1
|
Zhu X, Han X, Li Z, Zhou X, Yoo SH, Chen Z, Ji Z. CircaKB: a comprehensive knowledgebase of circadian genes across multiple species. Nucleic Acids Res 2024:gkae817. [PMID: 39329269 DOI: 10.1093/nar/gkae817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Circadian rhythms, which are the natural cycles that dictate various physiological processes over a 24-h period, have been increasingly recognized as important in the management and treatment of various human diseases. However, the lack of sufficient data and reliable analysis methods have been a major obstacle to understanding the bidirectional interaction between circadian variation and human health. We have developed CircaKB, a comprehensive knowledgebase of circadian genes across multiple species. CircaKB is the first knowledgebase that provides systematic annotations of the oscillatory patterns of gene expression at a genome-wide level for 15 representative species. Currently, CircaKB contains 226 time-course transcriptome datasets, covering a wide variety of tissues, organs, and cell lines. In addition, CircaKB integrates 12 computational models to facilitate reliable data analysis and identify oscillatory patterns and their variations in gene expression. CircaKB also offers powerful functionalities to its users, including easy search, fast browsing, strong visualization, and custom upload. We believe that CircaKB will be a valuable tool and resource for the circadian research community, contributing to the identification of new targets for disease prevention and treatment. We have made CircaKB freely accessible at https://cdsic.njau.edu.cn/CircaKB.
Collapse
Affiliation(s)
- Xingchen Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| | - Xiao Han
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| | - Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Xu F, Zheng H, Dong X, Zhou A, Emu Q. miRNA expression signatures induced by pasteurella multocida infection in goats lung. Sci Rep 2024; 14:19626. [PMID: 39179681 PMCID: PMC11343864 DOI: 10.1038/s41598-024-69654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and are involved in bacterial pathogenesis and host-pathogen interactions. In this study, we investigated the function of miRNAs in the regulation of host responses to Pasteurella multocida infection. Using next-generation sequencing, we analyzed miRNA expression pattern and identified differentially expressed miRNAs in Pasteurella multocida-infected goat lungs. In addition, we investigated the function of differentially expressed miRNAs andtheir targeted signaling pathways in bacterial infection processes. The results showed that Pasteurella multocida infection led to 69 significantly differentially expressed miRNAs, including 28 known annotated miRNAs with miR-497-3p showing the most significant difference. Gene target prediction and functional enrichment analyses showed that the target genes were mainly involved in cell proliferation, regulation of the cellular metabolic process, positive regulation of cellular process, cellular senescence, PI3K-Akt signaling pathway, FoxO signaling pathway and infection-related pathways. In conclusion, these data provide a new perspective on the roles of miRNAs in Pasteurella multocida infection.
Collapse
Affiliation(s)
- Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China
| | - Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Xia Dong
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China.
| |
Collapse
|
3
|
Md Zaki FA, Mohamad Hanif EA. Identifying miRNA as biomarker for breast cancer subtyping using association rule. Comput Biol Med 2024; 178:108696. [PMID: 38850957 DOI: 10.1016/j.compbiomed.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
- This paper presents a comprehensive study focused on breast cancer subtyping, utilizing a multifaceted approach that integrates feature selection, machine learning classifiers, and miRNA regulatory networks. The feature selection process begins with the CFS algorithm, followed by the Apriori algorithm for association rule generation, resulting in the identification of significant features tailored to Luminal A, Luminal B, HER-2 enriched, and Basal-like subtypes. The subsequent application of Random Forest (RF) and Support Vector Machine (SVM) classifiers yielded promising results, with the SVM model achieving an overall accuracy of 76.60 % and the RF model demonstrating robust performance at 80.85 %. Detailed accuracy metrics revealed strengths and areas for refinement, emphasizing the potential for optimizing subtype-specific recall. To explore the regulatory landscape in depth, an analysis of selected miRNAs was conducted using MIENTURNET, a tool for visualizing miRNA-target interactions. While FDR analysis raised concerns for HER-2 and Basal-like subtypes, Luminal A and Luminal B subtypes showcased significant miRNA-gene interactions. Functional enrichment analysis for Luminal A highlighted the role of Ovarian steroidogenesis, implicating specific miRNAs such as hsa-let-7c-5p and hsa-miR-125b-5p as potential diagnostic biomarkers and regulators of Luminal A breast cancer. Luminal B analysis uncovered associations with the MAPK signaling pathway, with miRNAs like hsa-miR-203a-3p and hsa-miR-19a-3p exhibiting potential diagnostic and therapeutic significance. In conclusion, this integrative approach combines machine learning techniques with miRNA analysis to provide a holistic understanding of breast cancer subtypes. The identified miRNAs and associated pathways offer insights into potential diagnostic biomarkers and therapeutic targets, contributing to the ongoing efforts to improve breast cancer diagnostics and personalized treatment strategies.
Collapse
Affiliation(s)
- Fatimah Audah Md Zaki
- Department of Internet Engineering & Computer Science, Universiti Tunku Abdul Rahman (UTAR), Selangor, Malaysia.
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Wang Y, Men X, Huang X, Qiu X, Wang W, Zhou J, Zhou Z. Unraveling the signaling network between dysregulated microRNA and mRNA expression in sevoflurane-induced developmental neurotoxicity in rat. Heliyon 2024; 10:e33333. [PMID: 39027541 PMCID: PMC11255675 DOI: 10.1016/j.heliyon.2024.e33333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Research has indicated that general anesthesia may cause neuroapoptosis and long-term cognitive dysfunction in developing animals, however, the precise mechanisms orchestrating these outcomes remain inadequately elucidated within scholarly discourse. The purpose of this study was to investigate the impact of sevoflurane on the hippocampus of developing rats by analyzing the changes in microRNA and mRNA and their interactions. Rats were exposed to sevoflurane for 4 h on their seventh day after birth, and the hippocampus was collected for analysis of neuroapoptosis by Western blot and immunohistochemistry. High-throughput sequencing was conducted to analyze the variances in miRNA and mRNA expression levels, and the Morris water maze was employed to assess long-term memory in rats exposed to sevoflurane after 8 weeks. The results showed that sevoflurane exposure led to dysregulation of 5 miRNAs and 306 mRNAs in the hippocampus. Bioinformatic analysis revealed that these dysregulated miRNA-mRNA target pairs were associated with pathological neurodevelopment and developmental disorders, such as regulation of axonogenesis, regulation of neuron projection development, regulation of neuron differentiation, transmission of nerve impulse, and neuronal cell body. Further analysis showed that these miRNAs formed potential network interactions with 44 mRNAs, and two important nodes were identified, miR-130b-5p and miR-449c-5p. Overall, this study suggests that the dysregulation of the miRNA-mRNA signaling network induced by sevoflurane may contribute to neurodevelopmental toxicity in the hippocampus of rats and be associated with long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Xin Men
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaodong Huang
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaoxiao Qiu
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Weilong Wang
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Jin Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Zhenfeng Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| |
Collapse
|
5
|
Tran F, Scharmacher A, Baran N, Mishra N, Wozny M, Chavez SP, Bhardwaj A, Hinz S, Juzenas S, Bernardes JP, Sievers LK, Lessing M, Aden K, Lassen A, Bergfeld A, Weber HJ, Neas L, Vetrano S, Schreiber S, Rosenstiel P. Dynamic changes in extracellular vesicle-associated miRNAs elicited by ultrasound in inflammatory bowel disease patients. Sci Rep 2024; 14:10925. [PMID: 38740826 DOI: 10.1038/s41598-024-61532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Florian Tran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany.
| | - Alena Scharmacher
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Samuel Pineda Chavez
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Archana Bhardwaj
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Sophia Hinz
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Matthias Lessing
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Lassen
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Bergfeld
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Hauke Jann Weber
- Department of Gastroenterology, Asklepios Westklinikum, 22559, Hamburg, Germany
- Institute of Infection Medicine, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, 24105, Kiel, Germany
| | - Lennart Neas
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| |
Collapse
|
6
|
Wang P, Fang E, Zhao X, Feng J. Nomogram for soiling prediction in postsurgery hirschsprung children: a retrospective study. Int J Surg 2024; 110:1627-1636. [PMID: 38116670 PMCID: PMC10942236 DOI: 10.1097/js9.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The aim of this study was to develop a nomogram for predicting the probability of postoperative soiling in patients aged greater than 1 year operated for Hirschsprung disease (HSCR). MATERIALS AND METHODS The authors retrospectively analyzed HSCR patients with surgical therapy over 1 year of age from January 2000 and December 2019 at our department. Eligible patients were randomly categorized into the training and validation set at a ratio of 7:3. By integrating the least absolute shrinkage and selection operator [LASSO] and multivariable logistic regression analysis, crucial variables were determined for establishment of the nomogram. And, the performance of nomogram was evaluated by C-index, area under the receiver operating characteristic curve, calibration curves, and decision curve analysis. Meanwhile, a validation set was used to further assess the model. RESULTS This study enrolled 601 cases, and 97 patients suffered from soiling. Three risk factors, including surgical history, length of removed bowel, and surgical procedures were identified as predictive factors for soiling occurrence. The C-index was 0.871 (95% CI: 0.821-0.921) in the training set and 0.878 (95% CI: 0.811-0.945) in the validation set, respectively. And, the AUC was found to be 0.896 (95% CI: 0.855-0.929) in the training set and 0.866 (95% CI: 0.767-0.920) in the validation set. Additionally, the calibration curves displayed a favorable agreement between the nomogram model and actual observations. The decision curve analysis revealed that employing the nomogram to predict the risk of soiling occurrence would be advantageous if the threshold was between 1 and 73% in the training set and 3-69% in the validation set. CONCLUSION This study represents the first efforts to develop and validate a model capable of predicting the postoperative risk of soiling in patients aged greater than 1 year operated for HSCR. This model may assist clinicians in determining the individual risk of soiling subsequent to HSCR surgery, aiding in personalized patient care and management.
