1
|
Rajabli F, Kunkle BW. Strategies in Aggregation Tests for Rare Variants. Curr Protoc 2023; 3:e931. [PMID: 37988228 DOI: 10.1002/cpz1.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Genome-wide association studies (GWAS) successfully identified numerous common variants involved in complex diseases, but only limited heritability was explained by these findings. Advances in high-throughput sequencing technology made it possible to assess the contribution of rare variants in common diseases. However, study of rare variants introduces challenges due to low frequency of rare variants. Well-established common variant methods were underpowered to identify the rare variants in GWAS. To address this challenge, several new methods have been developed to examine the role of rare variants in complex diseases. These approaches are based on testing the aggregate effect of multiple rare variants in a predefined genetic region. Provided here is an overview of statistical approaches and the protocols explaining step-by-step analysis of aggregations tests with the hands-on experience using R scripts in four categories: burden tests, adaptive burden tests, variance-component tests, and combined tests. Also explained are the concepts of rare variants, permutation tests, kernel methods, and genetic variant annotation. At the end we discuss relevant topics of bioinformatics tools for annotation, family-based design of rare-variant analysis, population stratification adjustment, and meta-analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Farid Rajabli
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brian W Kunkle
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Willems SM, Ng NHJ, Fernandez J, Fine RS, Wheeler E, Wessel J, Kitajima H, Marenne G, Sim X, Yaghootkar H, Wang S, Chen S, Chen Y, Chen YDI, Grarup N, Li-Gao R, Varga TV, Asimit JL, Feng S, Strawbridge RJ, Kleinbrink EL, Ahluwalia TS, An P, Appel EV, Arking DE, Auvinen J, Bielak LF, Bihlmeyer NA, Bork-Jensen J, Brody JA, Campbell A, Chu AY, Davies G, Demirkan A, Floyd JS, Giulianini F, Guo X, Gustafsson S, Jackson AU, Jakobsdottir J, Järvelin MR, Jensen RA, Kanoni S, Keinanen-Kiukaanniemi S, Li M, Lu Y, Luan J, Manning AK, Marten J, Meidtner K, Mook-Kanamori DO, Muka T, Pistis G, Prins B, Rice KM, Sanna S, Smith AV, Smith JA, Southam L, Stringham HM, Tragante V, van der Laan SW, Warren HR, Yao J, Yiorkas AM, Zhang W, Zhao W, Graff M, Highland HM, Justice AE, Marouli E, Medina-Gomez C, Afaq S, Alhejily WA, Amin N, Asselbergs FW, Bonnycastle LL, Bots ML, Brandslund I, Chen J, Danesh J, de Mutsert R, Dehghan A, Ebeling T, Elliott P, Farmaki AE, Faul JD, Franks PW, Franks S, Fritsche A, Gjesing AP, Goodarzi MO, Gudnason V, Hallmans G, Harris TB, Herzig KH, Hivert MF, Jørgensen T, Jørgensen ME, Jousilahti P, Kajantie E, Karaleftheri M, Kardia SLR, Kinnunen L, Koistinen HA, Komulainen P, Kovacs P, Kuusisto J, Laakso M, Lange LA, Launer LJ, Leong A, Lindström J, Manning Fox JE, Männistö S, Maruthur NM, Moilanen L, Mulas A, Nalls MA, Neville M, Pankow JS, Pattie A, Petersen ERB, Puolijoki H, Rasheed A, Redmond P, Renström F, Roden M, Saleheen D, Saltevo J, Savonen K, Sebert S, Skaaby T, Small KS, Stančáková A, Stokholm J, Strauch K, Tai ES, Taylor KD, Thuesen BH, Tönjes A, Tsafantakis E, Tuomi T, Tuomilehto J, Uusitupa M, Vääräsmäki M, Vaartjes I, Zoledziewska M, Abecasis G, Balkau B, Bisgaard H, Blakemore AI, Blüher M, Boeing H, Boerwinkle E, Bønnelykke K, Bottinger EP, Caulfield MJ, Chambers JC, Chasman DI, Cheng CY, Collins FS, Coresh J, Cucca F, de Borst GJ, Deary IJ, Dedoussis G, Deloukas P, den Ruijter HM, Dupuis J, Evans MK, Ferrannini E, Franco OH, Grallert H, Hansen T, Hattersley AT, Hayward C, Hirschhorn JN, Ikram A, Ingelsson E, Karpe F, Kaw KT, Kiess W, Kooner JS, Körner A, Lakka T, Langenberg C, Lind L, Lindgren CM, Linneberg A, Lipovich L, Liu CT, Liu J, Liu Y, Loos RJF, MacDonald PE, Mohlke KL, Morris AD, Munroe PB, Murray A, Padmanabhan S, Palmer CNA, Pasterkamp G, Pedersen O, Peyser PA, Polasek O, Porteous D, Province MA, Psaty BM, Rauramaa R, Ridker PM, Rolandsson O, Rorsman P, Rosendaal FR, Rudan I, Salomaa V, Schulze MB, Sladek R, Smith BH, Spector TD, Starr JM, Stumvoll M, van Duijn CM, Walker M, Wareham NJ, Weir DR, Wilson JG, Wong TY, Zeggini E, Zonderman AB, Rotter JI, Morris AP, Boehnke M, Florez JC, McCarthy MI, Meigs JB, Mahajan A, Scott RA, Gloyn AL, Barroso I. Large-scale exome array summary statistics resources for glycemic traits to aid effector gene prioritization. Wellcome Open Res 2023; 8:483. [PMID: 39280063 PMCID: PMC11399760 DOI: 10.12688/wellcomeopenres.18754.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 09/18/2024] Open
Abstract
Background Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. Methods To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. Results Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. Conclusions Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries.
