rate by combining WBM site inhibitor 19 and the WIN site inhibitor OICR-9429, providing a novel therapeutic avenue for neuroblastoma.
Collapse
Affiliation(s)
- Qi-Lei Han
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiang-Lei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Xuan Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang-He Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei-Hong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Cao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
21
|
Ding J, Li G, Liu H, Liu L, Lin Y, Gao J, Zhou G, Shen L, Zhao M, Yu Y, Guo W, Hommel U, Ottl J, Blank J, Aubin N, Wei Y, He H, Sage DR, Atadja PW, Li E, Jain RK, Tallarico JA, Canham SM, Chiang YL, Wang H. Discovery of Potent Small-Molecule Inhibitors of WDR5-MYC Interaction. ACS Chem Biol 2023; 18:34-40. [PMID: 36594833 DOI: 10.1021/acschembio.2c00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple processes. It is also a prominent target for pharmacological inhibition in diseases such as cancer, aging, and neurodegenerative disorders. Interactions between WDR5 and various partners are essential for sustaining its function. Most drug discovery efforts center on the WIN (WDR5 interaction motif) site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe the discovery of novel WDR5 inhibitors for the other WBM (WDR5 binding motif) pocket on this scaffold protein, to disrupt WDR5 interaction with its binding partner MYC by high-throughput biochemical screening, subsequent molecule optimization, and biological assessment. These new WDR5 inhibitors provide useful probes for future investigations of WDR5 and an avenue for targeting WDR5 as a therapeutic strategy.
Collapse
Affiliation(s)
- Jian Ding
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Guo Li
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Hejun Liu
- Novartis Institutes for BioMedical Research, Shanghai201203, China.,Novartis Institutes for BioMedical Research, San Diego, California92121, United States
| | - Lulu Liu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Ying Lin
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Jingyan Gao
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Guoqiang Zhou
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Lingling Shen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States.,Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Mengxi Zhao
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Yanyan Yu
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Weihui Guo
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Ulrich Hommel
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Jutta Blank
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Nicola Aubin
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Yi Wei
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Hu He
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - David R Sage
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Peter W Atadja
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - En Li
- Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Ying-Ling Chiang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States.,Novartis Institutes for BioMedical Research, Shanghai201203, China
| | - He Wang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States.,Novartis Institutes for BioMedical Research, Shanghai201203, China
| |
Collapse
|
22
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
23
|
Stroynowska-Czerwinska AM, Klimczak M, Pastor M, Kazrani AA, Misztal K, Bochtler M. Clustered PHD domains in KMT2/MLL proteins are attracted by H3K4me3 and H3 acetylation-rich active promoters and enhancers. Cell Mol Life Sci 2023; 80:23. [PMID: 36598580 PMCID: PMC9813062 DOI: 10.1007/s00018-022-04651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Histone lysine-specific methyltransferase 2 (KMT2A-D) proteins, alternatively called mixed lineage leukemia (MLL1-4) proteins, mediate positive transcriptional memory. Acting as the catalytic subunits of human COMPASS-like complexes, KMT2A-D methylate H3K4 at promoters and enhancers. KMT2A-D contain understudied highly conserved triplets and a quartet of plant homeodomains (PHDs). Here, we show that all clustered (multiple) PHDs localize to the well-defined loci of H3K4me3 and H3 acetylation-rich active promoters and enhancers. Surprisingly, we observe little difference in binding pattern between PHDs from promoter-specific KMT2A-B and enhancer-specific KMT2C-D. Fusion of the KMT2A CXXC domain to the PHDs drastically enhances their preference for promoters over enhancers. Hence, the presence of CXXC domains in KMT2A-B, but not KMT2C-D, may explain the promoter/enhancer preferences of the full-length proteins. Importantly, targets of PHDs overlap with KMT2A targets and are enriched in genes involved in the cancer pathways. We also observe that PHDs of KMT2A-D are mutated in cancer, especially within conserved folding motifs (Cys4HisCys2Cys/His). The mutations cause a domain loss-of-function. Taken together, our data suggest that PHDs of KMT2A-D guide the full-length proteins to active promoters and enhancers, and thus play a role in positive transcriptional memory.
