1
|
Biswas B, Chattopadhyay S, Hazra S, Goswami R. Calcitriol Impairs the Secretion of IL-4 and IL-13 in Th2 Cells via Modulating the VDR-Gata3-Gfi1 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:831-842. [PMID: 39082935 DOI: 10.4049/jimmunol.2400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024]
Abstract
Calcitriol, the bioactive form of vitamin D, exerts its biological functions by binding to its cognate receptor, the vitamin D receptor (VDR). The indicators of the severity of allergies and asthma have been linked to low vitamin D levels. However, the role of calcitriol in regulating IL-4 and IL-13, two cytokines pivotal to allergic inflammation, remained unclear. Our study observed diminished IL-4 and IL-13 secretion in murine and human Th2 cells treated with calcitriol. In murine Th2 cells, Gata3 expression was attenuated by calcitriol. However, the expression of the transcriptional repressor Gfi1, too, was attenuated in the presence of calcitriol. Ectopic expression of either Gfi1 or VDR impaired the secretion of IL-13 in Th2 cells. In murine Th2 cells, VDR interacted with Gata3 but not Gfi1. Gfi1 significantly impaired Il13 promoter activation, which calcitriol failed to restore. Conversely, calcitriol augmented Gfi1 recruitment to the Il13 promoter. Ecr, a conserved region between these two genes, which enhanced the transactivation of Il4 and Il13 promoters, is essential for calcitriol-mediated suppression of both the genes. Calcitriol augmented the recruitment of VDR to the Il13 promoter and Ecr regions. Gata3 recruitment was significantly impaired at the Il13 and Ecr loci in the presence of calcitriol but increased at the Il4 promoter. Furthermore, the recruitment of the histone deacetylase HDAC1 was universally increased at the promoters of Il4, Il13, and Ecr when calcitriol was present. Together, our data clearly elucidate that calcitriol modulates VDR, Gata3, and Gfi1 to suppress IL-4 and IL-13 production in Th2 cells.
Collapse
Affiliation(s)
- Biswajit Biswas
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Shagnik Chattopadhyay
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sayantee Hazra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ritobrata Goswami
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
2
|
Mondal S, Saha S, Sur D. Immuno-metabolic reprogramming of T cell: a new frontier for pharmacotherapy of Rheumatoid arthritis. Immunopharmacol Immunotoxicol 2024; 46:330-340. [PMID: 38478467 DOI: 10.1080/08923973.2024.2330636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by ongoing inflammation primarily affecting the synovial joint. This inflammation typically arises from an increase in immune cells such as neutrophils, macrophages, and T cells (TC). TC is recognized as a major player in RA pathogenesis. The involvement of HLA-DRB1 and PTPN-2 among RA patients confirms the TC involvement in RA. Metabolism of TC is maintained by various other factors like cytokines, mitochondrial proteins & other metabolites. Different TC subtypes utilize different metabolic pathways like glycolysis, oxidative phosphorylation and fatty acid oxidation for their activation from naive TC (T0). Although all subsets of TC are not deleterious for synovium, some subsets of TC are involved in joint repair using their anti-inflammatory properties. Hence artificially reprogramming of TC subset by interfering with their metabolic status poised a hope in future to design new molecules against RA.
Collapse
Affiliation(s)
- Sourav Mondal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Sarthak Saha
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| |
Collapse
|
3
|
Dai A, Zhang X, Wang X, Liu G, Wang Q, Yu F. Transcription factors in chimeric antigen receptor T-cell development. Hum Cell 2024; 37:571-581. [PMID: 38436882 DOI: 10.1007/s13577-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
Collapse
Affiliation(s)
- Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Xie Q, Xu K, Sang Z, Luo D, Chen C, Fu W, Xue W. Allergenicity Modulation of Casein with the Modifications of Linearization, Cross-Linking, and Glycation via the Regulation of Th1/Th2 Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10031-10045. [PMID: 38629959 DOI: 10.1021/acs.jafc.3c09962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Casein (CN) is the primary allergenic protein in cow's milk, contributing to the worldwide escalating prevalence of food allergies. However, there remains limited knowledge regarding the effect of structural modifications on CN allergenicity. Herein, we prepared three modified CNs (mCN), including sodium dodecyl sulfate and dithiothreitol-induced linear CN (LCN), transglutaminase-cross-linked CN (TCN), and glucose-glycated CN (GCN). The electrophoresis results indicated widespread protein aggregation among mCN, causing variations in their molecular weights. The unique internal and external structural characteristics of mCN were substantiated by disparities in surface microstructure, alterations in the secondary structure, variations in free amino acid contents, and modifications in functional molecular groups. Despite the lower digestibility of TCN and GCN compared to LCN, they significantly suppressed IL-8 production in Caco-2 cells without significantly promoting their proliferation. Moreover, GCN showed the weakest capacity to induce LAD2 cell degranulation. Despite the therapeutic effect of TCN, GCN-treated mice displayed the most prominent attenuation of allergic reactions and a remarkably restored Th1/Th2 imbalance, while LCN administration resulted in severe allergic phenotypes and endotypes in both cellular and murine models. This study highlighted the detrimental effect of linear modifications and underscored the significance of glycation in relation to CN allergenicity.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Ke Xu
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang Province 311200, P. R. China
| | - Ziqing Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Wenhui Fu
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| |
Collapse
|
5
|
Xie Y, Peng X, Li P. MIWE: detecting the critical states of complex biological systems by the mutual information weighted entropy. BMC Bioinformatics 2024; 25:44. [PMID: 38280998 PMCID: PMC10822190 DOI: 10.1186/s12859-024-05667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Complex biological systems often undergo sudden qualitative changes during their dynamic evolution. These critical transitions are typically characterized by a catastrophic progression of the system. Identifying the critical point is critical to uncovering the underlying mechanisms of complex biological systems. However, the system may exhibit minimal changes in its state until the critical point is reached, and in the face of high throughput and strong noise data, traditional biomarkers may not be effective in distinguishing the critical state. In this study, we propose a novel approach, mutual information weighted entropy (MIWE), which uses mutual information between genes to build networks and identifies critical states by quantifying molecular dynamic differences at each stage through weighted differential entropy. The method is applied to one numerical simulation dataset and four real datasets, including bulk and single-cell expression datasets. The critical states of the system can be recognized and the robustness of MIWE method is verified by numerical simulation under the influence of different noises. Moreover, we identify two key transcription factors (TFs), CREB1 and CREB3, that regulate downstream signaling genes to coordinate cell fate commitment. The dark genes in the single-cell expression datasets are mined to reveal the potential pathway regulation mechanism.
Collapse
Affiliation(s)
- Yuke Xie
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xueqing Peng
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
6
|
Stewart EL, Counoupas C, Quan DH, Wang T, Petrovsky N, Britton WJ, Triccas JA. Lung IL-17A-Producing CD4 + T Cells Correlate with Protection after Intrapulmonary Vaccination with Differentially Adjuvanted Tuberculosis Vaccines. Vaccines (Basel) 2024; 12:128. [PMID: 38400112 PMCID: PMC10892942 DOI: 10.3390/vaccines12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, results in approximately 1.6 million deaths annually. BCG is the only TB vaccine currently in use and offers only variable protection; however, the development of more effective vaccines is hindered by a lack of defined correlates of protection (CoP) against M. tuberculosis. Pulmonary vaccine delivery is a promising strategy since it may promote lung-resident immune memory that can respond rapidly to respiratory infection. In this study, CysVac2, a subunit protein previously shown to be protective against M. tuberculosis in mouse models, was combined with either Advax® adjuvant or a mixture of alum plus MPLA and administered intratracheally into mice. Peripheral immune responses were tracked longitudinally, and lung-local immune responses were measured after challenge. Both readouts were then correlated with protection after M. tuberculosis infection. Although considered essential for the control of mycobacteria, induction of IFN-γ-expressing CD4+ T cells in the blood or lungs did not correlate with protection. Instead, CD4+ T cells in the lungs expressing IL-17A correlated with reduced bacterial burden. This study identified pulmonary IL-17A-expressing CD4+ T cells as a CoP against M. tuberculosis and suggests that mucosal immune profiles should be explored for novel CoP.
