1
|
Shen X, Zhang Y, Li J, Zhou Y, Butensky SD, Zhang Y, Cai Z, DeWan AT, Khan SA, Yan H, Johnson CH, Zhu F. OncoSexome: the landscape of sex-based differences in oncologic diseases. Nucleic Acids Res 2024:gkae1003. [PMID: 39535034 DOI: 10.1093/nar/gkae1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The NIH policy on sex as biological variable (SABV) emphasized the importance of sex-based differences in precision oncology. Over 50% of clinically actionable oncology genes are sex-biased, indicating differences in drug efficacy. Research has identified sex differences in non-reproductive cancers, highlighting the need for comprehensive sex-based cancer data. We therefore developed OncoSexome, a multidimensional knowledge base describing sex-based differences in cancer (https://idrblab.org/OncoSexome/) across four key topics: antineoplastic drugs and responses (SDR), oncology-related biomarkers (SBM), risk factors (SRF) and microbial landscape (SML). SDR covers sex-based differences in 2051 anticancer drugs; SBM describes 12 551 sex-differential biomarkers; SRF illustrates 350 sex-dependent risk factors; SML demonstrates 1386 microbes with sex-differential abundances associated with cancer development. OncoSexome is unique in illuminating multifaceted influences of biological sex on cancer, providing both external and endogenous contributors to cancer development and describing sex-based differences for the broadest oncological classes. Given the increasing global research interest in sex-based differences, OncoSexome is expected to impact future precision oncology practices significantly.
Collapse
Affiliation(s)
- Xinyi Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jiamin Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | | | - Yechi Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
- School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Sajid A Khan
- Yale School of Medicine, Yale University, New Haven 06510, USA
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven 06510, USA
| | - Hong Yan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
2
|
Li Y, Li F, Duan Z, Liu R, Jiao W, Wu H, Zhu F, Xue W. SYNBIP 2.0: epitopes mapping, sequence expansion and scaffolds discovery for synthetic binding protein innovation. Nucleic Acids Res 2024:gkae893. [PMID: 39413165 DOI: 10.1093/nar/gkae893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Synthetic binding proteins (SBPs) represent a pivotal class of artificially engineered proteins, meticulously crafted to exhibit targeted binding properties and specific functions. Here, the SYNBIP database, a comprehensive resource for SBPs, has been significantly updated. These enhancements include (i) featuring 3D structures of 899 SBP-target complexes to illustrate the binding epitopes of SBPs, (ii) using the structures of SBPs in the monomer or complex forms with target proteins, their sequence space has been expanded five times to 12 025 by integrating a structure-based protein generation framework and a protein property prediction tool, (iii) offering detailed information on 78 473 newly identified SBP-like scaffolds from the RCSB Protein Data Bank, and an additional 16 401 555 ones from the AlphaFold Protein Structure Database, and (iv) the database is regularly updated, incorporating 153 new SBPs. Furthermore, the structural models of all SBPs have been enhanced through the application of the AlphaFold2, with their clinical statuses concurrently refreshed. Additionally, the design methods employed for each SBP are now prominently featured in the database. In sum, SYNBIP 2.0 is designed to provide researchers with essential SBP data, facilitating their innovation in research, diagnosis and therapy. SYNBIP 2.0 is now freely accessible at https://idrblab.org/synbip/.
Collapse
Affiliation(s)
- Yanlin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Fengcheng Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang 310052, China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zixin Duan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Ruihan Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Wantong Jiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| |
Collapse
|
3
|
Zhang Y, Lian X, Xu H, Zhu S, Zhang H, Ni Z, Fu T, Liu S, Tao L, Zhou Y, Zhu F. OrgXenomics: an integrated proteomic knowledge base for patient-derived organoid and xenograft. Nucleic Acids Res 2024:gkae861. [PMID: 39373514 DOI: 10.1093/nar/gkae861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Patient-derived models (PDMs, particularly organoids and xenografts) are irreplaceable tools for precision medicine, from target development to lead identification, then to preclinical evaluation, and finally to clinical decision-making. So far, PDM-based proteomics has emerged to be one of the cutting-edge directions and massive data have been accumulated. However, such PDM-based proteomic data have not been provided by any of the available databases, and proteomics profiles of all proteins in proteomic study are also completely absent from existing databases. Herein, an integrated database named 'OrgXenomics' was thus developed to provide the proteomic data for PDMs, which was unique in (a) explicitly describing the establishment detail for a wide array of models, (b) systematically providing the proteomic profiles (expression/function/interaction) for all proteins in studied proteomic analysis and (c) comprehensively giving the raw data for diverse organoid/xenograft-based proteomic studies of various diseases. Our OrgXenomics was expected to server as one good complement to existing proteomic databases, and had great implication for the practice of precision medicine, which could be accessed at: https://idrblab.org/orgxenomics/.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hangwei Xu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Sisi Zhu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Zhang Y, Jiang W, Li T, Xu H, Zhu Y, Fang K, Ren X, Wang S, Chen Y, Zhou Y, Zhu F. SubCELL: the landscape of subcellular compartment-specific molecular interactions. Nucleic Acids Res 2024:gkae863. [PMID: 39373488 DOI: 10.1093/nar/gkae863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
The subcellular compartment-specific molecular interactions (SCSIs) are the building blocks for most molecular functions, biological processes and disease pathogeneses. Extensive experiments have therefore been conducted to accumulate the valuable information of SCSIs, but none of the available databases has been constructed to describe those data. In this study, a novel knowledge base SubCELL is thus introduced to depict the landscape of SCSIs among DNAs/RNAs/proteins. This database is UNIQUE in (a) providing, for the first time, the experimentally-identified SCSIs, (b) systematically illustrating a large number of SCSIs inferred based on well-established method and (c) collecting experimentally-determined subcellular locations for the DNAs/RNAs/proteins of diverse species. Given the essential physiological/pathological role of SCSIs, the SubCELL is highly expected to have great implications for modern molecular biological study, which can be freely accessed with no login requirement at: https://idrblab.org/subcell/.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Wanghao Jiang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Teng Li
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hangwei Xu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yimiao Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kerui Fang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Ren
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
5
|
Ge Y, Yang M, Yu X, Zhou Y, Zhang Y, Mou M, Chen Z, Sun X, Ni F, Fu T, Liu S, Han L, Zhu F. MolBiC: the cell-based landscape illustrating molecular bioactivities. Nucleic Acids Res 2024:gkae868. [PMID: 39373530 DOI: 10.1093/nar/gkae868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
The measurement of cell-based molecular bioactivity (CMB) is critical for almost every step of drug development. With the booming application of AI in biomedicine, it is essential to have the CMB data to promote the learning of cell-based patterns for guiding modern drug discovery, but no database providing such information has been constructed yet. In this study, we introduce MolBiC, a knowledge base designed to describe valuable data on molecular bioactivity measured within a cellular context. MolBiC features 550 093 experimentally validated CMBs, encompassing 321 086 molecules and 2666 targets across 988 cell lines. Our MolBiC database is unique in describing the valuable data of CMB, which meets the critical demands for CMB-based big data promoting the learning of cell-based molecular/pharmaceutical pattern in drug discovery and development. MolBiC is now freely accessible without any login requirement at: https://idrblab.org/MolBiC/.
Collapse
Affiliation(s)
- Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Guangzhou, Guangzhou 511458, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lianyi Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Guangzhou, Guangzhou 511458, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
6
|
El-Assaad AM, Hamieh T. SARS-CoV-2: Prediction of critical ionic amino acid mutations. Comput Biol Med 2024; 178:108688. [PMID: 38870723 DOI: 10.1016/j.compbiomed.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that caused coronavirus disease 2019 (COVID-19), has been studied thoroughly, and several variants are revealed across the world with their corresponding mutations. Studies and vaccines development focus on the genetic mutations of the S protein due to its vital role in allowing the virus attach and fuse with the membrane of a host cell. In this perspective, we study the effects of all ionic amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 within the SARS-CoV-2:CC12.1 complex model. Binding free energy calculations between SARS-CoV-2 and antibody CC12.1 are based on the Analysis of Electrostatic Similarities of Proteins (AESOP) framework, where the electrostatic potentials are calculated using Adaptive Poisson-Boltzmann Solver (APBS). The atomic radii and charges that feed into the APBS calculations are calculated using the PDB2PQR software. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants worldwide. We find each of the following mutations: K378A, R408A, K424A, R454A, R457A, K458A, and K462A, to play significant roles in the binding to Antibody CC12.1, since they are turned into strong inhibitors on both chains of the S1 protein, whereas the mutations D405A, D420A, and D427A, show to play important roles in this binding, as they are turned into mild inhibitors on both chains of the S1 protein.