Collapse
Affiliation(s)
| | - Magdalena Klimczak
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
24
|
TRIB3 Modulates PPARγ-Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810535. [PMID: 36142452 PMCID: PMC9503934 DOI: 10.3390/ijms231810535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.
Collapse
|
25
|
Liu H, Craig SEL, Molchanov V, Floramo JS, Zhao Y, Yang T. SUMOylation in Skeletal Development, Homeostasis, and Disease. Cells 2022; 11:cells11172710. [PMID: 36078118 PMCID: PMC9454984 DOI: 10.3390/cells11172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The modification of proteins by small ubiquitin-related modifier (SUMO) molecules, SUMOylation, is a key post-translational modification involved in a variety of biological processes, such as chromosome organization, DNA replication and repair, transcription, nuclear transport, and cell signaling transduction. In recent years, emerging evidence has shown that SUMOylation regulates the development and homeostasis of the skeletal system, with its dysregulation causing skeletal diseases, suggesting that SUMOylation pathways may serve as a promising therapeutic target. In this review, we summarize the current understanding of the molecular mechanisms by which SUMOylation pathways regulate skeletal cells in physiological and disease contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
- Correspondence: ; Tel.: +1-616-234-5820
| |
Collapse
|
26
|
Park SW, Kim J, Oh S, Lee J, Cha J, Lee HS, Kim KI, Park D, Baek SH. PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Res 2022; 50:7856-7872. [PMID: 35821310 PMCID: PMC9371932 DOI: 10.1093/nar/gkac584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a catabolic pathway that maintains cellular homeostasis under various stress conditions, including conditions of nutrient deprivation. To elevate autophagic flux to a sufficient level under stress conditions, transcriptional activation of autophagy genes occurs to replenish autophagy components. Thus, the transcriptional and epigenetic control of the genes regulating autophagy is essential for cellular homeostasis. Here, we applied integrated transcriptomic and epigenomic profiling to reveal the roles of plant homeodomain finger protein 20 (PHF20), which is an epigenetic reader possessing methyl binding activity, in controlling the expression of autophagy genes. Phf20 deficiency led to impaired autophagic flux and autophagy gene expression under glucose starvation. Interestingly, the genome-wide characterization of chromatin states by Assay for Transposase-Accessible Chromatin (ATAC)-sequencing revealed that the PHF20-dependent chromatin remodelling occurs in enhancers that are co-occupied by dimethylated lysine 36 on histone H3 (H3K36me2). Importantly, the recognition of H3K36me2 by PHF20 was found to be highly correlated with increased levels of H3K4me1/2 at the enhancer regions. Collectively, these results indicate that PHF20 regulates autophagy genes through enhancer activation via H3K36me2 recognition as an epigenetic reader. Our findings emphasize the importance of nuclear events in the regulation of autophagy.
Collapse
Affiliation(s)
- Se Won Park
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Sungryong Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jeongyoon Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Joowon Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyun Sik Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea.,Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
27
|
Hanna CW, Huang J, Belton C, Reinhardt S, Dahl A, Andrews S, Stewart A, Kranz A, Kelsey G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1993-2004. [PMID: 35137160 PMCID: PMC8887468 DOI: 10.1093/nar/gkac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Susanne Reinhardt
- Dresden Concept Genome Center, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
| | - Andreas Dahl
- Dresden Concept Genome Center, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
- Max-Planck-Institute for Cell Biology and Genetics, Dresden 01307, Germany
| | - Andrea Kranz
- Correspondence may also be addressed to Andrea Kranz.
| | - Gavin Kelsey
- To whom correspondence should be addressed. Tel: +44 1223 496332;
| |
Collapse
|
28
|
MLL1 is required for maintenance of intestinal stem cells. PLoS Genet 2021; 17:e1009250. [PMID: 34860830 PMCID: PMC8641872 DOI: 10.1371/journal.pgen.1009250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.
