1
|
Wang K, Hu G, Basu S, Kurgan L. flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins. J Mol Biol 2024; 436:168605. [PMID: 39237195 DOI: 10.1016/j.jmb.2024.168605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 09/07/2024]
Abstract
Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 predictors that were released to date. These efforts are motivated by the functional importance and high levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annotations. The disorder predictors are periodically evaluated by independent assessors in the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2 experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce accurate results. In particular, flDPnn2 method, which is the successor of flDPnn that performed well in the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2. flDPnn2 implements a number of improvements when compared to its predecessor including changes to the inputs, increased size of the deep network model that we retrained on a larger training set, and addition of an alignment module. Using results from CAID2, we show that flDPnn2 produces accurate predictions very quickly, modestly improving over the accuracy of flDPnn and reducing the runtime by half, to about 27 s per protein. flDPnn2 is freely available as a convenient web server at http://biomine.cs.vcu.edu/servers/flDPnn2/.
Collapse
Affiliation(s)
- Kui Wang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Sagendorf JM, Mitra R, Huang J, Chen XS, Rohs R. Structure-based prediction of protein-nucleic acid binding using graph neural networks. Biophys Rev 2024; 16:297-314. [PMID: 39345796 PMCID: PMC11427629 DOI: 10.1007/s12551-024-01201-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 10/01/2024] Open
Abstract
Protein-nucleic acid (PNA) binding plays critical roles in the transcription, translation, regulation, and three-dimensional organization of the genome. Structural models of proteins bound to nucleic acids (NA) provide insights into the chemical, electrostatic, and geometric properties of the protein structure that give rise to NA binding but are scarce relative to models of unbound proteins. We developed a deep learning approach for predicting PNA binding given the unbound structure of a protein that we call PNAbind. Our method utilizes graph neural networks to encode the spatial distribution of physicochemical and geometric properties of protein structures that are predictive of NA binding. Using global physicochemical encodings, our models predict the overall binding function of a protein, and using local encodings, they predict the location of individual NA binding residues. Our models can discriminate between specificity for DNA or RNA binding, and we show that predictions made on computationally derived protein structures can be used to gain mechanistic understanding of chemical and structural features that determine NA recognition. Binding site predictions were validated against benchmark datasets, achieving AUROC scores in the range of 0.92-0.95. We applied our models to the HIV-1 restriction factor APOBEC3G and showed that our model predictions are consistent with and help explain experimental RNA binding data. Supplementary information The online version contains supplementary material available at 10.1007/s12551-024-01201-w.
Collapse
Affiliation(s)
- Jared M. Sagendorf
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
- Present Address: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
| | - Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Jiawei Huang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
3
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
4
|
Zhang J, Chen Q, Liu B. iNucRes-ASSH: Identifying nucleic acid-binding residues in proteins by using self-attention-based structure-sequence hybrid neural network. Proteins 2024; 92:395-410. [PMID: 37915276 DOI: 10.1002/prot.26626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Interaction between proteins and nucleic acids is crucial to many cellular activities. Accurately detecting nucleic acid-binding residues (NABRs) in proteins can help researchers better understand the interaction mechanism between proteins and nucleic acids. Structure-based methods can generally make more accurate predictions than sequence-based methods. However, the existing structure-based methods are sensitive to protein conformational changes, causing limited generalizability. More effective and robust approaches should be further explored. In this study, we propose iNucRes-ASSH to identify nucleic acid-binding residues with a self-attention-based structure-sequence hybrid neural network. It improves the generalizability and robustness of NABR prediction from two levels: residue representation and prediction model. Experimental results show that iNucRes-ASSH can predict the nucleic acid-binding residues even when the experimentally validated structures are unavailable and outperforms five competing methods on a recent benchmark dataset and a widely used test dataset.
Collapse
Affiliation(s)
- Jun Zhang
- National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Zhang J, Basu S, Kurgan L. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins. Nucleic Acids Res 2024; 52:e10. [PMID: 38048333 PMCID: PMC10810184 DOI: 10.1093/nar/gkad1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Current predictors of DNA-binding residues (DBRs) from protein sequences belong to two distinct groups, those trained on binding annotations extracted from structured protein-DNA complexes (structure-trained) vs. intrinsically disordered proteins (disorder-trained). We complete the first empirical analysis of predictive performance across the structure- and disorder-annotated proteins for a representative collection of ten predictors. Majority of the structure-trained tools perform well on the structure-annotated proteins while doing relatively poorly on the disorder-annotated proteins, and vice versa. Several methods make accurate predictions for the structure-annotated proteins or the disorder-annotated proteins, but none performs highly accurately for both annotation types. Moreover, most predictors make excessive cross-predictions for the disorder-annotated proteins, where residues that interact with non-DNA ligand types are predicted as DBRs. Motivated by these results, we design, validate and deploy an innovative meta-model, hybridDBRpred, that uses deep transformer network to combine predictions generated by three best current predictors. HybridDBRpred provides accurate predictions and low levels of cross-predictions across the two annotation types, and is statistically more accurate than each of the ten tools and baseline meta-predictors that rely on averaging and logistic regression. We deploy hybridDBRpred as a convenient web server at http://biomine.cs.vcu.edu/servers/hybridDBRpred/ and provide the corresponding source code at https://github.com/jianzhang-xynu/hybridDBRpred.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, PR China
| | - Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Basu S, Zhao B, Biró B, Faraggi E, Gsponer J, Hu G, Kloczkowski A, Malhis N, Mirdita M, Söding J, Steinegger M, Wang D, Wang K, Xu D, Zhang J, Kurgan L. DescribePROT in 2023: more, higher-quality and experimental annotations and improved data download options. Nucleic Acids Res 2024; 52:D426-D433. [PMID: 37933852 PMCID: PMC10767971 DOI: 10.1093/nar/gkad985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The DescribePROT database of amino acid-level descriptors of protein structures and functions was substantially expanded since its release in 2020. This expansion includes substantial increase in the size, scope, and quality of the underlying data, the addition of experimental structural information, the inclusion of new data download options, and an upgraded graphical interface. DescribePROT currently covers 19 structural and functional descriptors for proteins in 273 reference proteomes generated by 11 accurate and complementary predictive tools. Users can search our resource in multiple ways, interact with the data using the graphical interface, and download data at various scales including individual proteins, entire proteomes, and whole database. The annotations in DescribePROT are useful for a broad spectrum of studies that include investigations of protein structure and function, development and validation of predictive tools, and to support efforts in understanding molecular underpinnings of diseases and development of therapeutics. DescribePROT can be freely accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Bálint Biró
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
- Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Eshel Faraggi
- Physics Department, Indiana University, Indianapolis, IN, USA
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, P.R. China
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Milot Mirdita
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Johannes Söding
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
| | - Duolin Wang
- Department of Electrical Engineer and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, P.R. China
| | - Dong Xu
- Department of Electrical Engineer and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, P.R. China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Chen S, Yan K, Liu B. PDB-BRE: A ligand-protein interaction binding residue extractor based on Protein Data Bank. Proteins 2024; 92:145-153. [PMID: 37750380 DOI: 10.1002/prot.26596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Proteins typically exert their biological functions by interacting with other biomolecules or ligands. The study of ligand-protein interactions is crucial in elucidating the biological mechanisms of proteins. Most existing studies have focused on analyzing ligand-protein interactions, and they ignore the additional situational of inserted and modified residues. Besides, the resources often support only a single ligand type and cannot obtain satisfied results in analyzing novel complexes. Therefore, it is important to develop a general analytical tool to extract the binding residues of ligand-protein interactions in complexes fully. In this study, we propose a ligand-protein interaction binding residue extractor (PDB-BRE), which can be used to automatically extract interacting ligand or protein-binding residues from complex three-dimensional (3D) structures based on the RCSB Protein Data Bank (RCSB PDB). PDB-BRE offers a notable advantage in its comprehensive support for analyzing six distinct types of ligands, including proteins, peptides, DNA, RNA, mixed DNA and RNA entities, and non-polymeric entities. Moreover, it takes into account the consideration of inserted and modified residues within complexes. Compared to other state-of-the-art methods, PDB-BRE is more suitable for massively parallel batch analysis, and can be directly applied for downstream tasks, such as predicting binding residues of novel complexes. PDB-BRE is freely available at http://bliulab.net/PDB-BRE.