Collapse
Affiliation(s)
- Erica L. Stewart
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Diana H. Quan
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- Centre for Inflammation, School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Trixie Wang
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
| | | | - Warwick J. Britton
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - James A. Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
7
|
Kam NW, Lo AWI, Hung DTY, Ko H, Wu KC, Kwong DLW, Lam KO, Leung TW, Che CM, Lee VHF. Shift in Tissue-Specific Immune Niches and CD137 Expression in Tuberculoma of Pembrolizumab-Treated Nasopharyngeal Carcinoma Patients. Cancers (Basel) 2024; 16:268. [PMID: 38254759 PMCID: PMC10813936 DOI: 10.3390/cancers16020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) in cancer treatment has shown promise but can also have unintended consequences, such as reactivating latent tuberculosis (TB). To develop treatments that address ICIs-related adverse events, it is essential to understand cellular heterogeneity across healthy and pathological tissues. We performed cross-tissue multiplexed staining analysis on samples from two patients with TB reactivation during pembrolizumab treatment for metastatic nasopharyngeal carcinoma. CD8+ T cells, rather than CD4+ T cells, accumulated preferentially in the tuberculoma and were associated with increased production of IFNγ and expression of CD137. Additionally, CD137 enrichment played a role in the spatial organization of the tuberculoma, with specific interaction limited to spatial proximal cells between IFNγ+ CD137+ CD8+ T cells and IL12+ CD137+ type-1 macrophages. This unique feature was not observed in non-tumoral or tumoral tissues. Our analysis of public transcriptomic datasets supported the notion that this cellular interaction was more prominent in patients with durable ICI responses compared to those with non-ICI-related TB. We suggest that shifts towards CD137-rich immune niches are correlated with both off-target immune-related adverse events and anti-tumor efficacy. Targeting the tumor microenvironment through conditional activation of anti-CD137 signaling in combination with ICIs can modulate the reactivity of T cells and macrophages for localized tumor killing without the potential off-target immune-related risks associated with ICIs alone.
Collapse
Affiliation(s)
- Ngar Woon Kam
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong 999077, China;
| | | | - Desmond Tae Yang Hung
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
| | - Ho Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China;
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka Chun Wu
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong 999077, China;
| | - Dora Lai Wan Kwong
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - Ka On Lam
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| | - To Wai Leung
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
| | - Chi Ming Che
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong 999077, China;
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.W.K.); (D.T.Y.H.); (K.C.W.); (D.L.W.K.); (K.O.L.); (T.W.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
8
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
9
|
Kurita D, Shiba N, Ohya T, Murase A, Shimosato Y, Yoshitomi M, Hattori S, Sasaki K, Nishimura K, Tsujimoto SI, Takeuchi M, Tanoshima R, Kanegane H, Kitagawa N, Ito S. Severe RAS-Associated Lymphoproliferative Disease Case with Increasing αβ Double-Negative T Cells with Atypical Features. J Clin Immunol 2023; 43:1992-1996. [PMID: 37644277 DOI: 10.1007/s10875-023-01566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disease of lymphocyte homeostasis caused by FAS-mediated apoptotic pathway dysfunction and is characterized by non-malignant lymphoproliferation with an increased number of TCRαβ+CD4-CD8- double-negative T cells (αβDNTs). Conversely, RAS-associated leukoproliferative disease (RALD), which is caused by gain-of-functional somatic variants in KRAS or NRAS, is considered a group of diseases with a similar course. Herein, we present a 7-year-old Japanese female of RALD harboring NRAS variant that aggressively progressed to juvenile myelomonocytic leukemia (JMML) with increased αβDNTs. She eventually underwent hematopoietic cell transplantation due to acute respiratory distress which was caused by pulmonary infiltration of JMML blasts. In general, αβDNTs have been remarkably increased in ALPS; however, FAS pathway gene abnormalities were not observed in this case. This case with RALD had repeated shock/pre-shock episodes as the condition progressed. This shock was thought to be caused by the presence of a high number of αβDNTs. The αβDNTs observed in this case revealed high CCR4, CCR6, and CD45RO expressions, which were similar to Th17. These increased Th17-like αβDNTs have triggered the inflammation, resulting in the pathogenesis of shock, because Th17 secretes pro-inflammatory cytokines such as interleukin (IL)-17A and granulocyte-macrophage colony-stimulating factor. The presence of IL-17A-secreting αβDNTs has been reported in systemic lupus erythematosus (SLE) and Sjögren's syndrome. The present case is complicated with SLE, suggesting the involvement of Th17-like αβDNTs in the disease pathogenesis. Examining the characteristics of αβDNTs in RALD, JMML, and ALPS may reveal the pathologies in these cases.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan.
| | - Takashi Ohya
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Ayako Murase
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Yuko Shimosato
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Seira Hattori
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Koji Sasaki
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Kenichi Nishimura
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Masanobu Takeuchi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
10
|
Lyon De Ana C, Shenoy AT, Barker KA, Arafa EI, Etesami NS, Korkmaz FT, Soucy AM, Breen MP, Martin IMC, Tilton BR, Devarajan P, Crossland NA, Pihl RMF, Goltry WN, Belkina AC, Jones MR, Quinton LJ, Mizgerd JP. GL7 ligand expression defines a novel subset of CD4 + T RM cells in lungs recovered from pneumococcus. Mucosal Immunol 2023; 16:699-710. [PMID: 37604254 PMCID: PMC10591822 DOI: 10.1016/j.mucimm.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Streptococcus pneumoniae is the most common etiology of bacterial pneumonia, one of the leading causes of death in children and the elderly worldwide. During non-lethal infections with S. pneumoniae, lymphocytes accumulate in the lungs and protect against reinfection with serotype-mismatched strains. Cluster of differentiation CD4+ resident memory T (TRM) cells are known to be crucial for this protection, but the diversity of lung CD4+ TRM cells has yet to be fully delineated. We aimed to identify unique subsets and their contributions to lung immunity. After recovery from pneumococcal infections, we identified a distinct subset of CD4+ T cells defined by the phenotype CD11ahiCD69+GL7+ in mouse lungs. Phenotypic analyses for markers of lymphocyte memory and residence demonstrated that GL7+ T cells are a subset of CD4+ TRM cells. Functional studies revealed that unlike GL7- TRM subsets that were mostly (RAR-related Orphan Receptor gamma T) RORγT+, GL7+ TRM cells exhibited higher levels of (T-box expressed in T cells) T-bet and Gata-3, corresponding with increased synthesis of interferon-γ, interleukin-13, and interleukin-5, inherent to both T helper 1 (TH1) and TH2 functions. Thus, we propose that these cells provide novel contributions during pneumococcal pneumonia, serving as important determinants of lung immunity.
Collapse
Affiliation(s)
- Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Anukul T Shenoy
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly A Barker
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Emad I Arafa
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Neelou S Etesami
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Alicia M Soucy
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Michael P Breen
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Ian M C Martin
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Brian R Tilton
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Priyadharshini Devarajan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Riley M F Pihl
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Flow Cytometry Core Facility, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Wesley N Goltry
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Anna C Belkina
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Flow Cytometry Core Facility, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Matthew R Jones
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Lee J Quinton
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
12
|
Li W, Li K, He X, Jiang Y, Lan R, Hong Q, Liu Y, Chu M. ALAS1 associated with goat kidding number trait was regulated by the transcription factor ASCL2 to affect granulosa cell proliferation. Anim Genet 2023; 54:189-198. [PMID: 36632647 DOI: 10.1111/age.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.
Collapse
Affiliation(s)
- Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kunyu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Iacob S, Iacob R, Manea I, Uta M, Chiosa A, Dumbrava M, Becheanu G, Stoica L, Popa C, Brasoveanu V, Hrehoret D, Gheorghe C, Gheorghe L, Dima S, Popescu I. Host and immunosuppression-related factors influencing fibrosis occurrence post liver transplantation. Front Pharmacol 2022; 13:1042664. [PMID: 36330082 PMCID: PMC9622773 DOI: 10.3389/fphar.2022.1042664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Post liver transplantation (LT) fibrosis has a negative impact on graft function. Cytokine production in the host immune response after LT may contribute to the variable CYP3A-dependent immunosuppressive drug disposition, with subsequent impact on liver fibrogenesis, together with host-related factors. We aimed to investigate whether the cytochrome P4503A5*3 (CYP3A5*3) or TBX21 genotypes impact post-LT liver fibrogenesis. Furthermore, the impact of immunosuppressants on cellular apoptosis has been evaluated using human hepatocytes harvested from cirrhotic explanted livers. We have enrolled 98 LT recipients that were followed for occurrence of liver fibrosis for at least 12 months. There was a statistically significant higher trough level of TAC in patients with homozygous CC-TBX21 genotype (7.83 ± 2.84 ng/ml) vs. 5.66 ± 2.16 ng/ml in patients without this genotype (p = 0.009). The following variables were identified as risk factors for fibrosis ≥2: donor age (p = 0.02), neutrophil to lymphocyte ratio (p = 0.04) and TBX21 genotype CC (p = 0.009). In the cell culture model cytometry analysis has indicated the lowest apoptotic cells percentage in human cirrhotic hepatocytes cultures treated with mycophenolate mofetil (MMF) (5%) and TAC + MMF (2%) whereas the highest apoptosis percentage was registered for the TAC alone (11%). The gene expression results are concordant to cytometry study results, indicating the lowest apoptotic effect for MMF and MMF + TAC immunosuppressive regimens. The allele 1993C of the SNP rs4794067 may predispose to the development of late significant fibrosis of the liver graft. MMF-based regimens have a favourable anti-apoptotic profile in vitro, supporting its use in case of LT recipients at high risk for liver graft fibrosis.