Collapse
Affiliation(s)
| | | | | | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, People’s Republic of China
| |
Collapse
|
7
|
Johnson K, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott J, Brekken R, Peng L, Karagkounis G, Corey D. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res 2024; 52:1930-1952. [PMID: 38109320 PMCID: PMC10899759 DOI: 10.1093/nar/gkad1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yi Han
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Tao Wang
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235, USA
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| |
Collapse
|
8
|
Díaz-Campos MÁ, Vasquez-Arriaga J, Ochoa S, Hernández-Lemus E. Functional impact of multi-omic interactions in lung cancer. Front Genet 2024; 15:1282241. [PMID: 38389572 PMCID: PMC10881857 DOI: 10.3389/fgene.2024.1282241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Lung tumors are a leading cause of cancer-related death worldwide. Lung cancers are highly heterogeneous on their phenotypes, both at the cellular and molecular levels. Efforts to better understand the biological origins and outcomes of lung cancer in terms of this enormous variability often require of high-throughput experimental techniques paired with advanced data analytics. Anticipated advancements in multi-omic methodologies hold potential to reveal a broader molecular perspective of these tumors. This study introduces a theoretical and computational framework for generating network models depicting regulatory constraints on biological functions in a semi-automated way. The approach successfully identifies enriched functions in analyzed omics data, focusing on Adenocarcinoma (LUAD) and Squamous cell carcinoma (LUSC, a type of NSCLC) in the lung. Valuable information about novel regulatory characteristics, supported by robust biological reasoning, is illustrated, for instance by considering the role of genes, miRNAs and CpG sites associated with NSCLC, both novel and previously reported. Utilizing multi-omic regulatory networks, we constructed robust models elucidating omics data interconnectedness, enabling systematic generation of mechanistic hypotheses. These findings offer insights into complex regulatory mechanisms underlying these cancer types, paving the way for further exploring their molecular complexity.
Collapse
Affiliation(s)
| | - Jorge Vasquez-Arriaga
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Gutierrez-Diaz A, Hoffmann S, Gallego-Gómez JC, Bermudez-Santana CI. Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells. FRONTIERS IN BIOINFORMATICS 2024; 4:1293412. [PMID: 38357577 PMCID: PMC10864640 DOI: 10.3389/fbinf.2024.1293412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.
Collapse
Affiliation(s)
- Aimer Gutierrez-Diaz
- Grupo Rnomica Teórica y Computacional, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Steve Hoffmann
- Faculty of Biosciences, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Friedrich Schiller University Jena, Jena, Germany
| | - Juan Carlos Gallego-Gómez
- Molecular and Translational Medicine Group, Medicine Faculty Universidad de Antioquia, Medellin, Colombia
| | - Clara Isabel Bermudez-Santana
- Grupo Rnomica Teórica y Computacional, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Zhang L, Wang J, Cai G, Ma L, Zhao Z, Ma Q, Deng X. Imprinted Dlk1-Gtl2 cluster miRNAs are potential epigenetic regulators of lamb fur quality. BMC Genomics 2023; 24:632. [PMID: 37872623 PMCID: PMC10594899 DOI: 10.1186/s12864-023-09741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Tan and Hu sheep are well-known local breeds in China, producing lamb fur with unique ornamental and practical values highly appreciated by consumers worldwide. Fur quality is optimal at one month of age and gradually declines with time. Despite active research on its genetic mechanism using transcriptomic and whole genome bisulfite sequencing analysis, the main effective gene locus has not been found, and its regulatory mechanism is still unclear, which limits the breeding and improvement of fur traits. RESULTS Scapular skin samples from newborn (1-month old) and adult (24-month old) Tan sheep were utilized for small ribonucleic acid (RNA) sequencing Principal Component Analysis (PCA) showed that the newborn and adult groups were completely separated. Differential expression analysis of micro-RNAs (miRNAs) identified 32 up-regulated miRNAs and 48 down-regulated miRNAs in the newborn groups. All up-regulated miRNAs were located in the imprinted. Dlk1-Gtl2 locus on chromosome 18, whereas all down-regulated miRNAs were distributed across the sheep chromosomes, without a clear pattern of positional consistency. Further, by systematically analyzing the target genes and signaling pathways of all 32 up-regulated miRNAs, we found that the PI3K-AKT signaling pathway has the potential to be targeted and regulated by most of the miRNAs in the Dlk1-Gtl2 region. In addition, we also re-analyzed miRNA sequencing data from public databases on Hu lambs (full sibling Hu lambs with high- and low-quality fur characteristics). Again, it was found that most of the up-regulated miRNAs in lambs with high-quality fur were also located in the Dlk1-Gtl2 region, whereas this patter was not present for down-regulated miRNAs. CONCLUSION Sequencing of miRNAs in conjunction with public databases was employed to identify miRNAs within the imprinted Dlk1-Gtl2 region on chromosome 18, suggesting their potential roles as epigenetic regulators of fur traits. Small RNAs located at the Dlk1-Gtl2 locus were identified as having the potential to systematically regulate the PI3K-AKT signaling pathway, thereby indicating the relevance of the Dlk1-Gtl2/PI3K-AKT axis in the context of fur traits. Selection of parental specific expressed imprinted genes in the process of conserving and exploiting lamb fur traits should be emphasized.
Collapse
Affiliation(s)
- Letian Zhang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Ganxian Cai
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Johnson KC, Johnson ST, Liu J, Chu Y, Arana C, Han Y, Wang T, Corey DR. Consequences of depleting TNRC6, AGO, and DROSHA proteins on expression of microRNAs. RNA (NEW YORK, N.Y.) 2023; 29:1166-1184. [PMID: 37169394 PMCID: PMC10351893 DOI: 10.1261/rna.079647.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
The potential for microRNAs (miRNAs) to regulate gene expression remains incompletely understood. DROSHA initiates the biogenesis of miRNAs while variants of Argonaute (AGO) and trinucleotide repeat containing six (TNRC6) family proteins form complexes with miRNAs to facilitate RNA recognition and gene regulation. Here we investigate the fate of miRNAs in the absence of these critical RNAi protein factors. Knockout of DROSHA expression reduces levels of some miRNAs annotated in miRBase but not others. The identity of miRNAs with reduced expression matches the identity of miRNAs previously identified by experimental approaches. The MirGeneDB resource offers the closest alignment with experimental results. In contrast, the loss of TNRC6 proteins had much smaller effects on miRNA levels. Knocking out AGO proteins, which directly contact the mature miRNA, decreased expression of the miRNAs most strongly associated with AGO2 as determined from enhanced crosslinking immunoprecipitation (AGO2-eCLIP). Evaluation of miRNA binding to endogenously expressed AGO proteins revealed that miRNA:AGO association was similar for AGO1, AGO2, AGO3, and AGO4. Our data emphasize the need to evaluate annotated miRNAs based on approximate cellular abundance, DROSHA-dependence, and physical association with AGO when forming hypotheses related to their function.
Collapse
Affiliation(s)
- Krystal C Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75205, USA
| | | | - Jing Liu
- Iris Medicine, Palo Alto, California 94304, USA
| | | | - Carlos Arana
- Genomics Core, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75205, USA
| |
Collapse
|
12
|
Johnson KC, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott JM, Brekken RA, Peng L, Karagkounis G, Corey DR. Nuclear Localization of Argonaute is affected by Cell Density and May Relieve Repression by microRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548119. [PMID: 37461596 PMCID: PMC10350042 DOI: 10.1101/2023.07.07.548119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Audrius Kilikevicius
- current address, Eli Lilly, Lilly Cambridge Innovation Center, Cambridge, MA 02142
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yi Han
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Tao Wang
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| |
Collapse
|
13
|
Coria-Rodríguez H, Ochoa S, de Anda-Jáuregui G, Hernández-Lemus E. Drug repurposing for Basal breast cancer subpopulations using modular network signatures. Comput Biol Chem 2023; 105:107902. [PMID: 37348299 DOI: 10.1016/j.compbiolchem.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Breast cancer is characterized as being a heterogeneous pathology with a broad phenotype variability. Breast cancer subtypes have been developed in order to capture some of this heterogeneity. Each of these breast cancer subtypes, in turns retains varied characteristic features impacting diagnostic, prognostic and therapeutics. Basal breast tumors, in particular have been challenging in these regards. Basal breast cancer is often more aggressive, of rapid evolution and no tailor-made targeted therapies are available yet to treat it. Arguably, epigenetic variability is behind some of these intricacies. It is possible to further classify basal breast tumor in groups based on their non-coding transcriptome and methylome profiles. It is expected that these groups will have differences in survival as well as in sensitivity to certain classes of drugs. With this in mind, we implemented a computational learning approach to infer different subpopulations of basal breast cancer (from TCGA multi-omic data) based on their epigenetic signatures. Such epigenomic signatures were associated with different survival profiles; we then identified their associated gene co-expression network structure, extracted a signature based on modules within these networks, and use these signatures to find and prioritize drugs (in the LINCS dataset) that may be used to target these types of cancer. In this way we are introducing the analytical workflow for an epigenomic signature-based drug repurposing structure.
Collapse
Affiliation(s)
- Hiram Coria-Rodríguez
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico
| | - Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico; Center for Complexity Sciences, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Mexico City, 04510, Mexico; Catedras Conacyt, National Council on Science and Technology, Insurgentes Sur, Mexico City, 03940, Mexico.