Collapse
Affiliation(s)
- Shutao Chen
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Song J, Kurgan L. Availability of web servers significantly boosts citations rates of bioinformatics methods for protein function and disorder prediction. BIOINFORMATICS ADVANCES 2023; 3:vbad184. [PMID: 38146538 PMCID: PMC10749743 DOI: 10.1093/bioadv/vbad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Motivation Development of bioinformatics methods is a long, complex and resource-hungry process. Hundreds of these tools were released. While some methods are highly cited and used, many suffer relatively low citation rates. We empirically analyze a large collection of recently released methods in three diverse protein function and disorder prediction areas to identify key factors that contribute to increased citations. Results We show that provision of a working web server significantly boosts citation rates. On average, methods with working web servers generate three times as many citations compared to tools that are available as only source code, have no code and no server, or are no longer available. This observation holds consistently across different research areas and publication years. We also find that differences in predictive performance are unlikely to impact citation rates. Overall, our empirical results suggest that a relatively low-cost investment into the provision and long-term support of web servers would substantially increase the impact of bioinformatics tools.
Collapse
Affiliation(s)
- Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| |
Collapse
|
9
|
Zhu H, Yang Y, Wang Y, Wang F, Huang Y, Chang Y, Wong KC, Li X. Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet. Nat Commun 2023; 14:6824. [PMID: 37884495 PMCID: PMC10603054 DOI: 10.1038/s41467-023-42547-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
RNA-binding proteins play crucial roles in the regulation of gene expression, and understanding the interactions between RNAs and RBPs in distinct cellular conditions forms the basis for comprehending the underlying RNA function. However, current computational methods pose challenges to the cross-prediction of RNA-protein binding events across diverse cell lines and tissue contexts. Here, we develop HDRNet, an end-to-end deep learning-based framework to precisely predict dynamic RBP binding events under diverse cellular conditions. Our results demonstrate that HDRNet can accurately and efficiently identify binding sites, particularly for dynamic prediction, outperforming other state-of-the-art models on 261 linear RNA datasets from both eCLIP and CLIP-seq, supplemented with additional tissue data. Moreover, we conduct motif and interpretation analyses to provide fresh insights into the pathological mechanisms underlying RNA-RBP interactions from various perspectives. Our functional genomic analysis further explores the gene-human disease associations, uncovering previously uncharacterized observations for a broad range of genetic disorders.
Collapse
Affiliation(s)
- Haoran Zhu
- School of Artificial Intelligence, Jilin University, 130012, Changchun, China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Yunhe Wang
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yujian Huang
- College of Computer Science and Cyber Security, Chengdu University of Technology, 610059, Chengdu, China
| | - Yi Chang
- School of Artificial Intelligence, Jilin University, 130012, Changchun, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, 130012, Changchun, China.
| |
Collapse
|
10
|
Mohseni Behbahani Y, Saighi P, Corsi F, Laine E, Carbone A. LEVELNET to visualize, explore, and compare protein-protein interaction networks. Proteomics 2023; 23:e2200159. [PMID: 37403279 DOI: 10.1002/pmic.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/06/2023]
Abstract
Physical interactions between proteins are central to all biological processes. Yet, the current knowledge of who interacts with whom in the cell and in what manner relies on partial, noisy, and highly heterogeneous data. Thus, there is a need for methods comprehensively describing and organizing such data. LEVELNET is a versatile and interactive tool for visualizing, exploring, and comparing protein-protein interaction (PPI) networks inferred from different types of evidence. LEVELNET helps to break down the complexity of PPI networks by representing them as multi-layered graphs and by facilitating the direct comparison of their subnetworks toward biological interpretation. It focuses primarily on the protein chains whose 3D structures are available in the Protein Data Bank. We showcase some potential applications, such as investigating the structural evidence supporting PPIs associated to specific biological processes, assessing the co-localization of interaction partners, comparing the PPI networks obtained through computational experiments versus homology transfer, and creating PPI benchmarks with desired properties.
Collapse
Affiliation(s)
- Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Paul Saighi
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Flavia Corsi
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| |
Collapse
|
11
|
Agarwal A, Kant S, Bahadur RP. Efficient mapping of RNA-binding residues in RNA-binding proteins using local sequence features of binding site residues in protein-RNA complexes. Proteins 2023; 91:1361-1379. [PMID: 37254800 DOI: 10.1002/prot.26528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Protein-RNA interactions play vital roles in plethora of biological processes such as regulation of gene expression, protein synthesis, mRNA processing and biogenesis. Identification of RNA-binding residues (RBRs) in proteins is essential to understand RNA-mediated protein functioning, to perform site-directed mutagenesis and to develop novel targeted drug therapies. Moreover, the extensive gap between sequence and structural data restricts the identification of binding sites in unsolved structures. However, efficient use of computational methods demanding only sequence to identify binding residues can bridge this huge sequence-structure gap. In this study, we have extensively studied protein-RNA interface in known RNA-binding proteins (RBPs). We find that the interface is highly enriched in basic and polar residues with Gly being the most common interface neighbor. We investigated several amino acid features and developed a method to predict putative RBRs from amino acid sequence. We have implemented balanced random forest (BRF) classifier with local residue features of protein sequences for prediction. With 5-fold cross-validations, the sequence pattern derived dipeptide composition based BRF model (DCP-BRF) resulted in an accuracy of 87.9%, specificity of 88.8%, sensitivity of 82.2%, Mathew's correlation coefficient of 0.60 and AUC of 0.93, performing better than few existing methods. We further validated our prediction model on known human RBPs through RBR prediction and could map ~54% of them. Further, knowledge of binding site preferences obtained from computational predictions combined with experimental validations of potential RNA binding sites can enhance our understanding of protein-RNA interactions. This may serve to accelerate investigations on functional roles of many novel RBPs.
Collapse
Affiliation(s)
- Ankita Agarwal
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, India
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shri Kant
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
12
|
Jiang Z, Shen YY, Liu R. Structure-based prediction of nucleic acid binding residues by merging deep learning- and template-based approaches. PLoS Comput Biol 2023; 19:e1011428. [PMID: 37672551 PMCID: PMC10482303 DOI: 10.1371/journal.pcbi.1011428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Accurate prediction of nucleic binding residues is essential for the understanding of transcription and translation processes. Integration of feature- and template-based strategies could improve the prediction of these key residues in proteins. Nevertheless, traditional hybrid algorithms have been surpassed by recently developed deep learning-based methods, and the possibility of integrating deep learning- and template-based approaches to improve performance remains to be explored. To address these issues, we developed a novel structure-based integrative algorithm called NABind that can accurately predict DNA- and RNA-binding residues. A deep learning module was built based on the diversified sequence and structural descriptors and edge aggregated graph attention networks, while a template module was constructed by transforming the alignments between the query and its multiple templates into features for supervised learning. Furthermore, the stacking strategy was adopted to integrate the above two modules for improving prediction performance. Finally, a post-processing module dependent on the random walk algorithm was proposed to further correct the integrative predictions. Extensive evaluations indicated that our approach could not only achieve excellent performance on both native and predicted structures but also outperformed existing hybrid algorithms and recent deep learning methods. The NABind server is available at http://liulab.hzau.edu.cn/NABind/.
Collapse
Affiliation(s)
- Zheng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yue-Yue Shen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Bai T, Yan K, Liu B. DAmiRLocGNet: miRNA subcellular localization prediction by combining miRNA-disease associations and graph convolutional networks. Brief Bioinform 2023:bbad212. [PMID: 37332057 DOI: 10.1093/bib/bbad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
MicroRNAs (miRNAs) are human post-transcriptional regulators in humans, which are involved in regulating various physiological processes by regulating the gene expression. The subcellular localization of miRNAs plays a crucial role in the discovery of their biological functions. Although several computational methods based on miRNA functional similarity networks have been presented to identify the subcellular localization of miRNAs, it remains difficult for these approaches to effectively extract well-referenced miRNA functional representations due to insufficient miRNA-disease association representation and disease semantic representation. Currently, there has been a significant amount of research on miRNA-disease associations, making it possible to address the issue of insufficient miRNA functional representation. In this work, a novel model is established, named DAmiRLocGNet, based on graph convolutional network (GCN) and autoencoder (AE) for identifying the subcellular localizations of miRNA. The DAmiRLocGNet constructs the features based on miRNA sequence information, miRNA-disease association information and disease semantic information. GCN is utilized to gather the information of neighboring nodes and capture the implicit information of network structures from miRNA-disease association information and disease semantic information. AE is employed to capture sequence semantics from sequence similarity networks. The evaluation demonstrates that the performance of DAmiRLocGNet is superior to other competing computational approaches, benefiting from implicit features captured by using GCNs. The DAmiRLocGNet has the potential to be applied to the identification of subcellular localization of other non-coding RNAs. Moreover, it can facilitate further investigation into the functional mechanisms underlying miRNA localization. The source code and datasets are accessed at http://bliulab.net/DAmiRLocGNet.