Collapse
Affiliation(s)
- Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- General Medicine Center, Saarland University Faculty of Medicine, Homburg, 66421, Germany
| | - Natasha H J Ng
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Juan Fernandez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Rebecca S Fine
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Current address: Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jennifer Wessel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Departments of Epidemiology & Medicine, Schools of Public Health & Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Diabetes Translational Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Hidetoshi Kitajima
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Gaelle Marenne
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, 117549, Singapore
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sai Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuning Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
| | - Jennifer L Asimit
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Shuang Feng
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rona J Strawbridge
- Mental Health and Wellbeing, School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Erica L Kleinbrink
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201-1928, USA
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, 63108, USA
| | - Emil V Appel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juha Auvinen
- Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan A Bihlmeyer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - James S Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, 75237, Sweden
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Richard A Jensen
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sirkka Keinanen-Kiukaanniemi
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- MRC and Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Man Li
- Division of Nephrology, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alisa K Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Giorgio Pistis
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bram Prins
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kenneth M Rice
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Serena Sanna
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Lorraine Southam
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Andrianos M Yiorkas
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Human Genetics Center, The University of Texas School of Public Health; The University of Texas Graduate School of Biomedical Sciences at Houston;, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Saima Afaq
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Wesam A Alhejily
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Michiel L Bots
- Center for Circulatory Health, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital Vejle, Vejle, 7100, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Ji Chen
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB18RN, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | | | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
- Health Data Research UK, Imperial College London, London, UK
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Paul W Franks
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Steve Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology, and Clinical Chemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, Umeå, SE-901 87, Sweden
| | | | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine, Medical Research Center Oulu and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, 60-572, Poland
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg, 9100, Denmark
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
- National Institute of Public Health, Southern Denmark University, Odense, 5000, Denmark
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Eero Kajantie
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leena Kinnunen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, FI-00029, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U Helsinki, Helsinki, FI-00290, Finland
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Peter Kovacs
- Integrated Research and Treatment (IFB) Center Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Leslie A Lange
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Denver, CO, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aaron Leong
- Division of General Internal Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jaana Lindström
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute IsletCore, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Nisa M Maruthur
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | | | - Antonella Mulas
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 07100, Italy
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA
- Data Tecnica International LLC, Glen Echo, MD, 20812, USA
| | - Matthew Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Eva R B Petersen
- Department of Clinical Biochemistry, Lillebaelt Hospital Vejle, Vejle, 7100, Denmark
| | - Hannu Puolijoki
- South Ostobothnia Central Hospital, Seinajoki, 60220, Finland
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Paul Redmond
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
- Department of Biobank Research, Umeå University, Umeå, SE-901 87, Sweden
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 19104, USA
| | - Juha Saltevo
- Central Finland Central Hospital, Jyvaskyla, 40620, Finland
| | - Kai Savonen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70029, Finland
| | - Sylvain Sebert
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tea Skaaby
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Betina H Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
| | | | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70210, Finland
| | - Marja Vääräsmäki
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Welfare, Children, Adolescents and Families Unit, National Institute for Health and Welfare, Oulu, Finland
| | - Ilonca Vaartjes
- Center for Circulatory Health, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Magdalena Zoledziewska
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
| | - Goncalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra I Blakemore
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, 14558, Germany
| | - Eric Boerwinkle
- The Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, 77030, USA
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard School of Medicine, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Cucca
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 07100, Italy
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Harald Grallert
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Munich, Germany
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, 5000, Denmark
| | - Andrew T Hattersley
- University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Joel N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, 94305, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Kay-Tee Kaw
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Wieland Kiess
- Pediatric Research Center, Department of Women & Child Health, University of Leipzig, Leipzig, Germany
| | - Jaspal S Kooner
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Antje Körner
- Pediatric Research Center, Department of Women & Child Health, University of Leipzig, Leipzig, Germany
| | - Timo Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70029, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, 70211, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Lars Lind
- Department of Medical Sciences, Molecular Epidemiology; EpiHealth, Uppsala University, Uppsala, 75185, Sweden
| | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201-1928, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jun Liu
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, 27157, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute IsletCore, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
| | - Alison Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Foresterhill Health Campus, Aberdeen, AB25 2ZD, UK
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colin N A Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Gerard Pasterkamp
- Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael A Province
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, 63108, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, Health Systems and Population Health, University of Washington, Seattle, Seattle, WA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard School of Medicine, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå University, Umeå, SE-901 85, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
| | - Robert Sladek
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Blair H Smith
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
- Current address: Genentech, South San Francisco, CA, 94080, USA
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Current address: Genentech, South San Francisco, CA, 94080, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Inês Barroso
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, UK
| |
Collapse
|
3
|
Gupta N, Chakraborty S, Chowdhury MR, Puri RD, Jana M, Kumari I, Bhatia S, Kabra M. A report of 5 Indian families with multicentric carpotarsal osteolysis syndrome. Eur J Med Genet 2023; 66:104822. [PMID: 37595943 DOI: 10.1016/j.ejmg.2023.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Multicentric carpotarsal osteolysis syndrome (MCTO) is a rare autosomal dominant skeletal dysplasia characterised by swelling and restriction of movement in the wrist and ankle joints, as well as osteolysis of the carpal and tarsal bones, that can be misdiagnosed as juvenile idiopathic arthritis. We describe five Indian families with heterozygous nonrecurrent missense pathogenic variants in exon 1 of MAF bZIP transcription factor B (MAFB).
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India.
| | | | | | - Ratna Dua Puri
- Institute of Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| | - Manisha Jana
- Department of Radiodiagnosis & Interventional Radiology, AIIMS, New Delhi, India.
| | - Indu Kumari
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India.
| | - Sameer Bhatia
- Institute of Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India.
| |
Collapse
|
4
|
Li B, Jin B, Capra JA, Bush WS. Integration of Protein Structure and Population-Scale DNA Sequence Data for Disease Gene Discovery and Variant Interpretation. Annu Rev Biomed Data Sci 2022; 5:141-161. [PMID: 35508071 DOI: 10.1146/annurev-biodatasci-122220-112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The experimental and computational techniques for capturing information about protein structures and genetic variation within the human genome have advanced dramatically in the past 20 years, generating extensive new data resources. In this review, we discuss these advances, along with new approaches for determining the impact a genetic variant has on protein function. We focus on the potential of new methods that integrate human genetic variation into protein structures to discover relationships to disease, including the discovery of mutational hotspots in cancer-related proteins, the localization of protein-altering variants within protein regions for common complex diseases, and the assessment of variants of unknown significance for Mendelian traits. We expect that approaches that integrate these data sources will play increasingly important roles in disease gene discovery and variant interpretation. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Bian Li
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Bowen Jin
- Graduate Program in Systems Biology and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA;
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
| |
Collapse
|
5
|
Zhu F, Yin ZT, Wang Z, Smith J, Zhang F, Martin F, Ogeh D, Hincke M, Lin FB, Burt DW, Zhou ZK, Hou SS, Zhao QS, Li XQ, Ding SR, Li GS, Yang FX, Hao JP, Zhang Z, Lu LZ, Yang N, Hou ZC. Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nat Commun 2021; 12:5932. [PMID: 34635656 PMCID: PMC8505442 DOI: 10.1038/s41467-021-26272-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Fang-Bing Lin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zheng-Kui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shui-Sheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Si-Ran Ding
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Guan-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fang-Xi Yang
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Jing-Pin Hao
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
6
|
Trott J, Alpagu Y, Tan EK, Shboul M, Dawood Y, Elsy M, Wollmann H, Tano V, Bonnard C, Eng S, Narayanan G, Junnarkar S, Wearne S, Strutt J, Kumar A, Tomaz LB, Goy PA, Mzoughi S, Jennings R, Hagoort J, Eskin A, Lee H, Nelson SF, Al-Kazaleh F, El-Khateeb M, Fathallah R, Shah H, Goeke J, Langley SR, Guccione E, Hanley N, De Bakker BS, Reversade B, Dunn NR. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6. Development 2020; 147:dev194878. [PMID: 33033118 DOI: 10.1242/dev.194878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.
Collapse
Affiliation(s)
- Jamie Trott
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Yunus Alpagu
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Mohammad Shboul
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 2210, Jordan
| | - Yousif Dawood
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michael Elsy
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Heike Wollmann
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Shermaine Eng
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Gunaseelan Narayanan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Seetanshu Junnarkar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Stephen Wearne
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - James Strutt
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Aakash Kumar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Lucian B Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Pierre-Alexis Goy
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Slim Mzoughi
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Rachel Jennings
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Jaco Hagoort
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA 90095, USA
| | - Fawaz Al-Kazaleh
- Department of Obstetrics and Gynecology, University of Jordan, Amman 19241, Jordan
| | - Mohammad El-Khateeb
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Rajaa Fathallah
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Harsha Shah
- Department of Obstetrics and Gynaecology, Queen Charlotte's & Chelsea Hospital, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Jonathan Goeke
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Neil Hanley
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Bernadette S De Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bruno Reversade
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
- Department of Paediatrics, National University of Singapore, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 12, 119228, Singapore
- Koç University School of Medicine, Medical Genetics Department, Istanbul 34450, Turkey
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| |
Collapse
|
7
|
Li G, Hou L, Liu X, Wu C. A weighted empirical Bayes risk prediction model using multiple traits. Stat Appl Genet Mol Biol 2020; 19:/j/sagmb.ahead-of-print/sagmb-2019-0056/sagmb-2019-0056.xml. [PMID: 32887211 DOI: 10.1515/sagmb-2019-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/06/2020] [Indexed: 11/15/2022]
Abstract
With rapid advances in high-throughput sequencing technology, millions of single-nucleotide variants (SNVs) can be simultaneously genotyped in a sequencing study. These SNVs residing in functional genomic regions such as exons may play a crucial role in biological process of the body. In particular, non-synonymous SNVs are closely related to the protein sequence and its function, which are important in understanding the biological mechanism of sequence evolution. Although statistically challenging, models incorporating such SNV annotation information can improve the estimation of genetic effects, and multiple responses may further strengthen the signals of these variants on the assessment of disease risk. In this work, we develop a new weighted empirical Bayes method to integrate SNV annotation information in a multi-trait design. The performance of this proposed model is evaluated in simulation as well as a real sequencing data; thus, the proposed method shows improved prediction accuracy compared to other approaches.
