1
|
Xin K, Wei X, Shao J, Chen F, Liu Q, Liu B. Establishment of a novel tumor neoantigen prediction tool for personalized vaccine design. Hum Vaccin Immunother 2024; 20:2300881. [PMID: 38214336 DOI: 10.1080/21645515.2023.2300881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
The personalized neoantigen nanovaccine (PNVAC) platform for patients with gastric cancer we established previously exhibited promising anti-tumor immunoreaction. However, limited by the ability of traditional neoantigen prediction tools, a portion of epitopes failed to induce specific immune response. In order to filter out more neoantigens to optimize our PNVAC platform, we develop a novel neoantigen prediction model, NUCC. This prediction tool trained through a deep learning approach exhibits better neoantigen prediction performance than other prediction tools, not only in two independent epitope datasets, but also in a totally new epitope dataset we construct from scratch, including 25 patients with advance gastric cancer and 150 candidate mutant peptides, 13 of which prove to be neoantigen by immunogenicity test in vitro. Our work lay the foundation for the improvement of our PNVAC platform for gastric cancer in the future.
Collapse
Affiliation(s)
- Kai Xin
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiao Wei
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Fangjun Chen
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qin Liu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Liu X, Jin W, Bao D, He T, Wang W, Li Z, Yang X, Tong Y, Shu M, Wang Y, Yuan J, Yang Y. DIPAN: Detecting personalized intronic polyadenylation derived neoantigens from RNA sequencing data. Comput Struct Biotechnol J 2024; 23:2057-2066. [PMID: 38783901 PMCID: PMC11112131 DOI: 10.1016/j.csbj.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Intronic polyadenylation (IPA) refers to a particular type of alternative polyadenylation where a gene makes use of a polyadenylation site located within its introns. Aberrant IPA events have been observed in various types of cancer. IPA can produce noncoding transcripts or truncated protein-coding transcripts with altered coding sequences in the resulting protein product. Therefore, IPA events hold the potential to act as a reservoir of tumor neoantigens. Here, we developed a computational method termed DIPAN, which incorporates IPA detection, protein fragmentation, and MHC binding prediction to predict IPA-derived neoantigens. Utilizing RNA-seq from breast cancer cell lines and ovarian cancer clinical samples, we demonstrated the significant contribution of IPA events to the neoantigen repertoire. Through mass spectrometry immunopeptidome analysis, we further illustrated the processing and presentation of IPA-derived neoantigens on the surface of cancer cells. While most IPA-derived neoantigens are sample-specific, shared neoantigens were identified in both cancer cell lines and clinical samples. Furthermore, we demonstrated an association between IPA-derived neoantigen burden and overall survival in cancer patients.
Collapse
Affiliation(s)
- Xiaochuan Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wen Jin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dengyi Bao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tongxin He
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenhui Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zekun Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoxiao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Tong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Meng Shu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Li S, Peng L, Chen L, Que L, Kang W, Hu X, Ma J, Di Z, Liu Y. Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8164-8175. [PMID: 39466714 DOI: 10.1021/acs.jcim.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Lu Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Hu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Ma
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
4
|
Michalewicz K, Barahona M, Bravi B. ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning. Structure 2024:S0969-2126(24)00436-2. [PMID: 39461331 DOI: 10.1016/j.str.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network model that achieves state-of-the-art performance in the prediction of antibody binding affinity using as input a representation of antibody-antigen structures in terms of normal mode correlation maps derived from elastic network models. This representation captures not only structural features but energetic patterns of local and global residue fluctuations. The learnt representations are interpretable: they reveal similarities of binding patterns among antibodies targeting the same antigen type, and can be used to quantify the importance of antibody regions contributing to binding affinity. Our results show the importance of the antigen imprint in the normal mode landscape, and the dominance of cooperative effects and long-range correlations between antibody regions to determine binding affinity.
Collapse
Affiliation(s)
- Kevin Michalewicz
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Barbara Bravi
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Asediya VS, Anjaria PA, Mathakiya RA, Koringa PG, Nayak JB, Bisht D, Fulmali D, Patel VA, Desai DN. Vaccine development using artificial intelligence and machine learning: A review. Int J Biol Macromol 2024; 282:136643. [PMID: 39426778 DOI: 10.1016/j.ijbiomac.2024.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The COVID-19 pandemic has underscored the critical importance of effective vaccines, yet their development is a challenging and demanding process. It requires identifying antigens that elicit protective immunity, selecting adjuvants that enhance immunogenicity, and designing delivery systems that ensure optimal efficacy. Artificial intelligence (AI) can facilitate this process by using machine learning methods to analyze large and diverse datasets, suggest novel vaccine candidates, and refine their design and predict their performance. This review explores how AI can be applied to various aspects of vaccine development, such as predicting immune response from protein sequences, discovering adjuvants, optimizing vaccine doses, modeling vaccine supply chains, and predicting protein structures. We also address the challenges and ethical issues that emerge from the use of AI in vaccine development, such as data privacy, algorithmic bias, and health data sensitivity. We contend that AI has immense potential to accelerate vaccine development and respond to future pandemics, but it also requires careful attention to the quality and validity of the data and methods used.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepanker Bisht
- Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | | |
Collapse
|
6
|
Rosignoli S, Pacelli M, Manganiello F, Paiardini A. An outlook on structural biology after AlphaFold: tools, limits and perspectives. FEBS Open Bio 2024. [PMID: 39313455 DOI: 10.1002/2211-5463.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
AlphaFold and similar groundbreaking, AI-based tools, have revolutionized the field of structural bioinformatics, with their remarkable accuracy in ab-initio protein structure prediction. This success has catalyzed the development of new software and pipelines aimed at incorporating AlphaFold's predictions, often focusing on addressing the algorithm's remaining challenges. Here, we present the current landscape of structural bioinformatics shaped by AlphaFold, and discuss how the field is dynamically responding to this revolution, with new software, methods, and pipelines. While the excitement around AI-based tools led to their widespread application, it is essential to acknowledge that their practical success hinges on their integration into established protocols within structural bioinformatics, often neglected in the context of AI-driven advancements. Indeed, user-driven intervention is still as pivotal in the structure prediction process as in complementing state-of-the-art algorithms with functional and biological knowledge.
Collapse
Affiliation(s)
- Serena Rosignoli
- Department of Biochemical sciences "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Maddalena Pacelli
- Department of Biochemical sciences "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Francesca Manganiello
- Department of Biochemical sciences "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Alessandro Paiardini
- Department of Biochemical sciences "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| |
Collapse
|
7
|
Deng Q, Wang Z, Xiang S, Wang Q, Liu Y, Hou T, Sun H. RLpMIEC: High-Affinity Peptide Generation Targeting Major Histocompatibility Complex-I Guided and Interpreted by Interaction Spectrum-Navigated Reinforcement Learning. J Chem Inf Model 2024; 64:6432-6449. [PMID: 39118363 DOI: 10.1021/acs.jcim.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Major histocompatibility complex (MHC) plays a vital role in presenting epitopes (short peptides from pathogenic proteins) to T-cell receptors (TCRs) to trigger the subsequent immune responses. Vaccine design targeting MHC generally aims to find epitopes with a high binding affinity for MHC presentation. Nevertheless, to find novel epitopes usually requires high-throughput screening of bulk peptide database, which is time-consuming, labor-intensive, more unaffordable, and very expensive. Excitingly, the past several years have witnessed the great success of artificial intelligence (AI) in various fields, such as natural language processing (NLP, e.g., GPT-4), protein structure prediction and engineering (e.g., AlphaFold2), and so on. Therefore, herein, we propose a deep reinforcement-learning (RL)-based generative algorithm, RLpMIEC, to quantitatively design peptide targeting MHC-I systems. Specifically, RLpMIEC combines the energetic spectrum (namely, the molecular interaction energy component, MIEC) based on the peptide-MHC interaction and the sequence information to generate peptides with strong binding affinity and precise MIEC spectra to accelerate the discovery of candidate peptide vaccines. RLpMIEC performs well in all the generative capability evaluations and can generate peptides with strong binding affinities and precise MIECs and, moreover, with high interpretability, demonstrating its powerful capability in participation for accelerating peptide-based vaccine development.