Collapse
Affiliation(s)
- Tao Bai
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Mathematics & Computer Science, Yan'an University, Shaanxi 716000, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
15
|
Xia Y, Pan X, Shen HB. LigBind: identifying binding residues for over 1000 ligands with relation-aware graph neural networks. J Mol Biol 2023; 435:168091. [PMID: 37054909 DOI: 10.1016/j.jmb.2023.168091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Identifying the interactions between proteins and ligands is significant for drug discovery and design. Considering the diverse binding patterns of ligands, the ligand-specific methods are trained per ligand to predict binding residues. However, most of the existing ligand-specific methods ignore shared binding preferences among various ligands and generally only cover a limited number of ligands with a sufficient number of known binding proteins. In this study, we propose a relation-aware framework LigBind with graph-level pre-training to enhance the ligand-specific binding residue predictions for 1159 ligands, which can effectively cover the ligands with a few known binding proteins. LigBind first pre-trains a graph neural network-based feature extractor for ligand-residue pairs and relation-aware classifiers for similar ligands. Then, LigBind is fine-tuned with ligand-specific binding data, where a domain adaptive neural network is designed to automatically leverage the diversity and similarity of various ligand-binding patterns for accurate binding residue prediction. We construct ligand-specific benchmark datasets of 1159 ligands and 16 unseen ligands, which are used to evaluate the effectiveness of LigBind. The results demonstrate the LigBind's efficacy on the large-scale ligand-specific benchmark datasets, and generalizes well to unseen ligands. LigBind also enables accurate identification of the ligand-binding residues in the main protease, papain-like protease and the RNA-dependent RNA polymerase of SARS-CoV-2. The webserver and source codes of LigBind are available at http://www.csbio.sjtu.edu.cn/bioinf/LigBind/ and https://github.com/YYingXia/LigBind/ for academic use.
Collapse
Affiliation(s)
- Ying Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| |
Collapse
|
16
|
Zhang F, Li M, Zhang J, Kurgan L. HybridRNAbind: prediction of RNA interacting residues across structure-annotated and disorder-annotated proteins. Nucleic Acids Res 2023; 51:e25. [PMID: 36629262 PMCID: PMC10018345 DOI: 10.1093/nar/gkac1253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The sequence-based predictors of RNA-binding residues (RBRs) are trained on either structure-annotated or disorder-annotated binding regions. A recent study of predictors of protein-binding residues shows that they are plagued by high levels of cross-predictions (protein binding residues are predicted as nucleic acid binding) and that structure-trained predictors perform poorly for the disorder-annotated regions and vice versa. Consequently, we analyze a representative set of the structure and disorder trained predictors of RBRs to comprehensively assess quality of their predictions. Our empirical analysis that relies on a new and low-similarity benchmark dataset reveals that the structure-trained predictors of RBRs perform well for the structure-annotated proteins while the disorder-trained predictors provide accurate results for the disorder-annotated proteins. However, these methods work only modestly well on the opposite types of annotations, motivating the need for new solutions. Using an empirical approach, we design HybridRNAbind meta-model that generates accurate predictions and low amounts of cross-predictions when tested on data that combines structure and disorder-annotated RBRs. We release this meta-model as a convenient webserver which is available at https://www.csuligroup.com/hybridRNAbind/.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
17
|
Wu Z, Basu S, Wu X, Kurgan L. qNABpredict: Quick, accurate, and taxonomy-aware sequence-based prediction of content of nucleic acid binding amino acids. Protein Sci 2023; 32:e4544. [PMID: 36519304 PMCID: PMC9798252 DOI: 10.1002/pro.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Protein sequence-based predictors of nucleic acid (NA)-binding include methods that predict NA-binding proteins and NA-binding residues. The residue-level tools produce more details but suffer high computational cost since they must predict every amino acid in the input sequence and rely on multiple sequence alignments. We propose an alternative approach that predicts content (fraction) of the NA-binding residues, offering more information than the protein-level prediction and much shorter runtime than the residue-level tools. Our first-of-its-kind content predictor, qNABpredict, relies on a small, rationally designed and fast-to-compute feature set that represents relevant characteristics extracted from the input sequence and a well-parametrized support vector regression model. We provide two versions of qNABpredict, a taxonomy-agnostic model that can be used for proteins of unknown taxonomic origin and more accurate taxonomy-aware models that are tailored to specific taxonomic kingdoms: archaea, bacteria, eukaryota, and viruses. Empirical tests on a low-similarity test dataset show that qNABpredict is 100 times faster and generates statistically more accurate content predictions when compared to the content extracted from results produced by the residue-level predictors. We also show that qNABpredict's content predictions can be used to improve results generated by the residue-level predictors. We release qNABpredict as a convenient webserver and source code at http://biomine.cs.vcu.edu/servers/qNABpredict/. This new tool should be particularly useful to predict details of protein-NA interactions for large protein families and proteomes.
Collapse
Affiliation(s)
- Zhonghua Wu
- School of Mathematical Sciences and LPMCNankai UniversityTianjinChina
| | - Sushmita Basu
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Xuantai Wu
- School of Mathematical Sciences and LPMCNankai UniversityTianjinChina
| | - Lukasz Kurgan
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
18
|
Wang N, Zhang J, Liu B. iDRBP-EL: Identifying DNA- and RNA- Binding Proteins Based on Hierarchical Ensemble Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:432-441. [PMID: 34932484 DOI: 10.1109/tcbb.2021.3136905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identification of DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs) from the primary sequences is essential for further exploring protein-nucleic acid interactions. Previous studies have shown that machine-learning-based methods can efficiently identify DBPs or RBPs. However, the information used in these methods is slightly unitary, and most of them only can predict DBPs or RBPs. In this study, we proposed a computational predictor iDRBP-EL to identify DNA- and RNA- binding proteins, and introduced hierarchical ensemble learning to integrate three level information. The method can integrate the information of different features, machine learning algorithms and data into one multi-label model. The ablation experiment showed that the fusion of different information can improve the prediction performance and overcome the cross-prediction problem. Experimental results on the independent datasets showed that iDRBP-EL outperformed all the other competing methods. Moreover, we established a user-friendly webserver iDRBP-EL (http://bliulab.net/iDRBP-EL), which can predict both DBPs and RBPs only based on protein sequences.
Collapse
|
19
|
Wang C, Zong X, Wu F, Leung RWT, Hu Y, Qin J. DNA- and RNA-Binding Proteins Linked Transcriptional Control and Alternative Splicing Together in a Two-Layer Regulatory Network System of Chronic Myeloid Leukemia. Front Mol Biosci 2022; 9:920492. [PMID: 36052164 PMCID: PMC9425088 DOI: 10.3389/fmolb.2022.920492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
DNA- and RNA-binding proteins (DRBPs) typically possess multiple functions to bind both DNA and RNA and regulate gene expression from more than one level. They are controllers for post-transcriptional processes, such as splicing, polyadenylation, transportation, translation, and degradation of RNA transcripts in eukaryotic organisms, as well as regulators on the transcriptional level. Although DRBPs are reported to play critical roles in various developmental processes and diseases, it is still unclear how they work with DNAs and RNAs simultaneously and regulate genes at the transcriptional and post-transcriptional levels. To investigate the functional mechanism of DRBPs, we collected data from a variety of databases and literature and identified 118 DRBPs, which function as both transcription factors (TFs) and splicing factors (SFs), thus called DRBP-SF. Extensive investigations were conducted on four DRBP-SFs that were highly expressed in chronic myeloid leukemia (CML), heterogeneous nuclear ribonucleoprotein K (HNRNPK), heterogeneous nuclear ribonucleoprotein L (HNRNPL), non-POU domain–containing octamer–binding protein (NONO), and TAR DNA-binding protein 43 (TARDBP). By integrating and analyzing ChIP-seq, CLIP-seq, RNA-seq, and shRNA-seq data in K562 using binding and expression target analysis and Statistical Utility for RBP Functions, we discovered a two-layer regulatory network system centered on these four DRBP-SFs and proposed three possible regulatory models where DRBP-SFs can connect transcriptional and alternative splicing regulatory networks cooperatively in CML. The exploration of the identified DRBP-SFs provides new ideas for studying DRBP and regulatory networks, holding promise for further mechanistic discoveries of the two-layer gene regulatory system that may play critical roles in the occurrence and development of CML.