Collapse
Affiliation(s)
- Gengxin Li
- Department of Mathematics and Statistics, University of Michigan Dearborn, 4901 Evergreen Rd, Dearborn, MI48128,USA
| | - Lin Hou
- Center for Statistical Science, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing100084,China
| | - Xiaoyu Liu
- Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH45435,USA
| | - Cen Wu
- Department of Statistics, Kansas State University, 1116 Mid-Campus Drive N., Manhattan, KS66506,USA
| |
Collapse
|
8
|
WHEELER NICHOLASR, BENCHEK PENELOPE, KUNKLE BRIANW, HAMILTON-NELSON KARAL, WARFE MIKE, FONDRAN JEREMYR, HAINES JONATHANL, BUSH WILLIAMS. Hadoop and PySpark for reproducibility and scalability of genomic sequencing studies. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020; 25:523-534. [PMID: 31797624 PMCID: PMC6956992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Modern genomic studies are rapidly growing in scale, and the analytical approaches used to analyze genomic data are increasing in complexity. Genomic data management poses logistic and computational challenges, and analyses are increasingly reliant on genomic annotation resources that create their own data management and versioning issues. As a result, genomic datasets are increasingly handled in ways that limit the rigor and reproducibility of many analyses. In this work, we examine the use of the Spark infrastructure for the management, access, and analysis of genomic data in comparison to traditional genomic workflows on typical cluster environments. We validate the framework by reproducing previously published results from the Alzheimer's Disease Sequencing Project. Using the framework and analyses designed using Jupyter notebooks, Spark provides improved workflows, reduces user-driven data partitioning, and enhances the portability and reproducibility of distributed analyses required for large-scale genomic studies.
Collapse
Affiliation(s)
- NICHOLAS R. WHEELER
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - PENELOPE BENCHEK
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - BRIAN W. KUNKLE
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - KARA L. HAMILTON-NELSON
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - MIKE WARFE
- Cleveland Institute for Computational Biology, Center for Advanced Research Computing, University Technology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - JEREMY R. FONDRAN
- Cleveland Institute for Computational Biology, Center for Advanced Research Computing, University Technology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - JONATHAN L. HAINES
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - WILLIAM S. BUSH
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| |
Collapse
|
9
|
Maili L, Letra A, Silva R, Buchanan EP, Mulliken JB, Greives MR, Teichgraeber JF, Blackwell SJ, Ummer R, Weber R, Chiquet B, Blanton SH, Hecht JT. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defects Res 2019; 112:234-244. [PMID: 31825181 DOI: 10.1002/bdr2.1630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Nonsyndromic cleft lip and palate (NSCLP) is one of the most common craniofacial anomalies in humans, affecting more than 135,000 newborns worldwide. NSCLP has a multifactorial etiology with more than 50 genes postulated to play an etiologic role. The genetic pathway comprised of Pbx-Wnt-p63-Irf6 genes was shown to control facial morphogenesis in mice and proposed as a regulatory pathway for NSCLP. Based on these findings, we investigated whether variation in PBX1, PBX2, and TP63, and their proposed interactions were associated with NSCLP. Fourteen single nucleotide variants (SNVs) in/nearby PBX1, PBX2, and TP63 were genotyped in 780 NSCLP families of nonHispanic white (NHW) and Hispanic ethnicities. Family-based association tests were performed for individual SNVs stratified by ethnicity and family history of NSCLP. Gene-gene interactions were also tested. A significant association was found for PBX2 rs3131300 and NSCLP in combined Hispanic families (p = .003) while nominal association was found for TP63 rs9332461 in multiplex Hispanic families (p = .005). Significant haplotype associations were observed for PBX2 in NHW (p = .0002) and Hispanic families (p = .003), and for TP63 in multiplex Hispanic families (.003). An independent case-control group was used to validate findings, and significant associations were found with PBX1 rs6426870 (p = .007) and TP63 rs9332461 (p = .03). Gene-gene interactions were detected between PBX1/PBX2/TP63 with IRF6 in NHW families, and between PBX1 with WNT9B in both NHW and Hispanic families (p < .0018). This study provides the first evidence for a role of PBX1 and PBX2, additional evidence for the role of TP63, and support for the proposed PBX-WNT-TP63-IRF6 regulatory pathway in the etiology of NSCLP.
Collapse
Affiliation(s)
- Lorena Maili
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Renato Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Department of Endodontics, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Edward P Buchanan
- Department of Plastic Surgery, Texas Children's Hospital, Houston, Texas
| | | | - Matthew R Greives
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | - John F Teichgraeber
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | | | - Rohit Ummer
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Ryan Weber
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Brett Chiquet
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Department of Pediatric Dentistry, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Susan H Blanton
- Dr. John T. MacDonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| |
Collapse
|
10
|
Suzuki H, Kurosawa K, Fukuda K, Ijima K, Sumazaki R, Saito S, Kosaki R, Hirasawa A, Okazaki Y, Imai K, Matsunaga T, Iwata T, Kosaki K. Japanese pathogenic variant database: DPV. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/trd-180027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazumoto Ijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shinji Saito
- Department of Pediatrics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Hirasawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuo Matsunaga
- National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun 2018; 9:4001. [PMID: 30275490 PMCID: PMC6167379 DOI: 10.1038/s41467-018-06354-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics. The driver mutations for the two main molecular subgroups of diffuse large B-cell lymphoma (DLBCL) are poorly defined. Here, an integrative genomics analysis identifies 3′ UTR NFKBIZ mutations within the activated B-cell DLBCL subgroup and small FCGR2B amplifications in the germinal centre B-cell DLBCL subgroup.
Collapse
|
12
|
Butkiewicz M, Blue EE, Leung YY, Jian X, Marcora E, Renton AE, Kuzma A, Wang LS, Koboldt DC, Haines JL, Bush WS. Functional annotation of genomic variants in studies of late-onset Alzheimer's disease. Bioinformatics 2018; 34:2724-2731. [PMID: 29590295 PMCID: PMC6084586 DOI: 10.1093/bioinformatics/bty177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 01/01/2023] Open
Abstract
Motivation Annotation of genomic variants is an increasingly important and complex part of the analysis of sequence-based genomic analyses. Computational predictions of variant function are routinely incorporated into gene-based analyses of rare-variants, though to date most studies use limited information for assessing variant function that is often agnostic of the disease being studied. Results In this work, we outline an annotation process motivated by the Alzheimer's Disease Sequencing Project, illustrate the impact of including tissue-specific transcript sets and sources of gene regulatory information and assess the potential impact of changing genomic builds on the annotation process. While these factors only impact a small proportion of total variant annotations (∼5%), they influence the potential analysis of a large fraction of genes (∼25%). Availability and implementation Individual variant annotations are available via the NIAGADS GenomicsDB, at https://www.niagads.org/genomics/ tools-and-software/databases/genomics-database. Annotations are also available for bulk download at https://www.niagads.org/datasets. Annotation processing software is available at http://www.icompbio.net/resources/software-and-downloads/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mariusz Butkiewicz
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Elizabeth E Blue
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xueqiu Jian
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Edoardo Marcora
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Kuzma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Smith DR, Stanley CM, Foss T, Boles RG, McKernan K. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PLoS One 2017; 12:e0187926. [PMID: 29145497 PMCID: PMC5690672 DOI: 10.1371/journal.pone.0187926] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders—alone or in combination with anxiety—compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.