Collapse
|
29
|
Wang S, Bleeck A, Nadif Kasri N, Kleefstra T, van Rhijn JR, Schubert D. SETD1A Mediated H3K4 Methylation and Its Role in Neurodevelopmental and Neuropsychiatric Disorders. Front Mol Neurosci 2021; 14:772000. [PMID: 34803610 PMCID: PMC8595121 DOI: 10.3389/fnmol.2021.772000] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Posttranslational modification of histones and related gene regulation are shown to be affected in an increasing number of neurological disorders. SETD1A is a chromatin remodeler that influences gene expression through the modulation of mono- di- and trimethylation marks on Histone-H3-Lysine-4 (H3K4me1/2/3). H3K4 methylation is predominantly described to result in transcriptional activation, with its mono- di- and trimethylated forms differentially enriched at promoters or enhancers. Recently, dominant mostly de novo variants in SETD1A have clinically been linked to developmental delay, intellectual disability (DD/ID), and schizophrenia (SCZ). Affected individuals often display both developmental and neuropsychiatric abnormalities. The primary diagnoses are mainly dependent on the age at which the individual is assessed. Investigations in mouse models of SETD1A dysfunction have been able to recapitulate key behavioral features associated with ID and SCZ. Furthermore, functional investigations suggest disrupted synaptic and neuronal network function in these mouse models. In this review, we provide an overview of pre-clinical studies on the role of SETD1A in neuronal development. A better understanding of the pathobiology underlying these disorders may provide novel opportunities for therapeutic intervention. As such, we will discuss possible strategies to move forward in elucidating the genotype-phenotype correlation in SETD1A associated disorders.
Collapse
Affiliation(s)
- Shan Wang
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Anna Bleeck
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands.,Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Jon-Ruben van Rhijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
30
|
DOT1L complex regulates transcriptional initiation in human erythroleukemic cells. Proc Natl Acad Sci U S A 2021; 118:2106148118. [PMID: 34187895 DOI: 10.1073/pnas.2106148118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.
Collapse
|
31
|
Chen W, Chen X, Li D, Wang X, Long G, Jiang Z, You Q, Guo X. Discovery of a potent MLL1 and WDR5 protein-protein interaction inhibitor with in vivo antitumor activity. Eur J Med Chem 2021; 223:113677. [PMID: 34225179 DOI: 10.1016/j.ejmech.2021.113677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
MLL1-WDR5 interaction is essential for the formation of MLL core complex and its H3K4 methyltransferase activity. Disrupting MLL1-WDR5 interaction has been proposed as a potential therapeutic approach in the treatment of leukemia. A "toolkit" of well-characterized chemical probe will allow exploring animal studies. Based on a specific MLL1-WDR5 PPI inhibitor (DDO-2117), which was previously reported by our group, we conducted a bioisosterism approach by click chemistry to discover novel phenyltriazole scaffold MLL1-WDR5 interaction blockers. Here, our efforts resulted in the best inhibitor 24 (DDO-2093) with high binding affinity (Kd = 11.6 nM) and with improved drug-like properties. Both in vitro and in vivo assays revealed 24 could efficiently block the MLL1-WDR5 interaction. Furthermore, 24 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. We propose 24 as a chemical probe that is suitable for in vivo pharmacodynamic and biological studies of MLL1-WDR5 interaction.
Collapse
Affiliation(s)
- Weilin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongdong Li
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xianghan Wang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
32
|
The MLL3/4 H3K4 methyltransferase complex in establishing an active enhancer landscape. Biochem Soc Trans 2021; 49:1041-1054. [PMID: 34156443 PMCID: PMC8286814 DOI: 10.1042/bst20191164] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Enhancers are cis-regulatory elements that play essential roles in tissue-specific gene expression during development. Enhancer function in the expression of developmental genes requires precise regulation, while deregulation of enhancer function could be the main cause of tissue-specific cancer development. MLL3/KMT2C and MLL4/KMT2D are two paralogous histone modifiers that belong to the SET1/MLL (also named COMPASS) family of lysine methyltransferases and play critical roles in enhancer-regulated gene activation. Importantly, large-scale DNA sequencing studies have revealed that they are amongst the most frequently mutated genes associated with human cancers. MLL3 and MLL4 form identical multi-protein complexes for modifying mono-methylation of histone H3 lysine 4 (H3K4) at enhancers, which together with the p300/CBP-mediated H3K27 acetylation can generate an active enhancer landscape for long-range target gene activation. Recent studies have provided a better understanding of the possible mechanisms underlying the roles of MLL3/MLL4 complexes in enhancer regulation. Moreover, accumulating studies offer new insights into our knowledge of the potential role of MLL3/MLL4 in cancer development. In this review, we summarize recent evidence on the molecular mechanisms of MLL3/MLL4 in the regulation of active enhancer landscape and long-range gene expression, and discuss their clinical implications in human cancers.