Collapse
Affiliation(s)
- Atlal M El-Assaad
- Department of Electrical Engineering & Computer Science, University of Toledo (UT), Toledo OH 43606, USA; Department of Computer Science, Lebanese International University (LIU), Bekaa, Lebanon.
| | - Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
7
|
Rusu EC, Monfort-Lanzas P, Bertran L, Barrientos-Riosalido A, Solé E, Mahmoudian R, Aguilar C, Briansó S, Mohamed F, Garcia S, Camaron J, Auguet T. Towards understanding post-COVID-19 condition: A systematic meta-analysis of transcriptomic alterations with sex-specific insights. Comput Biol Med 2024; 175:108507. [PMID: 38657468 DOI: 10.1016/j.compbiomed.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Post COVID-19 Condition (PCC), characterized by lingering symptoms post-acute COVID-19, poses clinical challenges, highlighting the need to understand its underlying molecular mechanisms. This meta-analysis aims to shed light on the transcriptomic landscapes and sex-specific molecular dynamics intrinsic to PCC. METHODS A systematic review identified three studies suitable for comprehensive meta-analysis, encompassing 135 samples (57 PCC subjects and 78 recovered subjects). We performed meta-analysis on differential gene expression, a gene set enrichment analysis of Reactome pathways, and weighted gene co-expression network analysis (WGCNA). We performed a drug and disease enrichment analysis and also assessed sex-specific differences in expression patterns. KEY FINDINGS A clear difference was observed in the transcriptomic profiles of PCC subjects, with 530 differentially expressed genes (DEGs) identified. Enrichment analysis revealed that the altered pathways were predominantly implicated in cell cycle processes, immune dysregulation and histone modifications. Antioxidant compounds such as hesperitin were predominantly linked to the hub genes of the DEGs. Sex-specific analyses highlighted disparities in DEGs and altered pathways in male and female PCC patients, revealing a difference in the expression of ribosomal proteins. PCC in men was mostly linked to neuro-cardiovascular disorders, while women exhibited more diverse disorders, with a high index of respiratory conditions. CONCLUSION Our study reveals the intricate molecular processes underlying PCC, highlighting that the differences in molecular dynamics between males and females could be key to understanding and effectively managing the varied symptomatology of this condition.
Collapse
Affiliation(s)
- Elena Cristina Rusu
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and the Spanish National Research Council (CSIC), 46980, Valencia, Spain.
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria; Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Laia Bertran
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Andrea Barrientos-Riosalido
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Emilia Solé
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Razieh Mahmoudian
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Carmen Aguilar
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain.
| | - Silvia Briansó
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Fadel Mohamed
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Susana Garcia
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Javier Camaron
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| | - Teresa Auguet
- GEMMAIR Research Unit (AGAUR) - Applied Medicine (URV), Department of Medicine and Surgery. University Rovira i Virgili (URV), Health Research Institute Pere Virgili (IISPV), 43007, Tarragona, Spain; Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007, Tarragona, Spain.
| |
Collapse
|
8
|
Zhou Y, Chen Z, Yang M, Chen F, Yin J, Zhang Y, Zhou X, Sun X, Ni Z, Chen L, Lv Q, Zhu F, Liu S. FERREG: ferroptosis-based regulation of disease occurrence, progression and therapeutic response. Brief Bioinform 2024; 25:bbae223. [PMID: 38742521 PMCID: PMC11091744 DOI: 10.1093/bib/bbae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengyun Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xuheng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lu Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qun Lv
- Department of Respiratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
9
|
Amahong K, Zhang W, Liu Y, Li T, Huang S, Han L, Tao L, Zhu F. RVvictor: Virus RNA-directed molecular interactions for RNA virus infection. Comput Biol Med 2024; 169:107886. [PMID: 38157777 DOI: 10.1016/j.compbiomed.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RNA viruses are major human pathogens that cause seasonal epidemics and occasional pandemic outbreaks. Due to the nature of their RNA genomes, it is anticipated that virus's RNA interacts with host protein (INTPRO), messenger RNA (INTmRNA), and non-coding RNA (INTncRNA) to perform their particular functions during their transcription and replication. In other words, thus, it is urgently needed to have such valuable data on virus RNA-directed molecular interactions (especially INTPROs), which are highly anticipated to attract broad research interests in the fields of RNA virus translation and replication. In this study, a new database was constructed to describe the virus RNA-directed interaction (INTPRO, INTmRNA, INTncRNA) for RNA virus (RVvictor). This database is unique in a) unambiguously characterizing the interactions between viruses RNAs and host proteins, b) providing, for the first time, the most systematic RNA-directed interaction data resources in providing clues to understand the molecular mechanisms of RNA viruses' translation, and replication, and c) in RVvictor, comprehensive enrichment analysis is conducted for each virus RNA based on its associated target genes/proteins, and the enrichment results were explicitly illustrated using various graphs. We found significant enrichment of a suite of pathways related to infection, translation, and replication, e.g., HIV infection, coronavirus disease, regulation of viral genome replication, and so on. Due to the devastating and persistent threat posed by the RNA virus, RVvictor constructed, for the first time, a possible network of cross-talk in RNA-directed interaction, which may ultimately explain the pathogenicity of RNA virus infection. The knowledge base might help develop new anti-viral therapeutic targets in the future. It's now free and publicly accessible at: https://idrblab.org/rvvictor/.
Collapse
Affiliation(s)
- Kuerbannisha Amahong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Teng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, 315211, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
10
|
Yin J, Chen Z, You N, Li F, Zhang H, Xue J, Ma H, Zhao Q, Yu L, Zeng S, Zhu F. VARIDT 3.0: the phenotypic and regulatory variability of drug transporter. Nucleic Acids Res 2024; 52:D1490-D1502. [PMID: 37819041 PMCID: PMC10767864 DOI: 10.1093/nar/gkad818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
The phenotypic and regulatory variability of drug transporter (DT) are vital for the understanding of drug responses, drug-drug interactions, multidrug resistances, and so on. The ADME property of a drug is collectively determined by multiple types of variability, such as: microbiota influence (MBI), transcriptional regulation (TSR), epigenetics regulation (EGR), exogenous modulation (EGM) and post-translational modification (PTM). However, no database has yet been available to comprehensively describe these valuable variabilities of DTs. In this study, a major update of VARIDT was therefore conducted, which gave 2072 MBIs, 10 610 TSRs, 46 748 EGRs, 12 209 EGMs and 10 255 PTMs. These variability data were closely related to the transportation of 585 approved and 301 clinical trial drugs for treating 572 diseases. Moreover, the majority of the DTs in this database were found with multiple variabilities, which allowed a collective consideration in determining the ADME properties of a drug. All in all, VARIDT 3.0 is expected to be a popular data repository that could become an essential complement to existing pharmaceutical databases, and is freely accessible without any login requirement at: https://idrblab.org/varidt/.