Collapse
Affiliation(s)
- Douglas R. Smith
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
- * E-mail:
| | | | - Theodore Foss
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Richard G. Boles
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Kevin McKernan
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| |
Collapse
|
14
|
Hassani-Pak K, Rawlings C. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes. J Integr Bioinform 2017; 14:/j/jib.ahead-of-print/jib-2016-0002/jib-2016-0002.xml. [PMID: 28609292 PMCID: PMC6042805 DOI: 10.1515/jib-2016-0002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Genetics and “omics” studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.
Collapse
|
15
|
Badiner N, Taylor SP, Forlenza K, Lachman RS, Bamshad M, Nickerson D, Cohn DH, Krakow D. Mutations in DYNC2H1, the cytoplasmic dynein 2, heavy chain 1 motor protein gene, cause short-rib polydactyly type I, Saldino-Noonan type. Clin Genet 2017; 92:158-165. [PMID: 27925158 DOI: 10.1111/cge.12947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/31/2016] [Accepted: 11/27/2016] [Indexed: 01/16/2023]
Abstract
The short-rib polydactyly syndromes (SRPS) are autosomal recessively inherited, genetically heterogeneous skeletal ciliopathies. SRPS phenotypes were historically categorized as types I-IV, with type I first delineated by Saldino and Noonan in 1972. Characteristic findings among all forms of SRP include short horizontal ribs, short limbs and polydactyly. The SRP type I phenotype is characterized by a very small thorax, extreme micromelia, very short, poorly mineralized long bones, and multiple organ system anomalies. To date, the molecular basis of this most severe type of SRP, also known as Saldino-Noonan syndrome, has not been determined. We identified three SRP cases that fit the original phenotypic description of SRP type I. In all three cases, exome sequence analysis revealed compound heterozygosity for mutations in DYNC2H1, which encodes the main component of the retrograde IFT A motor, cytoplasmic dynein 2 heavy chain 1. Thus SRP type I, II, III and asphyxiating thoracic dystrophy (ATD), which also result from DYNC2H1 mutations. Herein we describe the phenotypic features, radiographic findings, and molecular basis of SRP type I.
Collapse
Affiliation(s)
- N Badiner
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S P Taylor
- Department of Human Genetics, Los Angeles, CA, USA
| | - K Forlenza
- Department of Orthopaedic Surgery, Los Angeles, CA, USA
| | - R S Lachman
- International Skeletal Dysplasia Registry at UCLA, Los Angeles, CA, USA
| | -
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA
| | - M Bamshad
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA.,Department of Genome Sciences, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - D Nickerson
- University of Washington Center for Mendelian Genomics, Seattle, WA, USA.,Department of Genome Sciences, Seattle, WA, USA
| | - D H Cohn
- Department of Orthopaedic Surgery, Los Angeles, CA, USA.,International Skeletal Dysplasia Registry at UCLA, Los Angeles, CA, USA.,Department of Developmental Cell and Molecular Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - D Krakow
- Department of Human Genetics, Los Angeles, CA, USA.,Department of Orthopaedic Surgery, Los Angeles, CA, USA.,International Skeletal Dysplasia Registry at UCLA, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. Cell 2016; 167:187-202.e17. [PMID: 27662089 DOI: 10.1016/j.cell.2016.09.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/17/2016] [Accepted: 08/31/2016] [Indexed: 12/12/2022]
Abstract
Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.
Collapse
|
17
|
Richards MR, Plummer L, Chan YM, Lippincott MF, Quinton R, Kumanov P, Seminara SB. Phenotypic spectrum of POLR3B mutations: isolated hypogonadotropic hypogonadism without neurological or dental anomalies. J Med Genet 2016; 54:19-25. [PMID: 27512013 DOI: 10.1136/jmedgenet-2016-104064] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/21/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND A constellation of neurodegenerative disorders exists (Gordon Holmes syndrome, 4H leucodystrophy, Boucher-Neuhauser syndrome) in which patients suffer from both neurological disease (typically manifested by ataxia) and reproductive failure (idiopathic hypogonadotropic hypogonadism (IHH)). POLR3B, which encodes the second largest subunit of RNA polymerase III (pol III), and POLR3A, which forms the pol III catalytic centre, are associated with 4H leucodystrophy. METHODS Whole exome sequencing was performed on a large cohort of subjects with IHH (n=565). Detailed neuroendocrine studies were performed in some individuals within this cohort. RESULTS Four individuals (two of them siblings) were identified with two rare nucleotide variants in POLR3B. On initial evaluation, all subjects were free of neurological disease. One patient underwent treatment with exogenous pulsatile gonadotropin-releasing hormone for 8 weeks which failed to result in normalisation of his sex steroid milieu due to pituitary resistance. CONCLUSIONS These findings suggest that the spectrum of phenotypes resulting from POLR3B mutations is wider than previously believed and that POLR3B can be associated exclusively with disorders characterised by abnormal gonadotropin secretion.
Collapse
Affiliation(s)
- Mary R Richards
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lacey Plummer
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yee-Ming Chan
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Margaret F Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard Quinton
- Institute for Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Philip Kumanov
- Clinical Center of Endocrinology and Gerontology, Medical University of Sofia, Sofia, Bulgaria
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
McIntyre RE, Nicod J, Robles-Espinoza CD, Maciejowski J, Cai N, Hill J, Verstraten R, Iyer V, Rust AG, Balmus G, Mott R, Flint J, Adams DJ. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice. G3 (BETHESDA, MD.) 2016; 6:2343-54. [PMID: 27233670 PMCID: PMC4978889 DOI: 10.1534/g3.116.030767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 12/29/2022]
Abstract
In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males.
Collapse
Affiliation(s)
- Rebecca E McIntyre
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Carla Daniela Robles-Espinoza
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065
| | - Na Cai
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Jennifer Hill
- Microbial Pathogenesis, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ruth Verstraten
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Gabriel Balmus
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN, UK
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK UCL Genetics Institute, University College London, WC1E 6BT, UK
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
19
|
Klein S, Goldman A, Lee H, Ghahremani S, Bhakta V, Nelson SF, Martinez-Agosto JA. Truncating mutations in APP cause a distinct neurological phenotype. Ann Neurol 2016; 80:456-60. [PMID: 27422356 DOI: 10.1002/ana.24727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Dominant missense mutations in the amyloid β (Aβ) precursor protein (APP) gene have been implicated in early onset Alzheimer disease. These mutations alter protein structure to favor the pathologic production of Aβ. We report that homozygous nonsense mutations in APP are associated with decreased somatic growth, microcephaly, hypotonia, developmental delay, thinning of the corpus callosum, and seizures. We compare the phenotype of this case to those reported in mouse models and demonstrate multiple similarities, strengthening the role of amyloid precursor protein in normal brain function and development. Ann Neurol 2016;80:456-460.
