1
|
Mavillard F, Servian-Morilla E, Dofash L, Rojas-Marcos I, Folland C, Monahan G, Gutierrez-Gutierrez G, Rivas E, Hernández-Lain A, Valladares A, Cantero G, Morales JM, Laing NG, Paradas C, Ravenscroft G, Cabrera-Serrano M. Ablation of the carboxy-terminal end of MAMDC2 causes a distinct muscular dystrophy. Brain 2023; 146:5235-5248. [PMID: 37503746 DOI: 10.1093/brain/awad256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
The extracellular matrix (ECM) has an important role in the development and maintenance of skeletal muscle, and several muscle diseases are associated with the dysfunction of ECM elements. MAMDC2 is a putative ECM protein and its role in cell proliferation has been investigated in certain cancer types. However, its participation in skeletal muscle physiology has not been previously studied. We describe 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease. The radiological aspect of muscle involvement resembles that of COL6 myopathies with fat replacement at the peripheral rim of vastii muscles. In this cohort, a subfascial and peri-tendinous pattern is observed in upper and lower limb muscles. Here we show that MAMDC2 is expressed in adult skeletal muscle and differentiating muscle cells, where it appears to localize to the sarcoplasm and myonuclei. In addition, we show it is secreted by myoblasts and differentiating myotubes into to the extracellular compartment. The last exon encodes a disordered region with a polar residue compositional bias loss of which likely induces a toxic effect of the mutant protein. The precise mechanisms by which the altered MAMDC2 proteins cause disease remains to be determined. MAMDC2 is a skeletal muscle disease-associated protein. Its role in muscle development and ECM-muscle communication remains to be fully elucidated. Screening of the last exon of MAMDC2 should be considered in patients presenting with autosomal dominant muscular dystrophy, particularly in those with a subfascial radiological pattern of muscle involvement.
Collapse
Affiliation(s)
- Fabiola Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Emilia Servian-Morilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Lein Dofash
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Iñigo Rojas-Marcos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Chiara Folland
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gavin Monahan
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gerardo Gutierrez-Gutierrez
- Department of Neurology, Hospital Universitario Infanta Sofia, Universidad Europea de Madrid, Madrid 28702, Spain
| | - Eloy Rivas
- Department of Neuropathology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | | | - Amador Valladares
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Jose M Morales
- Department of Neuroradiology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Nigel G Laing
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Gianina Ravenscroft
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Macarena Cabrera-Serrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, 28220 Madrid, Spain
- Centre for Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| |
Collapse
|
2
|
Tenney AP, Di Gioia SA, Webb BD, Chan WM, de Boer E, Garnai SJ, Barry BJ, Ray T, Kosicki M, Robson CD, Zhang Z, Collins TE, Gelber A, Pratt BM, Fujiwara Y, Varshney A, Lek M, Warburton PE, Van Ryzin C, Lehky TJ, Zalewski C, King KA, Brewer CC, Thurm A, Snow J, Facio FM, Narisu N, Bonnycastle LL, Swift A, Chines PS, Bell JL, Mohan S, Whitman MC, Staffieri SE, Elder JE, Demer JL, Torres A, Rachid E, Al-Haddad C, Boustany RM, Mackey DA, Brady AF, Fenollar-Cortés M, Fradin M, Kleefstra T, Padberg GW, Raskin S, Sato MT, Orkin SH, Parker SCJ, Hadlock TA, Vissers LELM, van Bokhoven H, Jabs EW, Collins FS, Pennacchio LA, Manoli I, Engle EC. Noncoding variants alter GATA2 expression in rhombomere 4 motor neurons and cause dominant hereditary congenital facial paresis. Nat Genet 2023; 55:1149-1163. [PMID: 37386251 PMCID: PMC10335940 DOI: 10.1038/s41588-023-01424-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/10/2023] [Indexed: 07/01/2023]
Abstract
Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.