Collapse
Affiliation(s)
- Jiayi Yin
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Nanxin You
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- The Children's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jia Xue
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hui Ma
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingwei Zhao
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
11
|
Zhang Y, Zhou Y, Zhou Y, Yu X, Shen X, Hong Y, Zhang Y, Wang S, Mou M, Zhang J, Tao L, Gao J, Qiu Y, Chen Y, Zhu F. TheMarker: a comprehensive database of therapeutic biomarkers. Nucleic Acids Res 2024; 52:D1450-D1464. [PMID: 37850638 PMCID: PMC10767989 DOI: 10.1093/nar/gkad862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Distinct from the traditional diagnostic/prognostic biomarker (adopted as the indicator of disease state/process), the therapeutic biomarker (ThMAR) has emerged to be very crucial in the clinical development and clinical practice of all therapies. There are five types of ThMAR that have been found to play indispensable roles in various stages of drug discovery, such as: Pharmacodynamic Biomarker essential for guaranteeing the pharmacological effects of a therapy, Safety Biomarker critical for assessing the extent or likelihood of therapy-induced toxicity, Monitoring Biomarker indispensable for guiding clinical management by serially measuring patients' status, Predictive Biomarker crucial for maximizing the clinical outcome of a therapy for specific individuals, and Surrogate Endpoint fundamental for accelerating the approval of a therapy. However, these data of ThMARs has not been comprehensively described by any of the existing databases. Herein, a database, named 'TheMarker', was therefore constructed to (a) systematically offer all five types of ThMAR used at different stages of drug development, (b) comprehensively describe ThMAR information for the largest number of drugs among available databases, (c) extensively cover the widest disease classes by not just focusing on anticancer therapies. These data in TheMarker are expected to have great implication and significant impact on drug discovery and clinical practice, and it is freely accessible without any login requirement at: https://idrblab.org/themarker.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuxin Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
12
|
Li X, Qin X, Huang C, Lu Y, Cheng J, Wang L, Liu O, Shuai J, Yuan CA. SUnet: A multi-organ segmentation network based on multiple attention. Comput Biol Med 2023; 167:107596. [PMID: 37890423 DOI: 10.1016/j.compbiomed.2023.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Organ segmentation in abdominal or thoracic computed tomography (CT) images plays a crucial role in medical diagnosis as it enables doctors to locate and evaluate organ abnormalities quickly, thereby guiding surgical planning, and aiding treatment decision-making. This paper proposes a novel and efficient medical image segmentation method called SUnet for multi-organ segmentation in the abdomen and thorax. SUnet is a fully attention-based neural network. Firstly, an efficient spatial reduction attention (ESRA) module is introduced not only to extract image features better, but also to reduce overall model parameters, and to alleviate overfitting. Secondly, SUnet's multiple attention-based feature fusion module enables effective cross-scale feature integration. Additionally, an enhanced attention gate (EAG) module is considered by using grouped convolution and residual connections, providing richer semantic features. We evaluate the performance of the proposed model on synapse multiple organ segmentation dataset and automated cardiac diagnostic challenge dataset. SUnet achieves an average Dice of 84.29% and 92.25% on these two datasets, respectively, outperforming other models of similar complexity and size, and achieving state-of-the-art results.
Collapse
Affiliation(s)
- Xiaosen Li
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, 530006, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Xiao Qin
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530023, China
| | - Chengliang Huang
- Academy of Artificial Intelligence, Zhejiang Dongfang Polytechnic, Wenzhou, 325025, China
| | - Yuer Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Jinyan Cheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Liansheng Wang
- Department of Computer Science, Xiamen University, Xiamen, 361005, China
| | - Ou Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China.
| | - Chang-An Yuan
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530023, China; Guangxi Academy of Science, Nanning, 530007, China.
| |
Collapse
|
13
|
Wang Y, Pan Z, Mou M, Xia W, Zhang H, Zhang H, Liu J, Zheng L, Luo Y, Zheng H, Yu X, Lian X, Zeng Z, Li Z, Zhang B, Zheng M, Li H, Hou T, Zhu F. A task-specific encoding algorithm for RNAs and RNA-associated interactions based on convolutional autoencoder. Nucleic Acids Res 2023; 51:e110. [PMID: 37889083 PMCID: PMC10682500 DOI: 10.1093/nar/gkad929] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Liu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanqi Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Mingyue Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglin Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Meng R, Yin S, Sun J, Hu H, Zhao Q. scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention. Comput Biol Med 2023; 165:107414. [PMID: 37660567 DOI: 10.1016/j.compbiomed.2023.107414] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
In recent years, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique for investigating cellular heterogeneity and structure. However, analyzing scRNA-seq data remains challenging, especially in the context of COVID-19 research. Single-cell clustering is a key step in analyzing scRNA-seq data, and deep learning methods have shown great potential in this area. In this work, we propose a novel scRNA-seq analysis framework called scAAGA. Specifically, we utilize an asymmetric autoencoder with a gene attention module to learn important gene features adaptively from scRNA-seq data, with the aim of improving the clustering effect. We apply scAAGA to COVID-19 peripheral blood mononuclear cell (PBMC) scRNA-seq data and compare its performance with state-of-the-art methods. Our results consistently demonstrate that scAAGA outperforms existing methods in terms of adjusted rand index (ARI), normalized mutual information (NMI), and adjusted mutual information (AMI) scores, achieving improvements ranging from 2.8% to 27.8% in NMI scores. Additionally, we discuss a data augmentation technology to expand the datasets and improve the accuracy of scAAGA. Overall, scAAGA presents a robust tool for scRNA-seq data analysis, enhancing the accuracy and reliability of clustering results in COVID-19 research.
Collapse
Affiliation(s)
- Rui Meng
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Shuaidong Yin
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Jianqiang Sun
- School of Information Science and Engineering, Linyi University, Linyi, 276000, China
| | - Huan Hu
- Institute of Applied Genomics, Fuzhou University, Fuzhou, 350108, China.
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| |
Collapse
|
15
|
Zhang M, Zhao J, Wu J, Wang Y, Zhuang M, Zou L, Mao R, Jiang B, Liu J, Song X. In-depth characterization and identification of translatable lncRNAs. Comput Biol Med 2023; 164:107243. [PMID: 37453378 DOI: 10.1016/j.compbiomed.2023.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Long non-coding RNAs (LncRNAs) are non-protein coding transcripts more than 200 nucleotides in length. Deep sequencing technologies have unveiled lncRNAs can harbor translatable short open reading frames (sORFs). Yet the regulatory mechanisms governing lncRNA translation events remain poorly understood. Here, we exhaustively detected the sequence, functional element, and structure features relevant to lncRNA translation in human. Extensive identification and analysis reveal that translatable lncRNAs contain richer protein-coding related sequence features, cap-dependent and cap-independent translation initiation mechanisms, and more stable secondary structures, as compared to untranslatable lncRNAs. These findings strongly support lncRNAs serve as a repository for the production of new small peptides. Based on the feature fusion affecting translation and the extreme gradient boosting (XGBoost) algorithm, we developed the first computational tool that dedicated for predicting translatable lncRNAs, named TransLncPred. Benchmark experimental results show that our method outperforms several state-of-the-art RNA coding potential prediction tools on the same training and testing datasets. The 100-time 10-fold cross-validation tests also demonstrate that regulatory element-derived features, especially N7-methylguanosine (m7G) and internal ribosome entry site (IRES), contribute to the improvement in predictive performance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Renlong Mao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
16
|
Liang S, Zhao Y, Jin J, Qiao J, Wang D, Wang Y, Wei L. Rm-LR: A long-range-based deep learning model for predicting multiple types of RNA modifications. Comput Biol Med 2023; 164:107238. [PMID: 37515874 DOI: 10.1016/j.compbiomed.2023.107238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Recent research has highlighted the pivotal role of RNA post-transcriptional modifications in the regulation of RNA expression and function. Accurate identification of RNA modification sites is important for understanding RNA function. In this study, we propose a novel RNA modification prediction method, namely Rm-LR, which leverages a long-range-based deep learning approach to accurately predict multiple types of RNA modifications using RNA sequences only. Rm-LR incorporates two large-scale RNA language pre-trained models to capture discriminative sequential information and learn local important features, which are subsequently integrated through a bilinear attention network. Rm-LR supports a total of ten RNA modification types (m6A, m1A, m5C, m5U, m6Am, Ψ, Am, Cm, Gm, and Um) and significantly outperforms the state-of-the-art methods in terms of predictive capability on benchmark datasets. Experimental results show the effectiveness and superiority of Rm-LR in prediction of various RNA modifications, demonstrating the strong adaptability and robustness of our proposed model. We demonstrate that RNA language pretrained models enable to learn dense biological sequential representations from large-scale long-range RNA corpus, and meanwhile enhance the interpretability of the models. This work contributes to the development of accurate and reliable computational models for RNA modification prediction, providing insights into the complex landscape of RNA modifications.