Collapse
Affiliation(s)
- Speranta Iacob
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Ioana Manea
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
| | - Mihaela Uta
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Andrei Chiosa
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Mona Dumbrava
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Becheanu
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Luminita Stoica
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Codruta Popa
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Vlad Brasoveanu
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Doina Hrehoret
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Cristian Gheorghe
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Liana Gheorghe
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
- *Correspondence: Simona Dima,
| | - Irinel Popescu
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
14
|
Beckstette M, Lu CW, Herppich S, Diem EC, Ntalli A, Ochel A, Kruse F, Pietzsch B, Neumann K, Huehn J, Floess S, Lochner M. Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions. J Exp Med 2022; 219:213389. [PMID: 35938981 PMCID: PMC9386974 DOI: 10.1084/jem.20210663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node–derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33–mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs.
Collapse
Affiliation(s)
- Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, Bielefeld, Germany
| | - Chia-Wen Lu
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elia C Diem
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Anna Ntalli
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
15
|
Hertweck A, Vila de Mucha M, Barber PR, Dagil R, Porter H, Ramos A, Lord GM, Jenner RG. The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res 2022; 50:4557-4573. [PMID: 35438764 PMCID: PMC9071441 DOI: 10.1093/nar/gkac258] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3's sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways.
Collapse
Affiliation(s)
- Arnulf Hertweck
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Maria Vila de Mucha
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Paul R Barber
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK.,Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Robert Dagil
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Hayley Porter
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| |
Collapse
|
16
|
Lo JW, de Mucha MV, Henderson S, Roberts LB, Constable LE, Garrido‐Mesa N, Hertweck A, Stolarczyk E, Houlder EL, Jackson I, MacDonald AS, Powell N, Neves JF, Howard JK, Jenner RG, Lord GM. A population of naive-like CD4 + T cells stably polarized to the T H 1 lineage. Eur J Immunol 2022; 52:566-581. [PMID: 35092032 PMCID: PMC9304323 DOI: 10.1002/eji.202149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.
Collapse
Affiliation(s)
- Jonathan W. Lo
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Maria Vila de Mucha
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Stephen Henderson
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Luke B. Roberts
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Laura E. Constable
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Natividad Garrido‐Mesa
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- School of Life Sciences, Pharmacy and ChemistryKingston UniversityLondonUK
| | - Arnulf Hertweck
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Emilie Stolarczyk
- Abcam Plc.Cambridge Biomedical CampusCambridgeUK
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Emma L. Houlder
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Ian Jackson
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nick Powell
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Joana F. Neves
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonUK
| | - Jane K. Howard
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Richard G. Jenner
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Graham M. Lord
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
17
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Schmidt R, Steinhart Z, Layeghi M, Freimer JW, Bueno R, Nguyen VQ, Blaeschke F, Ye CJ, Marson A. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 2022; 375:eabj4008. [PMID: 35113687 DOI: 10.1126/science.abj4008] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulation of cytokine production in stimulated T cells can be disrupted in autoimmunity, immunodeficiencies, and cancer. Systematic discovery of stimulation-dependent cytokine regulators requires both loss-of-function and gain-of-function studies, which have been challenging in primary human cells. We now report genome-wide CRISPR activation (CRISPRa) and interference (CRISPRi) screens in primary human T cells to identify gene networks controlling interleukin-2 (IL-2) and interferon-γ (IFN-γ) production. Arrayed CRISPRa confirmed key hits and enabled multiplexed secretome characterization, revealing reshaped cytokine responses. Coupling CRISPRa screening with single-cell RNA sequencing enabled deep molecular characterization of screen hits, revealing how perturbations tuned T cell activation and promoted cell states characterized by distinct cytokine expression profiles. These screens reveal genes that reprogram critical immune cell functions, which could inform the design of immunotherapies.
Collapse
Affiliation(s)
- Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Madeline Layeghi
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Raymund Bueno
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vinh Q Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Franziska Blaeschke
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA 94129, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA 94129, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Jakobiec FA, Barrantes PC, Ma L, Mihm M. Epibulbar Proliferative Fasciitis, a Variant of Nodular Fasciitis: A Differential Diagnosis of Conditions With Focal or Diffuse Myxoid Stromas. Ophthalmic Plast Reconstr Surg 2021; 37:399-407. [PMID: 33481533 DOI: 10.1097/iop.0000000000001872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To describe the clinical and pathologic features of a case of epibulbar proliferative fasciitis and to compare it with other focal or diffuse myxoid lesions. METHODS A clinical, histopathologic, and immunohistochemical analysis was performed. The clinical history, photographic documentation, history, and referred slides were reanalyzed. Additional immunohistochemical stains were performed at our institution. RESULTS A 68-year-old woman developed over a week a brightly vascularized and focally hemorrhagic placoid lesion on the temporal side of the OS. She had had earlier augmentation breast surgery that had been mistakenly initially reported to us to be for breast carcinoma. Hematoxylin- and eosin-stained reactions revealed microscopically a spindle cell lesion with an intact nonkeratinizing epithelium and a background myxoid stroma with prominent capillaries and a light dispersion of small T-cell lymphocytes. Most striking among the spindle cells were some widely separated large atypical cells. The atypical cells were cytokeratin positive, but an expansive panel of immunohistochemical stains for breast carcinoma was negative. The lesion was diagnosed as proliferative fasciitis and has not recurred after 1-year follow up. CONCLUSION A rapidly evolving conjunctival lesion is unlikely to be a primary or metastatic carcinoma. In the current case, the large ganglioform or rhabdomyoblast-like cells displayed diffuse cytokeratin positivity, still consistent with a mesenchymal or connective tissue cell lineage. Cytokeratin expression has been a finding previously reported in connective tissue tumors and in lymphoma cells. While the current lesion clinically resembles a conventional nodular fasciitis, the presence of the large atypical cells can lead to the misdiagnosis of a sarcoma, which typically displays a much higher Ki-67 proliferation index in comparison with nodular/proliferative fasciitis.