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Periferico Sur 4809, Mexico City, 14610, Mexico; Center for Complexity Sciences, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Mexico City, 04510, Mexico.
| |
Collapse
|
14
|
von Rüden EL, Janssen-Peters H, Reiber M, van Dijk RM, Xiao K, Seiffert I, Koska I, Hubl C, Thum T, Potschka H. An exploratory approach to identify microRNAs as circulatory biomarker candidates for epilepsy-associated psychiatric comorbidities in an electrical post-status epilepticus model. Sci Rep 2023; 13:4552. [PMID: 36941269 PMCID: PMC10027890 DOI: 10.1038/s41598-023-31017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Patients with epilepsy have a high risk of developing psychiatric comorbidities, and there is a particular need for early detection of these comorbidities. Here, in an exploratory, hypothesis-generating approach, we aimed to identify microRNAs as potential circulatory biomarkers for epilepsy-associated psychiatric comorbidities across different rat models of epilepsy. The identification of distress-associated biomarkers can also contribute to animal welfare assessment. MicroRNA expression profiles were analyzed in blood samples from the electrical post-status epilepticus (SE) model. Preselected microRNAs were correlated with behavioral and biochemical parameters in the electrical post-SE model, followed by quantitative real-time PCR validation in three additional well-described rat models of epilepsy. Six microRNAs (miR-376a, miR-429, miR-494, miR-697, miR-763, miR-1903) were identified showing a positive correlation with weight gain in the early post-insult phase as well as a negative correlation with social interaction, saccharin preference, and plasma BDNF. Real-time PCR validation confirmed miR-203, miR-429, and miR-712 as differentially expressed with miR-429 being upregulated across epilepsy models. While readouts from the electrical post-SE model suggest different microRNA candidates for psychiatric comorbidities, cross-model analysis argues against generalizability across models. Thus, further research is necessary to compare the predictive validity of rodent epilepsy models for detection and management of psychiatric comorbidities.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Heike Janssen-Peters
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ke Xiao
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Christina Hubl
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Thomas Thum
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany.
| |
Collapse
|
15
|
Lee B, An J, Lee S, Won S. Rex: R-linked EXcel add-in for statistical analysis of medical and bioinformatics data. Genes Genomics 2023; 45:295-305. [PMID: 36696053 DOI: 10.1007/s13258-022-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Microsoft Excel has substantial functionalities for data management and analyses, and has been the most popular software in this field. However, in spite of Excel's user-friendly interface and functionality for data management, it provides very few functions for in-depth statistical analyses, which has limited its wider application for this purpose. OBJECTIVE Here, we introduce Rex, an Excel add-in software implementing the powerful analytical and graphical functions of R within Excel. METHODS Rex was implemented using three types of programming software: R, JavaScript, and Microsoft VB.Net. RESULTS Rex provides a graphical user interface (GUI) through Excel, and statistical analysis can be conducted by pointing and clicking the menu without programming R. Rex covers a wide range of analyses from basic statistics to advanced analysis, including structural equation modeling, complex sampling design, and machine learning models, making it possible for researchers not skilled in using a command-line interface to conduct in-depth statistical analyses. Most Rex modules are available in a free version for non-commercial use, and it can be used for educational and public purposes. CONCLUSION In this article, we introduce the framework and features of Rex with illustrative examples of its implementation.
Collapse
Affiliation(s)
- Bora Lee
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.,RexSoft Inc, Seoul, Republic of Korea
| | - Jaehoon An
- RexSoft Inc, Seoul, Republic of Korea.,Department of Public Health Science, Seoul National University, 1 Kwanak-Ro Kwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. .,RexSoft Inc, Seoul, Republic of Korea. .,Department of Public Health Science, Seoul National University, 1 Kwanak-Ro Kwanak-Gu, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
16
|
Darbo E, Pérot G, Darmusey L, Le Guellec S, Leroy L, Gaston L, Desplat N, Thébault N, Merle C, Rochaix P, Valentin T, Ferron G, Chevreau C, Bui B, Stoeckle E, Ranchere-Vince D, Méeus P, Terrier P, Piperno-Neumann S, Collin F, De Pinieux G, Duffaud F, Coindre JM, Blay JY, Chibon F. Distinct Cellular Origins and Differentiation Process Account for Distinct Oncogenic and Clinical Behaviors of Leiomyosarcomas. Cancers (Basel) 2023; 15:cancers15020534. [PMID: 36672483 PMCID: PMC9856933 DOI: 10.3390/cancers15020534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In leiomyosarcoma (LMS), a very aggressive disease, a relatively transcriptionally uniform subgroup of well-differentiated tumors has been described and is associated with poor survival. The question raised how differentiation and tumor progression, two apparently antagonist processes, coexist and allow tumor malignancy. We first identified the most transcriptionally homogeneous LMS subgroup in three independent cohorts, which we named 'hLMS'. The integration of multi-omics data and functional analysis suggests that hLMS originate from vascular smooth muscle cells and show that hLMS transcriptional program reflects both modulations of smooth muscle contraction activity controlled by MYOCD/SRF regulatory network and activation of the cell cycle activity controlled by E2F/RB1 pathway. We propose that the phenotypic plasticity of vascular smooth muscle cells coupled with MYOCD/SRF pathway amplification, essential for hLMS survival, concomitant with PTEN absence and RB1 alteration, could explain how hLMS balance this uncommon interplay between differentiation and aggressiveness.
Collapse
Affiliation(s)
- Elodie Darbo
- INSERM U1218 ACTION, Institut Bergonié, 33000 Bordeaux, France
- CNRS UMR5800, LaBRI, 33400 Talence, France
- Department of Medical and Biological Sciences, Université de Bordeaux, 33000 Bordeaux, France
| | - Gaëlle Pérot
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31000 Toulouse, France
| | - Lucie Darmusey
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
- Department of Medical and Biological Sciences, University of Toulouse 3, 31000 Toulouse, France
| | - Sophie Le Guellec
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Laura Leroy
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Laëtitia Gaston
- Department of Medical Genetics, CHU de Bordeaux, 33000 Bordeaux, France
| | - Nelly Desplat
- INSERM U1218 ACTION, Institut Bergonié, 33000 Bordeaux, France
| | - Noémie Thébault
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Candice Merle
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
- Department of Medical and Biological Sciences, University of Toulouse 3, 31000 Toulouse, France
| | - Philippe Rochaix
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Thibaud Valentin
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Oncology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Gwenaël Ferron
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Surgical Oncology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Christine Chevreau
- Department of Oncology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
| | - Binh Bui
- Department of Oncology, Institut Bergonié, 33000 Bordeaux, France
| | | | | | - Pierre Méeus
- Department of Surgery, Centre Léon Bérard, 69000 Lyon, France
| | - Philippe Terrier
- Department of Pathology, Institut Gustave Roussy, 94800 Villejuif, France
| | | | - Françoise Collin
- Department of Pathology, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Gonzague De Pinieux
- Department of Pathology, Hôpital Universitaire Trousseau, 37170 Tours, France
| | - Florence Duffaud
- Medical Oncology Unit, APHM Hôpital La Timone, Aix Marseille University, 13000 Marseille, France
| | - Jean-Michel Coindre
- INSERM U1218 ACTION, Institut Bergonié, 33000 Bordeaux, France
- Department of Pathology, Institut Bergonié, 33000 Bordeaux, France
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, 69000 Lyon, France
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Frédéric Chibon
- OncoSarc, INSERM U1037, Cancer Research Center in Toulouse (CRCT), 31000 Toulouse, France
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, 31000 Toulouse, France
- Correspondence: ; Tel.: +33-0582741765
| |
Collapse
|
17
|
Ochoa S, Hernández-Lemus E. Functional impact of multi-omic interactions in breast cancer subtypes. Front Genet 2023; 13:1078609. [PMID: 36685900 PMCID: PMC9850112 DOI: 10.3389/fgene.2022.1078609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Multi-omic approaches are expected to deliver a broader molecular view of cancer. However, the promised mechanistic explanations have not quite settled yet. Here, we propose a theoretical and computational analysis framework to semi-automatically produce network models of the regulatory constraints influencing a biological function. This way, we identified functions significantly enriched on the analyzed omics and described associated features, for each of the four breast cancer molecular subtypes. For instance, we identified functions sustaining over-representation of invasion-related processes in the basal subtype and DNA modification processes in the normal tissue. We found limited overlap on the omics-associated functions between subtypes; however, a startling feature intersection within subtype functions also emerged. The examples presented highlight new, potentially regulatory features, with sound biological reasons to expect a connection with the functions. Multi-omic regulatory networks thus constitute reliable models of the way omics are connected, demonstrating a capability for systematic generation of mechanistic hypothesis.
Collapse
Affiliation(s)
- Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico,Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico,*Correspondence: Enrique Hernández-Lemus,
| |
Collapse
|
18
|
Zhao Y, Nogueira MS, Milne GL, Guo X, Cai H, Lan Q, Rothman N, Cai Q, Gao YT, Chen Q, Shu XO, Yang G. Association between lipid peroxidation biomarkers and microRNA expression profiles. Redox Biol 2022; 58:102531. [PMID: 36335760 PMCID: PMC9641027 DOI: 10.1016/j.redox.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In-vitro and animal studies demonstrate that epigenetic regulation may play an important role in lipid peroxidation. No human study to date has directly evaluated microRNAs (miRNAs), as epigenetic modulators, in relation to systemic levels of lipid peroxidation. OBJECTIVES To evaluate associations between systemic levels of lipid peroxidation and miRNA expression profiles in women. METHODS Included in the analysis were 92 women aged 40-70 years, a subset of the Shanghai Women's Health Study (SWHS). Lipid peroxidation was assessed by urinary markers F2-isoprostanes (F2-IsoPs), the products of free radical-catalyzed peroxidation of arachidonic acid, and its major metabolite after β-oxidation, 2,3-dinor-5,6-dihydro-15-F2t-IsoP (F2-IsoP-M), with GC/NICI-MS assays. Expression levels of 798 miRNAs were quantified in peripheral plasma with NanoString nCounter assays. A multivariable linear regression model was used to examine the association between lipid peroxidation and miRNA expression. RESULTS After adjusting for potential confounders, 29 miRNAs and 213 miRNAs were associated with F2-IsoPs and F2-IsoP-M, respectively. When further controlling for multiple comparisons, none of these nominally significant associations with F2-IsoPs was retained, whereas 71 of 213 miRNAs associated with F2-IsoP-M remained. The predicted targets of the F2-IsoP-M associated miRNAs were enriched for several lipid peroxidation-related processes such as PI3K/AKT, MAPK, FOXO and HIF-1 signaling pathways. Moreover, 10 miRNAs (miR-93-5p, miR-761, miR-301b-3p, miR-497-5p, miR-141-3p, miR-186-5p, miR-126-3p, miR-200b-3p, miR-520d-3p, and miR-363-3p) exhibited functional interactions with 50 unique mRNAs targets involved in the regulation of β-oxidation. CONCLUSIONS To our knowledge, this study, for the first time, provides human data suggesting that miRNA expression may be linked to lipid peroxidation products and their metabolism.