Collapse
Affiliation(s)
- Sirui Liang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yanxi Zhao
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Ding Wang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yu Wang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China.
| |
Collapse
|
17
|
Rojas-Cruz AF, Bermúdez-Santana CI. Computational Prediction of RNA-RNA Interactions between Small RNA Tracks from Betacoronavirus Nonstructural Protein 3 and Neurotrophin Genes during Infection of an Epithelial Lung Cancer Cell Line: Potential Role of Novel Small Regulatory RNA. Viruses 2023; 15:1647. [PMID: 37631989 PMCID: PMC10458423 DOI: 10.3390/v15081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Whether RNA-RNA interactions of cytoplasmic RNA viruses, such as Betacoronavirus, might end in the biogenesis of putative virus-derived small RNAs as miRNA-like molecules has been controversial. Even more, whether RNA-RNA interactions of wild animal viruses may act as virus-derived small RNAs is unknown. Here, we address these issues in four ways. First, we use conserved RNA structures undergoing negative selection in the genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 circulating in different bat species, intermediate animals, and human hosts. Second, a systematic literature review was conducted to identify Betacoronavirus-targeting hsa-miRNAs involved in lung cell infection. Third, we employed sophisticated long-range RNA-RNA interactions to refine the seed sequence homology of hsa-miRNAs with conserved RNA structures. Fourth, we used high-throughput RNA sequencing of a Betacoronavirus-infected epithelial lung cancer cell line (Calu-3) to validate the results. We proposed nine potential virus-derived small RNAs: two vsRNAs in SARS-CoV (Bats: SB-vsRNA-ORF1a-3p; SB-vsRNA-S-5p), one vsRNA in MERS-CoV (Bats: MB-vsRNA-ORF1b-3p), and six vsRNAs in SARS-CoV-2 (Bats: S2B-vsRNA-ORF1a-5p; intermediate animals: S2I-vsRNA-ORF1a-5p; and humans: S2H-vsRNA-ORF1a-5p, S2H-vsRNA-ORF1a-3p, S2H-vsRNA-ORF1b-3p, S2H-vsRNA-ORF3a-3p), mainly encoded by nonstructural protein 3. Notably, Betacoronavirus-derived small RNAs targeted 74 differentially expressed genes in infected human cells, of which 55 upregulate the molecular mechanisms underlying acute respiratory distress syndrome (ARDS), and the 19 downregulated genes might be implicated in neurotrophin signaling impairment. These results reveal a novel small RNA-based regulatory mechanism involved in neuropathogenesis that must be further studied to validate its therapeutic use.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Clara Isabel Bermúdez-Santana
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
18
|
Soulère L, Barbier T, Queneau Y. In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Main Protease among a PubChem Database of Avian Infectious Bronchitis Virus 3CLPro Inhibitors. Biomolecules 2023; 13:956. [PMID: 37371536 DOI: 10.3390/biom13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Remarkable structural homologies between the main proteases of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the avian infectious bronchitis virus (IBV) were revealed by comparative amino-acid sequence and 3D structural alignment. Assessing whether reported IBV 3CLPro inhibitors could also interact with SARS-CoV-2 has been undertaken in silico using a PubChem BioAssay database of 388 compounds active on the avian infectious bronchitis virus 3C-like protease. Docking studies of this database on the SARS-CoV-2 protease resulted in the identification of four covalent inhibitors targeting the catalytic cysteine residue and five non-covalent inhibitors for which the binding was further investigated by molecular dynamics (MD) simulations. Predictive ADMET calculations on the nine compounds suggest promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, CPE-Lyon, ICBMS, UMR 5246, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Thibaut Barbier
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, CPE-Lyon, ICBMS, UMR 5246, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| | - Yves Queneau
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, CPE-Lyon, ICBMS, UMR 5246, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France
| |
Collapse
|
19
|
Pais CM, Godano MI, Juarez E, Prado AD, Manresa JB, Rufiner HL. City-scale model for COVID-19 epidemiology with mobility and social activities represented by a set of hidden Markov models. Comput Biol Med 2023; 160:106942. [PMID: 37156221 PMCID: PMC10152763 DOI: 10.1016/j.compbiomed.2023.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE SARS-CoV-2 emerged by the end of 2019 and became a global pandemic due to its rapid spread. Various outbreaks of the disease in different parts of the world have been studied, and epidemiological analyses of these outbreaks have been useful for developing models with the aim of tracking and predicting the spread of epidemics. In this paper, an agent-based model that predicts the local daily evolution of the number of people hospitalized in intensive care due to COVID-19 is presented. METHODS An agent-based model has been developed, taking into consideration the most relevant characteristics of the geography and climate of a mid-size city, its population and pathology statistics, and its social customs and mobility, including the state of public transportation. In addition to these inputs, the different phases of isolation and social distancing are also taken into account. By means of a set of hidden Markov models, the system captures and reproduces virus transmission associated with the stochastic nature of people's mobility and activities in the city. The spread of the virus in the host is also simulated by following the stages of the disease and by considering the existence of comorbidities and the proportion of asymptomatic carriers. RESULTS As a case study, the model was applied to Paraná city (Entre Ríos, Argentina) in the second half of 2020. The model adequately predicts the daily evolution of people hospitalized in intensive care due to COVID-19. This adequacy is reflected by the fact that the prediction of the model (including its dispersion), as with the data reported in the field, never exceeded 90% of the capacity of beds installed in the city. In addition, other epidemiological variables of interest, with discrimination by age range, were also adequately reproduced, such as the number of deaths, reported cases, and asymptomatic individuals. CONCLUSIONS The model can be used to predict the most likely evolution of the number of cases and hospital bed occupancy in the short term. By adjusting the model to match the data on hospitalizations in intensive care units and deaths due to COVID-19, it is possible to analyze the impact of isolation and social distancing measures on the disease spread dynamics. In addition, it allows for simulating combinations of characteristics that would lead to a potential collapse in the health system due to lack of infrastructure as well as predicting the impact of social events or increases in people's mobility.
Collapse
Affiliation(s)
- Carlos M Pais
- Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Route Prov. 11, km 10, Ciudad de Oro Verde, provincia de Entre Ríos, Argentina.
| | - Matias I Godano
- Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Route Prov. 11, km 10, Ciudad de Oro Verde, provincia de Entre Ríos, Argentina
| | - Emanuel Juarez
- Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Route Prov. 11, km 10, Ciudad de Oro Verde, provincia de Entre Ríos, Argentina
| | - Abelardo Del Prado
- Facultad de Trabajo Social, Universidad Nacional de Entre Ríos (UNER), Argentina
| | - Jose Biurrun Manresa
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - H Leonardo Rufiner
- Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Route Prov. 11, km 10, Ciudad de Oro Verde, provincia de Entre Ríos, Argentina; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional (sinc(i)) Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
20
|
Xin X, Jia-Yin Y, Jun-Yang H, Rui W, Xiong-Ri K, Long-Rui D, Liu J, Jue-Yu Z. Comprehensive analysis of lncRNA-mRNA co-expression networks in HPV-driven cervical cancer reveals the pivotal function of LINC00511-PGK1 in tumorigenesis. Comput Biol Med 2023; 159:106943. [PMID: 37099974 DOI: 10.1016/j.compbiomed.2023.106943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mounting evidence suggests that noncoding RNAs (lncRNAs) were involved in various human cancers. However, the role of these lncRNAs in HPV-driven cervical cancer (CC) has not been extensively studied. Considering that HR-HPV infections contribute to cervical carcinogenesis by regulating the expression of lncRNAs, miRNAs and mRNAs, we aim to systematically analyze lncRNAs and mRNAs expression profile to identify novel lncRNAs-mRNAs co-expression networks and explore their potential impact on tumorigenesis in HPV-driven CC. METHODS LncRNA/mRNA microarray technology was utilized to identify the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in HPV-16 and HPV-18 cervical carcinogenesis compared to normal cervical tissues. Venn diagram and weighted gene co-expression network analysis (WGCNA) were used to identify the hub DElncRNAs/DEmRNAs that were both significantly correlated with HPV-16 and HPV-18 CC patients. LncRNA-mRNA correlation analysis and functional enrichment pathway analysis were performed on these key DElncRNAs/DEmRNAs in HPV-16 and HPV-18 CC patients to explore their mutual mechanism in HPV-driven CC. A lncRNA-mRNA co-expression score (CES) model was established and validated by using the Cox regression method. Afterward, the clinicopathological characteristics were analyzed between CES-high and CES-low groups. In vitro, functional experiments were performed to evaluate the role of LINC00511 and PGK1 in cell proliferation, migration and invasion in CC cells. To understand whether LINC00511 play as an oncogenic role partially via modulating the expression of PGK1, rescue assays were used. RESULTS We identified 81 lncRNAs and 211 mRNAs that were commonly differentially expressed in HPV-16 and HPV-18 CC tissues compared to normal tissues. The results of lncRNA-mRNA correlation analysis and functional enrichment pathway analysis showed that the LINC00511-PGK1 co-expression network may make an important contribution to HPV-mediated tumorigenesis and be closely associated with metabolism-related mechanisms. Combined with clinical survival data, the prognostic lncRNA-mRNA co-expression score (CES) model based on LINC00511 and PGK1 could precisely predict patients' overall survival (OS). CES-high patients had a worse prognosis than CES-low patients and the enriched pathways and potential targets of applicable drugs were explored in CES-high patients. In vitro experiments confirmed the oncogenic functions of LINC00511 and PGK1 in the progression of CC, and revealed that LINC00511 functions in an oncogenic role in CC cells partially via modulating the expression of PGK1. CONCLUSIONS Together, these data identify co-expression modules that provide valuable information to understand the pathogenesis of HPV-mediated tumorigenesis, which highlights the pivotal function of the LINC00511-PGK1 co-expression network in cervical carcinogenesis. Furthermore, our CES model has a reliable predicting ability that could stratify CC patients into low- and high-risk groups of poor survival. This study provides a bioinformatics method to screen prognostic biomarkers which leads to lncRNA-mRNA co-expression network identification and construction for patients' survival prediction and potential drug applications in other cancers.