Collapse
Affiliation(s)
- Qirui Deng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Qinghua Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Yifei Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| |
Collapse
|
8
|
Bialves TS, Bastos LL, Parra JAA, Moysés MN, Marques E, de Castro Pimenta AM, Quintela FM, Mariano DCB, Carvalho FC, de Melo-Minardi RC, Boyle RT. Interaction of DisBa01 peptide from Bothrops alternatus venom with BRAF melanoma receptors: Modeling and molecular docking. Int J Biol Macromol 2024; 274:133283. [PMID: 38909731 DOI: 10.1016/j.ijbiomac.2024.133283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Luana Luiza Bastos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Alexanders Amaya Parra
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício Nogueira Moysés
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edleusa Marques
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Marques Quintela
- Instituto Nacional de Pesquisas do Pantanal- Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, Pará, Brazil
| | - Diego César Batista Mariano
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Chaves Carvalho
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel C de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Tew Boyle
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Deka H, Pawar A, Battula M, Ghfar AA, Assal ME, Chikhale RV. Identification and Design of Novel Potential Antimicrobial Peptides Targeting Mycobacterial Protein Kinase PknB. Protein J 2024; 43:858-868. [PMID: 39014259 PMCID: PMC11345320 DOI: 10.1007/s10930-024-10218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Antimicrobial peptides have gradually gained advantages over small molecule inhibitors for their multifunctional effects, synthesising accessibility and target specificity. The current study aims to determine an antimicrobial peptide to inhibit PknB, a serine/threonine protein kinase (STPK), by binding efficiently at the helically oriented hinge region. A library of 5626 antimicrobial peptides from publicly available repositories has been prepared and categorised based on the length. Molecular docking using ADCP helped to find the multiple conformations of the subjected peptides. For each peptide served as input the tool outputs 100 poses of the subjected peptide. To maintain an efficient binding for relatively a longer duration, only those peptides were chosen which were seen to bind constantly to the active site of the receptor protein over all the poses observed. Each peptide had different number of constituent amino acid residues; the peptides were classified based on the length into five groups. In each group the peptide length incremented upto four residues from the initial length form. Five peptides were selected for Molecular Dynamic simulation in Gromacs based on higher binding affinity. Post-dynamic analysis and the frame comparison inferred that neither the shorter nor the longer peptide but an intermediate length of 15 mer peptide bound well to the receptor. Residual substitution to the selected peptides was performed to enhance the targeted interaction. The new complexes considered were further analysed using the Elastic Network Model (ENM) for the functional site's intrinsic dynamic movement to estimate the new peptide's role. The study sheds light on prospects that besides the length of peptides, the combination of constituent residues equally plays a pivotal role in peptide-based inhibitor generation. The study envisages the challenges of fine-tuned peptide recovery and the scope of Machine Learning (ML) and Deep Learning (DL) algorithm development. As the study was primarily meant for generation of therapeutics for Tuberculosis (TB), the peptide proposed by this study demands meticulous invitro analysis prior to clinical applications.
Collapse
Affiliation(s)
- Hemchandra Deka
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India
| | - Atul Pawar
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India
| | - Monishka Battula
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune, India
| | - Ayman A Ghfar
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed E Assal
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, Brunswick Square, London, UK.
| |
Collapse
|
10
|
Cai Y, Li D, Lv D, Yu J, Ma Y, Jiang T, Ding N, Liu Z, Li Y, Xu J. MHC-I-presented non-canonical antigens expand the cancer immunotherapy targets in acute myeloid leukemia. Sci Data 2024; 11:831. [PMID: 39090129 PMCID: PMC11294462 DOI: 10.1038/s41597-024-03660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Identification of tumor neoantigens is indispensable for the development of cancer immunotherapies. However, we are still lacking knowledge about the potential neoantigens derived from sequences outside protein-coding regions. Here, we comprehensively characterized the immunopeptidome landscape by integrating multi-omics data in acute myeloid leukemia (AML). Both canonical and non-canonical MHC-associated peptides (MAPs) in AML were identified. We found that the quality and characteristics of ncMAPs are comparable or superior to cMAPs, suggesting ncMAPs are indispensable sources for tumor neoantigens. We further proposed a computational framework to prioritize the neoantigens by integrating additional transcriptome and immunopeptidome in normal tissues. Notably, 6 of prioritized 13 neoantigens were derived from ncMAPs. The expressions of corresponding source genes are highly related to infiltrations of immune cells. Finally, a risk model was developed, which exhibited good performance for clinical prognosis in AML. Our findings expand potential cancer immunotherapy targets and provide in-depth insights into AML treatment, laying a new foundation for precision therapies in AML.
Collapse
Affiliation(s)
- Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Donghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Jiaxin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zhigang Liu
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Guangzhou, China.
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
11
|
Rocha LGDN, Guimarães PAS, Carvalho MGR, Ruiz JC. Tumor Neoepitope-Based Vaccines: A Scoping Review on Current Predictive Computational Strategies. Vaccines (Basel) 2024; 12:836. [PMID: 39203962 PMCID: PMC11360805 DOI: 10.3390/vaccines12080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Therapeutic cancer vaccines have been considered in recent decades as important immunotherapeutic strategies capable of leading to tumor regression. In the development of these vaccines, the identification of neoepitopes plays a critical role, and different computational methods have been proposed and employed to direct and accelerate this process. In this context, this review identified and systematically analyzed the most recent studies published in the literature on the computational prediction of epitopes for the development of therapeutic vaccines, outlining critical steps, along with the associated program's strengths and limitations. A scoping review was conducted following the PRISMA extension (PRISMA-ScR). Searches were performed in databases (Scopus, PubMed, Web of Science, Science Direct) using the keywords: neoepitope, epitope, vaccine, prediction, algorithm, cancer, and tumor. Forty-nine articles published from 2012 to 2024 were synthesized and analyzed. Most of the identified studies focus on the prediction of epitopes with an affinity for MHC I molecules in solid tumors, such as lung carcinoma. Predicting epitopes with class II MHC affinity has been relatively underexplored. Besides neoepitope prediction from high-throughput sequencing data, additional steps were identified, such as the prioritization of neoepitopes and validation. Mutect2 is the most used tool for variant calling, while NetMHCpan is favored for neoepitope prediction. Artificial/convolutional neural networks are the preferred methods for neoepitope prediction. For prioritizing immunogenic epitopes, the random forest algorithm is the most used for classification. The performance values related to the computational models for the prediction and prioritization of neoepitopes are high; however, a large part of the studies still use microbiome databases for training. The in vitro/in vivo validations of the predicted neoepitopes were verified in 55% of the analyzed studies. Clinical trials that led to successful tumor remission were identified, highlighting that this immunotherapeutic approach can benefit these patients. Integrating high-throughput sequencing, sophisticated bioinformatics tools, and rigorous validation methods through in vitro/in vivo assays as well as clinical trials, the tumor neoepitope-based vaccine approach holds promise for developing personalized therapeutic vaccines that target specific tumor cancers.