Collapse
Affiliation(s)
- Yingya Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marina S. Nogueira
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingxia Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA,Corresponding author. 2525 West End Avenue, Suite 600, Nashville, TN, 37203, USA.
| |
Collapse
|
19
|
Crow J, Samuel G, Farrow E, Gibson M, Johnston J, Guest E, Miller N, Pei D, Koestler D, Pathak H, Liang X, Mangels C, Godwin AK. MicroRNA Content of Ewing Sarcoma Derived Extracellular Vesicles Leads to Biomarker Potential and Identification of a Previously Undocumented EWS-FLI1 Translocation. Biomark Insights 2022; 17:11772719221132693. [PMID: 36341281 PMCID: PMC9629554 DOI: 10.1177/11772719221132693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: Ewing Sarcoma Family of Tumors (ESFT) are a highly aggressive pediatric bone and soft tissue malignancy with poor outcomes in the refractory and recurrent setting. Over 90% of Ewing Sarcoma (ES) tumors are driven by the pathognomonic EWS-ETS chimeric transcripts and their corresponding oncoproteins. It has been suggested that the EWS-ETS oncogenic action can mediate microRNA (miRNA) processing. Importantly, small extracellular vesicles (sEVs), including those frequently referred to as exosomes have been shown to be highly enriched with tumor-derived small RNAs such as miRNAs. We hypothesized that ESFT-specific sEVs are enriched with certain miRNAs which could be utilized toward an exo-miRNA biomarker signature specific to this disease. Methods: We performed miRNAseq to compare both the exo-derived and cell-derived miRNA content from 8 ESFT, 2 osteosarcoma, 2 non-cancerous cell lines, and pediatric plasma samples. Results: We found that sEVs derived from ESFT cells contained nearly 2-fold more number of unique individual miRNAs as compared to non-ESFT samples. Quantitative analysis of the differential enrichment of sEV miRNAs resulted in the identification of 62 sEV-miRNAs (exo-miRNAs) with significant (P < .05) enrichment variation between ESFT and non-ESFT sEV samples. To determine if we could utilize this miRNA signature to diagnose ESFT patients via a liquid biopsy, we analyzed the RNA content of total circulating sEVs isolated from 500 µL plasma from 5 pediatric ESFT patients, 2 pediatric osteosarcoma patients, 2 pediatric rhabdomyosarcoma patients, and 4 non-cancer pediatric controls. Pearson's clustering of 60 of the 62 candidate exo-miRNAs correctly identified 80% (4 of 5) of pathology confirmed ESFT patients. Importantly, RNAseq analysis of tumor tissue from the 1 outlier, revealed a previously uncharacterized EWS-FLI1 translocation.Conclusions: Taken together, these findings support the development and validation of an exo-miRNA-based liquid biopsy to aid in the diagnosis and monitoring of ESFT.
Collapse
Affiliation(s)
- Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Glenson Samuel
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Farrow
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Margaret Gibson
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Jefferey Johnston
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Erin Guest
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Neil Miller
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Dong Pei
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin Koestler
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaobo Liang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cooper Mangels
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Sullivan R, Montgomery A, Scipioni A, Jhaveri P, Schmidt AT, Hicks SD. Confounding Factors Impacting microRNA Expression in Human Saliva: Methodological and Biological Considerations. Genes (Basel) 2022; 13:genes13101874. [PMID: 36292760 PMCID: PMC9602126 DOI: 10.3390/genes13101874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
There is growing interest in saliva microRNAs (miRNAs) as non-invasive biomarkers for human disease. Such an approach requires understanding how differences in experimental design affect miRNA expression. Variations in technical methodologies, coupled with inter-individual variability may reduce study reproducibility and generalizability. Another barrier facing salivary miRNA biomarker research is a lack of recognized “control miRNAs”. In one of the largest studies of human salivary miRNA to date (922 healthy individuals), we utilized 1225 saliva samples to quantify variability in miRNA expression resulting from aligner selection (Bowtie1 vs. Bowtie2), saliva collection method (expectorated vs. swabbed), RNA stabilizer (presence vs. absence), and individual biological factors (sex, age, body mass index, exercise, caloric intake). Differential expression analyses revealed that absence of RNA stabilizer introduced the greatest variability, followed by differences in methods of collection and aligner. Biological factors generally affected a smaller number of miRNAs. We also reported coefficients of variations for 643 miRNAs consistently present in saliva, highlighting several salivary miRNAs to serve as reference genes. Thus, the results of this analysis can be used by researchers to optimize parameters of salivary miRNA measurement, exclude miRNAs confounded by numerous biologic factors, and identify appropriate miRNA controls.
Collapse
Affiliation(s)
- Rhea Sullivan
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Austin Montgomery
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Anna Scipioni
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
- Department of Obstetrics, Morsani College of Medicine, University of Southern Florida, Tampa, FL 33606, USA
| | - Pooja Jhaveri
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Adam T. Schmidt
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Steven D. Hicks
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-0003
| |
Collapse
|
21
|
Jiang Y, Liu J, Liu H, Zhang W, Li X, Liu L, Zhou M, Wang J, Su S, Ding X, Wang C. miR-381-3p Inhibits Intramuscular Fat Deposition through Targeting FABP3 by ceRNA Regulatory Network. BIOLOGY 2022; 11:biology11101497. [PMID: 36290402 PMCID: PMC9598794 DOI: 10.3390/biology11101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- National Animal Husbandry Service, Beijing 100125, China
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
22
|
Urinary extracellular vesicles and micro-RNA as markers of acute kidney injury after cardiac surgery. Sci Rep 2022; 12:10402. [PMID: 35729178 PMCID: PMC9213448 DOI: 10.1038/s41598-022-13849-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
We hypothesised that measuring changes in urinary levels of EV and miR will predict the onset of acute kidney injury in cardiac surgery patients. The study was performed in the cohort of the REVAKI-2 trial. Urine samples were collected before and 24 h after the procedure from 94 cardiac surgery patients. Urinary particle concentrations and size distribution were assessed using NanoSight. EV derivation and levels were measured using flow cytometry. Samples from 10 selected patients were sequenced, and verification was performed with advanced TaqMan assays in samples from all patients. Urinary particle concentrations significantly increased in patients with AKI after surgery, with the percentage of EV positive for CD105 and β1-integrin also increasing. Pre-surgery podocalyxin-positive EV were significantly lower in patients with AKI. Their levels correlated with the severity of the injury. Pre-operative miR-125a-5p was expressed at lower levels in urine from patients with AKI when adjusted for urinary creatinine. Levels of miR-10a-5p were lower after surgery in AKI patients and its levels correlated with the severity of the injury. Pre-operative levels of podocalyxin EVs, urinary particle concentrations and miR-125a-5p had moderate AKI predictive value and, in a logistic model together with ICU lactate levels, offered good (AUC = 82%) AKI prediction.
Collapse
|
23
|
Clément AA, Lamarche D, Masse MH, Légaré C, Tai LH, Fleury Deland L, Battista MC, Bouchard L, D’Aragon F. Time-course full profiling of circulating miRNAs in neurologically deceased organ donors: a proof of concept study to understand the onset of the cytokine storm. Epigenetics 2022; 17:1546-1561. [DOI: 10.1080/15592294.2022.2076048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphnée Lamarche
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Fleury Deland
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Frédérick D’Aragon
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Jiang Y, Liu H, Zou Q, Li S, Ding X. miR-29a-5p Inhibits Prenatal Hair Placode Formation Through Targeting EDAR by ceRNA Regulatory Network. Front Cell Dev Biol 2022; 10:902026. [PMID: 35646897 PMCID: PMC9133881 DOI: 10.3389/fcell.2022.902026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hair placode formation is an important stage of hair follicle morphogenesis and it is a complex process facilitated by non-coding RNAs. In this study, we conducted whole transcriptome sequencing analysis of skin, heart, liver, lung, and kidney tissues of day 41 (E41) normal and hairless pig embryos, and respectively detected 15, 8, and 515 skin-specific differentially expressed (DE) lncRNAs, miRNAs, and mRNAs. Furthermore, 18 competing endogenous RNA (ceRNA) networks were constructed. Following weighted gene co-expression network analysis (WGCNA) of stages E39, E41, E45, E52, and E60, between normal and hairless pig embryos, only two ceRNAs (lncRNA2162.1/miR-29a-5p/BMPR1b and lncRNA627.1/miR-29a-5p/EDAR) that showed period-specific differential expression in E41 skin were retained. Dual-luciferase reporter assays further indicated that EDAR was a direct, functioning target of miR-29a-5p and that no binding site was found in BMPR1b. Moreover, miR-29a-5p overexpression inhibited the mRNA and protein expression of EDAR while no significant differential expression of BMPR1b was detected. In addition, over-expressed lncRNA627.1 reduces the expression of miR-29a-5p and increase EDAR expression while inhibits lncRNA627.1 resulted in a opposite expression trend. Cell proliferation result demonstrated that lower expression of EDAR and lncRNA627.1 inhibited hair placode precursor cells (HPPCs) proliferation in a manner similar to that shown by over-expressed miR-29a-5p. This study identified that miR-29a-5p inhibited HPPCs proliferation via the suppression of EDAR expression in the EDA/EDAR signaling pathway, while lncRNA627.1 rescues EDAR expression. Our study provides a basis for a better understanding of the mechanisms underlying the ceRNA complex, miR29a-5p/EDAR/lncRNA627.1, that could regulate hair placode formation, which may help decipher diseases affecting human hair.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding,
| |
Collapse
|
25
|
The EGFR Signaling Modulates in Mesenchymal Stem Cells the Expression of miRNAs Involved in the Interaction with Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14071851. [PMID: 35406622 PMCID: PMC8997927 DOI: 10.3390/cancers14071851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
We previously demonstrated that the epidermal growth factor receptor (EGFR) modulates in mesenchymal stem cells (MSCs) the expression of a number of genes coding for secreted proteins that promote breast cancer progression. However, the role of the EGFR in modulating in MSCs the expression of miRNAs potentially involved in the progression of breast cancer remains largely unexplored. Following small RNA-sequencing, we identified 36 miRNAs differentially expressed between MSCs untreated or treated with the EGFR ligand transforming growth factor α (TGFα), with a fold change (FC) < 0.56 or FC ≥ 1.90 (CI, 95%). KEGG analysis revealed a significant enrichment in signaling pathways involved in cancer development and progression. EGFR activation in MSCs downregulated the expression of different miRNAs, including miR-23c. EGFR signaling also reduced the secretion of miR-23c in conditioned medium from MSCs. Functional assays demonstrated that miR-23c acts as tumor suppressor in basal/claudin-low MDA-MB-231 and MDA-MB-468 cells, through the repression of IL-6R. MiR-23c downregulation promoted cell proliferation, migration and invasion of these breast cancer cell lines. Collectively, our data suggested that the EGFR signaling regulates in MSCs the expression of miRNAs that might be involved in breast cancer progression, providing novel information on the mechanisms that regulate the MSC-tumor cell cross-talk.