Collapse
|
33
|
Wang S, Hu S, Mao Y. The mechanisms of vascular aging. Aging Med (Milton) 2021; 4:153-158. [PMID: 34250433 PMCID: PMC8251869 DOI: 10.1002/agm2.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular senescence is one of the hotspots in current research. With global average life expectancy increasing, delaying or reducing aging and age-related diseases has become a pressing issue for improving quality of life. Vascular senescence is an independent risk factor for age-related cardiovascular diseases (CVD) and results in the deterioration of CVD. Nevertheless, the underlying mechanisms of the vascular senescence have not been expressly illustrated. In this review, we attempt to summarize the recent literature in the field and discuss the major mechanisms involved in vascular senescence. We also underline key molecular aspects of aging-associated vascular dysfunction in the attempt to highlight potential innovative therapeutic targets to delay the onset of age-related diseases.
Collapse
Affiliation(s)
- Shan Wang
- Department of Geriatric Medicine The Affiliated Hospital of Qingdao University Qingdao China
| | - Song Hu
- Department of Geriatric Medicine The Affiliated Hospital of Qingdao University Qingdao China
| | - Yongjun Mao
- Department of Geriatric Medicine The Affiliated Hospital of Qingdao University Qingdao China
| |
Collapse
|
34
|
Sex dependent alteration of epigenetic marks after chronic morphine treatment in mice organs. Food Chem Toxicol 2021; 152:112200. [PMID: 33891991 DOI: 10.1016/j.fct.2021.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
Epigenetic marks may be also affected by several factors, such as age, lifestyle, early life experiences and exposure to chemicals or drugs, such as opioids. Previous studies have focused on how morphine epigenetically regulates different regions of the brain that are implicated in tolerance, dependence and other psychiatric disorders more related to the physio-pathological effects of opioids. Nevertheless, a significant knowledge gap remains regarding the effect of chronic treatment on other organs and biological systems. Therefore, the aim of this work is to increase our knowledge about the impact of chronic morphine exposure on DNA methylation and histone modification levels in each of the organs of male and female model mice in vivo. Our results reveal, for the first time, that chronic morphine treatment induced changes in DNA methylation/hydroxymethylation and histone modification in-vivo at the systemic level, revealing a potential physiological effect on the regulation of gene expression. Notably, morphine-induced epigenetic modification occurs in a sex-dependent manner, revealing the existence of different underlying mechanisms of epigenetic modification in male and female mice.
Collapse
|
35
|
Zhou S, Liu X, Sun W, Zhang M, Yin Y, Pan S, He D, Shen M, Yang J, Zheng Q, Wang W. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:422-439. [PMID: 33559339 PMCID: PMC7938624 DOI: 10.1111/mpp.13035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
Histone-3-lysine-4 (H3K4) methylation is catalysed by the multiprotein complex known as the Set1/COMPASS or MLL/COMPASS-like complex, an element that is highly evolutionarily conserved from yeast to humans. However, the components and mechanisms by which the COMPASS-like complex targets the H3K4 methylation of plant-pathogenic genes in fungi remain elusive. Here we present a comprehensive analysis combining biochemical, molecular, and genome-wide approaches to characterize the roles of the COMPASS-like family in the rice blast fungus Magnaporthe oryzae, a model plant pathogen. We purified and identified six conserved subunits of COMPASS from M. oryzae: MoBre2 (Cps60/ASH2L), MoSpp1 (Cps40/Cfp1), MoSwd2 (Cps35), MoSdc1 (Cps25/DPY30), MoSet1 (MLL/ALL), and MoRbBP5 (Cps50), using an affinity tag on MoBre2. We determined the sequence repeat in dual-specificity kinase splA and ryanodine receptors domain of MoBre2 can interact directly with the DPY30 domain of MoSdc1 in vitro. Furthermore, we found that deletion of the genes encoding COMPASS subunits of MoBre2, MoSPP1, and MoSwd2 caused similar defects regarding invasive hyphal development and pathogenicity. Genome-wide profiling of H3K4me3 revealed that it has remarkable co-occupancy at the transcription start site regions of target genes. Significantly, these target genes are often involved in spore germination and pathogenesis. Decreased gene expression caused by the deletion of MoBre2, MoSwd2, or MoSpp1 was highly correlated with a decrease in H3K4me3. These results suggest that MoBre2, MoSpp1, and MoSwd2 function as a whole COMPASS complex, contributing to fungal development and pathogenesis by regulating H3K4me3-targeted genes in M. oryzae.