Collapse
Affiliation(s)
- Frederick A Jakobiec
- David G. Cogan Laboratory of Ophthalmic Pathology, Department of Ophthalmology, Massachusetts Eye and Ear/Harvard Medical School
| | - Paula Cortes Barrantes
- David G. Cogan Laboratory of Ophthalmic Pathology, Department of Ophthalmology, Massachusetts Eye and Ear/Harvard Medical School
| | - Lina Ma
- David G. Cogan Laboratory of Ophthalmic Pathology, Department of Ophthalmology, Massachusetts Eye and Ear/Harvard Medical School
| | - Martin Mihm
- Department of Dermatopathology, Brigham and Women's Hospital, Boston, Massachusetts, U.S.A
| |
Collapse
|
20
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Curr Pharm Des 2021; 27:3949-3962. [PMID: 34102961 DOI: 10.2174/1381612827666210608143449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
One of the major health concerns in the world is the global increase in intractable bacterial infectious diseases due to the emergence of multi- and extensively drug-resistant bacterial pathogens as well as an increase in compromised hosts around the world. Particularly, in the case of mycobacteriosis, the high incidence of tuberculosis in developing countries, resurgence of tuberculosis in industrialized countries, and increase in the prevalence of Mycobacterium avium complex infections are important worldwide health concerns. However, the development of novel antimycobacterial drugs is currently making slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against refractory mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. The same situations also exist in cases of intractable infectious diseases due to common bacteria other than mycobacteria. The mild and long-term up-regulation of host immune reactions in hosts with intractable chronic bacterial infections, using herbal medicines and medicinal plants, may be beneficial for such immunoadjunctive therapy. This review describes the current status regarding basic and clinical studies on therapeutic regimens using herbal medicines, useful for the clinical treatment of patients with intractable bacterial infections. In particular, we focus on immunoadjunctive effects of herbal medicines on the establishment and manifestation of host antibacterial immunity related to the immunological roles of Th17 cell lineages.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Contemporary Psychology, Yasuda Women's University, Hiroshima, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Nutrition Administration, Yasuda Women's University, Hiroshima,, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
21
|
Corral-Jara KF, Rosas da Silva G, Fierro NA, Soumelis V. Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:675099. [PMID: 34026764 PMCID: PMC8137995 DOI: 10.3389/fcell.2021.675099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
CD4 + T cell differentiation is governed by gene regulatory and metabolic networks, with both networks being highly interconnected and able to adapt to external stimuli. Th17 and Tregs differentiation networks play a critical role in cancer, and their balance is affected by the tumor microenvironment (TME). Factors from the TME mediate recruitment and expansion of Th17 cells, but these cells can act with pro or anti-tumor immunity. Tregs cells are also involved in tumor development and progression by inhibiting antitumor immunity and promoting immunoevasion. Due to the complexity of the underlying molecular pathways, the modeling of biological systems has emerged as a promising solution for better understanding both CD4 + T cell differentiation and cancer cell behavior. In this review, we present a context-dependent vision of CD4 + T cell transcriptomic and metabolic network adaptability. We then discuss CD4 + T cell knowledge-based models to extract the regulatory elements of Th17 and Tregs differentiation in multiple CD4 + T cell levels. We highlight the importance of complementing these models with data from omics technologies such as transcriptomics and metabolomics, in order to better delineate existing Th17 and Tregs bifurcation mechanisms. We were able to recompilate promising regulatory components and mechanisms of Th17 and Tregs differentiation under normal conditions, which we then connected with biological evidence in the context of the TME to better understand CD4 + T cell behavior in cancer. From the integration of mechanistic models with omics data, the transcriptomic and metabolomic reprograming of Th17 and Tregs cells can be predicted in new models with potential clinical applications, with special relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Karla F. Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, PSL Research University, Paris, France
| | | | - Nora A. Fierro
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vassili Soumelis
- Université de Paris, INSERM U976, France and AP-HP, Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|
22
|
Kuca-Warnawin E, Janicka I, Bonek K, Kontny E. Modulatory Impact of Adipose-Derived Mesenchymal Stem Cells of Ankylosing Spondylitis Patients on T Helper Cell Differentiation. Cells 2021; 10:cells10020280. [PMID: 33573252 PMCID: PMC7912699 DOI: 10.3390/cells10020280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The domination of pro-inflammatory Th subsets (Th1, Th17) is characteristic of ankylosing spondylitis (AS). Mesenchymal stem cells (MSC) were reported to normalize Th imbalance, but whether MSCs from AS adipose tissue (AS/ASCs) possess such properties is unknown. We examined AS/ASCs' impact on Th-cell differentiation, using healthy donors ASCs (HD/ASCs) as a control. The assessment of the expression of transcription factors defining Th1 (T-bet), Th2 (GATA3), Th17 (RORc), and Treg (FoxP3) subsets by quantitative RT-PCR, the concentrations of subset-specific cytokines by ELISA, and Treg (CD4+CD25highFoxP3+) formation by flow cytometry, were performed in the co-cultures of ASCs with activated CD4+ T cells or peripheral blood mononuclear cells (PBMCs). AS/ASCs and HD/ASCs exerted similar immunomodulatory effects. Acting directly on CD4+ T cells, ASCs decreased the T-bet/GATA3 and RORc/FoxP3 ratios, diminished Treg formation, but increase IFNγ and IL-17AF production, while ASCs co-cultured with PBMCs enhanced Treg generation and reduced IFNγ release. ASCs failed to up-regulate the anti-inflammatory IL-10 and TGFβ. AS/ASCs' impact on allogeneic and autologous PBMCs was similar. In conclusion, to shift Th differentiation to a functional anti-inflammatory direction, ASCs require accessory cell support, whereas their direct effect may be pro-inflammatory. Because ASCs neither inhibit IL-17AF nor up-regulate anti-inflammatory cytokines, their usefulness for AS patients' treatment remains uncertain.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (I.J.); (E.K.)
- Correspondence: ; Tel.: +48-22-6-709-260
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (I.J.); (E.K.)
| | - Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland;
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (I.J.); (E.K.)
| |
Collapse
|
23
|
Multiplex Immunofluorescence Histology for Immune Cell Infiltrates in Melanoma-Associated Tertiary Lymphoid Structures. Methods Mol Biol 2021; 2265:573-587. [PMID: 33704741 DOI: 10.1007/978-1-0716-1205-7_40] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presence of tertiary lymphoid structures (TLS) is correlated with prolonged patient survival in a variety of solid cancers, including melanoma. However, few methods have been described that could enable a more comprehensive understanding of the organization and functionality of TLS in solid cancers. In this chapter, we describe multiplex immunohistochemistry and microscopy approaches for identifying, characterizing, and quantifying TLS and intra-tumoral immune infiltrates in melanoma. The described methods are not limited to melanoma alone and could be used to evaluate tertiary lymphoid structures in a wide variety of human cancers.
Collapse
|
24
|
Abplanalp WT, Cremer S, John D, Hoffmann J, Schuhmacher B, Merten M, Rieger MA, Vasa-Nicotera M, Zeiher AM, Dimmeler S. Clonal Hematopoiesis-Driver DNMT3A Mutations Alter Immune Cells in Heart Failure. Circ Res 2020; 128:216-228. [PMID: 33155517 DOI: 10.1161/circresaha.120.317104] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Clonal hematopoiesis driven by mutations of DNMT3A (DNA methyltransferase 3a) is associated with increased incidence of cardiovascular disease and poor prognosis of patients with chronic heart failure (HF) and aortic stenosis. Although experimental studies suggest that DNMT3A clonal hematopoiesis-driver mutations may enhance inflammation, specific signatures of inflammatory cells in humans are missing. OBJECTIVE To define subsets of immune cells mediating inflammation in humans using single-cell RNA sequencing. METHODS AND RESULTS Transcriptomic profiles of peripheral blood mononuclear cells were analyzed in n=6 patients with HF harboring DNMT3A clonal hematopoiesis-driver mutations and n=4 patients with HF and no DNMT3A mutations by single-cell RNA sequencing. Monocytes of patients with HF carrying DNMT3A mutations demonstrated a significantly increased expression of inflammatory genes compared with monocytes derived from patients with HF without DNMT3A mutations. Among the specific upregulated genes were the prototypic inflammatory IL (interleukin) IL1B (interleukin 1B), IL6, IL8, the inflammasome NLRP3, and the macrophage inflammatory proteins CCL3 and CCL4 as well as resistin, which augments monocyte-endothelial adhesion. Silencing of DNMT3A in monocytes induced a paracrine proinflammatory activation and increased adhesion to endothelial cells. Furthermore, the classical monocyte subset of DNMT3A mutation carriers showed increased expression of T-cell stimulating immunoglobulin superfamily members CD300LB, CD83, SIGLEC12, as well as the CD2 ligand and cell adhesion molecule CD58, all of which may be involved in monocyte-T-cell interactions. DNMT3A mutation carriers were further characterized by increased expression of the T-cell alpha receptor constant chain and changes in T helper cell 1, T helper cell 2, T helper cell 17, CD8+ effector, CD4+ memory, and regulatory T-cell-specific signatures. CONCLUSIONS This study demonstrates that circulating monocytes and T cells of patients with HF harboring clonal hematopoiesis-driver mutations in DNMT3A exhibit a highly inflamed transcriptome, which may contribute to the aggravation of chronic HF.