Collapse
|
26
|
De Silva K, Demmer RT, Jönsson D, Mousa A, Forbes A, Enticott J. A data-driven biocomputing pipeline with meta-analysis on high throughput transcriptomics to identify genome-wide miRNA markers associated with type 2 diabetes. Heliyon 2022; 8:e08886. [PMID: 35169647 PMCID: PMC8829580 DOI: 10.1016/j.heliyon.2022.e08886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
|
27
|
Vann CG, Zhang X, Khodabukus A, Orenduff MC, Chen YH, Corcoran DL, Truskey GA, Bursac N, Kraus VB. Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle. Front Physiol 2022; 13:937899. [PMID: 36091396 PMCID: PMC9452896 DOI: 10.3389/fphys.2022.937899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise affects the expression of microRNAs (miR/s) and muscle-derived extracellular vesicles (EVs). To evaluate sarcoplasmic and secreted miR expression in human skeletal muscle in response to exercise-mimetic contractile activity, we utilized a three-dimensional tissue-engineered model of human skeletal muscle ("myobundles"). Myobundles were subjected to three culture conditions: no electrical stimulation (CTL), chronic low frequency stimulation (CLFS), or intermittent high frequency stimulation (IHFS) for 7 days. RNA was isolated from myobundles and from extracellular vesicles (EVs) secreted by myobundles into culture media; miR abundance was analyzed by miRNA-sequencing. We used edgeR and a within-sample design to evaluate differential miR expression and Pearson correlation to evaluate correlations between myobundle and EV populations within treatments with statistical significance set at p < 0.05. Numerous miRs were differentially expressed between myobundles and EVs; 116 miRs were differentially expressed within CTL, 3 within CLFS, and 2 within IHFS. Additionally, 25 miRs were significantly correlated (18 in CTL, 5 in CLFS, 2 in IHFS) between myobundles and EVs. Electrical stimulation resulted in differential expression of 8 miRs in myobundles and only 1 miR in EVs. Several KEGG pathways, known to play a role in regulation of skeletal muscle, were enriched, with differentially overrepresented miRs between myobundle and EV populations identified using miEAA. Together, these results demonstrate that in vitro exercise-mimetic contractile activity of human engineered muscle affects both their expression of miRs and number of secreted EVs. These results also identify novel miRs of interest for future studies of the role of exercise in organ-organ interactions in vivo.
Collapse
Affiliation(s)
- Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Melissa C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David L Corcoran
- Department of Genetics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - George A Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States.,Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Hong H, Xu HX, Meng JZ, Zhu BM. Electroacupuncture altered expression of microRNAs in Stat5 knockout obese mice. Acupunct Med 2021; 40:249-257. [PMID: 34892984 DOI: 10.1177/09645284211056345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increasing evidence shows that miRNAs contribute to the establishment and development of obesity by affecting many biological and pathological processes, such as adipocyte differentiation, hepatic lipid metabolism, insulin resistance, and neurological regulation of obesity. As a clinical intervention approach, acupuncture has been shown to be effective in the treatment of obesity and other metabolic diseases. Our previous whole genome study in central nervous system (CNS)-specific Stat5 knockout (NKO) obese mice found that electroacupuncture (EA) could reduce body weight and promote white browning. OBJECTIVE To clarify the effect of EA on miRNAs and understand how it regulates gene expression. METHODS Twelve-week-old male Stat5NKO mice with body weight 20% greater than that of Stat5fl/fl (control) mice were divided into a Stat5NKO (model) group and EA-treated Stat5NKO + EA group. A cohort of Stat5fl/fl mice of the same age were included as the control group. EA was administered under isoflurane anesthesia at unilateral ST36 and ST44 daily (left and right sides were treated every other day), 6 times per week for a total of 4 weeks. The miRNA profile was generated and miRNA regulatory networks were analyzed in the Stat5 nestin-cre mice before and after EA treatment. Autophagy-related proteins in adipocytes were detected after over-expression of miR27a. RESULTS EA altered abnormal miRNA expression, including miRNA27a expression, and reduced the autophagy-related proteins ATG5 and ATG12. CONCLUSION We found that EA could regulate miRNA27a-mediated autophagy-related proteins and promote white fat browning, which may contribute to weight loss. To our knowledge, this is the first report of miRNAs potentially driving the effect of EA on white fat browning through the autophagy process.
Collapse
Affiliation(s)
- Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Zhong Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Kaczmarek E, Pyman B, Nanayakkara J, Tuschl T, Tyryshkin K, Renwick N, Mousavi P. Discriminating Neoplastic from Nonneoplastic Tissues Using an miRNA-Based Deep Cancer Classifier. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:344-352. [PMID: 34774515 DOI: 10.1016/j.ajpath.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Next-generation sequencing has enabled the collection of large biological data sets, allowing novel molecular-based classification methods to be developed for increased understanding of disease. miRNAs are small regulatory RNA molecules that can be quantified using next-generation sequencing and are excellent classificatory markers. Herein, we adapt a deep cancer classifier (DCC) to differentiate neoplastic from nonneoplastic samples using comprehensive miRNA expression profiles from 1031 human breast and skin tissue samples. The classifier was fine-tuned and evaluated using 750 neoplastic and 281 nonneoplastic breast and skin tissue samples. Performance of the DCC was compared with two machine-learning classifiers: support vector machine and random forests. In addition, performance of feature extraction through the DCC was also compared with a developed feature selection algorithm, cancer specificity. The DCC had the highest performance of area under the receiver operating curve and high performance in both sensitivity and specificity, unlike machine-learning and feature selection models, which often performed well in one metric compared with the other. In particular, deep learning was shown to have noticeable advantages with highly heterogeneous data sets. In addition, our cancer specificity algorithm identified candidate biomarkers for differentiating neoplastic and nonneoplastic tissue samples (eg, miR-144 and miR-375 in breast cancer and miR-375 and miR-451 in skin cancer).
Collapse
Affiliation(s)
- Emily Kaczmarek
- Medical Informatics Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada.
| | - Blake Pyman
- Medical Informatics Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Jina Nanayakkara
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - Parvin Mousavi
- Medical Informatics Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
30
|
Identification of Exosomal MicroRNA Signature by Liquid Biopsy in Hereditary Hemorrhagic Telangiectasia Patients. Int J Mol Sci 2021; 22:ijms22179450. [PMID: 34502358 PMCID: PMC8431573 DOI: 10.3390/ijms22179450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant vascular dysplasia characterized by epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVM) in the visceral organs. The diagnosis of HHT is based on clinical Curaçao criteria, which show limited sensitivity in children and young patients. Here, we carried out a liquid biopsy by which we isolated total RNA from plasma exosome samples. A cohort of 15 HHT type 1 patients, 15 HHT type 2 patients, and 10 healthy relatives were analyzed. Upon gene expression data processing and normalization, a statistical analysis was performed to explore similarities in microRNA expression patterns among samples and detect differentially expressed microRNAs between HHT samples and the control group. We found a disease-associated molecular fingerprint of 35 miRNAs over-represented in HHT vs. controls, with eight being specific for HHT1 and 11 for HHT2; we also found 30 under-represented, including nine distinct for HHT1 and nine for HHT2. The analysis of the receiver operating characteristic (ROC) curves showed that eight miRNAs had good (AUC > 75%) or excellent (AUC > 90%) diagnosis value for HHT and even for type HHT1 and HHT2. In addition, we identified the cellular origin of these miRNAs among the cell types involved in the vascular malformations. Interestingly, we found that only some of them were incorporated into exosomes, which suggests a key functional role of these exosomal miRNAs in the pathophysiology of HHT.
Collapse
|
31
|
Marczyk M, Polańska J, Wojcik A, Lundholm L. Analysis of the Applicability of microRNAs in Peripheral Blood Leukocytes as Biomarkers of Sensitivity and Exposure to Fractionated Radiotherapy towards Breast Cancer. Int J Mol Sci 2021; 22:8705. [PMID: 34445424 PMCID: PMC8395710 DOI: 10.3390/ijms22168705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
Biomarkers for predicting individual response to radiation and for dose verification are needed to improve radiotherapy. A biomarker should optimally show signal fidelity, meaning that its level is stable and proportional to the absorbed dose. miRNA levels in human blood serum were suggested as promising biomarkers. The aim of the present investigation was to test the miRNA biomarker in leukocytes of breast cancer patients undergoing external beam radiotherapy. Leukocytes were isolated from blood samples collected prior to exposure (control); on the day when a total dose of 2 Gy, 10 Gy, or 20 Gy was reached; and one month after therapy ended (46-50 Gy in total). RNA sequencing was performed and univariate analysis was used to analyse the effect of the radiation dose on the expression of single miRNAs. To check if combinations of miRNAs can predict absorbed dose, a multinomial logistic regression model was built using a training set from eight patients (representing 40 samples) and a validation set with samples from the remaining eight patients (15 samples). Finally, Broadside, an explorative interaction mining tool, was used to extract sets of interacting miRNAs. The most prominently increased miRNA was miR-744-5p, followed by miR-4461, miR-34a-5p, miR-6513-5p, miR-1246, and miR-454-3p. Decreased miRNAs were miR-3065-3p, miR-103a-2-5p, miR-30b-3p, and miR-5690. Generally, most miRNAs showed a relatively strong inter-individual variability and different temporal patterns over the course of radiotherapy. In conclusion, miR-744-5p shows promise as a stable miRNA marker, but most tested miRNAs displayed individual signal variability which, at least in this setting, may exclude them as sensitive biomarkers of radiation response.
Collapse
Affiliation(s)
- Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (J.P.)
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (J.P.)