Collapse
Affiliation(s)
- Sida Zhou
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Xiuying Liu
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Wanyu Sun
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Yue Yin
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Song Pan
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mi Shen
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qi Zheng
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| |
Collapse
|
36
|
Niu C, Wang S, Guo J, Wei X, Jia M, Chen Z, Gong W, Qin Y, Wang X, Zhi X, Lu M, Chen S, Gu M, Zhang J, Han JDJ, Lan F, Meng D. BACH1 recruits NANOG and histone H3 lysine 4 methyltransferase MLL/SET1 complexes to regulate enhancer-promoter activity and maintains pluripotency. Nucleic Acids Res 2021; 49:1972-1986. [PMID: 33503260 PMCID: PMC7913776 DOI: 10.1093/nar/gkab034] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/12/2023] Open
Abstract
Maintenance of stem-cell identity requires proper regulation of enhancer activity. Both transcription factors OCT4/SOX2/NANOG and histone methyltransferase complexes MLL/SET1 were shown to regulate enhancer activity, but how they are regulated in embryonic stem cells (ESCs) remains further studies. Here, we report a transcription factor BACH1, which directly interacts with OCT4/SOX2/NANOG (OSN) and MLL/SET1 methyltransferase complexes and maintains pluripotency in mouse ESCs (mESCs). BTB domain and bZIP domain of BACH1 are required for these interactions and pluripotency maintenance. Loss of BACH1 reduced the interaction between NANOG and MLL1/SET1 complexes, and decreased their occupancy on chromatin, and further decreased H3 lysine 4 trimethylation (H3K4me3) level on gene promoters and (super-) enhancers, leading to decreased enhancer activity and transcription activity, especially on stemness-related genes. Moreover, BACH1 recruited NANOG through chromatin looping and regulated remote NANOG binding, fine-tuning enhancer-promoter activity and gene expression. Collectively, these observations suggest that BACH1 maintains pluripotency in ESCs by recruiting NANOG and MLL/SET1 complexes to chromatin and maintaining the trimethylated state of H3K4 and enhancer-promoter activity, especially on stemness-related genes.
Collapse
Affiliation(s)
- Cong Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Siqing Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhaoxiong Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Wenxuan Gong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Meng Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jing-Dong J Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Fei Lan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
37
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
38
|
Ashokkumar D, Zhang Q, Much C, Bledau AS, Naumann R, Alexopoulou D, Dahl A, Goveas N, Fu J, Anastassiadis K, Stewart AF, Kranz A. MLL4 is required after implantation, whereas MLL3 becomes essential during late gestation. Development 2020; 147:dev186999. [PMID: 32439762 DOI: 10.1242/dev.186999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.