Collapse
Affiliation(s)
- Steven Klein
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Alexander Goldman
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | | | - Viraj Bhakta
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | | | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.,Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California. .,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California. .,Jonsson Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
20
|
Sun W, Kechris K, Jacobson S, Drummond MB, Hawkins GA, Yang J, Chen TH, Quibrera PM, Anderson W, Barr RG, Basta PV, Bleecker ER, Beaty T, Casaburi R, Castaldi P, Cho MH, Comellas A, Crapo JD, Criner G, Demeo D, Christenson SA, Couper DJ, Curtis JL, Doerschuk CM, Freeman CM, Gouskova NA, Han MK, Hanania NA, Hansel NN, Hersh CP, Hoffman EA, Kaner RJ, Kanner RE, Kleerup EC, Lutz S, Martinez FJ, Meyers DA, Peters SP, Regan EA, Rennard SI, Scholand MB, Silverman EK, Woodruff PG, O’Neal WK, Bowler RP. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD. PLoS Genet 2016; 12:e1006011. [PMID: 27532455 PMCID: PMC4988780 DOI: 10.1371/journal.pgen.1006011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p < 8 X 10-10) pQTLs in 38 (43%) of blood proteins tested. Most pQTL SNPs were novel with low overlap to eQTL SNPs. The pQTL SNPs explained >10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10-392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sean Jacobson
- National Jewish Health, Denver, Colorado, United States of America
| | - M. Bradley Drummond
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory A. Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jenny Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ting-huei Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pedro Miguel Quibrera
- Collaborative Studies Coordinating Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wayne Anderson
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States of America
| | - R. Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, New York; Department of Epidemiology, Mailman School of Public Health at Columbia University, New York, New York, United States of America
| | - Patricia V. Basta
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eugene R. Bleecker
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Terri Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University,Baltimore, Maryland, United States of America
| | - Richard Casaburi
- Division of Respiratory and Critical Care Physiology and Medicine, Harbor- University of California at Los Angeles Medical Center, Torrance, California, United States of America
| | - Peter Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alejandro Comellas
- Division of Pulmonary and Critical Care Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - James D. Crapo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Dawn Demeo
- Division of Pulmonary and Critical Care Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of San Francisco Medical Center, University of California San Francisco, San Francisco, California, United States of America
| | - David J. Couper
- Collaborative Studies Coordinating Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States of America
| | - Christine M. Freeman
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Natalia A. Gouskova
- Collaborative Studies Coordinating Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Craig P. Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric A. Hoffman
- Department of Radiology, Division of Physiologic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Robert J. Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Richard E. Kanner
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Eric C. Kleerup
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sharon Lutz
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Fernando J. Martinez
- Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, United States of America
| | - Deborah A. Meyers
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Stephen P. Peters
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Immunologic Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Elizabeth A. Regan
- Department of Medicine, National Jewish Health, Denver, Colorado United States of America
| | - Stephen I. Rennard
- Division of Pulmonary and Critical Care Medicine, University of Nebraska, Omaha, Nebraska, United States of America
| | - Mary Beth Scholand
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Wanda K. O’Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States of America
| | - Russell P. Bowler
- Department of Medicine, Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado, United States of America
| | | | | |
Collapse
|
21
|
Paige Taylor S, Kunova Bosakova M, Varecha M, Balek L, Barta T, Trantirek L, Jelinkova I, Duran I, Vesela I, Forlenza KN, Martin JH, Hampl A, Bamshad M, Nickerson D, Jaworski ML, Song J, Ko HW, Cohn DH, Krakow D, Krejci P. An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum Mol Genet 2016; 25:3998-4011. [PMID: 27466187 DOI: 10.1093/hmg/ddw240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/30/2022] Open
Abstract
The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.
Collapse
Affiliation(s)
- S Paige Taylor
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery.,Department of Human Genetics.,Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Iva Vesela
- Institute of Experimental Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery.,Department of Human Genetics.,Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge H Martin
- Department of Orthopaedic Surgery.,Department of Human Genetics.,Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | | | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Jieun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Korea
| | - Daniel H Cohn
- Department of Orthopaedic Surgery.,International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Deborah Krakow
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA .,Department of Orthopaedic Surgery.,International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,Department of Orthopaedic Surgery.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
22
|
Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 2016; 533:333-7. [PMID: 27193678 DOI: 10.1038/nature17987] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
The use of large-scale genomic and drug response screening of cancer cell lines depends crucially on the reproducibility of results. Here we consider two previously published screens, plus a later critique of these studies. Using independent data, we show that consistency is achievable, and provide a systematic description of the best laboratory and analysis practices for future studies.
Collapse
|
23
|
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol 2016. [PMID: 27268795 DOI: 10.1186/s13059-016–0974-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.
Collapse
Affiliation(s)
- William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Laurent Gil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Harpreet Singh Riat
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Graham R S Ritchie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
24
|
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol 2016; 17:122. [PMID: 27268795 PMCID: PMC4893825 DOI: 10.1186/s13059-016-0974-4] [Citation(s) in RCA: 4329] [Impact Index Per Article: 541.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.
Collapse
Affiliation(s)
- William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Laurent Gil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Harpreet Singh Riat
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Graham R S Ritchie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
25
|
Xue Y, Schoser B, Rao AR, Quadrelli R, Vaglio A, Rupp V, Beichler C, Nelson SF, Schapacher-Tilp G, Windpassinger C, Wilcox WR. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death. ACTA ACUST UNITED AC 2016; 9:130-5. [PMID: 26933038 DOI: 10.1161/circgenetics.115.001193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/27/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. METHODS AND RESULTS An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. CONCLUSIONS Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Yuan Xue
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.).
| | - Benedikt Schoser
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Aliz R Rao
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Roberto Quadrelli
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Alicia Vaglio
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Verena Rupp
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Christine Beichler
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Stanley F Nelson
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Gudrun Schapacher-Tilp
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Christian Windpassinger
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - William R Wilcox
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| |
Collapse
|
26
|
Bramble MS, Goldstein EH, Lipson A, Ngun T, Eskin A, Gosschalk JE, Roach L, Vashist N, Barseghyan H, Lee E, Arboleda VA, Vaiman D, Yuksel Z, Fellous M, Vilain E. A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure: a fertility application of whole exome sequencing. Hum Reprod 2016; 31:905-14. [PMID: 26911863 DOI: 10.1093/humrep/dew025] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can whole exome sequencing (WES) and in vitro validation studies be used to find the causative genetic etiology in a patient with primary ovarian failure and infertility? SUMMARY ANSWER A novel follicle-stimulating hormone receptor (FSHR) mutation was found by WES and shown, via in vitro flow cytometry studies, to affect membrane trafficking. WHAT IS KNOWN ALREADY WES may diagnose up to 25-35% of patients with suspected disorders of sex development (DSD). FSHR mutations are an extremely rare cause of 46, XX gonadal dysgenesis with primary amenorrhea due to hypergonadotropic ovarian failure. STUDY DESIGN, SIZE, DURATION A WES study was followed by flow cytometry studies of mutant protein function. PARTICIPANTS/MATERIALS, SETTING, METHODS The study subjects were two Turkish sisters with hypergonadotropic primary amenorrhea, their parents and two unaffected sisters. The affected siblings and both parents were sequenced (trio-WES). Transient transfection of HEK 293T cells was performed with a vector containing wild-type FSHR as well as the novel FSHR variant that was discovered by WES. Cellular localization of FSHR protein as well as FSH-stimulated cyclic AMP (cAMP) production was evaluated using flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE Both affected sisters were homozygous for a previously unreported missense mutation (c.1222G>T, p.Asp408Tyr) in the second transmembrane domain of FSHR. Modeling predicted disrupted secondary structure. Flow cytometry demonstrated an average of 48% reduction in cell-surface signal detection (P < 0.01). The mean fluorescent signal for cAMP (second messenger of FSHR), stimulated by FSH, was reduced by 50% in the mutant-transfected cells (P < 0.01). LIMITATIONS, REASONS FOR CAUTION This is an in vitro validation. All novel purported genetic variants can be clinically reported only as 'variants of uncertain significance' until more patients with a similar phenotype are discovered with the same variant. WIDER IMPLICATIONS OF THE FINDINGS We report the first WES-discovered FSHR mutation, validated by quantitative flow cytometry. WES is a valuable tool for diagnosis of rare genetic diseases, and flow cytometry allows for quantitative characterization of purported variants. WES-assisted diagnosis allows for treatments aimed at the underlying molecular etiology of disease. Future studies should focus on pharmacological and assisted reproductive treatments aimed at the disrupted FSHR, so that patients with FSH resistance can be treated by personalized medicine. STUDY FUNDING/COMPETING INTERESTS E.V. is partially funded by the DSD Translational Research Network (NICHD 1R01HD068138). M.S.B. is funded by the Neuroendocrinology, Sex Differences and Reproduction training grant (NICHD 5T32HD007228). The authors have no competing interests to disclose.