Collapse
Affiliation(s)
- Luiz Gustavo do Nascimento Rocha
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Paul Anderson Souza Guimarães
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Maria Gabriela Reis Carvalho
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Jeronimo Conceição Ruiz
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
12
|
Machaca V, Goyzueta V, Cruz MG, Sejje E, Pilco LM, López J, Túpac Y. Transformers meets neoantigen detection: a systematic literature review. J Integr Bioinform 2024; 21:jib-2023-0043. [PMID: 38960869 PMCID: PMC11377031 DOI: 10.1515/jib-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.
Collapse
Affiliation(s)
| | | | | | - Erika Sejje
- Universidad Nacional de San Agustín, Arequipa, Perú
| | | | | | - Yván Túpac
- 187038 Universidad Católica San Pablo , Arequipa, Perú
| |
Collapse
|
13
|
Bulashevska A, Nacsa Z, Lang F, Braun M, Machyna M, Diken M, Childs L, König R. Artificial intelligence and neoantigens: paving the path for precision cancer immunotherapy. Front Immunol 2024; 15:1394003. [PMID: 38868767 PMCID: PMC11167095 DOI: 10.3389/fimmu.2024.1394003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Alla Bulashevska
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Zsófia Nacsa
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Franziska Lang
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Markus Braun
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Machyna
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Liam Childs
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
Mösch A, Grazioli F, Machart P, Malone B. NeoAgDT: optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population. Bioinformatics 2024; 40:btae205. [PMID: 38614133 PMCID: PMC11076149 DOI: 10.1093/bioinformatics/btae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024] Open
Abstract
MOTIVATION Neoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity. RESULTS Here, we present NeoAgDT, a two-step approach consisting of: (i) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (ii) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally validated neoantigens over ranking-based approaches in a study of seven patients. AVAILABILITY AND IMPLEMENTATION The NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.
Collapse
Affiliation(s)
- Anja Mösch
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Filippo Grazioli
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Pierre Machart
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Brandon Malone
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| |
Collapse
|
15
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
16
|
Samudrala M, Dhaveji S, Savsani K, Dakshanamurthy S. AutoEpiCollect, a Novel Machine Learning-Based GUI Software for Vaccine Design: Application to Pan-Cancer Vaccine Design Targeting PIK3CA Neoantigens. Bioengineering (Basel) 2024; 11:322. [PMID: 38671743 PMCID: PMC11048108 DOI: 10.3390/bioengineering11040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Previous epitope-based cancer vaccines have focused on analyzing a limited number of mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts are required to diversify the selection of mutated epitopes tailored to cancers with different genetic signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI software, capable of generating safe and immunogenic epitopes from missense mutations in any oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting missense mutations found in the proto-oncogene PIK3CA, which encodes the p110ɑ catalytic subunit of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread prevalence as an oncokinase across various cancer types and its lack of presence as a gene target in clinical trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, we identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes targeting 11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we employed PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further construct 3D models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope binding potential and TCR interactions. Future studies could aim to validate AutoEpiCollect's vaccine design in murine models affected by PIK3CA-mutated or other mutated tumor cells located in various tissue types. AutoEpiCollect streamlines the preclinical vaccine development process, saving time for thorough testing of vaccinations in experimental trials.
Collapse
Affiliation(s)
- Madhav Samudrala
- College of Arts and Sciences, The University of Virginia, Charlottesville, VA 22903, USA
| | | | - Kush Savsani
- College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 22043, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
17
|
Fasoulis R, Rigo MM, Lizée G, Antunes DA, Kavraki LE. APE-Gen2.0: Expanding Rapid Class I Peptide-Major Histocompatibility Complex Modeling to Post-Translational Modifications and Noncanonical Peptide Geometries. J Chem Inf Model 2024; 64:1730-1750. [PMID: 38415656 PMCID: PMC10936522 DOI: 10.1021/acs.jcim.3c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Mauricio M. Rigo
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Gregory Lizée
- Department
of Melanoma Medical Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Dinler A. Antunes
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77004, United States
| | - Lydia E. Kavraki
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Fasoulis R, Rigo MM, Antunes DA, Paliouras G, Kavraki LE. Transfer learning improves pMHC kinetic stability and immunogenicity predictions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2024; 13:100030. [PMID: 38577265 PMCID: PMC10994007 DOI: 10.1016/j.immuno.2023.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Mauricio Menegatti Rigo
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Dinler Amaral Antunes
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd, Houston, 77004, TX, United States
| | - Georgios Paliouras
- Institute of Informatics and Telecommunications, NCSR Demokritos, Patr. Gregoriou E and 27 Neapoleos St, Athens, 15341, Greece
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| |
Collapse
|
19
|
Farzan R. Artificial intelligence in Immuno-genetics. Bioinformation 2024; 20:29-35. [PMID: 38352901 PMCID: PMC10859949 DOI: 10.6026/973206300200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Rapid advancements in the field of artificial intelligence (AI) have opened up unprecedented opportunities to revolutionize various scientific domains, including immunology and genetics. Therefore, it is of interest to explore the emerging applications of AI in immunology and genetics, with the objective of enhancing our understanding of the dynamic intricacies of the immune system, disease etiology, and genetic variations. Hence, the use of AI methodologies in immunological and genetic datasets, thereby facilitating the development of innovative approaches in the realms of diagnosis, treatment, and personalized medicine is reviewed.