Collapse
Affiliation(s)
- Xu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu Jia-Yin
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huang Jun-Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wang Rui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kuang Xiong-Ri
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dang Long-Rui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jie Liu
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhou Jue-Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Huang H, Cai X, Lin J, Wu Q, Zhang K, Lin Y, Liu B, Lin J. A novel five-gene metabolism-related risk signature for predicting prognosis and immune infiltration in endometrial cancer: A TCGA data mining. Comput Biol Med 2023; 155:106632. [PMID: 36805217 DOI: 10.1016/j.compbiomed.2023.106632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Metabolism dysfunction can affect the biological behavior of tumor cells and result in carcinogenesis and the development of various cancers. However, few thoughtful studies focus on the predictive value and efficacy of immunotherapy of metabolism-related gene signatures in endometrial cancer (EC). This research aims to construct a predictive metabolism-related gene signature in EC with prognostic and therapeutic implications. METHODS We downloaded the RNA profile and clinical data of 503 EC patients and screened out different expressions of metabolism-related genes with prognosis influence of EC from The Cancer Genome Atlas (TCGA) database. We first established a metabolism-related genes model using univariate and multivariate Cox regression and Lasso regression analysis. To internally validate the predictive model, 503 samples (entire set) were randomly assigned into the test set and the train set. Then, we applied the receiver operating characteristic (ROC) curve to confirm our previous predictive model and depicted a nomogram integrating the risk score and the clinicopathological feature. We employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways of the model. Afterward, we used ESTIMATE to evaluate the TME. Also, we adopted CIBERSORT and ssGSEA to estimate the fraction of immune infiltrating cells and immune function. At last, we investigated the relationship between the predictive model and immune checkpoint genes. RESULTS We first constructed a predictive model based on five metabolism-related genes (INPP5K, PLPP2, MBOAT2, DDC, and ITPKA). This model showed the ability to predict EC patients' prognosis accurately and performed well in the train set, test set, and entire set. Then we confirmed the predictive signature was a novel independent prognostic factor in EC patients. In addition, we drew and validated a nomogram to precisely predict the survival rate of EC patients at 1-, 3-, and 5-years (ROC1-year = 0.714, ROC3-year = 0.750, ROC5-year = 0.767). Furthermore, GSEA unveiled that the cell cycle, certain malignant tumors, and cell metabolism were the main biological functions enriched in this identified model. We found the five metabolism-related genes signature was associated with the immune infiltrating cells and immune functions. Most importantly, it was linked with specific immune checkpoints (PD-1, CTLA4, and CD40) that could predict immunotherapy's clinical response. CONCLUSION The metabolism-related genes signature (INPP5K, PLPP2, MBOAT2, DDC, and ITPKA) is a valuable index for predicting the survival outcomes and efficacy of immunotherapy for EC in clinical settings.
Collapse
Affiliation(s)
- Huaqing Huang
- Department of Pain Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Pain Research Institute of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jiexiang Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qiaoling Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Kailin Zhang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
22
|
Yue ZX, Yan TC, Xu HQ, Liu YH, Hong YF, Chen GX, Xie T, Tao L. A systematic review on the state-of-the-art strategies for protein representation. Comput Biol Med 2023; 152:106440. [PMID: 36543002 DOI: 10.1016/j.compbiomed.2022.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The study of drug-target protein interaction is a key step in drug research. In recent years, machine learning techniques have become attractive for research, including drug research, due to their automated nature, predictive power, and expected efficiency. Protein representation is a key step in the study of drug-target protein interaction by machine learning, which plays a fundamental role in the ultimate accomplishment of accurate research. With the progress of machine learning, protein representation methods have gradually attracted attention and have consequently developed rapidly. Therefore, in this review, we systematically classify current protein representation methods, comprehensively review them, and discuss the latest advances of interest. According to the information extraction methods and information sources, these representation methods are generally divided into structure and sequence-based representation methods. Each primary class can be further divided into specific subcategories. As for the particular representation methods involve both traditional and the latest approaches. This review contains a comprehensive assessment of the various methods which researchers can use as a reference for their specific protein-related research requirements, including drug research.
Collapse
Affiliation(s)
- Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
23
|
iEnhancer-MRBF: Identifying enhancers and their strength with a multiple Laplacian-regularized radial basis function network. Methods 2022; 208:1-8. [DOI: 10.1016/j.ymeth.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
|
24
|
Hajji H, Alaqarbeh M, Lakhlifi T, Ajana MA, Alsakhen N, Bouachrine M. Computational approach investigation bioactive molecules from Saussurea Costus plant as SARS-CoV-2 main protease inhibitors using reverse docking, molecular dynamics simulation, and pharmacokinetic ADMET parameters. Comput Biol Med 2022; 150:106209. [PMID: 36257276 PMCID: PMC9554895 DOI: 10.1016/j.compbiomed.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
SARS-COV-2 virus causes (COVID-19) disease; it has become a global pandemic since 2019 and has negatively affected all aspects of human life. Scientists have made great efforts to find a reliable cure, vaccine, or treatment for this emerging disease. Efforts have been directed towards using medicinal plants as alternative medicines, as the active chemical compounds in them have been discovered as potential antiviral or anti-inflammatory agents. In this research, the potential of Saussurea costus (S. Costus) or QUST Al Hindi chemical consistent as potential antiviral agents was investigated by using computational methods such as Reverse Docking, ADMET, and Molecular Dynamics with different proteases COVID-19 such as PDB: 2GZ9; 6LU7; 7AOL, 6Y2E, 6Y84. The results of Reverse Docking the complex between 6LU7 proteases and Cynaropicrin compound being the best complex, as the same result, is achieved by molecular dynamics. Also, the toxicity testing result from ADMET method proved that the complex is the least toxic and the safest possible drug. In addition, 6LU7-Cynaropicrin complex obeyed Lipinski rule; it formed ≤5 H-bond donors and ≤10 H bond acceptors, MW < 500 Daltons, and octanol/water partition coefficient <5.
Collapse
Affiliation(s)
- Halima Hajji
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa, 19381, Jordan.
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco; Superior School of Technology - Khenifra (EST-Khenifra), University of Sultan Moulay Sliman, PB 170, Khenifra, 54000, Morocco.
| |
Collapse
|
25
|
Sun X, Zhang Y, Li H, Zhou Y, Shi S, Chen Z, He X, Zhang H, Li F, Yin J, Mou M, Wang Y, Qiu Y, Zhu F. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res 2022; 51:D1263-D1275. [PMID: 36243960 PMCID: PMC9825618 DOI: 10.1093/nar/gkac812] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Widespread drug resistance has become the key issue in global healthcare. Extensive efforts have been made to reveal not only diverse diseases experiencing drug resistance, but also the six distinct types of molecular mechanisms underlying this resistance. A database that describes a comprehensive list of diseases with drug resistance (not just cancers/infections) and all types of resistance mechanisms is now urgently needed. However, no such database has been available to date. In this study, a comprehensive database describing drug resistance information named 'DRESIS' was therefore developed. It was introduced to (i) systematically provide, for the first time, all existing types of molecular mechanisms underlying drug resistance, (ii) extensively cover the widest range of diseases among all existing databases and (iii) explicitly describe the clinically/experimentally verified resistance data for the largest number of drugs. Since drug resistance has become an ever-increasing clinical issue, DRESIS is expected to have great implications for future new drug discovery and clinical treatment optimization. It is now publicly accessible without any login requirement at: https://idrblab.org/dresis/.