Collapse
Affiliation(s)
- Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration and Cardiopulmonary Institute, Goethe University, Frankfurt (W.T.A., D.J., B.S., M.M., S.D.).,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main (W.T.A., A.M.Z., S.D.)
| | - Sebastian Cremer
- Department of Medicine, Cardiology (S.C., J.H., M.V.-N., A.M.Z.), Goethe University Hospital, Frankfurt
| | - David John
- Institute for Cardiovascular Regeneration and Cardiopulmonary Institute, Goethe University, Frankfurt (W.T.A., D.J., B.S., M.M., S.D.)
| | - Jedrzej Hoffmann
- Department of Medicine, Cardiology (S.C., J.H., M.V.-N., A.M.Z.), Goethe University Hospital, Frankfurt
| | - Bianca Schuhmacher
- Institute for Cardiovascular Regeneration and Cardiopulmonary Institute, Goethe University, Frankfurt (W.T.A., D.J., B.S., M.M., S.D.)
| | - Maximillian Merten
- Institute for Cardiovascular Regeneration and Cardiopulmonary Institute, Goethe University, Frankfurt (W.T.A., D.J., B.S., M.M., S.D.)
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology (M.A.R.), Goethe University Hospital, Frankfurt.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg (M.A.R.).,Frankfurt Cancer Institute (M.A.R.)
| | - Mariuca Vasa-Nicotera
- Department of Medicine, Cardiology (S.C., J.H., M.V.-N., A.M.Z.), Goethe University Hospital, Frankfurt
| | - Andreas M Zeiher
- Institute for Cardiovascular Regeneration and Cardiopulmonary Institute, Goethe University, Frankfurt (W.T.A., D.J., B.S., M.M., S.D.).,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main (W.T.A., A.M.Z., S.D.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration and Cardiopulmonary Institute, Goethe University, Frankfurt (W.T.A., D.J., B.S., M.M., S.D.).,German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main (W.T.A., A.M.Z., S.D.)
| |
Collapse
|
25
|
Duddu AS, Sahoo S, Hati S, Jhunjhunwala S, Jolly MK. Multi-stability in cellular differentiation enabled by a network of three mutually repressing master regulators. J R Soc Interface 2020; 17:20200631. [PMID: 32993428 DOI: 10.1098/rsif.2020.0631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying the design principles of complex regulatory networks driving cellular decision-making remains essential to decode embryonic development as well as enhance cellular reprogramming. A well-studied network motif involved in cellular decision-making is a toggle switch-a set of two opposing transcription factors A and B, each of which is a master regulator of a specific cell fate and can inhibit the activity of the other. A toggle switch can lead to two possible states-(high A, low B) and (low A, high B)-and drives the 'either-or' choice between these two cell fates for a common progenitor cell. However, the principles of coupled toggle switches remain unclear. Here, we investigate the dynamics of three master regulators A, B and C inhibiting each other, thus forming three-coupled toggle switches to form a toggle triad. Our simulations show that this toggle triad can lead to co-existence of cells into three differentiated 'single positive' phenotypes-(high A, low B, low C), (low A, high B, low C) and (low A, low B, high C). Moreover, the hybrid or 'double positive' phenotypes-(high A, high B, low C), (low A, high B, high C) and (high A, low B, high C)-can coexist together with 'single positive' phenotypes. Including self-activation loops on A, B and C can increase the frequency of 'double positive' states. Finally, we apply our results to understand cellular decision-making in terms of differentiation of naive CD4+ T cells into Th1, Th2 and Th17 states, where hybrid Th1/Th2 and hybrid Th1/Th17 cells have been reported in addition to the Th1, Th2 and Th17 ones. Our results offer novel insights into the design principles of a multi-stable network topology and provide a framework for synthetic biology to design tristable systems.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,UG Programme, Indian Institute of Science, Bangalore, India
| | - Souvadra Hati
- UG Programme, Indian Institute of Science, Bangalore, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
DiNardo AR, Rajapakshe K, Nishiguchi T, Grimm SL, Mtetwa G, Dlamini Q, Kahari J, Mahapatra S, Kay A, Maphalala G, Mace EM, Makedonas G, Cirillo JD, Netea MG, van Crevel R, Coarfa C, Mandalakas AM. DNA hypermethylation during tuberculosis dampens host immune responsiveness. J Clin Invest 2020; 130:3113-3123. [PMID: 32125282 PMCID: PMC7260034 DOI: 10.1172/jci134622] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) has coevolved with humans for millennia and developed multiple mechanisms to evade host immunity. Restoring host immunity in order to improve outcomes and potentially shorten existing therapy will require identification of the full complement by which host immunity is inhibited. Perturbation of host DNA methylation is a mechanism induced by chronic infections such as HIV, HPV, lymphocytic choriomeningitis virus (LCMV), and schistosomiasis to evade host immunity. Here, we evaluated the DNA methylation status of patients with tuberculosis (TB) and their asymptomatic household contacts and found that the patients with TB have DNA hypermethylation of the IL-2/STAT5, TNF/NF-κB, and IFN-γ signaling pathways. We performed methylation-sensitive restriction enzyme-quantitative PCR (MSRE-qPCR) and observed that multiple genes of the IL-12/IFN-γ signaling pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1, and JAK2) were hypermethylated in patients with TB. The DNA hypermethylation of these pathways was associated with decreased immune responsiveness with decreased mitogen-induced upregulation of IFN-γ, TNF, IL-6, CXCL9, CXCL10, and IL-1β production. The DNA hypermethylation of the IL-12/IFN-γ pathway was associated with decreased IFN-γ-induced gene expression and decreased IL-12-inducible upregulation of IFN-γ. This study demonstrates that immune cells from patients with TB are characterized by DNA hypermethylation of genes critical to mycobacterial immunity resulting in decreased mycobacteria-specific and nonspecific immune responsiveness.
Collapse
Affiliation(s)
- Andrew R. DiNardo
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Kimal Rajapakshe
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tomoki Nishiguchi
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Godwin Mtetwa
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | - Qiniso Dlamini
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | | | - Sanjana Mahapatra
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Kay
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | | | - Emily M. Mace
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | | | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Anna M. Mandalakas
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 2020; 20:323-342. [PMID: 32249838 DOI: 10.1038/s41568-020-0247-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.
Collapse
MESH Headings
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Humans
- Immunotherapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Molecular Targeted Therapy
- Mutation
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
29
|
Śledzińska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, Akarca AU, Marzolini MAV, Solomon I, Vargas FA, Pule M, Ono M, Seddon B, Kassiotis G, Ariyan CE, Korn T, Marafioti T, Lord GM, Stauss H, Jenner RG, Peggs KS, Quezada SA. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4 + T Cells. Immunity 2020; 52:151-166.e6. [PMID: 31924474 PMCID: PMC7369640 DOI: 10.1016/j.immuni.2019.12.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 09/30/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Maria Vila de Mucha
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Regulatory Genomics Research Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Katharina Bergerhoff
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Alastair Hotblack
- Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Dafne Franz Demane
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Ehsan Ghorani
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospital, London NW1 2BU, UK
| | - Maria A V Marzolini
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Isabelle Solomon
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Frederick Arce Vargas
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Martin Pule
- Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK
| | - Masahiro Ono
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London SW7 2BB, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Department of Immunology, Royal Free Hospital, London NW3 2PF, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charlotte E Ariyan
- Memorial Sloan Kettering Center, 1275 York Avenue, New York, NY 10065, USA
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospital, London NW1 2BU, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Hans Stauss
- Institute of Immunity and Transplantation, Department of Immunology, Royal Free Hospital, London NW3 2PF, UK
| | - Richard G Jenner
- Regulatory Genomics Research Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK.