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
- Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| |
Collapse
|
32
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Vidal R. Temporal Gene Expression Signature of Plasma Extracellular Vesicles-MicroRNAs from Post-Smolt Coho Salmon Challenged with Piscirickettsia salmonis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:602-614. [PMID: 34390423 DOI: 10.1007/s10126-021-10049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has borne major economic losses due to failure to control it. Cells use extracellular vesicles (EVs) as an inter-cellular communicators to deliver several factors (e.g., microRNAs) that may regulate the responses of other cells. However, there is limited knowledge about the identification and characterization of EV-miRNAs in salmonids or the effect of infections on these. In this study, Illumina sequencing technology was used to identify Coho salmon plasma EV-miRNAs upon Piscirickettsia salmonis infection at four different time points. A total of 118 novels and 188 known EV-miRNAs, including key immune teleost miRNAs families (e.g., miR-146, miR-122), were identified. A total of 245 EV-miRNAs were detected as differentially expressed (FDR < 5%) in terms of control, with a clear down-regulation pattern throughout the disease. KEGG enrichment results of EV-miRNAs target genes showed that they were grouped mainly in cellular, stress, inflammation and immune responses. Therefore, it is hypothesized that P. salmonis could potentially benefit from unbalanced modulation response of Coho salmon EV-miRNAs in order to promote a hyper-inflammatory and compromised immune response through the suppression of different key immune host miRNAs during the course of the infection, as indicated by the results of this study.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 Of.26, Puerto Varas, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 Of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
33
|
Tiwari A, Wang AL, Li J, Lutz SM, Kho AT, Weiss ST, Tantisira KG, McGeachie MJ. Seasonal Variation in miR-328-3p and let-7d-3p Are Associated With Seasonal Allergies and Asthma Symptoms in Children. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:576-588. [PMID: 34212545 PMCID: PMC8255344 DOI: 10.4168/aair.2021.13.4.576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE MicroRNAs (miRs) are small non-coding RNA molecules of around 18-22 nucleotides that are key regulators of many biologic processes, particularly inflammation. The purpose of this study was to determine the association of circulating miRs from asthmatic children with seasonal variation in allergic inflammation and asthma symptoms. METHODS We used available small RNA sequencing on blood serum from 398 children with mild-to-moderate asthma from the Childhood Asthma Management Program. We used seasonal asthma symptom data at the study baseline and allergen affection status from baseline skin prick tests as primary outcomes. We identified differentially expressed (DE) miRs between pairs of seasons using DESeq2. Regression analysis was used to identify associations between allergy status to specific seasonal allergens and DE miRs in 4 seasons and between seasonal asthma symptom data and DE miRs. We performed pathway enrichment analysis for target genes of the DE miRs using DAVID. RESULTS After quality control, 398 samples underwent differential analysis between the 4 seasons. We found 52 unique miRs from a total of 81 DE miRs across seasons. Further investigation of the association between these miRs and sensitization to seasonal allergens using skin prick tests revealed that 26 unique miRs from a total of 38 miRs were significantly associated with a same-season allergen. Comparison between seasonal asthma symptom data revealed that 2 of these 26 miRs also had significant associations with asthma symptoms in the same seasons: miR-328-3p (P < 0.03) and let-7d-3p (P < 0.05). Enrichment analysis showed that the most enriched pathway clusters were Rap1, Ras, and MAPK signaling pathways. CONCLUSION Our results show seasonal variation in miR-328-3p and let-7d-3p are significantly associated with seasonal asthma symptoms and seasonal allergies. These indicate a potentially protective role for let-7d-3p and a deleterious role for miR-328-3p in asthmatics sensitized to mulberry. Further work will determine whether these miRs are drivers or results of the allergic response.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon M Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Pérez-Rodríguez D, López-Fernández H, Agís-Balboa RC. Application of miRNA-seq in neuropsychiatry: A methodological perspective. Comput Biol Med 2021; 135:104603. [PMID: 34216893 DOI: 10.1016/j.compbiomed.2021.104603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
MiRNAs are emerging as key molecules to study neuropsychiatric diseases. However, despite the large number of methodologies and software for miRNA-seq analyses, there is little supporting literature for researchers in this area. This review focuses on evaluating how miRNA-seq has been used to study neuropsychiatric diseases to date, analyzing both the main findings discovered and the bioinformatics workflows and tools used from a methodological perspective. The objective of this review is two-fold: first, to evaluate current miRNA-seq procedures used in neuropsychiatry; and second, to offer comprehensive information that can serve as a guide to new researchers in bioinformatics. After conducting a systematic search (from 2016 to June 30, 2020) of articles using miRNA-seq in neuropsychiatry, we have seen that it has already been used for different types of studies in three main categories: diagnosis, prognosis, and mechanism. We carefully analyzed the bioinformatics workflows of each study, observing a high degree of variability with respect to the tools and methods used and several methodological complexities that are identified and discussed in this review.
Collapse
Affiliation(s)
- Daniel Pérez-Rodríguez
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213, Vigo, Spain; NeuroEpigenetics Lab. University Hospital Complex of Vigo, SERGAS-UVIGO, 36213, Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Investigação e Inovação Em Saúde (I3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; CINBIO, Universidade de Vigo, Department of Computer Science, ESEI - Escuela Superior de Ingeniería Informática, 32004, Ourense, Spain; SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| | - Roberto C Agís-Balboa
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213, Vigo, Spain; NeuroEpigenetics Lab. University Hospital Complex of Vigo, SERGAS-UVIGO, 36213, Vigo, Spain.
| |
Collapse
|
35
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
36
|
Clément AA, Desgagné V, Légaré C, Guay SP, Boyer M, Hutchins E, Corbin F, Keuren-Jensen KV, Arsenault BJ, Guérin R, Bouchard L. HDL-enriched miR-30a-5p is associated with HDL-cholesterol levels and glucose metabolism in healthy men and women. Epigenomics 2021; 13:985-994. [PMID: 33993731 DOI: 10.2217/epi-2020-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the associations between high-density lipoprotein (HDL)-enriched miRNAs and the cardiometabolic profile of healthy men and women. Patients & methods: miRNAs were quantified using next-generation sequencing of miRNAs extracted from purified HDL and plasma from 17 healthy men and women couples. Results: Among the HDL-enriched miRNAs, miR-30a-5p correlated positively with HDL-cholesterol levels, whereas miR-144-5p and miR-30a-5p were negatively associated with fasting insulin levels and Homeostasis model assessment of insulin resistance index. Overall, miR-30a-5p, miR-150-5p and sex contributed to 45% of HDL-cholesterol variance. A model containing only miR-30a-5p, age and sex explained 41% of fasting glucose variance. Conclusion: HDL-enriched miRNAs, notably miR-30a-5p, are associated with cardiometabolic markers. These miRNAs could play a role in HDL's protective functions, particularly regarding glucose-insulin homeostasis.
Collapse
Affiliation(s)
- Andrée-Anne Clément
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Véronique Desgagné
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Biologie Médicale, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Cécilia Légaré
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Simon-Pierre Guay
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Médecine, Programme de Formation Médicale à Saguenay (PFMS), Université de Sherbrooke, Sherbrooke, Québec, G7H 2B1, Canada.,Department of Medical Genetics, MUHC, McGill University, Montreal, Québec, H4A 3J1, Canada
| | - Marjorie Boyer
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Québec, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - François Corbin
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Québec, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Renée Guérin
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Biologie Médicale, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Luigi Bouchard
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Biologie Médicale, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| |
Collapse
|
37
|
Geraci F, Manzini G. EZcount: An all-in-one software for microRNA expression quantification from NGS sequencing data. Comput Biol Med 2021; 133:104352. [PMID: 33852974 DOI: 10.1016/j.compbiomed.2021.104352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are short endogenous molecules of RNA that influence cell regulation by suppressing genes. Their ubiquity throughout all branches of the tree of life has suggested their central role in many cellular functions. Nowadays, several personalized medicine applications rely on miRNAs as biomarkers for diagnoses, prognoses, and prediction of drug response. The increasing ease of sequencing miRNAs contrasts with the difficulty of accurately quantifying their concentration. The use of general purpose aligners is only a partial solution as they have limited possibilities to accurately solve ambiguous mapping due to the short length of these sequences. We developed EZcount, an all-in-one software that, with a single command, performs the entire quantification process: from raw fastq files to read counts. Experiments show that EZcount is more sensitive and accurate than methods based on sequence alignment, independently of the library preparation protocol and sequencing machine. The parallel architecture of EZcount makes it fast enough to process a sample in minutes using a standard workstation. EZcount runs on all of the most common operating systems (Linux, Windows and MacOS) and is freely available for download at https://gitlab.com/BioAlgo/miR-pipe. A detailed description of the datasets, the raw experimental results, and all the scripts used for testing are available as supplementary material.
Collapse
Affiliation(s)
- Filippo Geraci
- Institute for Informatics and Telematics, CNR, Pisa, 56124, Italy.
| | - Giovanni Manzini
- Institute for Informatics and Telematics, CNR, Pisa, 56124, Italy; Department of Computer Science, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
38
|
Ochoa S, de Anda-Jáuregui G, Hernández-Lemus E. An Information Theoretical Multilayer Network Approach to Breast Cancer Transcriptional Regulation. Front Genet 2021; 12:617512. [PMID: 33815463 PMCID: PMC8014033 DOI: 10.3389/fgene.2021.617512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a complex, highly heterogeneous disease at multiple levels ranging from its genetic origins and molecular processes to clinical manifestations. This heterogeneity has given rise to the so-called intrinsic or molecular breast cancer subtypes. Aside from classification, these subtypes have set a basis for differential prognosis and treatment. Multiple regulatory mechanisms-involving a variety of biomolecular entities-suffer from alterations leading to the diseased phenotypes. Information theoretical approaches have been found to be useful in the description of these complex regulatory programs. In this work, we identified the interactions occurring between three main mechanisms of regulation of the gene expression program: transcription factor regulation, regulation via noncoding RNA, and epigenetic regulation through DNA methylation. Using data from The Cancer Genome Atlas, we inferred probabilistic multilayer networks, identifying key regulatory circuits able to (partially) explain the alterations that lead from a healthy phenotype to different manifestations of breast cancer, as captured by its molecular subtype classification. We also found some general trends in the topology of the multi-omic regulatory networks: Tumor subtype networks present longer shortest paths than their normal tissue counterpart; epigenomic regulation has frequently focused on genes enriched for certain biological processes; CpG methylation and miRNA interactions are often part of a regulatory core of conserved interactions. The use of probabilistic measures to infer information regarding theoretical-derived multilayer networks based on multi-omic high-throughput data is hence presented as a useful methodological approach to capture some of the molecular heterogeneity behind regulatory phenomena in breast cancer, and potentially other diseases.