Collapse
Affiliation(s)
| | | | | | | | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute, Zhejiang University, Haining 314499, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunzhu Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
26
|
Li F, Yin J, Lu M, Mou M, Li Z, Zeng Z, Tan Y, Wang S, Chu X, Dai H, Hou T, Zeng S, Chen Y, Zhu F. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2022; 51:D1288-D1299. [PMID: 36243961 PMCID: PMC9825453 DOI: 10.1093/nar/gkac813] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy and safety of drugs are widely known to be determined by their interactions with multiple molecules of pharmacological importance, and it is therefore essential to systematically depict the molecular atlas and pharma-information of studied drugs. However, our understanding of such information is neither comprehensive nor precise, which necessitates the construction of a new database providing a network containing a large number of drugs and their interacting molecules. Here, a new database describing the molecular atlas and pharma-information of drugs (DrugMAP) was therefore constructed. It provides a comprehensive list of interacting molecules for >30 000 drugs/drug candidates, gives the differential expression patterns for >5000 interacting molecules among different disease sites, ADME (absorption, distribution, metabolism and excretion)-relevant organs and physiological tissues, and weaves a comprehensive and precise network containing >200 000 interactions among drugs and molecules. With the great efforts made to clarify the complex mechanism underlying drug pharmacokinetics and pharmacodynamics and rapidly emerging interests in artificial intelligence (AI)-based network analyses, DrugMAP is expected to become an indispensable supplement to existing databases to facilitate drug discovery. It is now fully and freely accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
| | | | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Correspondence may also be addressed to Su Zeng.
| | - Yuzong Chen
- Correspondence may also be addressed to Yuzong Chen.
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
27
|
Amahong K, Zhang W, Zhou Y, Zhang S, Yin J, Li F, Xu H, Yan T, Yue Z, Liu Y, Hou T, Qiu Y, Tao L, Han L, Zhu F. CovInter: interaction data between coronavirus RNAs and host proteins. Nucleic Acids Res 2022; 51:D546-D556. [PMID: 36200814 PMCID: PMC9825556 DOI: 10.1093/nar/gkac834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
Coronavirus has brought about three massive outbreaks in the past two decades. Each step of its life cycle invariably depends on the interactions among virus and host molecules. The interaction between virus RNA and host protein (IVRHP) is unique compared to other virus-host molecular interactions and represents not only an attempt by viruses to promote their translation/replication, but also the host's endeavor to combat viral pathogenicity. In other words, there is an urgent need to develop a database for providing such IVRHP data. In this study, a new database was therefore constructed to describe the interactions between coronavirus RNAs and host proteins (CovInter). This database is unique in (a) unambiguously characterizing the interactions between virus RNA and host protein, (b) comprehensively providing experimentally validated biological function for hundreds of host proteins key in viral infection and (c) systematically quantifying the differential expression patterns (before and after infection) of these key proteins. Given the devastating and persistent threat of coronaviruses, CovInter is highly expected to fill the gap in the whole process of the 'molecular arms race' between viruses and their hosts, which will then aid in the discovery of new antiviral therapies. It's now free and publicly accessible at: https://idrblab.org/covinter/.
Collapse
Affiliation(s)
| | | | | | - Song Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Hongquan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zixuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Lin Tao
- Correspondence may also be addressed to Lin Tao.
| | - Lianyi Han
- Correspondence may also be addressed to Lianyi Han.
| | - Feng Zhu
- To whom correspondence should be addressed. Tel: +86 189 8946 6518; Fax: +86 571 8820 8444;
| |
Collapse
|
28
|
Liu S, Chen L, Zhang Y, Zhou Y, He Y, Chen Z, Qi S, Zhu J, Chen X, Zhang H, Luo Y, Qiu Y, Tao L, Zhu F. M6AREG: m6A-centered regulation of disease development and drug response. Nucleic Acids Res 2022; 51:D1333-D1344. [PMID: 36134713 PMCID: PMC9825441 DOI: 10.1093/nar/gkac801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/30/2023] Open
Abstract
As the most prevalent internal modification in eukaryotic RNAs, N6-methyladenosine (m6A) has been discovered to play an essential role in cellular proliferation, metabolic homeostasis, embryonic development, etc. With the rapid accumulation of research interest in m6A, its crucial roles in the regulations of disease development and drug response are gaining more and more attention. Thus, a database offering such valuable data on m6A-centered regulation is greatly needed; however, no such database is as yet available. Herein, a new database named 'M6AREG' is developed to (i) systematically cover, for the first time, data on the effects of m6A-centered regulation on both disease development and drug response, (ii) explicitly describe the molecular mechanism underlying each type of regulation and (iii) fully reference the collected data by cross-linking to existing databases. Since the accumulated data are valuable for researchers in diverse disciplines (such as pathology and pathophysiology, clinical laboratory diagnostics, medicinal biochemistry and drug design), M6AREG is expected to have many implications for the future conduct of m6A-based regulation studies. It is currently accessible by all users at: https://idrblab.org/m6areg/.
Collapse
Affiliation(s)
- Shuiping Liu
- Correspondence may also be addressed to Shuiping Liu.
| | | | | | | | - Ying He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Shasha Qi
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jinyu Zhu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xudong Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, China
| | - Lin Tao
- Correspondence may also be addressed to Lin Tao.
| | - Feng Zhu
- To whom correspondence should be addressed. Tel: +86 189 8946 6518; Fax: +86 571 8820 8444;
| |
Collapse
|
29
|
Omoru OB, Pereira F, Janga SC, Manzourolajdad A. A Putative long-range RNA-RNA interaction between ORF8 and Spike of SARS-CoV-2. PLoS One 2022; 17:e0260331. [PMID: 36048827 PMCID: PMC9436084 DOI: 10.1371/journal.pone.0260331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/22/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 has affected people worldwide as the causative agent of COVID-19. The virus is related to the highly lethal SARS-CoV-1 responsible for the 2002-2003 SARS outbreak in Asia. Research is ongoing to understand why both viruses have different spreading capacities and mortality rates. Like other beta coronaviruses, RNA-RNA interactions occur between different parts of the viral genomic RNA, resulting in discontinuous transcription and production of various sub-genomic RNAs. These sub-genomic RNAs are then translated into other viral proteins. In this work, we performed a comparative analysis for novel long-range RNA-RNA interactions that may involve the Spike region. Comparing in-silico fragment-based predictions between reference sequences of SARS-CoV-1 and SARS-CoV-2 revealed several predictions amongst which a thermodynamically stable long-range RNA-RNA interaction between (23660-23703 Spike) and (28025-28060 ORF8) unique to SARS-CoV-2 was observed. The patterns of sequence variation using data gathered worldwide further supported the predicted stability of the sub-interacting region (23679-23690 Spike) and (28031-28042 ORF8). Such RNA-RNA interactions can potentially impact viral life cycle including sub-genomic RNA production rates.
Collapse
Affiliation(s)
- Okiemute Beatrice Omoru
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States of America
| | - Filipe Pereira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- IDENTIFICA Genetic Testing, Maia, Portugal
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, Indiana, United States of America
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, Indiana, United States of America
| | - Amirhossein Manzourolajdad
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States of America
- Department of Computer Science, Colgate University, Hamilton, NY, United States of America
| |
Collapse
|
30
|
More-Adate P, Lokhande KB, Swamy KV, Nagar S, Baheti A. GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Comput Biol Med 2022; 147:105679. [PMID: 35667152 PMCID: PMC9158327 DOI: 10.1016/j.compbiomed.2022.105679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 was originally identified in Wuhan city of China in December 2019 and it spread rapidly throughout the globe, causing a threat to human life. Since targeted therapies are deficient, scientists all over the world have an opportunity to develop novel drug therapies to combat COVID-19. After the declaration of a global medical emergency, it was established that the Food and Drug Administration (FDA) could permit the use of emergency testing, treatments, and vaccines to decrease suffering, and loss of life, and restore the nation's health and security. The FDA has approved the use of remdesivir and its analogs as an antiviral medication, to treat COVID-19. The primary protease of SARS-CoV-2, which has the potential to regulate coronavirus proliferation, has been a viable target for the discovery of medicines against SARS-CoV-2. The present research deals with the in silico technique to screen phytocompounds from a traditional medicinal plant, Bauhinia variegata for potential inhibitors of the SARS-CoV-2 main protease. Dried leaves of the plant B. variegata were used to prepare aqueous and methanol extract and the constituents were analyzed using the GC-MS technique. A total of 57 compounds were retrieved from the aqueous and methanol extract analysis. Among these, three lead compounds (2,5 dimethyl 1-H Pyrrole, 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide, and Benzonitrile m phenethyl) were shown to have the highest binding affinity (−5.719 to −5.580 kcal/mol) towards SARS-CoV-2 Mpro. The post MD simulation results also revealed the favorable confirmation and stability of the selected lead compounds with Mpro as per trajectory analysis. The Prime MM/GBSA binding free energy supports this finding, the top lead compound 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide showed high binding free energy (−64.377 ± 5.24 kcal/mol) towards Mpro which reflects the binding stability of the molecule with Mpro. The binding free energy of the complexes was strongly influenced by His, Gln, and Glu residues. All of the molecules chosen are found to have strong pharmacokinetic characteristics and show drug-likeness properties. The lead compounds present acute toxicity (LD50) values ranging from 670 mg/kg to 2500 mg/kg; with toxicity classifications of 4 and 5 classes. Thus, these compounds could behave as probable lead candidates for treatment against SARS-CoV-2. However further in vitro and in vivo studies are required for the development of medication against SARS-CoV-2.