Collapse
Affiliation(s)
- Matthew S Bramble
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Ellen H Goldstein
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of California Los Angeles, 10833 Le Conte Avenue, Room 24-130 CHS, Los Angeles, CA 90095, USA
| | - Allen Lipson
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Tuck Ngun
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Jason E Gosschalk
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Lara Roach
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Neerja Vashist
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Eric Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Daniel Vaiman
- Department of Development, Reproduction, and Cancer, Institut Cochin, U1016 Inserm, University Sorbonne Paris, CNRS UMR8104, Paris, France
| | - Zafer Yuksel
- Department of Medical Genetics, Women and Children Hospital, Halkkent Mh. Fatih Sultan Mehmet Boulevard No. 23, Mersin 33240, Turkey
| | - Marc Fellous
- Department of Development, Reproduction, and Cancer, Institut Cochin, U1016 Inserm, University Sorbonne Paris, CNRS UMR8104, Paris, France
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Big Data and Cancer Research. BIG DATA ANALYTICS 2016. [DOI: 10.1007/978-81-322-3628-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Lim ECP, Brett M, Lai AHM, Lee SP, Tan ES, Jamuar SS, Ng ISL, Tan EC. Next-generation sequencing using a pre-designed gene panel for the molecular diagnosis of congenital disorders in pediatric patients. Hum Genomics 2015; 9:33. [PMID: 26666243 PMCID: PMC4678573 DOI: 10.1186/s40246-015-0055-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/22/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) has revolutionized genetic research and offers enormous potential for clinical application. Sequencing the exome has the advantage of casting the net wide for all known coding regions while targeted gene panel sequencing provides enhanced sequencing depths and can be designed to avoid incidental findings in adult-onset conditions. A HaloPlex panel consisting of 180 genes within commonly altered chromosomal regions is available for use on both the Ion Personal Genome Machine (PGM) and MiSeq platforms to screen for causative mutations in these genes. METHODS We used this Haloplex ICCG panel for targeted sequencing of 15 patients with clinical presentations indicative of an abnormality in one of the 180 genes. Sequencing runs were done using the Ion 318 Chips on the Ion Torrent PGM. Variants were filtered for known polymorphisms and analysis was done to identify possible disease-causing variants before validation by Sanger sequencing. When possible, segregation of variants with phenotype in family members was performed to ascertain the pathogenicity of the variant. RESULTS More than 97% of the target bases were covered at >20×. There was an average of 9.6 novel variants per patient. Pathogenic mutations were identified in five genes for six patients, with two novel variants. There were another five likely pathogenic variants, some of which were unreported novel variants. CONCLUSIONS In a cohort of 15 patients, we were able to identify a likely genetic etiology in six patients (40%). Another five patients had candidate variants for which further evaluation and segregation analysis are ongoing. Our results indicate that the HaloPlex ICCG panel is useful as a rapid, high-throughput and cost-effective screening tool for 170 of the 180 genes. There is low coverage for some regions in several genes which might have to be supplemented by Sanger sequencing. However, comparing the cost, ease of analysis, and shorter turnaround time, it is a good alternative to exome sequencing for patients whose features are suggestive of a genetic etiology involving one of the genes in the panel.
Collapse
Affiliation(s)
- Eileen C P Lim
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Maggie Brett
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Angeline H M Lai
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Siew-Peng Lee
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Ee-Shien Tan
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Saumya S Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Ivy S L Ng
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Ene-Choo Tan
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
29
|
Holford ME, Krauthammer M. Mutadelic: mutation analysis using description logic inferencing capabilities. Bioinformatics 2015; 31:3742-7. [PMID: 26272983 DOI: 10.1093/bioinformatics/btv467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 08/04/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION As next generation sequencing gains a foothold in clinical genetics, there is a need for annotation tools to characterize increasing amounts of patient variant data for identifying clinically relevant mutations. While existing informatics tools provide efficient bulk variant annotations, they often generate excess information that may limit their scalability. RESULTS We propose an alternative solution based on description logic inferencing to generate workflows that produce only those annotations that will contribute to the interpretation of each variant. Workflows are dynamically generated using a novel abductive reasoning framework called a basic framework for abductive workflow generation (AbFab). Criteria for identifying disease-causing variants in Mendelian blood disorders were identified and implemented as AbFab services. A web application was built allowing users to run workflows generated from the criteria to analyze genomic variants. Significant variants are flagged and explanations provided for why they match or fail to match the criteria. AVAILABILITY AND IMPLEMENTATION The Mutadelic web application is available for use at http://krauthammerlab.med.yale.edu/mutadelic. CONTACT michael.krauthammer@yale.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Michael Krauthammer
- Program in Computational Biology and Bioinformatics and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Taylor SP, Dantas TJ, Duran I, Wu S, Lachman RS, Nelson SF, Cohn DH, Vallee RB, Krakow D. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun 2015; 6:7092. [PMID: 26077881 PMCID: PMC4470332 DOI: 10.1038/ncomms8092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/02/2015] [Indexed: 12/16/2022] Open
Abstract
The short rib polydactyly syndromes (SRPSs) are a heterogeneous group of autosomal recessive, perinatal lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs and polydactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify an additional SRPS gene and further unravel the functional basis for IFT. We perform whole-exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable length, including hyperelongated, cilia, Hedgehog pathway impairment and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation and skeletogenesis.
Collapse
Affiliation(s)
- S Paige Taylor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Ivan Duran
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Sulin Wu
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | - Stanley F Nelson
- 1] Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Daniel H Cohn
- 1] Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA [2] International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA [3] Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Deborah Krakow
- 1] Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA [3] International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
Chopra SS, Leshchiner I, Duzkale H, McLaughlin H, Giovanni M, Zhang C, Stitziel N, Fingeroth J, Joyce RM, Lebo M, Rehm H, Vuzman D, Maas R, Sunyaev SR, Murray M, Cassa CA. Inherited CHST11/MIR3922 deletion is associated with a novel recessive syndrome presenting with skeletal malformation and malignant lymphoproliferative disease. Mol Genet Genomic Med 2015; 3:413-23. [PMID: 26436107 PMCID: PMC4585449 DOI: 10.1002/mgg3.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/30/2022] Open
Abstract
Glycosaminoglycans (GAGs) such as chondroitin are ubiquitous disaccharide carbohydrate chains that contribute to the formation and function of proteoglycans at the cell membrane and in the extracellular matrix. Although GAG-modifying enzymes are required for diverse cellular functions, the role of these proteins in human development and disease is less well understood. Here, we describe two sisters out of seven siblings affected by congenital limb malformation and malignant lymphoproliferative disease. Using Whole-Genome Sequencing (WGS), we identified in the proband deletion of a 55 kb region within chromosome 12q23 that encompasses part of CHST11 (encoding chondroitin-4-sulfotransferase 1) and an embedded microRNA (MIR3922). The deletion was homozygous in the proband but not in each of three unaffected siblings. Genotyping data from the 1000 Genomes Project suggest that deletions inclusive of both CHST11 and MIR3922 are rare events. Given that CHST11 deficiency causes severe chondrodysplasia in mice that is similar to human limb malformation, these results underscore the importance of chondroitin modification in normal skeletal development. Our findings also potentially reveal an unexpected role for CHST11 and/or MIR3922 as tumor suppressors whose disruption may contribute to malignant lymphoproliferative disease.