Collapse
Affiliation(s)
- Chuhui Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xueqing Zong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Fanjie Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Ricky Wai Tak Leung
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yaohua Hu
- Shenzhen Key Laboratory of Advanced Machine Learning and Applications, College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
- *Correspondence: Yaohua Hu, ; Jing Qin,
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yaohua Hu, ; Jing Qin,
| |
Collapse
|
20
|
Feng J, Wang N, Zhang J, Liu B. iDRBP-ECHF: Identifying DNA- and RNA-binding proteins based on extensible cubic hybrid framework. Comput Biol Med 2022; 149:105940. [PMID: 36044786 DOI: 10.1016/j.compbiomed.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Proteins interact with nucleic acids to regulate the life activities of organisms. Therefore, how to accurately and efficiently identify nucleic acid-binding proteins (NABPs) is particularly significant. Some sequence-based computational methods have been proposed to identify DNA- and RNA-binding proteins in previous studies. However, the benchmark datasets used by these methods ignore the proportion of NABPs in the real world, and some integration methods only integrate traditional machine learning algorithms, resulting in limited prediction performance. In this study, we proposed a sequence-based method called iDRBP-ECHF to predict the DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs). We constructed a benchmark dataset by considering the proportion of positive and negative samples in the real world, and used down-sampling to generate three relatively balanced datasets to train the iDRBP-ECHF. In addition, we incorporated the deep learning algorithms into the framework to obtain a more compact high-level feature representation of the input data. The results on two independent datasets show that it achieves the most advanced performance and is superior to the other existing sequence-based DBP and RBP prediction methods. In addition, we set up a webserver iDRBP-ECHF, which can be accessed at http://bliulab.net/iDRBP-ECHF.
Collapse
Affiliation(s)
- Jiawei Feng
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ning Wang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
21
|
Nie W, Deng L. TSNAPred: predicting type-specific nucleic acid binding residues via an ensemble approach. Brief Bioinform 2022; 23:6618235. [PMID: 35753699 DOI: 10.1093/bib/bbac244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The interplay between protein and nucleic acid participates in diverse biological activities. Accurately identifying the interaction between protein and nucleic acid can strengthen the understanding of protein function. However, conventional methods are too time-consuming, and computational methods are type-agnostic predictions. We proposed an ensemble predictor termed TSNAPred and first used it to identify residues that bind to A-DNA, B-DNA, ssDNA, mRNA, tRNA and rRNA. TSNAPred combines LightGBM and capsule network, both learned on the feature derived from protein sequence. TSNAPred utilizes the sliding window technique to extract long-distance dependencies between residues and a weighted ensemble strategy to enhance the prediction performance. The results show that TSNAPred can effectively identify type-specific nucleic acid binding residues in our test set. What is more, it also can discriminate DNA-binding and RNA-binding residues, which has improved 5% to 10% on the AUC value compared with other state-of-the-art methods. The dataset and code of TSNAPred are available at: https://github.com/niewenjuan-csu/TSNAPred.
Collapse
Affiliation(s)
- Wenjuan Nie
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| |
Collapse
|
22
|
Wang R, Jin J, Zou Q, Nakai K, Wei L. Predicting protein-peptide binding residues via interpretable deep learning. Bioinformatics 2022; 38:3351-3360. [PMID: 35604077 DOI: 10.1093/bioinformatics/btac352] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Identifying the protein-peptide binding residues is fundamentally important to understand the mechanisms of protein functions and explore drug discovery. Although several computational methods have been developed, they highly rely on third-party tools or information for feature design, easily resulting in low computational efficacy and suffering from low predictive performance. To address the limitations, we propose PepBCL, a novel BERT (Bidirectional Encoder Representation from Transformers)-based Contrastive Learning framework to predict the protein-Peptide binding residues based on protein sequences only. PepBCL is an end-to-end predictive model that is independent of designed features. Specifically, we introduce a well pre-trained protein language model that can automatically extract and learn high-latent representations of protein sequences relevant for protein structure and functions. Further, we design a novel contrastive learning module to optimize the feature representations of binding residues underlying the imbalanced dataset. We demonstrate that our proposed method significantly outperforms the state-of-the-art methods under benchmarking comparison, and achieves more robust performance. Moreover, we found that we further improve the performance via the integration of traditional features and our learnt features. Our results highlight the flexibility and adaptability of deep learning-based protein language model to capture both conserved and non-conserved sequential characteristics of peptide-binding residues. Interestingly, we demonstrate that peptide-binding residues in local sequential regions have more specific sequential patterns as compared with other protein-ligand binding residues, which potentially provides functional difference. Finally, to facilitate the use of our method, we establish an online predictive platform as the implementation of the proposed PepBCL, which is now available at http://server.wei-group.net/PepBCL/. AVAILABILITY https://github.com/Ruheng-W/PepBCL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruheng Wang
- School of Software, Shandong University, Jinan, China.,Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Junru Jin
- School of Software, Shandong University, Jinan, China.,Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| | - Kenta Nakai
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China.,Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| |
Collapse
|
23
|
Biró B, Zhao B, Kurgan L. Complementarity of the residue-level protein function and structure predictions in human proteins. Comput Struct Biotechnol J 2022; 20:2223-2234. [PMID: 35615015 PMCID: PMC9118482 DOI: 10.1016/j.csbj.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Sequence-based predictors of the residue-level protein function and structure cover a broad spectrum of characteristics including intrinsic disorder, secondary structure, solvent accessibility and binding to nucleic acids. They were catalogued and evaluated in numerous surveys and assessments. However, methods focusing on a given characteristic are studied separately from predictors of other characteristics, while they are typically used on the same proteins. We fill this void by studying complementarity of a representative collection of methods that target different predictions using a large, taxonomically consistent, and low similarity dataset of human proteins. First, we bridge the gap between the communities that develop structure-trained vs. disorder-trained predictors of binding residues. Motivated by a recent study of the protein-binding residue predictions, we empirically find that combining the structure-trained and disorder-trained predictors of the DNA-binding and RNA-binding residues leads to substantial improvements in predictive quality. Second, we investigate whether diverse predictors generate results that accurately reproduce relations between secondary structure, solvent accessibility, interaction sites, and intrinsic disorder that are present in the experimental data. Our empirical analysis concludes that predictions accurately reflect all combinations of these relations. Altogether, this study provides unique insights that support combining results produced by diverse residue-level predictors of protein function and structure.
Collapse
Affiliation(s)
- Bálint Biró
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
24
|
Arora V, Sanguinetti G. Challenges for machine learning in RNA-protein interaction prediction. Stat Appl Genet Mol Biol 2022; 21:sagmb-2021-0087. [PMID: 35073469 DOI: 10.1515/sagmb-2021-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 11/15/2022]
Abstract
RNA-protein interactions have long being recognised as crucial regulators of gene expression. Recently, the development of scalable experimental techniques to measure these interactions has revolutionised the field, leading to the production of large-scale datasets which offer both opportunities and challenges for machine learning techniques. In this brief note, we will discuss some of the major stumbling blocks towards the use of machine learning in computational RNA biology, focusing specifically on the problem of predicting RNA-protein interactions from next-generation sequencing data.