Collapse
|
31
|
Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022; 148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
Multiomics is a powerful technique in molecular biology that facilitates the identification of new associations among different molecules (genes, proteins & metabolites). It has attracted tremendous research interest from the scientists worldwide and has led to an explosive number of published studies. Most of these studies are based on the regulation data provided in available databases. Therefore, it is essential to have molecular regulation data that are strictly validated in the living systems of various cell lines and in vivo models. However, no database has been developed yet to provide comprehensive molecular regulation information validated by living systems. Herein, a new database, Molecular Regulation Data of Living System Facilitating Multiomics Study (REGLIV) is introduced to describe various types of molecular regulation tested by the living systems. (1) A total of 2996 regulations describe the changes in 1109 metabolites triggered by alterations in 284 genes or proteins, and (2) 1179 regulations describe the variations in 926 proteins induced by 125 endogenous metabolites. Overall, REGLIV is unique in (a) providing the molecular regulation of a clearly defined regulatory direction other than simple correlation, (b) focusing on molecular regulations that are validated in a living system not simply in an in vitro test, and (c) describing the disease/tissue/species specific property underlying each regulation. Therefore, REGLIV has important implications for the future practice of not only multiomics, but also other fields relevant to molecular regulation. REGLIV is freely accessible at: https://idrblab.org/regliv/.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kuerbannisha Amahong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
32
|
In silico exploration of disulfide derivatives of Ferula foetida oleo-gum (Covexir®) as promising therapeutics against SARS-CoV-2. Comput Biol Med 2022; 146:105566. [PMID: 35598351 PMCID: PMC9112615 DOI: 10.1016/j.compbiomed.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/17/2023]
Abstract
Although vaccines have been significantly successful against coronavirus, due to the high rate of the Omicron variant spread many researchers are trying to find efficient drugs against COVID-19. Herein, we conducted a computational study to investigate the binding mechanism of four potential inhibitors (including disulfide derivatives isolated from Ferula foetida) to SARS-CoV-2 main protease. Our findings revealed that the disulfides mainly interacted with HIS41, MET49, CYS145, HIS64, MET165, and GLN189 residues of SARS-CoV-2 main protease. The binding free energy decomposition results also showed that the van der Waals (vdW) energy plays the main role in the interaction of HIS41, MET49, CYS145, HIS64, MET165, and GLN189 residues with the inhibitors. Furthermore, it is found that the Z-isomer derivatives have a stronger interaction with SARS-CoV-2, and the strongest interaction belongs to the (Z)-1-(1-(methylthio)propyl)-2-(prop-1-enyl)disulfane (ΔG = -18.672 kcal/mol). The quantum mechanical calculations demonstrated that the second-order perturbation stabilization energy and the electron density values for MET49-ligand interactions are higher than the other residue-ligand complexes. This finding confirms the stronger interaction of this residue with the ligands.
Collapse
|
33
|
Tahsin A, Ahmed R, Bhattacharjee P, Adiba M, Al Saba A, Yasmin T, Chakraborty S, Hasan AM, Nabi AN. Most frequently harboured missense variants of hACE2 across different populations exhibit varying patterns of binding interaction with spike glycoproteins of emerging SARS-CoV-2 of different lineages. Comput Biol Med 2022; 148:105903. [PMID: 35932731 PMCID: PMC9296255 DOI: 10.1016/j.compbiomed.2022.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
Since the emergence of SARS-CoV-2 at Wuhan in the Hubei province of China in 2019, the virus has accumulated various mutations, giving rise to many variants. According to the combinations of mutations acquired, these variants are classified into lineages and greatly differ in infectivity and transmissibility. In 2021 alone, a variant of interest (VoI) Mu (B.1.621), as well as, variants of concern (VoC) Delta (B.1.617.2) and Omicron (BA.1, BA.2) and later in 2022, BA.4, BA.5, and BA.2.12.1 have emerged. Since then, the world has seen prominent surges in the rate of infection during short periods of time. However, not all populations have suffered equally, which suggests a possible role of host genetic factors. Here, we investigated the strength of binding of the spike glycoprotein receptor-binding domain (RBD) of the SARS-CoV-2 variants: Mu, Delta, Delta Plus (AY.1), Omicron sub-variants BA.1, BA.2, BA.4, BA.5, and BA.2.12.1 with the human angiotensin-converting enzyme 2 (hACE2) missense variants prevalent in major populations. In this purpose, molecular docking analysis, as well as, molecular dynamics simulation was performed of the above-mentioned SARS-CoV-2 RBD variants with the hACE2 containing the single amino acid substitutions prevalent in African (E37K), Latin American (F40L), non-Finnish European (D355 N), and South Asian (P84T) populations, in order to predict the effects of the lineage-defining mutations of the viral variants on receptor binding. The effects of these mutations on protein stability were also explored. The protein-protein docking and molecular dynamics simulation analyses have revealed variable strength of attachment and exhibited altered interactions in the case of different hACE2-RBD complexes. In vitro studies are warranted to confirm these findings which may enable early prediction regarding the risk of transmissibility of newly emerging variants across different populations in the future.
Collapse
|
34
|
Li F, Yin J, Lu M, Yang Q, Zeng Z, Zhang B, Li Z, Qiu Y, Dai H, Chen Y, Zhu F. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform 2022; 23:6618243. [PMID: 35758241 DOI: 10.1093/bib/bbac253] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The discovery of proper molecular signature from OMIC data is indispensable for determining biological state, physiological condition, disease etiology, and therapeutic response. However, the identified signature is reported to be highly inconsistent, and there is little overlap among the signatures identified from different biological datasets. Such inconsistency raises doubts about the reliability of reported signatures and significantly hampers its biological and clinical applications. Herein, an online tool, ConSIG, was constructed to realize consistent discovery of gene/protein signature from any uploaded transcriptomic/proteomic data. This tool is unique in a) integrating a novel strategy capable of significantly enhancing the consistency of signature discovery, b) determining the optimal signature by collective assessment, and c) confirming the biological relevance by enriching the disease/gene ontology. With the increasingly accumulated concerns about signature consistency and biological relevance, this online tool is expected to be used as an essential complement to other existing tools for OMIC-based signature discovery. ConSIG is freely accessible to all users without login requirement at https://idrblab.org/consig/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
35
|
Li S, Wang L, Meng J, Zhao Q, Zhang L, Liu H. De Novo design of potential inhibitors against SARS-CoV-2 Mpro. Comput Biol Med 2022; 147:105728. [PMID: 35763931 PMCID: PMC9197785 DOI: 10.1016/j.compbiomed.2022.105728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
The impact of the ravages of COVID-19 on people's lives is obvious, and the development of novel potential inhibitors against SARS-CoV-2 main protease (Mpro), which has been validated as a potential target for drug design, is urgently needed. This study developed a model named MproI-GEN, which can be used for the de novo design of potential Mpro inhibitors (MproIs) based on deep learning. The model was mainly composed of long-short term memory modules, and the last layer was re-trained with transfer learning. The validity (0.9248), novelty (0.9668), and uniqueness (0.0652) of the designed potential MproI library (PMproIL) were evaluated, and the results showed that MproI-GEN could be used to design structurally novel and reasonable molecules. Additionally, PMproIL was filtered based on machine learning models and molecular docking. After filtering, the potential MproIs were verified with molecular dynamics simulations to evaluate the binding stability levels of these MproIs and SARS-CoV-2 Mpro, thereby illustrating the inhibitory effects of the potential MproIs against Mpro. Two potential MproIs were proposed in this study. This study provides not only new possibilities for the development of COVID-19 drugs but also a complete pipeline for the discovery of novel lead compounds.