Collapse
Affiliation(s)
- Sameer S Chopra
- Dana Farber Cancer Institute, Brigham and Women's Hospital Boston, Massachusetts
| | - Ignaty Leshchiner
- Broad Institute, Brigham and Women's Hospital Cambridge, Massachusetts
| | - Hatice Duzkale
- Department of Medical Genetics, Yeditepe University School of Medicine Istanbul, Turkey ; Genetic Training Program, Harvard Medical School Boston, Massachusetts ; Partners Healthcare Center for Personalized Medicine Cambridge, Massachusetts
| | - Heather McLaughlin
- Partners Healthcare Center for Personalized Medicine Cambridge, Massachusetts
| | - Monica Giovanni
- Geisinger Genomic Medicine Center, Geisinger Medical Center Danville, Pennsylvania
| | - Chengsheng Zhang
- The Jackson Laboratory for Genomic Medicine Farmington, Connecticut
| | - Nathan Stitziel
- Cardiovascular Division, Washington University School of Medicine St. Louis, Missouri
| | - Joyce Fingeroth
- University of Massachusetts Medical School Worchester, Massachusetts
| | - Robin M Joyce
- Beth Israel Deaconess Medical Center Boston, Massachusetts
| | - Matthew Lebo
- Partners Healthcare Center for Personalized Medicine Cambridge, Massachusetts
| | - Heidi Rehm
- Partners Healthcare Center for Personalized Medicine Cambridge, Massachusetts
| | - Dana Vuzman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Richard Maas
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Michael Murray
- Dana Farber Cancer Institute, Brigham and Women's Hospital Boston, Massachusetts
| | - Christopher A Cassa
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| |
Collapse
|
32
|
Nicolazzi EL, Caprera A, Nazzicari N, Cozzi P, Strozzi F, Lawley C, Pirani A, Soans C, Brew F, Jorjani H, Evans G, Simpson B, Tosser-Klopp G, Brauning R, Williams JL, Stella A. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics 2015; 16:283. [PMID: 25881165 PMCID: PMC4399246 DOI: 10.1186/s12864-015-1497-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. RESULTS Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. CONCLUSIONS This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.
Collapse
Affiliation(s)
- Ezequiel L Nicolazzi
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
| | - Andrea Caprera
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
| | - Nelson Nazzicari
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
| | - Paolo Cozzi
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
| | - Francesco Strozzi
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
| | - Cindy Lawley
- Illumina Inc, 5200 Illumina Way, San Diego, CA, 92121, USA.
| | - Ali Pirani
- Affymetrix Inc, 3420 Central Expressway, Santa Clara, CA, 95051, USA.
| | | | - Fiona Brew
- Affymetrix UK Ltd, Mercury Park, Wycombe Lane, High Wycombe, HP10 0HH, UK.
| | | | - Gary Evans
- GeneSeek, a Neogen Company, Auchincruive, Ayr KA6 5HU, Scotland, UK.
| | - Barry Simpson
- GeneSeek, a Neogen Company, Lincoln, NE, 68504, USA.
| | - Gwenola Tosser-Klopp
- Génétique, Physiologie et Systèmes d'Élevage, Institut National de la Recherche Agronomique & Ecole Nationale Vétérinaire de Toulouse & Ecole Nationale Supérieure Agronomique de Toulouse, Castanet-Tolosan, 31326, France.
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, New Zealand.
| | - John L Williams
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
| | - Alessandra Stella
- Bioinformatics and Biostatistical Genomics group, Fondazione Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Einstein, Cascina Codazza, Lodi 26900, Italy.
| |
Collapse
|
33
|
Bandsma RHJ, van Goor H, Yourshaw M, Horlings RK, Jonkman MF, Schölvinck EH, Karrenbeld A, Scheenstra R, Kömhoff M, Rump P, Koopman-Keemink Y, Nelson SF, Escher JC, Cutz E, Martín MG. Loss of ADAM17 is associated with severe multiorgan dysfunction. Hum Pathol 2015; 46:923-8. [PMID: 25804906 DOI: 10.1016/j.humpath.2015.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
ADAM metallopeptidase domain 17 (ADAM17) is responsible for processing large numbers of proteins. Recently, 1 family involving 2 patients with a homozygous mutation in ADAM17 were described, presenting with skin lesions and diarrhea. In this report, we describe a second family confirming the existence of this syndrome. The proband presented with severe diarrhea, skin rash, and recurrent sepsis, eventually leading to her death at the age of 10 months. We performed exome sequencing and detailed pathological and immunological investigations. We identified a novel homozygous frameshift mutation in ADAM17 (NM_003183.4:c.308dupA) leading to a premature stop codon. CD4(+) and CD8(+) T-cell stimulation assays showed severely diminished tumor necrosis factor-α and interleukin-2 production. Skin biopsies indicated a focal neutrophilic infiltrate and spongiotic dermatitis. Interestingly, the patient developed unexplained systolic hypertension and nonspecific hepatitis with apoptosis. This report provides evidence for an important role of ADAM17 in human immunological response and underscores its multiorgan involvement.
Collapse
Affiliation(s)
- Robert H J Bandsma
- The Division of Pediatric Gastroenterology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| | - Harry van Goor
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Michael Yourshaw
- Departments of Human Genetics, Pathology and Laboratory Medicine David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Rudolf K Horlings
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Elisabeth H Schölvinck
- Division of Pediatric Infectious Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Arend Karrenbeld
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Rene Scheenstra
- The Division of Pediatric Gastroenterology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Martin Kömhoff
- Division of Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Patrick Rump
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Yvonne Koopman-Keemink
- The Department of Pediatrics, Hagaziekenhuis Juliana Kinderziekenhuis, Sportlaan 600, 2566 MJ The Hague, the Netherlands
| | - Stanley F Nelson
- Departments of Human Genetics, Pathology and Laboratory Medicine David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Johanna C Escher
- The Department of Pediatric Gastroenterology, Sophia Children's Hospital-Erasmus Medical Center, Dr. Molewaterplein 60, 3015 GJ Rotterdam, the Netherlands
| | - Ernest Cutz
- The Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Canada
| | - Martín G Martín
- Departments of Human Genetics, Pathology and Laboratory Medicine David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, Bargman R, Keegan C, Travers S, Schelley S, Hudgins L, Mathew RP, Stalker HJ, Zori R, Gordon OK, Ramos-Platt L, Pawlikowska-Haddal A, Eskin A, Nelson SF, Délot E, Vilain E. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab 2015; 100:E333-44. [PMID: 25383892 PMCID: PMC4318895 DOI: 10.1210/jc.2014-2605] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
Abstract
CONTEXT Disorders of sex development (DSD) are clinical conditions where there is a discrepancy between the chromosomal sex and the phenotypic (gonadal or genital) sex of an individual. Such conditions can be stressful for patients and their families and have historically been difficult to diagnose, especially at the genetic level. In particular, for cases of 46,XY gonadal dysgenesis, once variants in SRY and NR5A1 have been ruled out, there are few other single gene tests available. OBJECTIVE We used exome sequencing followed by analysis with a list of all known human DSD-associated genes to investigate the underlying genetic etiology of 46,XY DSD patients who had not previously received a genetic diagnosis. DESIGN Samples were either submitted to the research laboratory or submitted as clinical samples to the UCLA Clinical Genomic Center. Sequencing data were filtered using a list of genes known to be involved in DSD. RESULTS We were able to identify a likely genetic diagnosis in more than a third of cases, including 22.5% with a pathogenic finding, an additional 12.5% with likely pathogenic findings, and 15% with variants of unknown clinical significance. CONCLUSIONS Early identification of the genetic cause of a DSD will in many cases streamline and direct the clinical management of the patient, with more focused endocrine and imaging studies and better-informed surgical decisions. Exome sequencing proved an efficient method toward such a goal in 46,XY DSD patients.