| | - Sergio A Quezada
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Research Department of Haematology, University College London, Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
30
|
Bhardwaj S, Rani S, Kumaran MS, Bhatia A, Parsad D. Expression of Th17- and Treg-specific transcription factors in vitiligo patients. Int J Dermatol 2020; 59:474-481. [PMID: 31909498 DOI: 10.1111/ijd.14766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vitiligo is mainly considered an autoimmune skin disease as the number of IL-17 producing Th17 cells, involved in the development of autoimmune and inflammatory pathologies, increased in vitiligo skin. T regulatory cells (Tregs) seem to be altered during the disease. Thus, there must be some upstream molecular factors that regulate the cellular response to apoptotic and inflammatory stimuli. OBJECTIVES To investigate the expression of Th17- and Treg-specific transcription factors in PBMCs and to evaluate the correlation between these transcription factors and cytokines in vitiligo patients. METHODS We investigated 30 active NSV patients for Th17- and Treg-specific transcription factors RORγt (retinoic acid-related orphan receptor gamma t), FOXP3 (forkhead/winged helix), HELIOS, EOS, and IRF4 (Interferon Regulatory Factor 4) as well as apoptotic marker NALP1 (NACHT-leucine-rich-repeat protein 1) in PBMCs with RT-qPCR. Immunostaining was done for transcription factors and cytokines on skin sections. RESULTS The mRNA level of FOXP3 was significantly lower in patients (0.76 fold, P < 0.001), whereas RORγt was slight but not significantly increased (0.76 fold, P = 0.06). Furthermore, NALP1 in lymphocytes was found to be increased in patients (0.69 fold, P < 0.01). The immunostaining results revealed increased expression of RORγ, IL-17A, NALP1, and IL-1β in vitiligo skin when compared to normal healthy skin. CONCLUSION Reduced FOXP3/RORγt mRNA ratio suggests thriving of the Th17 cell population in PBMCs of vitiligo patients. Increased NALP1 levels indicate the existence of an apoptotic phenomenon which correlates with the increased expression of IL-1β in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Seema Rani
- Department of Zoology, Punjab University, Chandigarh, India.,Department of Zoology, Hindu Girls College, Sonepat, India
| | - Muthu S Kumaran
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
31
|
Intracellular Energy Variability Modulates Cellular Decision-Making Capacity. Sci Rep 2019; 9:20196. [PMID: 31882965 PMCID: PMC6934696 DOI: 10.1038/s41598-019-56587-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cells generate phenotypic diversity both during development and in response to stressful and changing environments, aiding survival. Functionally vital cell fate decisions from a range of phenotypic choices are made by regulatory networks, the dynamics of which rely on gene expression and hence depend on the cellular energy budget (and particularly ATP levels). However, despite pronounced cell-to-cell ATP differences observed across biological systems, the influence of energy availability on regulatory network dynamics is often overlooked as a cellular decision-making modulator, limiting our knowledge of how energy budgets affect cell behaviour. Here, we consider a mathematical model of a highly generalisable, ATP-dependent, decision-making regulatory network, and show that cell-to-cell ATP variability changes the sets of decisions a cell can make. Our model shows that increasing intracellular energy levels can increase the number of supported stable phenotypes, corresponding to increased decision-making capacity. Model cells with sub-threshold intracellular energy are limited to a singular phenotype, forcing the adoption of a specific cell fate. We suggest that energetic differences between cells may be an important consideration to help explain observed variability in cellular decision-making across biological systems.
Collapse
|
32
|
Chen D, Yang Y, Yang P. Quxie Capsule Inhibits Colon Tumor Growth Partially Through Foxo1-Mediated Apoptosis and Immune Modulation. Integr Cancer Ther 2019; 18:1534735419846377. [PMID: 31030593 PMCID: PMC6488785 DOI: 10.1177/1534735419846377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Quxie capsule (QX), a herbal remedy used in traditional Chinese medicine, is routinely used in advanced colorectal cancer treatment in Xiyuan Hospital in Beijing, China. However, the mechanism(s) underlying the effect of QX in colorectal cancer remain unclear, which hampers the optimal use of QX for the treatment of the disease. The transcription factor forkhead box O1 (Foxo1) plays important roles in regulation of cell cycle, apoptosis, and immune response in various cancers. In this study, we examined the antitumor efficacy of QX in a mouse model of colorectal cancer and further investigated the mechanism by which QX regulated Foxo1 protein-mediated pathways. QX administered via gavage daily for 2 weeks in mice carrying CT26 mouse colon tumors resulted in significantly lower mean tumor weight (0.93 ± 0.32 g) compared with that in vehicle control-treated mice (1.57 ± 0.57 g, P <.05). Foxo1 protein expression in tumors was also higher in the QX group than that in the vehicle control group. Furthermore, QX treatment upregulated apoptotic proteins such as Fas, Bim, and cleaved caspase-3 in tumor tissue compared with those in the vehicle control group. Intriguingly, the ratios of Th1/Th2 and Th17/Treg cells and levels of T-bet protein (the key regulator of Th1 and Th2 cells) were higher while the level of Foxp3 (the key regulator of Treg cells) was lower in QX-treated mice compared to vehicle control mice, revealing that Foxo1 upregulated T-bet and downregulated Foxp3 and induced a shift in immune balance. This shift could be critical in the antitumor efficacy of QX. Furthermore, knocking down Foxo1 in human colon cancer HCT116 cells partially blocked the effect of QX-elicited antiproliferative activity. Together, these results suggest that QX exerts antitumor activity in CT26 mouse colon cancer model partially mediated by Foxo1-induced apoptosis and antitumor immune response.
Collapse
Affiliation(s)
- Dongmei Chen
- 1 Beijing University of Chinese Medicine, Beijing, China.,2 The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,3 Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufei Yang
- 3 Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiying Yang
- 2 The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Abstract
Specification of multipotent blood precursor cells in postnatal mice to become committed T-cell precursors involves a gene regulatory network of several interacting but functionally distinct modules. Many links of this network have been defined by perturbation tests and by functional genomics. However, using the network model to predict real-life kinetics of the commitment process is still difficult, partly due to the tenacity of repressive chromatin states, and to the ability of transcription factors to affect each other's binding site choices through competitive recruitment to alternative sites ("coregulator theft"). To predict kinetics, future models will need to incorporate mechanistic information about chromatin state change dynamics and more sophisticated understanding of the proteomics and cooperative DNA site choices of transcription factor complexes.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
34
|
CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Semin Cell Dev Biol 2019; 96:32-43. [PMID: 31112800 DOI: 10.1016/j.semcdb.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Recent developments in the nucleic acid editing technologies have provided a powerful tool to precisely engineer the genome and epigenome for studying many aspects of immune cell differentiation and development as well as several immune mediated diseases (IMDs) including autoimmunity and cancer. Here, we discuss the recent technological achievements of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based RNA-guided genome and epigenome editing toolkit and provide an insight into how CRISPR/Cas9 (CRISPR Associated Protein 9) toolbox could be used to examine genetic and epigenetic mechanisms underlying IMDs. In addition, we will review the progress in CRISPR/Cas9-based genome-wide genome and epigenome screens in various cell types including immune cells. Finally, we will discuss the potential of CRISPR/Cas9 in defining the molecular function of disease associated SNPs overlapping gene regulatory elements.
Collapse
|
35
|
Lyadova I, Nikitina I. Cell Differentiation Degree as a Factor Determining the Role for Different T-Helper Populations in Tuberculosis Protection. Front Immunol 2019; 10:972. [PMID: 31134070 PMCID: PMC6517507 DOI: 10.3389/fimmu.2019.00972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficient tuberculosis (TB) control depends on early TB prediction and prevention. Solution to these tasks requires knowledge of TB protection correlates (TB CoPs), i.e., laboratory markers that are mechanistically involved in the protection and which allow to determine how well an individual is protected against TB or how efficient the candidate TB vaccine is. The search for TB CoPs has been largely focused on different T-helper populations, however, the data are controversial, and no reliable CoPs are still known. Here we discuss the role of different T-helper populations in TB protection focusing predominantly on Th17, “non-classical” Th1 (Th1*) and “classical” Th1 (cTh1) populations. We analyze how these populations differ besides their effector activity and suggest the hypothesis that: (i) links the protective potential of Th17, Th1*, and cTh1 to their differentiation degree and plasticity; (ii) implies different roles of these populations in response to vaccination, latent TB infection (LTBI), and active TB. One of the clinically relevant outcomes of this hypothesis is that over-stimulating T cells during vaccination and biasing T cell response toward the preferential generation of Th1 are not beneficial. The review sheds new light on the problem of TB CoPs and will help develop better strategies for TB control.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina Nikitina
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
36
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
37
|
Thude H, Tiede P, Sterneck M, Nashan B, Koch M. Impact of TBX21, GATA3, and FOXP3 gene polymorphisms on acute cellular rejection after liver transplantation. HLA 2019; 93:97-101. [PMID: 30614205 DOI: 10.1111/tan.13458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
The single nucleotide polymorphisms (SNPs) rs4794067, rs2275806, rs2232365, and rs3761548 map in the genes of TBX21, GATA3, and FOXP3 involved in mediating acute cellular rejection. We investigated whether these SNPs are associated with acute cellular liver transplant rejection. The SNPs were analyzed in recipients with early acute cellular rejection (n = 97), recipients with late acute cellular rejection (n = 49), and recipients without rejection (n = 149). There was no association between acute cellular rejection and SNPs rs4794067, rs2275806, and rs2232365. In contrast, the allele -3279A of FOXP3 SNP rs3761548 exhibited a higher frequency in recipients with late acute cellular rejection as compared with recipients without rejection. This result indicates that the allele -3279A of the SNP rs3761548 may predispose to the development of late acute cellular rejection.