Collapse
Affiliation(s)
- Deepthi Ashokkumar
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Qinyu Zhang
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Christian Much
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Anita S Bledau
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| |
Collapse
|
39
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
40
|
The Set1 N-terminal domain and Swd2 interact with RNA polymerase II CTD to recruit COMPASS. Nat Commun 2020; 11:2181. [PMID: 32358498 PMCID: PMC7195483 DOI: 10.1038/s41467-020-16082-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4) by Set1/COMPASS occurs co-transcriptionally, and is important for gene regulation. Set1/COMPASS associates with the RNA polymerase II C-terminal domain (CTD) to establish proper levels and distribution of H3K4 methylations. However, details of CTD association remain unclear. Here we report that the Set1 N-terminal region and the COMPASS subunit Swd2, which interact with each other, are both needed for efficient CTD binding in Saccharomyces cerevisiae. Moreover, a single point mutation in Swd2 that affects its interaction with Set1 also impairs COMPASS recruitment to chromatin and H3K4 methylation. A CTD interaction domain (CID) from the protein Nrd1 can partially substitute for the Set1 N-terminal region to restore CTD interactions and histone methylation. However, even when Set1/COMPASS is recruited via the Nrd1 CID, histone H2B ubiquitylation is still required for efficient H3K4 methylation, indicating that H2Bub acts after the initial recruitment of COMPASS to chromatin.
Collapse
|
41
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Meyer DN, Crofts EJ, Akemann C, Gurdziel K, Farr R, Baker BB, Weber D, Baker TR. Developmental exposure to Pb 2+ induces transgenerational changes to zebrafish brain transcriptome. CHEMOSPHERE 2020; 244:125527. [PMID: 31816550 PMCID: PMC7015790 DOI: 10.1016/j.chemosphere.2019.125527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 05/24/2023]
Abstract
Lead (Pb2+) is a major public health hazard for urban children, with profound and well-characterized developmental and behavioral implications across the lifespan. The ability of early Pb2+ exposure to induce epigenetic changes is well-established, suggesting that Pb2+-induced neurobehavioral deficits may be heritable across generations. Understanding the long-term and multigenerational repercussions of lead exposure is crucial for clarifying both the genotypic alterations behind these behavioral outcomes and the potential mechanism of heritability. To study this, zebrafish (Danio rerio) embryos (<2 h post fertilization; EK strain) were exposed for 24 h to waterborne Pb2+ at a concentration of 10 μM. This exposed F0 generation was raised to adulthood and spawned to produce the F1 generation, which was subsequently spawned to produce the F2 generation. Previous avoidance conditioning studies determined that a 10 μM Pb2+ dose resulted in learning impairments persisting through the F2 generation. RNA was extracted from control- and 10 μM Pb2+-lineage F2 brains, (n = 10 for each group), sequenced, and transcript expression was quantified utilizing Quant-Seq. 648 genes were differentially expressed in the brains of F2 lead-lineage fish versus F2 control-lineage fish. Pathway analysis revealed altered genes in processes including synaptic function and plasticity, neurogenesis, endocrine homeostasis, and epigenetic modification, all of which are implicated in lead-induced neurobehavioral deficits and/or their inheritance. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational health effects of developmental lead exposure.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Rebecca Farr
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA; Division of Laboratory Animal Resources, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Daniel Weber
- Children's Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
43
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
44
|
Tsai PH, Chien Y, Wang ML, Hsu CH, Laurent B, Chou SJ, Chang WC, Chien CS, Li HY, Lee HC, Huo TI, Hung JH, Chen CH, Chiou SH. Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Res 2019; 47:10115-10133. [PMID: 31555818 PMCID: PMC6821267 DOI: 10.1093/nar/gkz801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/31/2023] Open
Abstract
Pluripotency and cell fates can be modulated through the regulation of super-enhancers; however, the underlying mechanisms are unclear. Here, we showed a novel mechanism in which Ash2l directly binds to super-enhancers of several stemness genes to regulate pluripotency and self-renewal in pluripotent stem cells. Ash2l recruits Oct4/Sox2/Nanog (OSN) to form Ash2l/OSN complex at the super-enhancers of Jarid2, Nanog, Sox2 and Oct4, and further drives enhancer activation, upregulation of stemness genes, and maintains the pluripotent circuitry. Ash2l knockdown abrogates the OSN recruitment to all super-enhancers and further hinders the enhancer activation. In addition, CRISPRi/dCas9-mediated blocking of Ash2l-binding motifs at these super-enhancers also prevents OSN recruitment and enhancer activation, validating that Ash2l directly binds to super-enhancers and initiates the pluripotency network. Transfection of Ash2l with W118A mutation to disrupt Ash2l–Oct4 interaction fails to rescue Ash2l-driven enhancer activation and pluripotent gene upregulation in Ash2l-depleted pluripotent stem cells. Together, our data demonstrated Ash2l formed an enhancer-bound Ash2l/OSN complex that can drive enhancer activation, govern pluripotency network and stemness circuitry.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Benoit Laurent