Collapse
Affiliation(s)
- Ruth M Baxter
- Departments of Human Genetics (R.M.B., V.A.A., H.B., A.E., S.F.N., E.D., E.V.) and Pathology and Laboratory Medicine (V.A.A., H.L., S.F.N.), David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095; Department of Pediatrics (M.P.A.), University of Washington, Seattle, Washington 98195; Department of Endocrinology (P.Y.F.), Seattle Children's Hospital, Seattle, Washington 98105; Nassau University Medical Center (R.B.), East Meadow, New York 11554; Departments of Pediatrics and Human Genetics (C.K.), Ann Arbor, Michigan 48109; The Children's Hospital Colorado (S.T.), Aurora, Colorado 80045; Division of Medical Genetics (S.S., L.H.), Stanford University, Lucile Packard Children's Hospital, Stanford, California 94305; TriStar Children's Specialists (R.P.M.), Nashville, Tennessee 37203; Division of Pediatric Genetics and Metabolism (H.J.S., R.Z.), University of Florida, Gainesville, Florida 32610; Cedars-Sinai Medical Center (O.K.G.), Los Angeles, California 90048; Children's Hospital of Los Angeles (L.R.-P.), Los Angeles, California 90027; and Departments of Pediatrics (A.P.-H., E.D., E.V.) and Urology (E.V.), David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, Das K, Toy T, Harry B, Yourshaw M, Fox M, Fogel BL, Martinez-Agosto JA, Wong DA, Chang VY, Shieh PB, Palmer CGS, Dipple KM, Grody WW, Vilain E, Nelson SF. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 2014; 312:1880-7. [PMID: 25326637 PMCID: PMC4278636 DOI: 10.1001/jama.2014.14604] [Citation(s) in RCA: 717] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Clinical exome sequencing (CES) is rapidly becoming a common molecular diagnostic test for individuals with rare genetic disorders. OBJECTIVE To report on initial clinical indications for CES referrals and molecular diagnostic rates for different indications and for different test types. DESIGN, SETTING, AND PARTICIPANTS Clinical exome sequencing was performed on 814 consecutive patients with undiagnosed, suspected genetic conditions at the University of California, Los Angeles, Clinical Genomics Center between January 2012 and August 2014. Clinical exome sequencing was conducted as trio-CES (both parents and their affected child sequenced simultaneously) to effectively detect de novo and compound heterozygous variants or as proband-CES (only the affected individual sequenced) when parental samples were not available. MAIN OUTCOMES AND MEASURES Clinical indications for CES requests, molecular diagnostic rates of CES overall and for phenotypic subgroups, and differences in molecular diagnostic rates between trio-CES and proband-CES. RESULTS Of the 814 cases, the overall molecular diagnosis rate was 26% (213 of 814; 95% CI, 23%-29%). The molecular diagnosis rate for trio-CES was 31% (127 of 410 cases; 95% CI, 27%-36%) and 22% (74 of 338 cases; 95% CI, 18%-27%) for proband-CES. In cases of developmental delay in children (<5 years, n = 138), the molecular diagnosis rate was 41% (45 of 109; 95% CI, 32%-51%) for trio-CES cases and 9% (2 of 23, 95% CI, 1%-28%) for proband-CES cases. The significantly higher diagnostic yield (P value = .002; odds ratio, 7.4 [95% CI, 1.6-33.1]) of trio-CES was due to the identification of de novo and compound heterozygous variants. CONCLUSIONS AND RELEVANCE In this sample of patients with undiagnosed, suspected genetic conditions, trio-CES was associated with higher molecular diagnostic yield than proband-CES or traditional molecular diagnostic methods. Additional studies designed to validate these findings and to explore the effect of this approach on clinical and economic outcomes are warranted.
Collapse
Affiliation(s)
- Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Naghmeh Dorrani
- Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles3Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Samuel P Strom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Sibel Kantarci
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Kingshuk Das
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Traci Toy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles
| | - Bret Harry
- Institute for Digital Research and Education, University of California, Los Angeles
| | - Michael Yourshaw
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Michelle Fox
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles
| | - Julian A Martinez-Agosto
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles6Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Derek A Wong
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Vivian Y Chang
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles
| | - Perry B Shieh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles
| | - Christina G S Palmer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles7Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles
| | - Katrina M Dipple
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles6Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles3Department of Pediatrics, David Geffen
| | - Eric Vilain
- Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles3Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles6Department of Human Genetics, David Geffen School of Medicine
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles2Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles6Department of Human Genetics, David Ge
| |
Collapse
|
36
|
Paganini I, Chang VY, Capone GL, Vitte J, Benelli M, Barbetti L, Sestini R, Trevisson E, Hulsebos TJ, Giovannini M, Nelson SF, Papi L. Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur J Hum Genet 2014; 23:963-8. [PMID: 25335493 DOI: 10.1038/ejhg.2014.220] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/21/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023] Open
Abstract
Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants. We identified four individuals with heterozygous loss-of-function variants in LZTR1. Sequencing of the germline of 60 additional patients identified 18 additional heterozygous variants in LZTR1. We identified LZTR1 variants in 43% and 30% of familial (three of the seven families) and sporadic patients, respectively. In addition, we tested LZTR1 protein immunostaining in 22 tumors from nine unrelated patients with and without LZTR1 deleterious variants. Tumors from individuals with LZTR1 variants lost the protein expression in at least a subset of tumor cells, consistent with a tumor suppressor mechanism. In conclusion, our study demonstrates that molecular analysis of LZTR1 may contribute to the molecular characterization of schwannomatosis patients, in addition to NF2 mutational analysis and the detection of chromosome 22 losses in tumor tissue. It will be especially useful in differentiating schwannomatosis from mosaic Neurofibromatosis type 2 (NF2). However, the role of LZTR1 in the pathogenesis of schwannomatosis needs further elucidation.
Collapse
Affiliation(s)
- Irene Paganini
- Department of Biomedical Experimental and Clinical Sciences, Medical Genetics, University of Florence, Florence, Italy
| | - Vivian Y Chang
- Division of Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Gabriele L Capone
- 1] Department of Biomedical Experimental and Clinical Sciences, Medical Genetics, University of Florence, Florence, Italy [2] FIORGEN Fondazione Farmacogenomica Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matteo Benelli
- Diagnostic Genetics Unit, Azienda Ospedaliero-Universitaria 'Careggi', Florence, Italy
| | - Lorenzo Barbetti
- Department of Biomedical Experimental and Clinical Sciences, Medical Genetics, University of Florence, Florence, Italy
| | - Roberta Sestini
- Department of Biomedical Experimental and Clinical Sciences, Medical Genetics, University of Florence, Florence, Italy
| | - Eva Trevisson
- Department of Woman and Child Health, Clinical Genetics Unit, University of Padua, Padua, Italy
| | - Theo Jm Hulsebos
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, Pathology and Laboratory Medicine, and Psychiatry, University of California, Los Angeles, CA, USA
| | - Laura Papi
- Department of Biomedical Experimental and Clinical Sciences, Medical Genetics, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Strom SP, Lozano R, Lee H, Dorrani N, Mann J, O'Lague PF, Mans N, Deignan JL, Vilain E, Nelson SF, Grody WW, Quintero-Rivera F. De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing. BMC MEDICAL GENETICS 2014; 15:49. [PMID: 24886118 PMCID: PMC4072606 DOI: 10.1186/1471-2350-15-49] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/10/2014] [Indexed: 01/23/2023]
Abstract
Background Wiedemann-Steiner Syndrome (WSS) is characterized by short stature, a variety of dysmorphic facial and skeletal features, characteristic hypertrichosis cubiti (excessive hair on the elbows), mild-to-moderate developmental delay and intellectual disability. [MIM#: 605130]. Here we report two unrelated children for whom clinical exome sequencing of parent-proband trios was performed at UCLA, resulting in a molecular diagnosis of WSS and atypical clinical presentation. Case presentation For patient 1, clinical features at 9 years of age included developmental delay, craniofacial abnormalities, and multiple minor anomalies. Patient 2 presented at 1 year of age with developmental delay, microphthalmia, partial 3–4 left hand syndactyly, and craniofacial abnormalities. A de novo missense c.4342T>C variant and a de novo splice site c.4086+G>A variant were identified in the KMT2A gene in patients 1 and 2, respectively. Conclusions Based on the clinical and molecular findings, both patients appear to have novel presentations of WSS. As the hallmark hypertrichosis cubiti was not initially appreciated in either case, this syndrome was not suspected during the clinical evaluation. This report expands the phenotypic spectrum of the clinical phenotypes and KMT2A variants associated with WSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fabiola Quintero-Rivera
- Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|