Collapse
Affiliation(s)
- Hansjörg Thude
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Hamburg, Germany
| | - Petra Tiede
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Hamburg, Germany
| | - Martina Sterneck
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Hamburg, Germany
| | - Björn Nashan
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Hamburg, Germany
| | - Martina Koch
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Hamburg, Germany
| |
Collapse
|
38
|
Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and Epigenetic Regulation of Effector and Memory CD8 T Cell Differentiation. Front Immunol 2018; 9:2826. [PMID: 30581433 PMCID: PMC6292868 DOI: 10.3389/fimmu.2018.02826] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Immune protection and lasting memory are accomplished through the generation of phenotypically and functionally distinct CD8 T cell subsets. Understanding how these effector and memory T cells are formed is the first step in eventually manipulating the immune system for therapeutic benefit. In this review, we will summarize the current understanding of CD8 T cell differentiation upon acute infection, with a focus on the transcriptional and epigenetic regulation of cell fate decision and memory formation. Moreover, we will highlight the importance of high throughput sequencing approaches and single cell technologies in providing insight into genome-wide investigations and the heterogeneity of individual CD8 T cells.
Collapse
Affiliation(s)
- Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ryan Zander
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| |
Collapse
|
39
|
Etesam Z, Nemati M, Ebrahimizadeh MA, Ebrahimi HA, Hajghani H, Khalili T, Jafarzadeh A. Different Expressions of Specific Transcription Factors of Th1 ( T-bet) and Th2 cells ( GATA-3) by Peripheral Blood Mononuclear Cells From Patients With Multiple Sclerosis. Basic Clin Neurosci 2018; 9:458-469. [PMID: 30719260 PMCID: PMC6359686 DOI: 10.32598/bcn.9.6.458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/20/2017] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction: Multiple Sclerosis (MS) is an inflammatory disorder caused by self-reactive Th1 lymphocytes, while Th2 cells may confer protection. The Th1 and Th2 cell differentiation are regulated by specific transcription factors, especially T-bet and GATA-3, respectively. This investigation aimed to measure the T-bet and GATA-3 expression by Peripheral Blood Mononuclear Cells (PBMCs) obtained from MS patients after specific and non-specific in vitro stimulation. Methods: The PBMCs were separated from 22 patients with MS and 20 healthy individuals. They were cultured at 37°C for 24 h in the absence of a stimulator or in the presence of Myelin oligodendrocyte Glycoprotein (MOG) or Phytohemagglutinin (PHA) at a concentration of 10 μg/mL. Then the T-bet and GATA-3 expression was measured by real time-PCR. Results: The T-bet expression was enhanced, while the GATA-3 expression diminished. Therefore the expression of T-bet/GATA-3 ratio diminished in not-stimulated, MOG-stimulated and PHA-stimulated PBMCs from MS patients compared with equal cultures from the healthy individuals (P<0.01, P<0.01 and P<0.01, for T-bet; P<0.03, P<0.01 and P<0.02, for GATA-3; P<0.01, P<0.001 and P<0.01 for T-bet/GATA-3 ratio, respectively). The not-stimulated, MOG-stimulated, and PHA-stimulated PBMCs from men with MS expressed higher amounts of GATA-3 than equal cells from MS women (P<0.05, P<0.05 and P<0.01, respectively). Conclusion: These results probably indicate an imbalance in Th1/Th2 cells in the level of transcription factors with a tendency toward Th1 cells in MS. The clinical utilization of the transcription factors as novel biomarkers of MS should be evaluated in further studies.
Collapse
Affiliation(s)
- Zahra Etesam
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medical, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Hossain Hajghani
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Khalili
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medical, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
40
|
Puniya BL, Todd RG, Mohammed A, Brown DM, Barberis M, Helikar T. A Mechanistic Computational Model Reveals That Plasticity of CD4 + T Cell Differentiation Is a Function of Cytokine Composition and Dosage. Front Physiol 2018; 9:878. [PMID: 30116195 PMCID: PMC6083813 DOI: 10.3389/fphys.2018.00878] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
CD4+ T cells provide cell-mediated immunity in response to various antigens. During an immune response, naïve CD4+ T cells differentiate into specialized effector T helper (Th1, Th2, and Th17) cells and induced regulatory (iTreg) cells based on a cytokine milieu. In recent studies, complex phenotypes resembling more than one classical T cell lineage have been experimentally observed. Herein, we sought to characterize the capacity of T cell differentiation in response to the complex extracellular environment. We constructed a comprehensive mechanistic (logical) computational model of the signal transduction that regulates T cell differentiation. The model's dynamics were characterized and analyzed under 511 different environmental conditions. Under these conditions, the model predicted the classical as well as the novel complex (mixed) T cell phenotypes that can co-express transcription factors (TFs) related to multiple differentiated T cell lineages. Analyses of the model suggest that the lineage decision is regulated by both compositions and dosage of signals that constitute the extracellular environment. In this regard, we first characterized the specific patterns of extracellular environments that result in novel T cell phenotypes. Next, we predicted the inputs that can regulate the transition between the canonical and complex T cell phenotypes in a dose-dependent manner. Finally, we predicted the optimal levels of inputs that can simultaneously maximize the activity of multiple lineage-specifying TFs and that can drive a phenotype toward one of the co-expressed TFs. In conclusion, our study provides new insights into the plasticity of CD4+ T cell differentiation, and also acts as a tool to design testable hypotheses for the generation of complex T cell phenotypes by various input combinations and dosages.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Robert G Todd
- Department of Natural and Applied Sciences, Mount Mercy University, Cedar Rapids, IA, United States
| | - Akram Mohammed
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Molecular Cell Physiology, VU University Amsterdam, Amsterdam, Netherlands
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
41
|
Shankar EM, Vignesh R, Dash AP. Recent advances on T-cell exhaustion in malaria infection. Med Microbiol Immunol 2018; 207:167-174. [PMID: 29936565 DOI: 10.1007/s00430-018-0547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
T-cell exhaustion reportedly leads to dysfunctional immune responses of antigen-specific T cells. Investigations have revealed that T cells expand into functionally defective phenotypes with poor recall/memory abilities to parasitic antigens. The exploitation of co-inhibitory pathways represent a highly viable area of translational research that has very well been utilized against certain cancerous conditions. Malaria, at times, evolve into a sustained chronic state where T cells express several co-inhibitory molecules (negative immune checkpoints) facilitating parasite escape and sub-optimal protective responses. Experimental evidence suggests that blockade of co-inhibitory molecules on T cells in malaria could result in the sustenance of protective responses together with dramatic parasite clearance. The role of several co-inhibitory molecules in malaria infection largely remain unclear, and here we discussed the potential applicability of co-inhibitory molecules in the management of malaria with a view to harness protective host responses against chronic disease and associated consequences.
Collapse
Affiliation(s)
- Esaki M Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences (DLS), School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India.
| | - R Vignesh
- Laboratory-Based Department, Universiti Kuala Lumpur Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Malaysia
| | - A P Dash
- Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India
| |
Collapse
|
42
|
Transcription regulatory factor expression in T-helper cell differentiation pathway in eutopic endometrial tissue samples of women with endometriosis associated with infertility. Cent Eur J Immunol 2018; 43:90-96. [PMID: 29736151 PMCID: PMC5927178 DOI: 10.5114/ceji.2018.74878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Endometriosis is a disease of epidemiological gravity of unknown primary reason. A complex of constitutional factors including the immune system has been considered as its background. The aim of the study was to identify Th1 and Th2 cells as well as the T-regulatory subset in the endometrium of women with endometriosis associated with infertility upon transcription factors expression. Expression of T-bet, GATA3, and Foxp3 genes was examined using a method of polymerase chain reaction (PCR) in the eutopic endometrial samples of 20 women with endometriosis associated with infertility and 20 women with infertility of tubal origin. An increase in mRNA expression for T-bet and GATA3 with prevailing mRNA level for T-bet and a decrease in Foxp3 expression were observed. In conclusion, the revealed changes in expression of transcription factors may indicate the imbalance between T-helper cells of the Th1 and Th2 type and elimination of regulatory function of T-cells, which can be one of the causes of endometriosis predisposing to the development of infertility associated with this disease.