Collapse
Affiliation(s)
- Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Scienecs, King Saud University, Riyadh - 11433, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh - 11433, Saudi Arabia
- Medical and Molecular Genetics Research, King Saud University, Riyadh-11433, Saudi Arabia
| |
Collapse
|
20
|
Purohit K, Reddy N, Sunna A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int J Mol Sci 2024; 25:1391. [PMID: 38338676 PMCID: PMC10855437 DOI: 10.3390/ijms25031391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Bioactive peptides, specific protein fragments with positive health effects, are gaining traction in drug development for advantages like enhanced penetration, low toxicity, and rapid clearance. This comprehensive review navigates the intricate landscape of peptide science, covering discovery to functional characterization. Beginning with a peptidomic exploration of natural sources, the review emphasizes the search for novel peptides. Extraction approaches, including enzymatic hydrolysis, microbial fermentation, and specialized methods for disulfide-linked peptides, are extensively covered. Mass spectrometric analysis techniques for data acquisition and identification, such as liquid chromatography, capillary electrophoresis, untargeted peptide analysis, and bioinformatics, are thoroughly outlined. The exploration of peptide bioactivity incorporates various methodologies, from in vitro assays to in silico techniques, including advanced approaches like phage display and cell-based assays. The review also discusses the structure-activity relationship in the context of antimicrobial peptides (AMPs), ACE-inhibitory peptides (ACEs), and antioxidative peptides (AOPs). Concluding with key findings and future research directions, this interdisciplinary review serves as a comprehensive reference, offering a holistic understanding of peptides and their potential therapeutic applications.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
| | - Narsimha Reddy
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- School of Science, Parramatta Campus, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
21
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
22
|
Li G, Mahajan S, Ma S, Jeffery ED, Zhang X, Bhattacharjee A, Venkatasubramanian M, Weirauch MT, Miraldi ER, Grimes HL, Sheynkman GM, Tilburgs T, Salomonis N. Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci Transl Med 2024; 16:eade2886. [PMID: 38232136 PMCID: PMC11517820 DOI: 10.1126/scitranslmed.ade2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Immunotherapy has emerged as a crucial strategy to combat cancer by "reprogramming" a patient's own immune system. Although immunotherapy is typically reserved for patients with a high mutational burden, neoantigens produced from posttranscriptional regulation may provide an untapped reservoir of common immunogenic targets for new targeted therapies. To comprehensively define tumor-specific and likely immunogenic neoantigens from patient RNA-Seq, we developed Splicing Neo Antigen Finder (SNAF), an easy-to-use and open-source computational workflow to predict splicing-derived immunogenic MHC-bound peptides (T cell antigen) and unannotated transmembrane proteins with altered extracellular epitopes (B cell antigen). This workflow uses a highly accurate deep learning strategy for immunogenicity prediction (DeepImmuno) in conjunction with new algorithms to rank the tumor specificity of neoantigens (BayesTS) and to predict regulators of mis-splicing (RNA-SPRINT). T cell antigens from SNAF were frequently evidenced as HLA-presented peptides from mass spectrometry (MS) and predict response to immunotherapy in melanoma. Splicing neoantigen burden was attributed to coordinated splicing factor dysregulation. Shared splicing neoantigens were found in up to 90% of patients with melanoma, correlated to overall survival in multiple cancer cohorts, induced T cell reactivity, and were characterized by distinct cells of origin and amino acid preferences. In addition to T cell neoantigens, our B cell focused pipeline (SNAF-B) identified a new class of tumor-specific extracellular neoepitopes, which we termed ExNeoEpitopes. ExNeoEpitope full-length mRNA predictions were tumor specific and were validated using long-read isoform sequencing and in vitro transmembrane localization assays. Therefore, our systematic identification of splicing neoantigens revealed potential shared targets for therapy in heterogeneous cancers.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
| | - Shweta Mahajan
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Siyuan Ma
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Erin D. Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, VA 22903
| | - Xuan Zhang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45229
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Emily R. Miraldi
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Gloria M. Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, VA 22903
| | - Tamara Tilburgs
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
23
|
Zhao M, Xu SX, Yang Y, Yuan M. GGNpTCR: A Generative Graph Structure Neural Network for Predicting Immunogenic Peptides for T-cell Immune Response. J Chem Inf Model 2023; 63:7557-7567. [PMID: 37990917 DOI: 10.1021/acs.jcim.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Identifying the interactions between T-cell receptor (TCRs) and human antigens is a crucial step in developing new vaccines, diagnostics, and immunotherapy. Current methods primarily focus on learning binding patterns from known TCR binding repertoires by using sequence information alone without considering the binding specificity of new antigens or exogenous peptides that have not appeared in the training set. Furthermore, the spatial structure of antigens plays a critical role in immune studies and immunotherapy, which should be addressed properly in the identification of interacting TCR-antigen pairs. In this study, we introduced a novel deep learning framework based on generative graph structures, GGNpTCR, for predicting interactions between TCR and peptides from sequence information. Results of real data analysis indicate that our model achieved excellent prediction for new antigens unseen in the training data set, making significant improvements compared to existing methods. We also applied the model to a large COVID-19 data set with no antigens in the training data set, and the improvement was also significant. Furthermore, through incorporation of additional supervised mechanisms, GGNpTCR demonstrated the ability to precisely forecast the locations of peptide-TCR interactions within 3D configurations. This enhancement substantially improved the model's interpretability. In summary, based on the performance on multiple data sets, GGNpTCR has made significant progress in terms of performance, universality, and interpretability.
Collapse
Affiliation(s)
- Minghua Zhao
- Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China
| | - Steven X Xu
- Genmab US, Inc., Princeton, New Jersey 08540, United States
| | - Yaning Yang
- Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China
| | - Min Yuan
- School of Public Health Administration, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
24
|
Ye Y, Shen Y, Wang J, Li D, Zhu Y, Zhao Z, Pan Y, Wang Y, Liu X, Wan J. SIGANEO: Similarity network with GAN enhancement for immunogenic neoepitope prediction. Comput Struct Biotechnol J 2023; 21:5538-5543. [PMID: 38034402 PMCID: PMC10681954 DOI: 10.1016/j.csbj.2023.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Target selection of the personalized cancer neoantigen vaccine, which is highly dependent on computational prediction algorithms, is crucial for its clinical efficacy. Due to the limited number of experimentally validated immunogenic neoepitopes as well as the complexity of neoantigens in eliciting T cell response, the accuracy of neoepitope immunogenicity prediction methods requires persistent efforts for improvement. We present a deep learning framework for neoepitope immunogenicity prediction - SIGANEO by integrating GAN-like network with similarity network to address issues of missing values and limited data concerning neoantigen prediction. This framework exhibits superior performance over competing machine-learning-based neoantigen prediction algorithms over an independent test dataset from TESLA consortium. Particularly for the clinical setting of neoantigen vaccine where only the top 10 and 20 predictions are selected for vaccine production, SIGANEO achieves significantly better accuracy for predicting experimentally validated neoepitopes. Our work demonstrates that deep learning techniques can greatly boost the accuracy of target identification for cancer neoantigen vaccine.
Collapse
Affiliation(s)
- Yilin Ye
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Yiming Shen
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Jian Wang
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Dong Li
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Yu Zhu
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Zhao Zhao
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Youdong Pan
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Yi Wang
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| | - Xing Liu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Wan
- Shenzhen Neocura Biotechnology Co. Ltd., Shenzhen 518055, China
| |
Collapse
|
25
|
Ahmad B, Achek A, Farooq M, Choi S. Accelerated NLRP3 inflammasome-inhibitory peptide design using a recurrent neural network model and molecular dynamics simulations. Comput Struct Biotechnol J 2023; 21:4825-4835. [PMID: 37854633 PMCID: PMC10579963 DOI: 10.1016/j.csbj.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Anomalous NLRP3 inflammasome responses have been linked to multiple health issues, including but not limited to atherosclerosis, diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disease. Thus, targeting NLRP3 and modulating its associated immune response might be a promising strategy for developing new anti-inflammatory drugs. Herein, we report a computational method for de novo peptide design for targeting NLRP3 inflammasomes. The described method leverages a long-short-term memory (LSTM) network based on a recurrent neural network (RNN) to model a valuable latent space of molecules. The resulting classifiers are utilized to guide the selection of molecules generated by the model based on circular dichroism spectra and physicochemical features derived from high-throughput molecular dynamics simulations. Of the experimentally tested sequences, 60% of the peptides showed NLRP3-mediated inhibition of IL-1β and IL-18. One peptide displayed high potency against NLRP3-mediated IL-1β inhibition. However, NLRC4 and AIM2 inflammasome-mediated IL-1β secretion was uninterrupted by this peptide, demonstrating its selectivity toward the NLRP3 inflammasome. Overall, these results indicate that deep learning and molecular dynamics can accelerate the discovery of NLRP3 inhibitors with potent and selective activity.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Technology Development Platform, Institut Pasteur Korea, Seongnam 13488, Soouth Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| |
Collapse
|
26
|
Lee CH, Huh J, Buckley PR, Jang M, Pinho MP, Fernandes RA, Antanaviciute A, Simmons A, Koohy H. A robust deep learning workflow to predict CD8 + T-cell epitopes. Genome Med 2023; 15:70. [PMID: 37705109 PMCID: PMC10498576 DOI: 10.1186/s13073-023-01225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell epitopes have emerged. Despite recent developments, most immunogenicity algorithms struggle to learn features of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-specific CD8 + T-cell epitopes. METHODS We developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learning workflow for predicting CD8 + T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses transfer learning, deep learning architecture and MHC binding information to make context-specific predictions of CD8 + T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoantigens and tumour-associated antigens), as a complementary to 'dissimilarity to self' from cancer studies. RESULTS TRAP was used to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it outperformed other algorithms in both cancer and pathogenic settings. TRAP was especially effective at extracting immunogenicity-associated properties from restricted data of emerging pathogens and translating them onto related species, as well as minimising the loss of likely epitopes in imbalanced datasets. We also demonstrated that the novel metric termed RSAT was able to estimate immunogenic of pathogenic peptides of various lengths and species. TRAP implementation is available at: https://github.com/ChloeHJ/TRAP . CONCLUSIONS This study presents a novel computational workflow for accurately predicting CD8 + T-cell epitopes to foster a better understanding of antigen-specific T-cell response and the development of effective clinical therapeutics.