- Boston Children's Hospital and Harvard Medical School, Boston MA 02115, USA
| | - Shih-Jie Chou
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hsin-Yang Li
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Chen Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,Section of Gastroenterology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jui-Hung Hung
- Institutes of Data Science and Engineering, and Department of computer science, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | | | - Shih-Hwa Chiou
- Department of Medical Research, Taipei VeteransGeneral Hospital, Taipei 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan.,School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
45
|
Wang Y, Yang F, Yang Q. The regulatory roles and potential prognosis implications of long non-coding RNAs in gastric cancer. Histol Histopathol 2019; 35:433-442. [PMID: 31793657 DOI: 10.14670/hh-18-188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accumulating dysregulated lncRNAs have been demonstrated to execute vital functions in the pathogenesis and progress of gastric cancer (GC) through versatile molecular mechanisms. In this review, we classify the mechanisms of dysregulated lncRNAs in GC into several governing types according to their roles at molecular level. For each regulatory role, we illustrate several instructive examples and introduce significant effects of lncRNAs on cellular biological properties of GC. Besides, we summarize a group of lncRNA-signatures that are potential biomarkers in the prediction of prognosis for GC patients.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Fan Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China.
| |
Collapse
|
46
|
PTENα and PTENβ promote carcinogenesis through WDR5 and H3K4 trimethylation. Nat Cell Biol 2019; 21:1436-1448. [DOI: 10.1038/s41556-019-0409-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
|
47
|
Kaustov L, Lemak A, Wu H, Faini M, Fan L, Fang X, Zeng H, Duan S, Allali-Hassani A, Li F, Wei Y, Vedadi M, Aebersold R, Wang Y, Houliston S, Arrowsmith CH. The MLL1 trimeric catalytic complex is a dynamic conformational ensemble stabilized by multiple weak interactions. Nucleic Acids Res 2019; 47:9433-9447. [PMID: 31400120 PMCID: PMC6755125 DOI: 10.1093/nar/gkz697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 11/14/2022] Open
Abstract
Histone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. The catalytic activity of this family is dependent on interactions with additional conserved proteins, but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering, cross-linking mass spectrometry, nuclear magnetic resonance spectroscopy and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 β-propeller domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.
Collapse
Affiliation(s)
- Lilia Kaustov
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Alexander Lemak
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Lixin Fan
- The Small-Angel X-ray Scattering Core Facility, Center for Cancer Research of National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, MD 21702, USA
| | - Xianyang Fang
- The Small-Angel X-ray Scattering Core Facility, Center for Cancer Research of National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, MD 21702, USA
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Yong Wei
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Yunxing Wang
- The Small-Angel X-ray Scattering Core Facility, Center for Cancer Research of National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, MD 21702, USA
| | - Scott Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, ON M5G 2M9, Canada
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
48
|
Zhong Y, Ye P, Mei Z, Huang S, Huang M, Li Y, Niu S, Zhao S, Cai J, Wang J, Zou H, Jiang Y, Liu J. The novel methyltransferase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages. Mol Immunol 2019; 114:179-188. [PMID: 31376731 DOI: 10.1016/j.molimm.2019.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022]
Abstract