Collapse
Affiliation(s)
- Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Conacyt Research Chairs, National Council on Science and Technology, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
39
|
Nachtigall PG, Bovolenta LA, Patton JG, Fromm B, Lemke N, Pinhal D. A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks. BMC Genomics 2021; 22:153. [PMID: 33663371 PMCID: PMC7931589 DOI: 10.1186/s12864-021-07441-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During vertebrate evolution, the heart has undergone remarkable changes that lead to morphophysiological differences in the fully formed heart of these species, such as chamber septation, heart rate frequency, blood pressure, and cardiac output volume. Despite these differences, the heart developmental process is guided by a core gene set conserved across vertebrates. Nonetheless, the regulatory mechanisms controlling the expression of genes involved in heart development and maintenance are largely uncharted. MicroRNAs (miRNAs) have been described as important regulatory elements in several biological processes, including heart biology. These small RNA molecules are broadly conserved in sequence and genomic context in metazoans. Mutations may occur in miRNAs and/or genes that contribute to the establishment of distinct repertoires of miRNA-target interactions, thereby favoring the differential control of gene expression and, consequently, the origin of novel phenotypes. In fact, several studies showed that miRNAs are integrated into genetic regulatory networks (GRNs) governing specific developmental programs and diseases. However, studies integrating miRNAs in vertebrate heart GRNs under an evolutionary perspective are still scarce. RESULTS We comprehensively examined and compared the heart miRNome of 20 species representatives of the five major vertebrate groups. We found 54 miRNA families with conserved expression and a variable number of miRNA families with group-specific expression in fishes, amphibians, reptiles, birds, and mammals. We also detected that conserved miRNAs present higher expression levels and a higher number of targets, whereas the group-specific miRNAs present lower expression levels and few targets. CONCLUSIONS Both the conserved and group-specific miRNAs can be considered modulators orchestrating the core and peripheral genes of heart GRNs of vertebrates, which can be related to the morphophysiological differences and similarities existing in the heart of distinct vertebrate groups. We propose a hypothesis to explain evolutionary differences in the putative functional roles of miRNAs in the heart GRNs analyzed. Furthermore, we present new insights into the molecular mechanisms that could be helping modulate the diversity of morphophysiology in the heart organ of vertebrate species.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório Especial de Toxinologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, Brazil. .,Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ney Lemke
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
40
|
Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, de María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM. Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. PLANT, CELL & ENVIRONMENT 2021; 44:706-728. [PMID: 33314160 DOI: 10.1111/pce.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.
Collapse
Affiliation(s)
- Pedro Perdiguero
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Andreia Santos Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Célia Maria Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Martín L, Kamstra JH, Hurem S, Lindeman LC, Brede DA, Aanes H, Babiak I, Arenal A, Oughton D, Salbu B, Lyche JL, Aleström P. Altered non-coding RNA expression profile in F 1 progeny 1 year after parental irradiation is linked to adverse effects in zebrafish. Sci Rep 2021; 11:4142. [PMID: 33602989 PMCID: PMC7893006 DOI: 10.1038/s41598-021-83345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.
Collapse
Affiliation(s)
- Leonardo Martín
- grid.441252.40000 0000 9526 034XMorphophysiology Department, Faculty of Agricultural Sciences, University of Camagüey Ignacio Agramonte y Loynaz, 74 650 Camagüey, Cuba ,grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Jorke H. Kamstra
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.5477.10000000120346234Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Selma Hurem
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Leif C. Lindeman
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dag A. Brede
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Håvard Aanes
- grid.458778.1PatoGen AS, P.O.box 548, 6001 Ålesund, Norway
| | - Igor Babiak
- grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Amilcar Arenal
- grid.441252.40000 0000 9526 034XMorphophysiology Department, Faculty of Agricultural Sciences, University of Camagüey Ignacio Agramonte y Loynaz, 74 650 Camagüey, Cuba
| | - Deborah Oughton
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Brit Salbu
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Jan Ludvig Lyche
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Peter Aleström
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| |
Collapse
|
42
|
MicroRNA Profiles in Monocyte-Derived Macrophages Generated by Interleukin-27 and Human Serum: Identification of a Novel HIV-Inhibiting and Autophagy-Inducing MicroRNA. Int J Mol Sci 2021; 22:ijms22031290. [PMID: 33525571 PMCID: PMC7865382 DOI: 10.3390/ijms22031290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Interleukin-27 (IL-27) is a pleiotropic cytokine that influences the innate and adaptive immune systems. It inhibits viral infection and regulates the expression of microRNAs (miRNAs). We recently reported that macrophages differentiated from human primary monocytes in the presence of IL-27 and human AB serum resisted human immunodeficiency virus (HIV) infection and showed significant autophagy induction. In the current study, the miRNA profiles in these cells were investigated, especially focusing on the identification of novel miRNAs regulated by IL-27-treatment. The miRNA sequencing analysis detected 38 novel miRNAs. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed that IL-27 differentially regulated the expression of 16 of the 38 miRNAs. Overexpression of the synthesized miRNA mimics by transfection revealed that miRAB40 had potent HIV-inhibiting and autophagy-inducing properties. B18R, an interferon (IFN)-neutralization protein, partially suppressed both activities, indicating that the two functions were induced via IFN-dependent and -independent pathways. Although the target mRNA(s) of miRAB40 involving in the induction of both functions was unable to identify in this study, the discovery of miRAB40, a potential HIV-inhibiting and autophagy inducing miRNA, may provide novel insights into the miRNA (small none-coding RNA)-mediated regulation of HIV inhibition and autophagy induction as an innate immune response.
Collapse
|
43
|
Ikert H, Lynch MDJ, Doxey AC, Giesy JP, Servos MR, Katzenback BA, Craig PM. High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress. Front Physiol 2021; 11:588313. [PMID: 33519501 PMCID: PMC7838646 DOI: 10.3389/fphys.2020.588313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs; however, external miRNAs have never been measured in fish. The objective of this study was to identify the altered plasma miRNAs in response to acute stress in rainbow trout (Oncorhynchus mykiss), as well as altered miRNAs in fish epidermal mucus and the surrounding ambient water. Small RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout pre- and 1 h-post a 3-min air stressor. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression 1-h post air stress. The expressed miRNA profiles in mucus and water were different from the altered plasma miRNA profile, which indicated that the plasma miRNA response was not associated with or immediately reflected in external samples, which was further validated through qPCR. This research expands understanding of the role of plasma miRNA in the acute stress response of fish and is the first report of successful isolation and profiling of miRNA from fish mucus or samples of ambient water. Measurements of miRNA from plasma, mucus, or water can be further studied and have potential to be applied as non-lethal indicators of acute stress in fish.
Collapse
Affiliation(s)
- Heather Ikert
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Paul M. Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
44
|
Guo T, Wang Y, Jia J, Mao X, Stankiewicz E, Scandura G, Burke E, Xu L, Marzec J, Davies CR, Lu JJ, Rajan P, Grey A, Tipples K, Hines J, Kudahetti S, Oliver T, Powles T, Alifrangis C, Kohli M, Shaw G, Wang W, Feng N, Shamash J, Berney D, Wang L, Lu YJ. The Identification of Plasma Exosomal miR-423-3p as a Potential Predictive Biomarker for Prostate Cancer Castration-Resistance Development by Plasma Exosomal miRNA Sequencing. Front Cell Dev Biol 2021; 8:602493. [PMID: 33490068 PMCID: PMC7817948 DOI: 10.3389/fcell.2020.602493] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the major cause of death from prostate cancer. Biomarkers to improve early detection and prediction of CRPC especially using non-invasive liquid biopsies could improve outcomes. Therefore, we investigated the plasma exosomal miRNAs associated with CRPC and their potential for development into non-invasive early detection biomarkers for resistance to treatment. RNA-sequencing, which generated approximately five million reads per patient, was performed to identify differentially expressed plasma exosomal miRNAs in 24 treatment-naive prostate cancer and 24 CRPC patients. RT-qPCR was used to confirm the differential expressions of six exosomal miRNAs, miR-423-3p, miR-320a, miR-99a-5p, miR-320d, miR-320b, and miR-150-5p (p = 7.3 × 10-8, 0.0020, 0.018, 0.0028, 0.0013, and 0.0058, respectively) firstly in a validation cohort of 108 treatment-naive prostate cancer and 42 CRPC patients. The most significant differentially expressed miRNA, miR-423-3p, was shown to be associated with CRPC with area under the ROC curve (AUC) = 0.784. Combining miR-423-3p with prostate-specific antigen (PSA) enhanced the prediction of CRPC (AUC = 0.908). A separate research center validation with 30 treatment-naive and 30 CRPC patients also confirmed the differential expression of miR-423-3p (p = 0.016). Finally, plasma exosomal miR-423-3p expression in CRPC patients was compared to 36 non-CRPC patients under androgen depletion therapy, which showed significantly higher expression in CRPC than treated non-CRPC patients (p < 0.0001) with AUC = 0.879 to predict CRPC with no difference between treatment-naive and treated non-CRPC patients. Therefore, our findings demonstrate that a number of plasma exosomal miRNAs are associated with CRPC and miR-423-3p may serve as a biomarker for early detection/prediction of castration-resistance.