Collapse
Affiliation(s)
- Viplove Arora
- Data Science, Department of Physics, International School for Advanced Studies (SISSA), Trieste 34136, Italy
| | - Guido Sanguinetti
- Data Science, Department of Physics, International School for Advanced Studies (SISSA), Trieste 34136, Italy
| |
Collapse
|
25
|
Wei J, Chen S, Zong L, Gao X, Li Y. Protein-RNA interaction prediction with deep learning: structure matters. Brief Bioinform 2022; 23:bbab540. [PMID: 34929730 PMCID: PMC8790951 DOI: 10.1093/bib/bbab540] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Protein-RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Because of the limitation of the previous database, especially the lack of protein structure data, most of the existing computational methods rely heavily on the sequence data, with only a small portion of the methods utilizing the structural information. Recently, AlphaFold has revolutionized the entire protein and biology field. Foreseeably, the protein-RNA interaction prediction will also be promoted significantly in the upcoming years. In this work, we give a thorough review of this field, surveying both the binding site and binding preference prediction problems and covering the commonly used datasets, features and models. We also point out the potential challenges and opportunities in this field. This survey summarizes the development of the RNA-binding protein-RNA interaction field in the past and foresees its future development in the post-AlphaFold era.
Collapse
Affiliation(s)
- Junkang Wei
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Siyuan Chen
- Computational Bioscience Research Center (CBRC),
King Abdullah University of Science and Technology (KAUST),
23955-6900, Thuwal, Saudi Arabia
| | - Licheng Zong
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC),
King Abdullah University of Science and Technology (KAUST),
23955-6900, Thuwal, Saudi Arabia
| | - Yu Li
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
- The CUHK Shenzhen Research Institute, Hi-Tech Park, 518057,
Shenzhen, China
| |
Collapse
|
26
|
From complete cross-docking to partners identification and binding sites predictions. PLoS Comput Biol 2022; 18:e1009825. [PMID: 35089918 PMCID: PMC8827487 DOI: 10.1371/journal.pcbi.1009825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/09/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Proteins ensure their biological functions by interacting with each other. Hence, characterising protein interactions is fundamental for our understanding of the cellular machinery, and for improving medicine and bioengineering. Over the past years, a large body of experimental data has been accumulated on who interacts with whom and in what manner. However, these data are highly heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means to a "blind" protein-protein interaction network reconstruction. Here, we report on a molecular cross-docking-based approach for the identification of protein partners. The docking algorithm uses a coarse-grained representation of the protein structures and treats them as rigid bodies. We applied the approach to a few hundred of proteins, in the unbound conformations, and we systematically investigated the influence of several key ingredients, such as the size and quality of the interfaces, and the scoring function. We achieved some significant improvement compared to previous works, and a very high discriminative power on some specific functional classes. We provide a readout of the contributions of shape and physico-chemical complementarity, interface matching, and specificity, in the predictions. In addition, we assessed the ability of the approach to account for protein surface multiple usages, and we compared it with a sequence-based deep learning method. This work may contribute to guiding the exploitation of the large amounts of protein structural models now available toward the discovery of unexpected partners and their complex structure characterisation.
Collapse
|
27
|
3D Modeling of Non-coding RNA Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:281-317. [DOI: 10.1007/978-3-031-08356-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Cui F, Li S, Zhang Z, Sui M, Cao C, El-Latif Hesham A, Zou Q. DeepMC-iNABP: Deep learning for multiclass identification and classification of nucleic acid-binding proteins. Comput Struct Biotechnol J 2022; 20:2020-2028. [PMID: 35521556 PMCID: PMC9065708 DOI: 10.1016/j.csbj.2022.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play vital roles in gene expression. Accurate identification of these proteins is crucial. However, there are two existing challenges: one is the problem of ignoring DNA- and RNA-binding proteins (DRBPs), and the other is a cross-predicting problem referring to DBP predictors predicting DBPs as RBPs, and vice versa. In this study, we proposed a computational predictor, called DeepMC-iNABP, with the goal of solving these difficulties by utilizing a multiclass classification strategy and deep learning approaches. DBPs, RBPs, DRBPs and non-NABPs as separate classes of data were used for training the DeepMC-iNABP model. The results on test data collected in this study and two independent test datasets showed that DeepMC-iNABP has a strong advantage in identifying the DRBPs and has the ability to alleviate the cross-prediction problem to a certain extent. The web-server of DeepMC-iNABP is freely available at http://www.deepmc-inabp.net/. The datasets used in this research can also be downloaded from the website.
Collapse
Affiliation(s)
- Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Shuang Li
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Miaomiao Sui
- Graduate School Agricultural and Life Science, The University of Tokyo, Tokyo 1138657, Japan
| | - Chen Cao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
- Corresponding author at: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
29
|
Zhang F, Zhao B, Shi W, Li M, Kurgan L. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning. Brief Bioinform 2021; 23:6461158. [PMID: 34905768 DOI: 10.1093/bib/bbab521] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/30/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Proteins with intrinsically disordered regions (IDRs) are common among eukaryotes. Many IDRs interact with nucleic acids and proteins. Annotation of these interactions is supported by computational predictors, but to date, only one tool that predicts interactions with nucleic acids was released, and recent assessments demonstrate that current predictors offer modest levels of accuracy. We have developed DeepDISOBind, an innovative deep multi-task architecture that accurately predicts deoxyribonucleic acid (DNA)-, ribonucleic acid (RNA)- and protein-binding IDRs from protein sequences. DeepDISOBind relies on an information-rich sequence profile that is processed by an innovative multi-task deep neural network, where subsequent layers are gradually specialized to predict interactions with specific partner types. The common input layer links to a layer that differentiates protein- and nucleic acid-binding, which further links to layers that discriminate between DNA and RNA interactions. Empirical tests show that this multi-task design provides statistically significant gains in predictive quality across the three partner types when compared to a single-task design and a representative selection of the existing methods that cover both disorder- and structure-trained tools. Analysis of the predictions on the human proteome reveals that DeepDISOBind predictions can be encoded into protein-level propensities that accurately predict DNA- and RNA-binding proteins and protein hubs. DeepDISOBind is available at https://www.csuligroup.com/DeepDISOBind/.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Wenbo Shi
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
30
|
Zhang J, Ghadermarzi S, Katuwawala A, Kurgan L. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences. Brief Bioinform 2021; 22:6355416. [PMID: 34415020 DOI: 10.1093/bib/bbab336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Efforts to elucidate protein-DNA interactions at the molecular level rely in part on accurate predictions of DNA-binding residues in protein sequences. While there are over a dozen computational predictors of the DNA-binding residues, they are DNA-type agnostic and significantly cross-predict residues that interact with other ligands as DNA binding. We leverage a custom-designed machine learning architecture to introduce DNAgenie, first-of-its-kind predictor of residues that interact with A-DNA, B-DNA and single-stranded DNA. DNAgenie uses a comprehensive physiochemical profile extracted from an input protein sequence and implements a two-step refinement process to provide accurate predictions and to minimize the cross-predictions. Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current methods that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use of the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show that DNAgenie's outputs that are converted to coarse-grained protein-level predictions compare favorably against recent tools that predict which DNA-binding proteins interact with double-stranded versus single-stranded DNAs. Moreover, predictions from the sequences of the whole human proteome reveal that the results produced by DNAgenie substantially overlap with the known DNA-binding proteins while also including promising leads for several hundred previously unknown putative DNA binders. These results suggest that DNAgenie is a valuable tool for the sequence-based characterization of protein functions. The DNAgenie's webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology at the Xinyang Normal University, No.237, Nanhu Road, Xinyang 464000, Henan Province, P.R. China
| | - Sina Ghadermarzi
- Department of Computer Science at the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| | - Akila Katuwawala
- Department of Computer Science from the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science at the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| |
Collapse
|
31
|
Tayara H, Chong KT. Improved Predicting of The Sequence Specificities of RNA Binding Proteins by Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2526-2534. [PMID: 32191896 DOI: 10.1109/tcbb.2020.2981335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA-binding proteins (RBPs) have a significant role in various regulatory tasks. However, the mechanism by which RBPs identify the subsequence target RNAs is still not clear. In recent years, several machine and deep learning-based computational models have been proposed for understanding the binding preferences of RBPs. These methods required integrating multiple features with raw RNA sequences such as secondary structure and their performances can be further improved. In this paper, we propose an efficient and simple convolution neural network, RBPCNN, that relies on the combination of the raw RNA sequence and evolutionary information. We show that conservation scores (evolutionary information) for the RNA sequences can significantly improve the overall performance of the proposed predictor. In addition, the automatic extraction of the binding sequence motifs can enhance our understanding of the binding specificities of RBPs. The experimental results show that RBPCNN outperforms significantly the current state-of-the-art methods. More specifically, the average area under the receiver operator curve was improved by 2.67 percent and the mean average precision was improved by 8.03 percent. The datasets and results can be downloaded from https://home.jbnu.ac.kr/NSCL/RBPCNN.htm.