The production of inflammatory cytokines is closely related to pathogen-associated molecular pattern (PAMP)-triggered activation of the Toll-like receptor (TLR), intracellular signal transduction pathways such as MAPK and NF-κB, and histone modifications. Histone methylation, a type of histone modifications, is mainly accomplished by a class of SET family proteins containing highly conserved SET domains. In the present study, we found that SET domain-containing protein 4 (SETD4) regulated inflammatory cytokines in response to TLR agonists. LPS stimulation led to the enhanced SETD4 expression, while the increased IL-6 and TNF-α release from LPS-stimulated RAW264.7 cells was attenuated by depletion of SETD4 using RNA interference. The results were further confirmed in BMDMs and pMφ isolated from SETD4-deficient mice where SETD4-/- macrophages treated with LPS, BLP or Poly(I:C) showed down-regulated IL-6 and TNF-α mRNA and protein levels when compared with SETD4+/+ macrophages. Moreover, the mRNA levels of all NF-κB-dependent genes including IL-1β, IL-10, NFKBA, DUSP1, CCL2, CCL5, and CXCL10 in SETD4-/- macrophages were substantially reduced. To further clarify the regulatory mechanism(s) by which SETD4 modulates inflammatory cytokines, we examined the effect of SETD4 on the activation of MAPK and NF-κB signalling pathways, and found that knockout of SETD4 had no effect on phosphorylation of p38, ERK, JNK, p65, and IκBα. Notably, SETD4 translocated quickly from the cytosol to the nucleus upon LPS stimulation, suggesting that SETD4 may exert its regulatory function downstream of the MAPK and NF-κB pathways. To characterize this, we performed an in vitro HMTase assay to measure histone methyltransferase (HMTase) activity of SETD4. H3K4me1 and H3K4me2 levels were enhanced dramatically with the supplementation of SETD4, whereas both H3K4me1 and H3K4me2 were strongly attenuated in SETD4-/- BMDMs. Moreover, the LPS-stimulated recruitment of H3K4me1 and H3K4me2 at both TNF-α and IL-6 promoters was severely impaired in SETD4-/- BMDMs. Collectively, these results demonstrate that SETD4 positively regulates IL-6 and TNF-α expression in TLR agonist-stimulated macrophages by directly activating H3K4 methylation.
Collapse
Affiliation(s)
- Yuyun Zhong
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping Ye
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhuzhong Mei
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sui Huang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengyi Huang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shixian Niu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuqi Zhao
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junwei Cai
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hequn Zou
- Institute of Nephrology and Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
49
|
Aho ER, Weissmiller AM, Fesik SW, Tansey WP. Targeting WDR5: A WINning Anti-Cancer Strategy? Epigenet Insights 2019; 12:2516865719865282. [PMID: 31360909 PMCID: PMC6640055 DOI: 10.1177/2516865719865282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
WDR5 is a component of multiple epigenetic regulatory complexes, including the mixed lineage leukemia (MLL)/SET complexes that deposit histone H3 lysine 4 methylation. Inhibitors of an arginine-binding cavity in WDR5, known as the WDR5-interaction (WIN) site, have been proposed to selectively kill MLL-rearranged malignancies via an epigenetic mechanism. We discovered potent WIN site inhibitors and found that they kill MLL cancer cells not through changes in histone methylation, but by displacing WDR5 from chromatin at protein synthesis genes, choking the translational capacity of these cells, and inducing death via a nucleolar stress response. The mechanism of action of WIN site inhibitors reveals new aspects of WDR5 function and forecasts broad therapeutic utility as anti-cancer agents.
Collapse
Affiliation(s)
- Erin R Aho
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Stephen W Fesik
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
50
|
Newton T, Allison R, Edgar JR, Lumb JH, Rodger CE, Manna PT, Rizo T, Kohl Z, Nygren AOH, Arning L, Schüle R, Depienne C, Goldberg L, Frahm C, Stevanin G, Durr A, Schöls L, Winner B, Beetz C, Reid E. Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain 2019; 141:1286-1299. [PMID: 29481671 PMCID: PMC5917785 DOI: 10.1093/brain/awy034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.
Collapse
Affiliation(s)
- Timothy Newton
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Rachel Allison
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - James R Edgar
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jennifer H Lumb
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Catherine E Rodger
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Tania Rizo
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | | | - Larissa Arning
- Department of Human Genetics, Ruhr-University, Bochum, Germany
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Christel Depienne
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France
| | - Lisa Goldberg
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Giovanni Stevanin
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Alexandra Durr
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Beate Winner
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Evan Reid
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|