Collapse
Affiliation(s)
- Tianyu Guo
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Department of Cell Biology, Zhejiang University School of Medicine, The Second Affiliated Hospital, Hangzhou, China
| | - Yang Wang
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Jia
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Xueying Mao
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Glenda Scandura
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Edwina Burke
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lei Xu
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jacek Marzec
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Caitlin R Davies
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jiaying Jasmin Lu
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Prabhakar Rajan
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Department of Urology, Barts Health NHS, London, United Kingdom.,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom.,Department of Uro-oncology, University College London NHS Foundation Trust, London, United Kingdom
| | - Alistair Grey
- Department of Urology, Barts Health NHS, London, United Kingdom.,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Karen Tipples
- Department of Urology, Barts Health NHS, London, United Kingdom
| | - John Hines
- Department of Urology, Barts Health NHS, London, United Kingdom.,Department of Uro-oncology, University College London NHS Foundation Trust, London, United Kingdom
| | - Sakunthala Kudahetti
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tim Oliver
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Thomas Powles
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Constantine Alifrangis
- Department of Urology, Barts Health NHS, London, United Kingdom.,Department of Uro-oncology, University College London NHS Foundation Trust, London, United Kingdom
| | - Manish Kohli
- Department of Medicine, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, United States.,Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Greg Shaw
- Department of Urology, Barts Health NHS, London, United Kingdom.,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom.,Department of Uro-oncology, University College London NHS Foundation Trust, London, United Kingdom
| | - Wen Wang
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health NHS, London, United Kingdom
| | - Daniel Berney
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Yong-Jie Lu
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
45
|
Lai X, Dreyer FS, Cantone M, Eberhardt M, Gerer KF, Jaitly T, Uebe S, Lischer C, Ekici A, Wittmann J, Jäck HM, Schaft N, Dörrie J, Vera J. Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics 2021; 11:1412-1428. [PMID: 33391542 PMCID: PMC7738891 DOI: 10.7150/thno.53092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Florian S. Dreyer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Kerstin F. Gerer
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Tanushree Jaitly
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Steffen Uebe
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christopher Lischer
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Arif Ekici
- Department of Human Genetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Jan Dörrie
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen, Erlangen, Germany
| |
Collapse
|
46
|
Ruan P, Wang S, Liang H. mirPLS: a partial linear structure identifier method for cancer subtyping using microRNAs. Bioinformatics 2020; 36:4902-4909. [PMID: 32609318 DOI: 10.1093/bioinformatics/btaa606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION MicroRNAs (miRNAs) are small non-coding RNAs that have been successfully identified to be differentially expressed in various cancers. However, some miRNAs were reported to be up-regulated in one subtype of a cancer but down-regulated in another, making overall associations between these miRNAs and the heterogeneous cancer non-linear. These non-linearly associated miRNAs, if identified, are thus informative for cancer subtyping. RESULTS Here, we propose mirPLS, a Partial Linear Structure identifier for miRNA data that simultaneously identifies miRNAs of linear or non-linear associations with cancer status when non-linearly associated miRNAs can then be used for subsequent cancer subtyping. Simulation studies showed that mirPLS can identify both non-linearly and linearly outcome-associated miRNAs more accurately than the comparison methods. Using the identified non-linearly associated miRNAs much improves the cancer subtyping accuracy. Applications to miRNA data of three different cancer types suggest that the cancer subtypes defined by the non-linearly associated miRNAs identified by mirPLS are consistently more predictive of patient survival and more biological meaningful. AVAILABILITY AND IMPLEMENTATION The R package mirPLS is available for downloading from https://github.com/pfruan/mirPLS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peifeng Ruan
- Department of Statistics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Hua Liang
- Department of Statistics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
47
|
Kövesdi A, Kurucz PA, Nyírő G, Darvasi O, Patócs A, Butz H. Circulating miRNA Increases the Diagnostic Accuracy of Chromogranin A in Metastatic Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12092488. [PMID: 32887459 PMCID: PMC7565801 DOI: 10.3390/cancers12092488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Despite its varying sensitivity and decreased specificity, chromogranin A (CgA) is the most widely used biomarker for neuroendocrine tumors. The most common factor affecting its diagnostic accuracy is the use of proton pump inhibitors (PPIs). Our aim was to investigate circulating miRNA expression profiles in pancreatic neuroendocrine tumors (pNET) and pheochromocytomas/paragangliomas (PPGL) to find miRNAs which could be used as biomarkers along with CgA in these patients. MiRNA expression profiles were determined with next generation sequencing and validated by quantitative real time PCR in 74 samples obtained from patients and healthy volunteers treated with PPI. We observed a global downregulation of miRNAs in NET compared to controls. A set of miRNAs in combination with CgA resulted in the best discrimination of pNET irrespective of PPI treatment and a combination of miRNAs increased the diagnostic utility of CgA even in pNET patients with low CgA. Abstract Chromogranin A (CgA) is the most widely accepted biomarker for neuroendocrine tumors (NET) but its diagnostic accuracy is dependent on tumor type and the use of proton-pump inhibitors (PPI). We investigated the diagnostic value of circulating miRNAs along with CgA in pancreatic neuroendocrine tumors (pNET). 74 serum samples from patients with pNET (n = 25, nonfunctioning), pheochromocytoma/paraganglioma (PPGL, n = 20), healthy individuals with normal CgA (n = 29) including 10 samples from 5 healthy individuals with and without current PPI treatment were collected. MiRNA expression profiles were determined using next-generation sequencing, followed by validation with individual TaqMan assays. A global downregulation of miRNAs was observed in patients with NET compared to controls. MiRNA expression of 33 miRNAs was able to discriminate tumor samples from controls. No miRNA alone could be considered as an applicable biomarker for pNET or PPGL. However, using a logistic model, the combination of a set of miRNAs increased the discriminatory role of CgA irrespective of PPI treatment. In pNET patients with normal CgA level our regression model yielded high (89.4%) diagnostic accuracy (AUC: 0.904, sensitivity: 66.6%, specificity: 96.5%). A set of miRNAs increased the diagnostic utility of CgA in pNET even in patients with low CgA.
Collapse
Affiliation(s)
- Annamária Kövesdi
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary;
| | - Petra Anna Kurucz
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; (P.A.K.); (H.B.)
| | - Gábor Nyírő
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, 1088 Budapest, Hungary;
| | - Ottó Darvasi
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1089 Budapest, Hungary;
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; (P.A.K.); (H.B.)
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1089 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
- Correspondence:
| | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; (P.A.K.); (H.B.)
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1089 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
48
|
Kolenda T, Guglas K, Baranowski D, Sobocińska J, Kopczyńska M, Teresiak A, Bliźniak R, Lamperska K. cfRNAs as biomarkers in oncology - still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother 2020; 25:783-792. [PMID: 32904167 PMCID: PMC7451588 DOI: 10.1016/j.rpor.2020.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Dawid Baranowski
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
49
|
Carr LE, Bowlin AK, Elolimy AA, Byrum SD, Washam CL, Randolph CE, MacLeod SL, Yeruva L. Neonatal Diet Impacts Circulatory miRNA Profile in a Porcine Model. Front Immunol 2020; 11:1240. [PMID: 32655560 PMCID: PMC7324749 DOI: 10.3389/fimmu.2020.01240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
microRNAs (miRNAs) are conserved non-coding small nucleotide molecules found in nearly all species and breastmilk. miRNAs present in breastmilk are very stable to freeze-thaw, RNase treatment, and low pH as they are protected inside exosomes. They are involved in regulating several physiologic and pathologic processes, including immunologic pathways, and we have demonstrated better immune response to vaccines in piglets fed with human milk (HM) in comparison to dairy-based formula (MF). To understand if neonatal diet impacts circulatory miRNA expression, serum miRNA expression was evaluated in piglets fed HM or MF while on their neonatal diet at postnatal day (PND) 21 and post-weaning to solid diet at PND 35 and 51. MF fed piglets showed increased expression of 14 miRNAs and decreased expression of 10 miRNAs, relative to HM fed piglets at PND 21. At PND 35, 9 miRNAs were downregulated in the MF compared to the HM group. At PND 51, 10 miRNAs were decreased and 17 were increased in the MF relative to HM suggesting the persistent effect of neonatal diet. miR-148 and miR-181 were decreased in MF compared to HM at PND 21. Let-7 was decreased at PND 35 while miR-199a and miR-199b were increased at PND 51 in MF compared to HM. Pathway analysis suggested that many of the miRNAs are involved in immune function. In conclusion, we observed differential expression of blood miRNAs at both PND 21 and PND 51. miRNA found in breastmilk were decreased in the serum of the MF group, suggesting that diet impacts circulating miRNA profiles at PND 21. The miRNAs continue to be altered at PND 51 suggesting a persistent effect of the neonatal diet. The sources of miRNAs in circulation need to be evaluated, as the piglets were fed the same solid diet leading up to PND 51 collections. In conclusion, the HM diet appears to have an immediate and persistent effect on the miRNA profile and likely regulates the pathways that impact the immune system and pose benefits to breastfed infants.
Collapse
Affiliation(s)
- Laura E Carr
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anne K Bowlin
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Stewart L MacLeod
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
50
|
Wooff Y, Cioanca AV, Chu-Tan JA, Aggio-Bruce R, Schumann U, Natoli R. Small-Medium Extracellular Vesicles and Their miRNA Cargo in Retinal Health and Degeneration: Mediators of Homeostasis, and Vehicles for Targeted Gene Therapy. Front Cell Neurosci 2020; 14:160. [PMID: 32670023 PMCID: PMC7330137 DOI: 10.3389/fncel.2020.00160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases such as age-related macular degeneration (AMD). However, the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles in the modulation of immune responses. EVs, including exosomes, encapsulate and transfer microRNA (miRNA) to recipient cells and in this way can modulate the environment of recipient cells. Dysregulation of EVs however is correlated to a loss of cellular homeostasis and increased inflammation. In this work we investigated the role of isolated retinal small-medium sized EV (s-mEV) which includes exosomes in both the healthy and degenerating retina. Isolated s-mEV from normal retinas were characterized using dynamic light scattering, transmission electron microscopy and western blotting, and quantified across 5 days of photo-oxidative damage-induced degeneration using nanotracking analysis. Small RNAseq was used to characterize the miRNA cargo of retinal s-mEV isolated from healthy and damaged retinas. Finally, the effect of exosome inhibition on cell-to-cell miRNA transfer and immune modulation was conducted using systemic daily administration of exosome inhibitor GW4869 and in situ hybridization of s-mEV-abundant miRNA, miR-124-3p. Electroretinography and immunohistochemistry was performed to assess functional and morphological changes to the retina as a result of GW4869-induced exosome depletion. Results demonstrated an inverse correlation between s-mEV concentration and photoreceptor survivability, with a decrease in s-mEV numbers following degeneration. Small RNAseq revealed that s-mEVs contained uniquely enriched miRNAs in comparison to in whole retinal tissue, however, there was no differential change in the s-mEV miRNAnome following photo-oxidative damage. Exosome inhibition via the use of GW4869 was also found to exacerbate retinal degeneration, with reduced retinal function and increased levels of inflammation and cell death demonstrated following photo-oxidative damage in exosome-inhibited mice. Further, GW4869-treated mice displayed impaired translocation of photoreceptor-derived miR-124-3p to the inner retina during damage. Taken together, we propose that retinal s-mEV and their miRNA cargo play an essential role in maintaining retinal homeostasis through immune-modulation, and have the potential to be used in targeted gene therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|