Collapse
|
32
|
Jiang Z, Xiao SR, Liu R. Dissecting and predicting different types of binding sites in nucleic acids based on structural information. Brief Bioinform 2021; 23:6384399. [PMID: 34624074 PMCID: PMC8769709 DOI: 10.1093/bib/bbab411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms, feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural conservation. The complementarity between the two classifiers motivated us to build an integrative framework for improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm to further correct the integrative predictions. Our unified prediction framework yielded promising results for different binding sites and outperformed existing methods.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Si-Rui Xiao
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rong Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
33
|
Xia Y, Xia CQ, Pan X, Shen HB. GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues. Nucleic Acids Res 2021; 49:e51. [PMID: 33577689 PMCID: PMC8136796 DOI: 10.1093/nar/gkab044] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
Knowledge of the interactions between proteins and nucleic acids is the basis of understanding various biological activities and designing new drugs. How to accurately identify the nucleic-acid-binding residues remains a challenging task. In this paper, we propose an accurate predictor, GraphBind, for identifying nucleic-acid-binding residues on proteins based on an end-to-end graph neural network. Considering that binding sites often behave in highly conservative patterns on local tertiary structures, we first construct graphs based on the structural contexts of target residues and their spatial neighborhood. Then, hierarchical graph neural networks (HGNNs) are used to embed the latent local patterns of structural and bio-physicochemical characteristics for binding residue recognition. We comprehensively evaluate GraphBind on DNA/RNA benchmark datasets. The results demonstrate the superior performance of GraphBind than state-of-the-art methods. Moreover, GraphBind is extended to other ligand-binding residue prediction to verify its generalization capability. Web server of GraphBind is freely available at http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/.
Collapse
Affiliation(s)
- Ying Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Chun-Qiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Oldfield CJ, Peng Z, Kurgan L. Disordered RNA-Binding Region Prediction with DisoRDPbind. Methods Mol Biol 2021; 2106:225-239. [PMID: 31889261 DOI: 10.1007/978-1-0716-0231-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA chaperone activity is one of the many functions of intrinsically disordered regions (IDRs). IDRs function without the prerequisite of a stable structure. Instead, their functions arise from structural ensembles. A common theme in IDR function is molecular recognition; IDRs mediate interactions with other proteins, RNA, and DNA. Many computational methods are available to predict IDRs from protein sequence, but relatively few are available for predicting IDR functions. Available methods primarily focus on protein-protein interactions. DisoRDPbind was developed to predict several protein functions including interactions with RNA. This method is available as a user-friendly web interface, located at http://biomine.cs.vcu.edu/servers/DisoRDPbind/ . The development and architecture of DisoRDPbind is briefly presented, and its accuracy relative to other RNA-binding residue predictors is discussed. We explain usage of the web interface in detail and provide an example of prediction results and interpretation. While DisoRDPbind does not identify RNA chaperones directly, we provide a case study of an RNA chaperone, HCV core protein, as an example of the method's utility in the study of RNA chaperones.
Collapse
Affiliation(s)
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin, People's Republic of China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
35
|
Hendrix SG, Chang KY, Ryu Z, Xie ZR. DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method. Int J Mol Sci 2021; 22:ijms22115510. [PMID: 34073705 PMCID: PMC8197219 DOI: 10.3390/ijms22115510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.
Collapse
Affiliation(s)
- Samuel Godfrey Hendrix
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (S.G.H.); (Z.R.)
| | - Kuan Y. Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Zeezoo Ryu
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (S.G.H.); (Z.R.)
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Zhong-Ru Xie
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (S.G.H.); (Z.R.)
- Correspondence:
| |
Collapse
|
36
|
Yang S, Liu X, Ng RT. ProbeRating: a recommender system to infer binding profiles for nucleic acid-binding proteins. Bioinformatics 2021; 36:4797-4804. [PMID: 32573679 PMCID: PMC7750938 DOI: 10.1093/bioinformatics/btaa580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The interaction between proteins and nucleic acids plays a crucial role in gene regulation and cell function. Determining the binding preferences of nucleic acid-binding proteins (NBPs), namely RNA-binding proteins (RBPs) and transcription factors (TFs), is the key to decipher the protein-nucleic acids interaction code. Today, available NBP binding data from in vivo or in vitro experiments are still limited, which leaves a large portion of NBPs uncovered. Unfortunately, existing computational methods that model the NBP binding preferences are mostly protein specific: they need the experimental data for a specific protein in interest, and thus only focus on experimentally characterized NBPs. The binding preferences of experimentally unexplored NBPs remain largely unknown. RESULTS Here, we introduce ProbeRating, a nucleic acid recommender system that utilizes techniques from deep learning and word embeddings of natural language processing. ProbeRating is developed to predict binding profiles for unexplored or poorly studied NBPs by exploiting their homologs NBPs which currently have available binding data. Requiring only sequence information as input, ProbeRating adapts FastText from Facebook AI Research to extract biological features. It then builds a neural network-based recommender system. We evaluate the performance of ProbeRating on two different tasks: one for RBP and one for TF. As a result, ProbeRating outperforms previous methods on both tasks. The results show that ProbeRating can be a useful tool to study the binding mechanism for the many NBPs that lack direct experimental evidence. and implementation. AVAILABILITY AND IMPLEMENTATION The source code is freely available at <https://github.com/syang11/ProbeRating>. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shu Yang
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
| | - Raymond T Ng
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
37
|
Zhang J, Ghadermarzi S, Kurgan L. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins. Bioinformatics 2021; 36:4729-4738. [PMID: 32860044 DOI: 10.1093/bioinformatics/btaa573] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION There are over 30 sequence-based predictors of the protein-binding residues (PBRs). They use either structure-annotated or disorder-annotated training datasets, potentially creating a dichotomy where the structure-/disorder-specific models may not be able to cross-over to accurately predict the other type. Moreover, the structure-trained predictors were shown to substantially cross-predict PBRs among residues that interact with non-protein partners (nucleic acids and small ligands). We address these issues by performing first-of-its-kind comparative study of a representative collection of disorder- and structure-trained predictors using a comprehensive benchmark set with the structure- and disorder-derived annotations of PBRs (to analyze the cross-over) and the protein-, nucleic acid- and small ligand-binding proteins (to study the cross-predictions). RESULTS Three predictors provide accurate results: SCRIBER, ANCHOR and disoRDPbind. Some of the structure-trained methods make accurate predictions on the structure-annotated proteins. Similarly, the disorder-trained predictors predict well on the disorder-annotated proteins. However, the considered predictors generally fail to cross-over, with the exception of SCRIBER. Our study also reveals that virtually all methods substantially cross-predict PBRs, except for SCRIBER for the structure-annotated proteins and disoRDPbind for the disorder-annotated proteins. We formulate a novel hybrid predictor, hybridPBRpred, that combines results produced by disoRDPbind and SCRIBER to accurately predict disorder- and structure-annotated PBRs. HybridPBRpred generates accurate results that cross-over structure- and disorder-annotated proteins and produces relatively low amount of cross-predictions, offering an accurate alternative to predict PBRs. AVAILABILITY AND IMPLEMENTATION HybridPBRpred webserver, benchmark dataset and supplementary information are available at http://biomine.cs.vcu.edu/servers/hybridPBRpred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
38
|
Yuan L, Yang Y. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks. Front Genet 2021; 11:632861. [PMID: 33552144 PMCID: PMC7862712 DOI: 10.3389/fgene.2020.632861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs), as a rising star in the RNA world, play important roles in various biological processes. Understanding the interactions between circRNAs and RNA binding proteins (RBPs) can help reveal the functions of circRNAs. For the past decade, the emergence of high-throughput experimental data, like CLIP-Seq, has made the computational identification of RNA-protein interactions (RPIs) possible based on machine learning methods. However, as the underlying mechanisms of RPIs have not been fully understood yet and the information sources of circRNAs are limited, the computational tools for predicting circRNA-RBP interactions have been very few. In this study, we propose a deep learning method to identify circRNA-RBP interactions, called DeCban, which is featured by hybrid double embeddings for representing RNA sequences and a cross-branch attention neural network for classification. To capture more information from RNA sequences, the double embeddings include pre-trained embedding vectors for both RNA segments and their converted amino acids. Meanwhile, the cross-branch attention network aims to address the learning of very long sequences by integrating features of different scales and focusing on important information. The experimental results on 37 benchmark datasets show that both double embeddings and the cross-branch attention model contribute to the improvement of performance. DeCban outperforms the mainstream deep learning-based methods on not only prediction accuracy but also computational efficiency. The data sets and source code of this study are freely available at: https://github.com/AaronYll/DECban.