Collapse
Affiliation(s)
- Chloe H Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaesung Huh
- Visual Geometry Group, Department of Engineering Science, University of Oxford, Oxford, OX2 6NN, UK
| | - Paul R Buckley
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Myeongjun Jang
- Intelligent Systems Lab, Department of Computer Science, University of Oxford, Oxford, OX1 3QG, UK
| | - Mariana Pereira Pinho
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | - Agne Antanaviciute
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Alan Turning Fellow in Health and Medicine, The Alan Turing Institute, London, UK.
| |
Collapse
|
27
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
28
|
Nibeyro G, Baronetto V, Folco JI, Pastore P, Girotti MR, Prato L, Morón G, Luján HD, Fernández EA. Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis. Front Immunol 2023; 14:1094236. [PMID: 37564650 PMCID: PMC10411733 DOI: 10.3389/fimmu.2023.1094236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Identification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several methods were proposed as TSNs immunogenicity predictors; however, comprehensive performance comparison is still lacking due to the absence of well documented and adequate TSN databases. Methods Here, by developing a new curated database having 199 TSNs with experimentally-validated MHC-I presentation and positive/negative immune response (ITSNdb), sixteen metrics were evaluated as immunogenicity predictors. In addition, by using a dataset emulating patient derived TSNs and immunotherapy cohorts containing predicted TSNs for tumor neoantigen burden (TNB) with outcome association, the metrics were evaluated as TSNs prioritizers and as immunotherapy response biomarkers. Results Our results show high performance variability among methods, highlighting the need for substantial improvement. Deep learning predictors were top ranked on ITSNdb but show discrepancy on validation databases. In overall, current predicted TNB did not outperform existing biomarkers. Conclusion Recommendations for their clinical application and the ITSNdb are presented to promote development and comparison of computational TSNs immunogenicity predictors.
Collapse
Affiliation(s)
- Guadalupe Nibeyro
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Veronica Baronetto
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Juan I. Folco
- Facultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Pablo Pastore
- Facultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Maria Romina Girotti
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Buenos Aires, Argentina
| | - Laura Prato
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Hugo D. Luján
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Elmer A. Fernández
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
- Facultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
29
|
Yu P, Lian Y, Zuleger CL, Albertini RJ, Albertini MR, Newton MA. SURROGATE SELECTION OVERSAMPLES EXPANDED T CELL CLONOTYPES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548950. [PMID: 37503118 PMCID: PMC10369934 DOI: 10.1101/2023.07.13.548950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Inference from immunological data on cells in the adaptive immune system may benefit from modeling specifications that describe variation in the sizes of various clonal sub-populations. We develop one such specification in order to quantify the effects of surrogate selection assays, which we confirm may lead to an enrichment for amplified, potentially disease-relevant T cell clones. Our specification couples within-clonotype birth-death processes with an exchangeable model across clonotypes. Beyond enrichment questions about the surrogate selection design, our framework enables a study of sampling properties of elementary sample diversity statistics; it also points to new statistics that may usefully measure the burden of somatic genomic alterations associated with clonal expansion. We examine statistical properties of immunological samples governed by the coupled model specification, and we illustrate calculations in surrogate selection studies of melanoma and in single-cell genomic studies of T cell repertoires.
Collapse
Affiliation(s)
- Peng Yu
- Department of Statistics, University of Wisconsin, Madison
| | - Yumin Lian
- Department of Chemistry, Laboratory of Genetics, University of Wisconsin, Madison
| | - Cindy L. Zuleger
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
- Carbone Cancer Center, University of Wisconsin, Madison
| | | | - Mark R. Albertini
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
- Carbone Cancer Center, University of Wisconsin, Madison
- Medical Service, William S. Middleton Memorial Veterans Hospital, Madison
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin, Madison
- Carbone Cancer Center, University of Wisconsin, Madison
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| |
Collapse
|
30
|
Wu T, Chen J, Diao K, Wang G, Wang J, Yao H, Liu XS. Neodb: a comprehensive neoantigen database and discovery platform for cancer immunotherapy. Database (Oxford) 2023; 2023:baad041. [PMID: 37311149 DOI: 10.1093/database/baad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Neoantigens derived from somatic deoxyribonucleic acid alterations are ideal cancer-specific targets. However, integrated platform for neoantigen discovery is urgently needed. Recently, many scattered experimental evidences suggest that some neoantigens are immunogenic, and comprehensive collection of these experimentally validated neoantigens is still lacking. Here, we have integrated the commonly used tools in the current neoantigen discovery process to form a comprehensive web-based analysis platform. To identify experimental evidences supporting the immunogenicity of neoantigens, we performed comprehensive literature search and constructed the database. The collection of public neoantigens was obtained by using comprehensive features to filter the potential neoantigens from recurrent driver mutations. Importantly, we constructed a graph neural network (GNN) model (Immuno-GNN) using an attention mechanism to consider the spatial interactions between human leukocyte antigen and antigenic peptides for neoantigen immunogenicity prediction. The new easy-to-use R/Shiny web-based neoantigen database and discovery platform, Neodb, contains currently the largest number of experimentally validated neoantigens. In addition to validated neoantigen, Neodb also includes three additional modules for facilitating neoantigen prediction and analysis, including 'Tools' module (comprehensive neoantigen prediction tools); 'Driver-Neo' module (collection of public neoantigens derived from recurrent mutations) and 'Immuno-GNN' module (a novel immunogenicity prediction tool based on a GNN). Immuno-GNN shows improved performance compared with known methods and also represents the first application of GNN model in neoantigen immunogenicity prediction. The construction of Neodb will facilitate the study of neoantigen immunogenicity and the clinical application of neoantigen-based cancer immunotherapy. Database URL https://liuxslab.com/Neodb/.
Collapse
Affiliation(s)
- Tao Wu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
| | - Kaixuan Diao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
| | - Guangshuai Wang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
| | - Jinyu Wang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
| | - Huizi Yao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201203, China
- Shanghai Clinical Research and Trial Center, 1599 Keyuan Road, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
31
|
Fonseca AF, Antunes DA. CrossDome: an interactive R package to predict cross-reactivity risk using immunopeptidomics databases. Front Immunol 2023; 14:1142573. [PMID: 37377956 PMCID: PMC10291144 DOI: 10.3389/fimmu.2023.1142573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
T-cell-based immunotherapies hold tremendous potential in the fight against cancer, thanks to their capacity to specifically targeting diseased cells. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off-targets displayed by healthy cells. In a notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells, inducing lethal damage in melanoma patients. Such off-target toxicity has been related to T-cell cross-reactivity induced by molecular mimicry. In this context, there is growing interest in developing the means to avoid off-target toxicity, and to provide safer immunotherapy products. To this end, we present CrossDome, a multi-omics suite to predict the off-target toxicity risk of T-cell-based immunotherapies. Our suite provides two alternative protocols, i) a peptide-centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we evaluate our approach using 16 well-known cross-reactivity cases involving cancer-associated antigens. With CrossDome, the TITIN-derived peptide was predicted at the 99+ percentile rank among 36,000 scored candidates (p-value < 0.001). In addition, off-targets for all the 16 known cases were predicted within the top ranges of relatedness score on a Monte Carlo simulation with over 5 million putative peptide pairs, allowing us to determine a cut-off p-value for off-target toxicity risk. We also implemented a penalty system based on TCR hotspots, named contact map (CM). This TCR-centered approach improved upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g., from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended dataset of experimentally-determined cross-reactive peptides to evaluate alternative CrossDome protocols. The level of enrichment of validated cases among top 50 best-scored peptides was 63% for the peptide-centered protocol, and up to 82% for the TCR-centered protocol. Finally, we performed functional characterization of top ranking candidates, by integrating expression data, HLA binding, and immunogenicity predictions. CrossDome was designed as an R package for easy integration with antigen discovery pipelines, and an interactive web interface for users without coding experience. CrossDome is under active development, and it is available at https://github.com/AntunesLab/crossdome.