Collapse
|
43
|
Franchina DG, Grusdat M, Brenner D. B-Cell Metabolic Remodeling and Cancer. Trends Cancer 2018; 4:138-150. [DOI: 10.1016/j.trecan.2017.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/31/2023]
|
44
|
Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 2017; 15:206-215. [PMID: 29151578 DOI: 10.1038/cmi.2017.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The lack of an effective preventative vaccine against tuberculosis (TB) presents a great challenge to TB control. Since it takes an extremely long time to accurately determine the protective efficacy of TB vaccines, there is a great need to identify the surrogate signatures of protection to facilitate vaccine development. Unfortunately, antigen-specific Th1 cytokines that are currently used to evaluate the protective efficacy of the TB vaccine, do not align with the protection and failure of TB vaccine candidates in clinical trials. In this review, we discuss the limitation of current Th1 cytokines as surrogates of protection and address the potential elements that should be considered to finalize the true functional signatures of protective immunity against TB.
Collapse
Affiliation(s)
- Gucheng Zeng
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guoliang Zhang
- Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong 518112, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
45
|
14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in T C2 and CD8 + lymphocytes from patients with scleroderma. J Allergy Clin Immunol 2017; 142:109-119.e6. [PMID: 29155097 DOI: 10.1016/j.jaci.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/27/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13-producing CD8+ T cells have been implicated in the pathogenesis of type 2-driven inflammatory human conditions. We have shown that CD8+IL-13+ cells play a critical role in cutaneous fibrosis, the most characteristic feature of systemic sclerosis (SSc; scleroderma). However, the molecular mechanisms underlying production of IL-13 and other type 2 cytokines by CD8+ T cells remain unclear. OBJECTIVE We sought to establish the molecular basis of IL-13 overproduction by CD8+ T cells from patients with SSc, focusing on T-bet modulation of GATA-3 activity, which we showed to underlie IL-13 overproduction in CD8+IL-13+ cells from patients with SSc. METHODS Biochemical and biophysical methods were used to determine the expression and association of T-bet, GATA-3, and regulatory factors in CD8+ T cells isolated from the blood and lesional skin of patients with SSc with severe skin thickening. Chromatin immunoprecipitation analysis determined GATA-3 binding to the IL-13 promoter. ImageStream analysis and confocal microscopy visualized the subcellular localization of T-bet and GATA-3. Transcript levels were decreased by small interfering RNAs. RESULTS Interaction of T-bet with the adaptor protein 14-3-3z in the cytosol of CD8+ T cells from patients with SSc reduces T-bet translocation into the nucleus and its ability to associate with GATA-3, allowing more GATA-3 to bind to the IL-13 promoter and inducing IL-13 upregulation. Strikingly, we show that this mechanism is also found during type 2 polarization of CD8+ T cells (TC2) from healthy donors. CONCLUSIONS We identified a novel molecular mechanism underlying type 2 cytokine production by CD8+ T cells, revealing a more complete picture of the complex pathway leading to SSc disease pathogenesis.
Collapse
|
46
|
Jakovljevic M, Lavrnja I, Bozic I, Savic D, Bjelobaba I, Pekovic S, Sévigny J, Nedeljkovic N, Laketa D. Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis. Front Cell Neurosci 2017; 11:333. [PMID: 29163045 PMCID: PMC5670145 DOI: 10.3389/fncel.2017.00333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset ( Eo ), peak ( Ep ) and recovery ( Er ) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er . The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5'-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4- cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4- cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling.
Collapse
Affiliation(s)
- Marija Jakovljevic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Iva Bozic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Ivana Bjelobaba
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Qiu YY, Zhang YW, Qian XF, Bian T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res 2017; 9:3184-3199. [PMID: 28804539 PMCID: PMC5553871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4+ T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4+ T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4+ T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.
Collapse
Affiliation(s)
- Yu-Ying Qiu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNo. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Ying-Wei Zhang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNo. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Xiu-Fen Qian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityNo. 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityNo. 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| |
Collapse
|
48
|
Safdari V, Alijani E, Nemati M, Jafarzadeh A. Imbalances in T Cell-Related Transcription Factors Among Patients with Hashimoto's Thyroiditis. Sultan Qaboos Univ Med J 2017; 17:e174-e180. [PMID: 28690889 DOI: 10.18295/squmj.2016.17.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Imbalances in effector T cell functioning have been associated with a number of autoimmune diseases, including Hashimoto's thyroiditis (HT). Differentiation of effector T helper (Th) 1, Th2, Th17 and regulatory T cell (Treg) lymphocytes is regulated by transcription factors, including Th1-specific T box (T-bet), GATA binding protein-3 (GATA3), retinoid-related orphan receptor (ROR)-α and forkhead box P3 (FOXP3). This study aimed to investigate Th1/Th2, Th1/Treg, Th2/Treg and Th17/Treg balances at the level of these transcription factors. METHODS This study took place between October 2015 and August 2016. Peripheral blood mononuclear cells were collected from a control group of 40 healthy women recruited from the Zahedan University of Medical Sciences, Zahedan, Iran, and a patient group of 40 women with HT referred to the Hazrat Ali Asghar Hospital, Zahedan. Total ribonucleic acid extraction was performed and the gene expression of transcription factors was quantitated using a real-time polymerase chain reaction technique. RESULTS Expression of T-bet and GATA3 was significantly elevated, while FOXP3 expression was significantly diminished among HT patients in comparison with the controls (P = 0.03, 0.01 and 0.05, respectively). Expression of RORα was higher among HT patients, although this difference was not significant (P = 0.15). Expression of T-bet/FOXP3, GATA3/FOXP3 and RORα/FOXP3 ratios were increased among HT patients in comparison with the controls (P <0.02, <0.01 and <0.01, respectively). CONCLUSION These results indicate that HT patients have imbalances in Th1/Treg, Th2/Treg and Th17/Treg lymphocytes at the level of the transcription factors, deviating towards Th1, Th2 and Th17 cells. Correction of these imbalances may therefore be therapeutic.
Collapse
Affiliation(s)
- Vahid Safdari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Alijani
- Department of Immunology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
49
|
Abstract
The interleukin-17 (IL-17) family cytokines, such as IL-17A and IL-17F, play
important protective roles in host immune response to a variety of infections
such as bacterial, fungal, parasitic, and viral. The IL-17R signaling and
downstream pathways mediate induction of proinflammatory molecules which
participate in control of these pathogens. However, the production of IL-17 can
also mediate pathology and inflammation associated with infections. In this
review, we will discuss the yin-and-yang roles of IL-17 in host immunity to
pathogens.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| | - Shabaana Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
50
|
Phetsouphanh C, Xu Y, Munier ML, Zaunders JJ, Kelleher AD. Single-cell profiling of lineage determining transcription factors in antigen-specific CD4 + T cells reveals unexpected complexity in recall responses during immune reconstitution. Immunol Cell Biol 2017; 95:640-646. [PMID: 28485382 PMCID: PMC5550558 DOI: 10.1038/icb.2017.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Recent studies of protein and gene expression at the single-cell level have revealed that the memory T-cell compartment is more heterogeneous than previously acknowledged. Identifying different T helper subsets involved in memory responses at the single-cell level is thus necessary to understand the level of heterogeneity within this population. Antigen-specific CD4+ T cells were measured using the CD25/OX40 assay together with a qualitative multiplex single-cell RT-PCR assay. Transcription profiles and subset proportions within the antigen-specific CD4+ T-cell population were dissected. Cytomegalovirus (CMV)-specific CD4+ T-cell responses skewed toward a Th1 response, whereas Tetanus toxoid responses skewed toward a Th2 type response. Fluctuations in CD4+ T-cell subsets were observed within the HIV-Gag-specific response during ongoing antiretroviral therapy. Strong effector responses (Th1) were observed in early treatment, however with ongoing therapy this effector response significantly decreased in combination with an increase in Tregs and circulating Tfh-like BCL-6+ memory cells. The apparent increase in Tcm in peripheral blood after a several weeks of antiretroviral therapy may be due to Tfh-like cell egress from germinal centers into the periphery.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Kensington, New South Wales, Australia
| | - Yin Xu
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Kensington, New South Wales, Australia
| | - Mee Ling Munier
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Kensington, New South Wales, Australia
| | - John J Zaunders
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Kensington, New South Wales, Australia.,Centre for Applied Medical Research, St Vicent's Hospital, Sydney, Australia
| | - Anthony D Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Kensington, New South Wales, Australia.,Centre for Applied Medical Research, St Vicent's Hospital, Sydney, Australia
| |
Collapse
|