Collapse
Affiliation(s)
- Shimeng Li
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Lianxin Wang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Jinhui Meng
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China; Shenyang Key Laboratory of Computer Simulating and Information Processing of Bio-macromolecules, Shenyang, 110036, China.
| | - Hongsheng Liu
- Shenyang Key Laboratory of Computer Simulating and Information Processing of Bio-macromolecules, Shenyang, 110036, China; Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China; Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China; School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
36
|
Zhou W, Xu C, Luo M, Wang P, Xu Z, Xue G, Jin X, Huang Y, Li Y, Nie H, Jiang Q, Anashkina AA. MutCov: A pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2. Comput Biol Med 2022; 145:105509. [PMID: 35421792 PMCID: PMC8993498 DOI: 10.1016/j.compbiomed.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing an outbreak of coronavirus disease 2019 (COVID-19), is a major threat to public health worldwide. Previous studies have shown that the spike protein of SARS-CoV-2 determines viral infectivity and major antigenicity. However, the spike protein has been undergoing various mutations, which bring a great challenge to the prevention and treatment of COVID-19. Here we present the MutCov, a pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2 by calculating the binding free energy between spike protein and angiotensin-converting enzyme 2 (ACE2) or neutralizing monoclonal antibody (mAb). The predicted infectivity and antigenicity were highly consistent with biologically experimental results, and demonstrated that the MutCov achieved good prediction performance. In conclusion, the MutCov is of high importance for systematically evaluating the effect of novel mutations and improving the prevention and treatment of COVID-19. The source code and installation instruction of MutCov are freely available at http://jianglab.org.cn/MutCov.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
37
|
Xu H, Hu X, Yan X, Zhong W, Yin D, Gai Y. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach. Comput Biol Med 2022; 145:105447. [DOI: 10.1016/j.compbiomed.2022.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022]
|
38
|
Zhang C, Mou M, Zhou Y, Zhang W, Lian X, Shi S, Lu M, Sun H, Li F, Wang Y, Zeng Z, Li Z, Zhang B, Qiu Y, Zhu F, Gao J. Biological activities of drug inactive ingredients. Brief Bioinform 2022; 23:6582006. [PMID: 35524477 DOI: 10.1093/bib/bbac160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
In a drug formulation (DFM), the major components by mass are not Active Pharmaceutical Ingredient (API) but rather Drug Inactive Ingredients (DIGs). DIGs can reach much higher concentrations than that achieved by API, which raises great concerns about their clinical toxicities. Therefore, the biological activities of DIG on physiologically relevant target are widely demanded by both clinical investigation and pharmaceutical industry. However, such activity data are not available in any existing pharmaceutical knowledge base, and their potentials in predicting the DIG-target interaction have not been evaluated yet. In this study, the comprehensive assessment and analysis on the biological activities of DIGs were therefore conducted. First, the largest number of DIGs and DFMs were systematically curated and confirmed based on all drugs approved by US Food and Drug Administration. Second, comprehensive activities for both DIGs and DFMs were provided for the first time to pharmaceutical community. Third, the biological targets of each DIG and formulation were fully referenced to available databases that described their pharmaceutical/biological characteristics. Finally, a variety of popular artificial intelligence techniques were used to assess the predictive potential of DIGs' activity data, which was the first evaluation on the possibility to predict DIG's activity. As the activities of DIGs are critical for current pharmaceutical studies, this work is expected to have significant implications for the future practice of drug discovery and precision medicine.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Lei Y, Meng Y, Guo X, Ning K, Bian Y, Li L, Hu Z, Anashkina AA, Jiang Q, Dong Y, Zhu X. Overview of structural variation calling: Simulation, identification, and visualization. Comput Biol Med 2022; 145:105534. [DOI: 10.1016/j.compbiomed.2022.105534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022]
|
40
|
Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022; 145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive efforts to develop effective prediction method. However, the existing methods tend to amplify the representativeness of the families with large number of proteins by misclassifying the proteins in the families with small number of proteins. That is to say, the ability of the existing methods to annotate proteins in the 'rare classes' remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method was introduced to the model construction for further improving the prediction performances. Third, based on the latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families comparing with the existing methods. Finally, this newly constructed model was found capable of significantly elevating the prediction performance for the 'rare classes' without sacrificing that for the 'major classes'. All in all, due to the emerging requirements on improving the prediction performance for the proteins in 'rare classes', this new strategy would become an essential complement to the existing methods for protein function prediction. All the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.
Collapse
Affiliation(s)
- Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jiebin Fang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
41
|
Vardhan S, Sahoo SK. Computational studies on the interaction of SARS-CoV-2 Omicron SGp RBD with human receptor ACE2, limonin and glycyrrhizic acid. Comput Biol Med 2022; 144:105367. [PMID: 35247766 PMCID: PMC8886687 DOI: 10.1016/j.compbiomed.2022.105367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/06/2023]
Abstract
On November 24, 2021, the SARS-CoV-2 Omicron variant (B.1.1.529) was first identified in South Africa. The World Health Organization (WHO) declared the Omicron as a variant of concern (VoC) because of the unexpected and large numbers of mutations occurred in the genome, higher viral transmission and immune evasions. The present study was performed to explore the interactions of SARS-CoV-2 spike glycoprotein receptor-binding domain (SGp RBD) of the three variants (Omicron, Delta, and WT) with the receptor hACE2. The structural changes occurred in Omicron due to the mutations at key positions improved the ability to mediate SARS-CoV-2 viral infection compared to other VoCs. The phytochemicals limonin and glycyrrhizic acid were docked with the SGp RBD of the variants WT, Delta and Omicron. The computed dock score revealed that limonin and glycyrrhizic acid binds effectively at the SGp RBD of all three variants, and showed almost similar binding affinity at the binding interface of ACE2. Therefore, despite the multiple mutations occurred in Omicron and its viral transmission is comparatively high, the computed binding affinity of the phytochemicals limonin and glycyrrhizic acid supported that the traditional medicines can be useful in formulating adjuvant therapies to fight against the SARS-CoV-2 Omicron.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India.
| |
Collapse
|
42
|
Xue W, Fu T, Deng S, Yang F, Yang J, Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem Neurosci 2022; 13:340-351. [PMID: 35041375 DOI: 10.1021/acschemneuro.1c00694] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human serotine transporter (hSERT) is one of the most influential drug targets, and its allosteric modulators (e.g., escitalopram) have emerged to be the next-generation medication for psychiatric disorders. However, the molecular mechanism underlying the allosteric modulation of hSERT is still elusive. Here, the simulation strategies of conventional (cMD) and steered (SMD) molecular dynamics were applied to investigate this molecular mechanism from distinct perspectives. First, cMD simulations revealed that escitalopram's binding to hSERT's allosteric site simultaneously enhanced its binding to the orthosteric site. Then, SMD simulation identified that the occupation of hSERT's allosteric site by escitalopram could also block its dissociation from the orthosteric site. Finally, by comparing the simulated structures of two hSERT-escitalopram complexes with and without allosteric modulation, a new conformational coupling between an extracellular (Arg104-Glu494) and an intracellular (Lys490-Glu494) salt bridge was identified. In summary, this study explored the mechanism underlying the allosteric modulation of hSERT by collectively applying two MD simulation strategies, which could facilitate our understanding of the allosteric modulations of not only hSERT but also other clinically important therapeutic targets.
Collapse
Affiliation(s)
- Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Tingting Fu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
43
|
Miao Z, Humphreys BD, McMahon AP, Kim J. Multi-omics integration in the age of million single-cell data. Nat Rev Nephrol 2021; 17:710-724. [PMID: 34417589 PMCID: PMC9191639 DOI: 10.1038/s41581-021-00463-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
An explosion in single-cell technologies has revealed a previously underappreciated heterogeneity of cell types and novel cell-state associations with sex, disease, development and other processes. Starting with transcriptome analyses, single-cell techniques have extended to multi-omics approaches and now enable the simultaneous measurement of data modalities and spatial cellular context. Data are now available for millions of cells, for whole-genome measurements and for multiple modalities. Although analyses of such multimodal datasets have the potential to provide new insights into biological processes that cannot be inferred with a single mode of assay, the integration of very large, complex, multimodal data into biological models and mechanisms represents a considerable challenge. An understanding of the principles of data integration and visualization methods is required to determine what methods are best applied to a particular single-cell dataset. Each class of method has advantages and pitfalls in terms of its ability to achieve various biological goals, including cell-type classification, regulatory network modelling and biological process inference. In choosing a data integration strategy, consideration must be given to whether the multi-omics data are matched (that is, measured on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the overall modelling and visualization goals of the integrated analysis.
Collapse
Affiliation(s)
- Zhen Miao
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|