Collapse
Affiliation(s)
| | - Dinler A. Antunes
- Antunes Lab, Center for Nuclear Receptors and Cell Signaling (CNRCS), Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
32
|
Ye Z, Li S, Mi X, Shao B, Dai Z, Ding B, Feng S, Sun B, Shen Y, Xiao Z. STMHCpan, an accurate Star-Transformer-based extensible framework for predicting MHC I allele binding peptides. Brief Bioinform 2023; 24:7147024. [PMID: 37122066 DOI: 10.1093/bib/bbad164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Peptide-major histocompatibility complex I (MHC I) binding affinity prediction is crucial for vaccine development, but existing methods face limitations such as small datasets, model overfitting due to excessive parameters and suboptimal performance. Here, we present STMHCPan (STAR-MHCPan), an open-source package based on the Star-Transformer model, for MHC I binding peptide prediction. Our approach introduces an attention mechanism to improve the deep learning network architecture and performance in antigen prediction. Compared with classical deep learning algorithms, STMHCPan exhibits improved performance with fewer parameters in receptor affinity training. Furthermore, STMHCPan outperforms existing ligand benchmark datasets identified by mass spectrometry. It can also handle peptides of arbitrary length and is highly scalable for predicting T-cell responses. Our software is freely available for use, training and extension through Github (https://github.com/Luckysoutheast/STMHCPan.git).
Collapse
Affiliation(s)
- Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shaohao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xue Mi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Baoyi Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhu Dai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bo Ding
- Department of Obstetrics and Gynecoloty, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Songwei Feng
- Department of Obstetrics and Gynecoloty, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yang Shen
- Department of Obstetrics and Gynecoloty, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
33
|
Advancing our knowledge of antigen processing with computational modelling, structural biology, and immunology. Biochem Soc Trans 2023; 51:275-285. [PMID: 36645000 DOI: 10.1042/bst20220782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Antigen processing is an immunological mechanism by which intracellular peptides are transported to the cell surface while bound to Major Histocompatibility Complex molecules, where they can be surveyed by circulating CD8+ or CD4+ T-cells, potentially triggering an immunological response. The antigen processing pathway is a complex multistage filter that refines a huge pool of potential peptide ligands derived from protein degradation into a smaller ensemble for surface presentation. Each stage presents unique challenges due to the number of ligands, the polymorphic nature of MHC and other protein constituents of the pathway and the nature of the interactions between them. Predicting the ensemble of displayed peptide antigens, as well as their immunogenicity, is critical for improving T cell vaccines against pathogens and cancer. Our predictive abilities have always been hindered by an incomplete empirical understanding of the antigen processing pathway. In this review, we highlight the role of computational and structural approaches in improving our understanding of antigen processing, including structural biology, computer simulation, and machine learning techniques, with a particular focus on the MHC-I pathway.
Collapse
|
34
|
Zhang H, Saravanan KM, Wei Y, Jiao Y, Yang Y, Pan Y, Wu X, Zhang JZH. Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening. J Chem Inf Model 2023; 63:835-845. [PMID: 36724090 DOI: 10.1021/acs.jcim.2c01485] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many bioactive peptides demonstrated therapeutic effects over complicated diseases, such as antiviral, antibacterial, anticancer, etc. It is possible to generate a large number of potentially bioactive peptides using deep learning in a manner analogous to the generation of de novo chemical compounds using the acquired bioactive peptides as a training set. Such generative techniques would be significant for drug development since peptides are much easier and cheaper to synthesize than compounds. Despite the limited availability of deep learning-based peptide-generating models, we have built an LSTM model (called LSTM_Pep) to generate de novo peptides and fine-tuned the model to generate de novo peptides with specific prospective therapeutic benefits. Remarkably, the Antimicrobial Peptide Database has been effectively utilized to generate various kinds of potential active de novo peptides. We proposed a pipeline for screening those generated peptides for a given target and used the main protease of SARS-COV-2 as a proof-of-concept. Moreover, we have developed a deep learning-based protein-peptide prediction model (DeepPep) for rapid screening of the generated peptides for the given targets. Together with the generating model, we have demonstrated that iteratively fine-tuning training, generating, and screening peptides for higher-predicted binding affinity peptides can be achieved. Our work sheds light on developing deep learning-based methods and pipelines to effectively generate and obtain bioactive peptides with a specific therapeutic effect and showcases how artificial intelligence can help discover de novo bioactive peptides that can bind to a particular target.
Collapse
Affiliation(s)
- Haiping Zhang
- Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - Yanjie Wei
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yang Jiao
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yi Pan
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.,Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuli Wu
- School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - John Z H Zhang
- Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.,East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
35
|
Li G, Zhang P, Sun W, Xu J, Hu L, Zhang W. GA-ENs: A novel drug-target interactions prediction method by incorporating prior Knowledge Graph into dual Wasserstein Generative Adversarial Network with gradient penalty. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
36
|
Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, Song M, Jiang M, Jiang C, Zhang X. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front Oncol 2023; 12:1054231. [PMID: 36698417 PMCID: PMC9868469 DOI: 10.3389/fonc.2022.1054231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
The field of cancer neoantigen investigation has developed swiftly in the past decade. Predicting novel and true neoantigens derived from large multi-omics data became difficult but critical challenges. The rise of Artificial Intelligence (AI) or Machine Learning (ML) in biomedicine application has brought benefits to strengthen the current computational pipeline for neoantigen prediction. ML algorithms offer powerful tools to recognize the multidimensional nature of the omics data and therefore extract the key neoantigen features enabling a successful discovery of new neoantigens. The present review aims to outline the significant technology progress of machine learning approaches, especially the newly deep learning tools and pipelines, that were recently applied in neoantigen prediction. In this review article, we summarize the current state-of-the-art tools developed to predict neoantigens. The standard workflow includes calling genetic variants in paired tumor and blood samples, and rating the binding affinity between mutated peptide, MHC (I and II) and T cell receptor (TCR), followed by characterizing the immunogenicity of tumor epitopes. More specifically, we highlight the outstanding feature extraction tools and multi-layer neural network architectures in typical ML models. It is noted that more integrated neoantigen-predicting pipelines are constructed with hybrid or combined ML algorithms instead of conventional machine learning models. In addition, the trends and challenges in further optimizing and integrating the existing pipelines are discussed.