Collapse
Affiliation(s)
- Liangliang Yuan
- Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| |
Collapse
|
39
|
Zhang J, Chen Q, Liu B. NCBRPred: predicting nucleic acid binding residues in proteins based on multilabel learning. Brief Bioinform 2021; 22:6102667. [PMID: 33454744 DOI: 10.1093/bib/bbaa397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
The interactions between proteins and nucleic acid sequences play many important roles in gene expression and some cellular activities. Accurate prediction of the nucleic acid binding residues in proteins will facilitate the research of the protein functions, gene expression, drug design, etc. In this regard, several computational methods have been proposed to predict the nucleic acid binding residues in proteins. However, these methods cannot satisfactorily measure the global interactions among the residues along protein. Furthermore, these methods are suffering cross-prediction problem, new strategies should be explored to solve this problem. In this study, a new computational method called NCBRPred was proposed to predict the nucleic acid binding residues based on the multilabel sequence labeling model. NCBRPred used the bidirectional Gated Recurrent Units (BiGRUs) to capture the global interactions among the residues, and treats this task as a multilabel learning task. Experimental results on three widely used benchmark datasets and an independent dataset showed that NCBRPred achieved higher predictive results with lower cross-prediction, outperforming 10 existing state-of-the-art predictors. The web-server and a stand-alone package of NCBRPred are freely available at http://bliulab.net/NCBRPred. It is anticipated that NCBRPred will become a very useful tool for identifying nucleic acid binding residues.
Collapse
Affiliation(s)
- Jun Zhang
- Computer Science and Technology with Harbin Institute of Technology, Shenzhen, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
40
|
Zhao B, Katuwawala A, Oldfield CJ, Dunker AK, Faraggi E, Gsponer J, Kloczkowski A, Malhis N, Mirdita M, Obradovic Z, Söding J, Steinegger M, Zhou Y, Kurgan L. DescribePROT: database of amino acid-level protein structure and function predictions. Nucleic Acids Res 2021; 49:D298-D308. [PMID: 33119734 PMCID: PMC7778963 DOI: 10.1093/nar/gkaa931] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
We present DescribePROT, the database of predicted amino acid-level descriptors of structure and function of proteins. DescribePROT delivers a comprehensive collection of 13 complementary descriptors predicted using 10 popular and accurate algorithms for 83 complete proteomes that cover key model organisms. The current version includes 7.8 billion predictions for close to 600 million amino acids in 1.4 million proteins. The descriptors encompass sequence conservation, position specific scoring matrix, secondary structure, solvent accessibility, intrinsic disorder, disordered linkers, signal peptides, MoRFs and interactions with proteins, DNA and RNAs. Users can search DescribePROT by the amino acid sequence and the UniProt accession number and entry name. The pre-computed results are made available instantaneously. The predictions can be accesses via an interactive graphical interface that allows simultaneous analysis of multiple descriptors and can be also downloaded in structured formats at the protein, proteome and whole database scale. The putative annotations included by DescriPROT are useful for a broad range of studies, including: investigations of protein function, applied projects focusing on therapeutics and diseases, and in the development of predictors for other protein sequence descriptors. Future releases will expand the coverage of DescribePROT. DescribePROT can be accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eshel Faraggi
- Battelle Center for Mathematical Medicine at the Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine at the Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Milot Mirdita
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Zoran Obradovic
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Johannes Söding
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin Steinegger
- School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
41
|
Zhang F, Shi W, Zhang J, Zeng M, Li M, Kurgan L. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection. Bioinformatics 2020; 36:i735-i744. [DOI: 10.1093/bioinformatics/btaa806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
Knowledge of protein-binding residues (PBRs) improves our understanding of protein−protein interactions, contributes to the prediction of protein functions and facilitates protein−protein docking calculations. While many sequence-based predictors of PBRs were published, they offer modest levels of predictive performance and most of them cross-predict residues that interact with other partners. One unexplored option to improve the predictive quality is to design consensus predictors that combine results produced by multiple methods.
Results
We empirically investigate predictive performance of a representative set of nine predictors of PBRs. We report substantial differences in predictive quality when these methods are used to predict individual proteins, which contrast with the dataset-level benchmarks that are currently used to assess and compare these methods. Our analysis provides new insights for the cross-prediction concern, dissects complementarity between predictors and demonstrates that predictive performance of the top methods depends on unique characteristics of the input protein sequence. Using these insights, we developed PROBselect, first-of-its-kind consensus predictor of PBRs. Our design is based on the dynamic predictor selection at the protein level, where the selection relies on regression-based models that accurately estimate predictive performance of selected predictors directly from the sequence. Empirical assessment using a low-similarity test dataset shows that PROBselect provides significantly improved predictive quality when compared with the current predictors and conventional consensuses that combine residue-level predictions. Moreover, PROBselect informs the users about the expected predictive quality for the prediction generated from a given input protein.
Availability and implementation
PROBselect is available at http://bioinformatics.csu.edu.cn/PROBselect/home/index.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Wenbo Shi
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Min Zeng
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
42
|
Heffron J, Mayer BK. Improved Virus Isoelectric Point Estimation by Exclusion of Known and Predicted Genome-Binding Regions. Appl Environ Microbiol 2020; 86:e01674-20. [PMID: 32978129 PMCID: PMC7657617 DOI: 10.1128/aem.01674-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Knowledge of the isoelectric points (pIs) of viruses is beneficial for predicting virus behavior in environmental transport and physical/chemical treatment applications. However, the empirically measured pIs of many viruses have thus far defied simple explanation, let alone prediction, based on the ionizable amino acid composition of the virus capsid. Here, we suggest an approach for predicting the pI of nonenveloped viruses by excluding capsid regions that stabilize the virus polynucleotide via electrostatic interactions. This method was applied first to viruses with known polynucleotide-binding regions (PBRs) and/or three-dimensional (3D) structures. Then, PBRs were predicted in a group of 32 unique viral capsid proteome sequences via conserved structures and sequence motifs. Removing predicted PBRs resulted in a significantly better fit to empirical pI values. After modification, mean differences between theoretical and empirical pI values were reduced from 2.1 ± 2.4 to 0.1 ± 1.7 pH units.IMPORTANCE This model fits predicted pIs to empirical values for a diverse set of viruses. The results suggest that many previously reported discrepancies between theoretical and empirical virus pIs can be explained by coulombic neutralization of PBRs of the inner capsid. Given the diversity of virus capsid structures, this nonarbitrary, heuristic approach to predicting virus pI offers an effective alternative to a simplistic, one-size-fits-all charge model of the virion. The accurate, structure-based prediction of PBRs of the virus capsid employed here may also be of general interest to structural virologists.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
43
|
Zhang J, Chen Q, Liu B. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network. J Mol Biol 2020; 432:5860-5875. [DOI: 10.1016/j.jmb.2020.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
|
44
|
Wang K, Hu G, Wu Z, Su H, Yang J, Kurgan L. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. Int J Mol Sci 2020; 21:E6879. [PMID: 32961749 PMCID: PMC7554811 DOI: 10.3390/ijms21186879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
With close to 30 sequence-based predictors of RNA-binding residues (RBRs), this comparative survey aims to help with understanding and selection of the appropriate tools. We discuss past reviews on this topic, survey a comprehensive collection of predictors, and comparatively assess six representative methods. We provide a novel and well-designed benchmark dataset and we are the first to report and compare protein-level and datasets-level results, and to contextualize performance to specific types of RNAs. The methods considered here are well-cited and rely on machine learning algorithms on occasion combined with homology-based prediction. Empirical tests reveal that they provide relatively accurate predictions. Virtually all methods perform well for the proteins that interact with rRNAs, some generate accurate predictions for mRNAs, snRNA, SRP and IRES, while proteins that bind tRNAs are predicted poorly. Moreover, except for DRNApred, they confuse DNA and RNA-binding residues. None of the six methods consistently outperforms the others when tested on individual proteins. This variable and complementary protein-level performance suggests that users should not rely on applying just the single best dataset-level predictor. We recommend that future work should focus on the development of approaches that facilitate protein-level selection of accurate predictors and the consensus-based prediction of RBRs.