Collapse
Affiliation(s)
- Yu Cai
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Rui Chen
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Shenghan Gao
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Wenqing Li
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yuru Liu
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Guodong Su
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Mingming Song
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Mengju Jiang
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Chao Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China,*Correspondence: Chao Jiang, ; Xi Zhang,
| | - Xi Zhang
- School of Medicine, Northwest University, Xi’an, Shaanxi, China,*Correspondence: Chao Jiang, ; Xi Zhang,
| |
Collapse
|
37
|
Minot M, Reddy ST. Nucleotide augmentation for machine learning-guided protein engineering. BIOINFORMATICS ADVANCES 2022; 3:vbac094. [PMID: 36698759 PMCID: PMC9843584 DOI: 10.1093/bioadv/vbac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Summary Machine learning-guided protein engineering is a rapidly advancing field. Despite major experimental and computational advances, collecting protein genotype (sequence) and phenotype (function) data remains time- and resource-intensive. As a result, the quality and quantity of training data are often a limiting factor in developing machine learning models. Data augmentation techniques have been successfully applied to the fields of computer vision and natural language processing; however, there is a lack of such augmentation techniques for biological sequence data. Towards this end, we develop nucleotide augmentation (NTA), which leverages natural nucleotide codon degeneracy to augment protein sequence data via synonymous codon substitution. As a proof of concept for protein engineering, we test several online and offline augmentation implementations to train machine learning models with benchmark datasets of protein genotype and phenotype, revealing performance gains on par and surpassing benchmark models using a fraction of the training data. NTA also enables substantial improvements for classification tasks under heavy class imbalance. Availability and implementation The code used in this study is publicly available at https://github.com/minotm/NTA. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Mason Minot
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
38
|
Diao K, Chen J, Wu T, Wang X, Wang G, Sun X, Zhao X, Wu C, Wang J, Yao H, Gerarduzzi C, Liu XS. Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction. Int J Mol Sci 2022; 23:ijms231911624. [PMID: 36232923 PMCID: PMC9569519 DOI: 10.3390/ijms231911624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines has shown clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations result in immunogenicity among cancer cells and efficient tools to predict the immunogenicity of neoepitopes are still urgently needed. Here, we present the Seq2Neo pipeline, which provides a one-stop solution for neoepitope feature prediction using raw sequencing data. Neoantigens derived from different types of genome DNA alterations, including point mutations, insertion deletions and gene fusions, are all supported. Importantly, a convolutional neural network (CNN)-based model was trained to predict the immunogenicity of neoepitopes and this model showed an improved performance compared to the currently available tools in immunogenicity prediction using independent datasets. We anticipate that the Seq2Neo pipeline could become a useful tool in the prediction of neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is open-source software under an academic free license (AFL) v3.0 and is freely available at Github.
Collapse
Affiliation(s)
- Kaixuan Diao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Xuan Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Guangshuai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Xiaoqin Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Jinyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Huizi Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Casimiro Gerarduzzi
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H4T 1G2, Canada
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
39
|
Neoantigens in precision cancer immunotherapy: from identification to clinical applications. Chin Med J (Engl) 2022; 135:1285-1298. [PMID: 35838545 PMCID: PMC9433083 DOI: 10.1097/cm9.0000000000002181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies targeting cancer neoantigens are safe, effective, and precise. Neoantigens can be identified mainly by genomic techniques such as next-generation sequencing and high-throughput single-cell sequencing; proteomic techniques such as mass spectrometry; and bioinformatics tools based on high-throughput sequencing data, mass spectrometry data, and biological databases. Neoantigen-related therapies are widely used in clinical practice and include neoantigen vaccines, neoantigen-specific CD8+ and CD4+ T cells, and neoantigen-pulsed dendritic cells. In addition, neoantigens can be used as biomarkers to assess immunotherapy response, resistance, and prognosis. Therapies based on neoantigens are an important and promising branch of cancer immunotherapy. Unremitting efforts are needed to unravel the comprehensive role of neoantigens in anti-tumor immunity and to extend their clinical application. This review aimed to summarize the progress in neoantigen research and to discuss its opportunities and challenges in precision cancer immunotherapy.
Collapse
|
40
|
Jackson KR, Antunes DA, Talukder AH, Maleki AR, Amagai K, Salmon A, Katailiha AS, Chiu Y, Fasoulis R, Rigo MM, Abella JR, Melendez BD, Li F, Sun Y, Sonnemann HM, Belousov V, Frenkel F, Justesen S, Makaju A, Liu Y, Horn D, Lopez-Ferrer D, Huhmer AF, Hwu P, Roszik J, Hawke D, Kavraki LE, Lizée G. Charge-based interactions through peptide position 4 drive diversity of antigen presentation by human leukocyte antigen class I molecules. PNAS NEXUS 2022; 1:pgac124. [PMID: 36003074 PMCID: PMC9391200 DOI: 10.1093/pnasnexus/pgac124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Human leukocyte antigen class I (HLA-I) molecules bind and present peptides at the cell surface to facilitate the induction of appropriate CD8+ T cell-mediated immune responses to pathogen- and self-derived proteins. The HLA-I peptide-binding cleft contains dominant anchor sites in the B and F pockets that interact primarily with amino acids at peptide position 2 and the C-terminus, respectively. Nonpocket peptide-HLA interactions also contribute to peptide binding and stability, but these secondary interactions are thought to be unique to individual HLA allotypes or to specific peptide antigens. Here, we show that two positively charged residues located near the top of peptide-binding cleft facilitate interactions with negatively charged residues at position 4 of presented peptides, which occur at elevated frequencies across most HLA-I allotypes. Loss of these interactions was shown to impair HLA-I/peptide binding and complex stability, as demonstrated by both in vitro and in silico experiments. Furthermore, mutation of these Arginine-65 (R65) and/or Lysine-66 (K66) residues in HLA-A*02:01 and A*24:02 significantly reduced HLA-I cell surface expression while also reducing the diversity of the presented peptide repertoire by up to 5-fold. The impact of the R65 mutation demonstrates that nonpocket HLA-I/peptide interactions can constitute anchor motifs that exert an unexpectedly broad influence on HLA-I-mediated antigen presentation. These findings provide fundamental insights into peptide antigen binding that could broadly inform epitope discovery in the context of viral vaccine development and cancer immunotherapy.
Collapse
Affiliation(s)
- Kyle R Jackson
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Amjad H Talukder
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ariana R Maleki
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kano Amagai
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Avery Salmon
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Arjun S Katailiha
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Romanos Fasoulis
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Jayvee R Abella
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Brenda D Melendez
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Fenge Li
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Heather M Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Yang Liu
- ThermoFisher Scientific, San Jose, CA, USA
| | - David Horn
- ThermoFisher Scientific, San Jose, CA, USA
| | | | | | - Patrick Hwu
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Gregory Lizée
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Wan F, Kontogiorgos-Heintz D, de la Fuente-Nunez C. Deep generative models for peptide design. DIGITAL DISCOVERY 2022; 1:195-208. [PMID: 35769205 PMCID: PMC9189861 DOI: 10.1039/d1dd00024a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022]
Abstract
Computers can already be programmed for superhuman pattern recognition of images and text. For machines to discover novel molecules, they must first be trained to sort through the many characteristics of molecules and determine which properties should be retained, suppressed, or enhanced to optimize functions of interest. Machines need to be able to understand, read, write, and eventually create new molecules. Today, this creative process relies on deep generative models, which have gained popularity since powerful deep neural networks were introduced to generative model frameworks. In recent years, they have demonstrated excellent ability to model complex distribution of real-word data (e.g., images, audio, text, molecules, and biological sequences). Deep generative models can generate data beyond those provided in training samples, thus yielding an efficient and rapid tool for exploring the massive search space of high-dimensional data such as DNA/protein sequences and facilitating the design of biomolecules with desired functions. Here, we review the emerging field of deep generative models applied to peptide science. In particular, we discuss several popular deep generative model frameworks as well as their applications to generate peptides with various kinds of properties (e.g., antimicrobial, anticancer, cell penetration, etc). We conclude our review with a discussion of current limitations and future perspectives in this emerging field.
Collapse
Affiliation(s)
- Fangping Wan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania Philadelphia Pennsylvania USA
- Penn Institute for Computational Science, University of Pennsylvania Philadelphia Pennsylvania USA
| | - Daphne Kontogiorgos-Heintz
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania Philadelphia Pennsylvania USA
- Penn Institute for Computational Science, University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania Philadelphia Pennsylvania USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania Philadelphia Pennsylvania USA
- Penn Institute for Computational Science, University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
42
|
Yan J, Zhang B, Zhou M, Kwok HF, Siu SWI. Multi-Branch-CNN: Classification of ion channel interacting peptides using multi-branch convolutional neural network. Comput Biol Med 2022; 147:105717. [PMID: 35752114 DOI: 10.1016/j.compbiomed.2022.105717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/03/2022]
Abstract
Ligand peptides that have high affinity for ion channels are critical for regulating ion flux across the plasma membrane. These peptides are now being considered as potential drug candidates for many diseases, such as cardiovascular disease and cancers. In this work, we developed Multi-Branch-CNN, a CNN method with multiple input branches for identifying three types of ion channel peptide binders (sodium, potassium, and calcium) from intra- and inter-feature types. As for its real-world applications, prediction models that are able to recognize novel sequences having high or low similarities to training sequences are required. To this end, we tested our models on two test sets: a general test set including sequences spanning different similarity levels to those of the training set, and a novel-test set consisting of only sequences that bear little resemblance to sequences from the training set. Our experiments showed that the Multi-Branch-CNN method performs better than thirteen traditional ML algorithms (TML13), yielding an improvement in accuracy of 3.2%, 1.2%, and 2.3% on the test sets as well as 8.8%, 14.3%, and 14.6% on the novel-test sets for sodium, potassium, and calcium ion channels, respectively. We confirmed the effectiveness of Multi-Branch-CNN by comparing it to the standard CNN method with one input branch (Single-Branch-CNN) and an ensemble method (TML13-Stack). The data sets, script files to reproduce the experiments, and the final predictive models are freely available at https://github.com/jieluyan/Multi-Branch-CNN.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macao Special Administrative Region of China.
| | - Mingliang Zhou
- School of Computer Science, Chongqing University, Shapingba, Chongqing, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China.
| | - Shirley W I Siu
- Department of Computer and Information Science, University of Macau, Taipa, Macao Special Administrative Region of China; Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macao Special Administrative Region of China.
| |
Collapse
|
43
|
Lu M, Xu L, Jian X, Tan X, Zhao J, Liu Z, Zhang Y, Liu C, Chen L, Lin Y, Xie L. dbPepNeo2.0: A Database for Human Tumor Neoantigen Peptides From Mass Spectrometry and TCR Recognition. Front Immunol 2022; 13:855976. [PMID: 35493528 PMCID: PMC9043652 DOI: 10.3389/fimmu.2022.855976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Neoantigens are widely reported to induce T-cell response and lead to tumor regression, indicating a promising potential to immunotherapy. Previously, we constructed an open-access database, i.e., dbPepNeo, providing a systematic resource for human tumor neoantigens to storage and query. In order to expand data volume and application scope, we updated dbPepNeo to version 2.0 (http://www.biostatistics.online/dbPepNeo2). Here, we provide about 801 high-confidence (HC) neoantigens (increased by 170%) and 842,289 low-confidence (LC) HLA immunopeptidomes (increased by 107%). Notably, 55 class II HC neoantigens and 630 neoantigen-reactive T-cell receptor-β (TCRβ) sequences were firstly included. Besides, two new analytical tools are developed, DeepCNN-Ineo and BLASTdb. DeepCNN-Ineo predicts the immunogenicity of class I neoantigens, and BLASTdb performs local alignments to look for sequence similarities in dbPepNeo2.0. Meanwhile, the web features and interface have been greatly improved and enhanced.
Collapse
Affiliation(s)
- Manman Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Linfeng Xu
- Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xingxing Jian
- Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiu Tan
- Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhenhao Liu
- Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yu Zhang
- Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunyu Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
45
|
Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 12:100052. [PMID: 35755950 PMCID: PMC9216660 DOI: 10.1016/j.iotech.2021.100052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last few decades, immunotherapy has shown significant therapeutic efficacy in a broad range of cancer types. Antitumor immune responses are contingent on the recognition of tumor-specific antigens, which are termed neoantigens. Tumor neoantigens are ideal targets for immunotherapy since they can be recognized as non-self antigens by the host immune system and thus are able to elicit an antitumor T-cell response. There are an increasing number of studies that highlight the importance of tumor neoantigens in immunoediting and in the sensitivity to immune checkpoint blockade. Therefore, one of the most fundamental tasks in the field of immuno-oncology research is the identification of patient-specific neoantigens. To this end, a plethora of computational approaches have been developed in order to predict tumor-specific aberrant peptides and quantify their likelihood of binding to patients' human leukocyte antigen molecules in order to be recognized by T cells. In this review, we systematically summarize and present the most recent advances in computational neoantigen prediction, and discuss the challenges and novel methods that are being developed to resolve them. Tumors have the ability to acquire immune escape mechanisms. Tumor-specific aberrant peptides (neoantigens) can elicit an immune response by the host immune system. The identification of neoantigens is one of the most fundamental tasks in the field of immuno-oncology research. A plethora of computational approaches have been developed in order to predict patient-specificneoantigens.
Collapse
Affiliation(s)
- G Fotakis
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Pandya S, Thakur A, Saxena S, Jassal N, Patel C, Modi K, Shah P, Joshi R, Gonge S, Kadam K, Kadam P. A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2021; 21:7786. [PMID: 34883787 PMCID: PMC8659723 DOI: 10.3390/s21237786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., has made this process easier. These technologies can observe relations and patterns that humans do and recognize patterns that are unobservable by humans. Furthermore, these technologies have also enabled us to understand better the different types of cells in the immune system, their structures, their importance, and their impact on our immunity, particularly in the case of debilitating diseases such as cancer. The undertaken study explores the AI methodologies currently in the field of immunology. The initial part of this study explains the integration of AI in healthcare and how it has changed the face of the medical industry. It also details the current applications of AI in the different healthcare domains and the key challenges faced when trying to integrate AI with healthcare, along with the recent developments and contributions in this field by other researchers. The core part of this study is focused on exploring the most common classifications of health diseases, immunology, and its key subdomains. The later part of the study presents a statistical analysis of the contributions in AI in the different domains of immunology and an in-depth review of the machine learning and deep learning methodologies and algorithms that can and have been applied in the field of immunology. We have also analyzed a list of machine learning and deep learning datasets about the different subdomains of immunology. Finally, in the end, the presented study discusses the future research directions in the field of AI in immunology and provides some possible solutions for the same.
Collapse
Affiliation(s)
- Sharnil Pandya
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Aanchal Thakur
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Santosh Saxena
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Nandita Jassal
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Chirag Patel
- Computer Science & Engineering, Devang Patel Institute of Advance Technology and Research, Changa 388421, India;
| | - Kirit Modi
- Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar 384315, India;
| | - Pooja Shah
- Information Technology Department, Gandhinagar Institute of Technology, Ahmedabad 382010, India;
| | - Rahul Joshi
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Sudhanshu Gonge
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Kalyani Kadam
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Prachi Kadam
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| |
Collapse
|