Collapse
Affiliation(s)
- Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China;
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Hong Su
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Jianyi Yang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
45
|
Amirkhani A, Kolahdoozi M, Wang C, Kurgan LA. Prediction of DNA-Binding Residues in Local Segments of Protein Sequences with Fuzzy Cognitive Maps. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1372-1382. [PMID: 30602422 DOI: 10.1109/tcbb.2018.2890261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While protein-DNA interactions are crucial for a wide range of cellular functions, only a small fraction of these interactions was annotated to date. One solution to close this annotation gap is to employ computational methods that accurately predict protein-DNA interactions from widely available protein sequences. We present and empirically test first-of-its-kind predictor of DNA-binding residues in local segments of protein sequences that relies on the Fuzzy Cognitive Map (FCM) model. The FCM model uses information about putative solvent accessibility, evolutionary conservation, and relative propensities of amino acid to interact with DNA to generate putative DNA-binding residues. Empirical tests on a benchmark dataset reveal that the FCM model secures AUC = 0.72 and outperforms recently released hybridNAP predictor and several popular machine learning methods including Support Vector Machines, Naïve Bayes, and k-Nearest Neighbor. The improvements in the predictive performance result from an intrinsic feature of FCMs that incorporate relations between the input features, besides the relations between the inputs and output that are modelled by other algorithms. We also empirically demonstrate that use of a short sliding window results in further improvements in the predictive quality. The funDNApred webserver that implements the FCM predictor is available at http://biomine.cs.vcu.edu/servers/funDNApred/.
Collapse
|
46
|
Wardah W, Dehzangi A, Taherzadeh G, Rashid MA, Khan M, Tsunoda T, Sharma A. Predicting protein-peptide binding sites with a deep convolutional neural network. J Theor Biol 2020; 496:110278. [DOI: 10.1016/j.jtbi.2020.110278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
47
|
Gao J, Miao Z, Zhang Z, Wei H, Kurgan L. Prediction of Ion Channels and their Types from Protein Sequences: Comprehensive Review and Comparative Assessment. Curr Drug Targets 2020; 20:579-592. [PMID: 30360734 DOI: 10.2174/1389450119666181022153942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ion channels are a large and growing protein family. Many of them are associated with diseases, and consequently, they are targets for over 700 drugs. Discovery of new ion channels is facilitated with computational methods that predict ion channels and their types from protein sequences. However, these methods were never comprehensively compared and evaluated. OBJECTIVE We offer first-of-its-kind comprehensive survey of the sequence-based predictors of ion channels. We describe eight predictors that include five methods that predict ion channels, their types, and four classes of the voltage-gated channels. We also develop and use a new benchmark dataset to perform comparative empirical analysis of the three currently available predictors. RESULTS While several methods that rely on different designs were published, only a few of them are currently available and offer a broad scope of predictions. Support and availability after publication should be required when new methods are considered for publication. Empirical analysis shows strong performance for the prediction of ion channels and modest performance for the prediction of ion channel types and voltage-gated channel classes. We identify a substantial weakness of current methods that cannot accurately predict ion channels that are categorized into multiple classes/types. CONCLUSION Several predictors of ion channels are available to the end users. They offer practical levels of predictive quality. Methods that rely on a larger and more diverse set of predictive inputs (such as PSIONplus) are more accurate. New tools that address multi-label prediction of ion channels should be developed.
Collapse
Affiliation(s)
- Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Zhen Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaopeng Zhang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Hong Wei
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, United States
| |
Collapse
|
48
|
PSIONplus m Server for Accurate Multi-Label Prediction of Ion Channels and Their Types. Biomolecules 2020; 10:biom10060876. [PMID: 32517331 PMCID: PMC7355608 DOI: 10.3390/biom10060876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of ion channels facilitates the identification of putative ion channels from protein sequences. Several predictors of ion channels and their types were developed in the last quindecennial. While they offer reasonably accurate predictions, they also suffer a few shortcomings including lack of availability, parallel prediction mode, single-label prediction (inability to predict multiple channel subtypes), and incomplete scope (inability to predict subtypes of the voltage-gated channels). We developed a first-of-its-kind PSIONplusm method that performs sequential multi-label prediction of ion channels and their subtypes for both voltage-gated and ligand-gated channels. PSIONplusm sequentially combines the outputs produced by three support vector machine-based models from the PSIONplus predictor and is available as a webserver. Empirical tests show that PSIONplusm outperforms current methods for the multi-label prediction of the ion channel subtypes. This includes the existing single-label methods that are available to the users, a naïve multi-label predictor that combines results produced by multiple single-label methods, and methods that make predictions based on sequence alignment and domain annotations. We also found that the current methods (including PSIONplusm) fail to accurately predict a few of the least frequently occurring ion channel subtypes. Thus, new predictors should be developed when a larger quantity of annotated ion channels will be available to train predictive models.
Collapse
|
49
|
Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res 2020; 47:e127. [PMID: 31504851 PMCID: PMC6847461 DOI: 10.1093/nar/gkz740] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
As the first web server to analyze various biological sequences at sequence level based on machine learning approaches, many powerful predictors in the field of computational biology have been developed with the assistance of the BioSeq-Analysis. However, the BioSeq-Analysis can be only applied to the sequence-level analysis tasks, preventing its applications to the residue-level analysis tasks, and an intelligent tool that is able to automatically generate various predictors for biological sequence analysis at both residue level and sequence level is highly desired. In this regard, we decided to publish an important updated server covering a total of 26 features at the residue level and 90 features at the sequence level called BioSeq-Analysis2.0 (http://bliulab.net/BioSeq-Analysis2.0/), by which the users only need to upload the benchmark dataset, and the BioSeq-Analysis2.0 can generate the predictors for both residue-level analysis and sequence-level analysis tasks. Furthermore, the corresponding stand-alone tool was also provided, which can be downloaded from http://bliulab.net/BioSeq-Analysis2.0/download/. To the best of our knowledge, the BioSeq-Analysis2.0 is the first tool for generating predictors for biological sequence analysis tasks at residue level. Specifically, the experimental results indicated that the predictors developed by BioSeq-Analysis2.0 can achieve comparable or even better performance than the existing state-of-the-art predictors.
Collapse
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xin Gao
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Hanyu Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief Bioinform 2020; 20:1280-1294. [PMID: 29272359 DOI: 10.1093/bib/bbx165] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
With the avalanche of biological sequences generated in the post-genomic age, one of the most challenging problems is how to computationally analyze their structures and functions. Machine learning techniques are playing key roles in this field. Typically, predictors based on machine learning techniques contain three main steps: feature extraction, predictor construction and performance evaluation. Although several Web servers and stand-alone tools have been developed to facilitate the biological sequence analysis, they only focus on individual step. In this regard, in this study a powerful Web server called BioSeq-Analysis (http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/) has been proposed to automatically complete the three main steps for constructing a predictor. The user only needs to upload the benchmark data set. BioSeq-Analysis can generate the optimized predictor based on the benchmark data set, and the performance measures can be reported as well. Furthermore, to maximize user's convenience, its stand-alone program was also released, which can be downloaded from http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/download/, and can be directly run on Windows, Linux and UNIX. Applied to three sequence analysis tasks, experimental results showed that the predictors generated by BioSeq-Analysis even outperformed some state-of-the-art methods. It is anticipated that BioSeq-Analysis will become a useful tool for biological sequence analysis.
Collapse
|