Collapse
Affiliation(s)
- Alan P Tenney
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Silvio Alessandro Di Gioia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Bryn D Webb
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sarah J Garnai
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tammy Ray
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alon Gelber
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuko Fujiwara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Carmen C Brewer
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Flavia M Facio
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Amy Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Peter S Chines
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suresh Mohan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mary C Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, and University of Melbourne, Melbourne, Victoria, Australia
- Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - James E Elder
- Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Joseph L Demer
- Stein Eye Institute and Departments of Ophthalmology, Neurology, and Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcy Torres
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Boston Medical Center, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Elza Rachid
- Department of Ophthalmology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christiane Al-Haddad
- Department of Ophthalmology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rose-Mary Boustany
- Pediatrics & Adolescent Medicine/Biochemistry & Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - David A Mackey
- Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - María Fenollar-Cortés
- Unidad de Genética Clínica, Instituto de Medicina del Laboratorio. IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Melanie Fradin
- Service de Génétique Clinique, CHU Rennes, Centre Labellisé Anomalies du Développement, Rennes, France
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - George W Padberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Salmo Raskin
- Centro de Aconselhamento e Laboratório Genetika, Curitiba, Paraná, Brazil
| | - Mario Teruo Sato
- Department of Ophthalmology & Otorhinolaryngology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tessa A Hadlock
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Zeng YH, Yang K, Du GQ, Chen YK, Cao CY, Qiu YS, He J, Lv HD, Qu QQ, Chen JN, Xu GR, Chen L, Zheng FZ, Zhao M, Lin MT, Chen WJ, Hu J, Wang ZQ, Wang N. GGC repeat expansion of RILPL1 is associated with oculopharyngodistal myopathy. Ann Neurol 2022; 92:512-526. [PMID: 35700120 DOI: 10.1002/ana.26436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ptosis, dysarthria, ophthalmoplegia, and distal muscle weakness. Recent studies revealed GGC repeat expansions in 5'-UTR of LRP12, GIPC1, and NOTCH2NLC are associated with OPDM. Despite these advances, around 30% of OPDM patients remain genetically undiagnosed. Herein, we aim to investigate genetic basis for undiagnosed OPDM patients in two unrelated Chinese Han families. METHODS Parametric linkage analysis was performed. Long-read sequencing followed by repeat-primed polymerase chain reaction (RP-PCR) and amplicon length polymerase chain reaction (AL-PCR) were used to determine the genetic cause. Targeted methylation sequencing was implemented to detect epigenetic changes. The possible pathogenesis mechanism was investigated by qPCR, immunoblotting, RNA FISH, and immunofluorescence staining of muscle biopsy samples. RESULTS The disease locus was mapped to 12q24.3. Subsequently, GGC repeat expansion in the promoter region of RILPL1 was identified in six OPDM patients from two families, findings consistent with a founder effect, designated as OPDM type 4 (OPDM4). Targeted methylation sequencing revealed hypermethylation at RILPL1 locus in unaffected individuals with ultralong expansion. Analysis of muscle samples showed no significant differences in RILPL1 mRNA or RILPL1 protein levels between patients and controls. Public CAGE-seq data indicated that alternative TSSs exist upstream of the RefSeq-annotated RILPL1 TSS. Strand-specific RNAseq data revealed bidirectional transcription from the RILPL1 locus. Finally, FISH/IF indicated that both sense and antisense transcripts formed RNA foci and were co-localized with hnRNPA2B1 and p62 in the intranuclear inclusions of OPDM4 patients. INTERPRETATION Our findings implicate abnormal GGC repeat expansions in the promoter region of RILPL1 as a novel genetic cause for OPDM, and suggest a methylation mechanism and a potential RNA toxicity mechanism are involved in OPDM4 pathogenesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Kang Yang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Gan-Qin Du
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Yi-Kun Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yan Cao
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Hai-Dong Lv
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, 454150, China
| | - Qian-Qian Qu
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, 454150, China
| | - Jian-Nan Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Guo-Rong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
4
|
Barbier M, Bahlo M, Pennisi A, Jacoupy M, Tankard RM, Ewenczyk C, Davies KC, Lino-Coulon P, Colace C, Rafehi H, Auger N, Ansell BRE, van der Stelt I, Howell KB, Coutelier M, Amor DJ, Mundwiller E, Guillot-Noël L, Storey E, Gardner RJM, Wallis MJ, Brusco A, Corti O, Rötig A, Leventer RJ, Brice A, Delatycki MB, Stevanin G, Lockhart PJ, Durr A. Heterozygous PNPT1 variants cause spinocerebellar ataxia type 25. Ann Neurol 2022; 92:122-137. [PMID: 35411967 DOI: 10.1002/ana.26366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data was interrogated in a cohort of 796 ataxia patients of unknown aetiology. RESULTS The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mathieu Barbier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alessandra Pennisi
- Necker Hospital, APHP, Reference Center for Mitochondrial Diseases, Genetics Department, Institut Imagine, University of Paris, Paris, France.,Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Maxime Jacoupy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Rick M Tankard
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Kayli C Davies
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Patricia Lino-Coulon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Claire Colace
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Paris Sciences Lettres Research University, EPHE, Paris, France
| | - Brendan R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ivo van der Stelt
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Donders Centre for Neuroscience, Faculty of Science, Radboud University, The Netherlands
| | - Katherine B Howell
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, 3052, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Marie Coutelier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Paris Sciences Lettres Research University, EPHE, Paris, France
| | - David J Amor
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Emeline Mundwiller
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Lena Guillot-Noël
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Paris Sciences Lettres Research University, EPHE, Paris, France
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | | | - Mathew J Wallis
- Clinical Genetics Service, Austin Health, Melbourne, Australia; Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Olga Corti
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Agnès Rötig
- Necker Hospital, APHP, Reference Center for Mitochondrial Diseases, Genetics Department, Institut Imagine, University of Paris, Paris, France.,Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, 3052, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Victorian Clinical Genetics Service, Melbourne, 3052, Australia
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Paris Sciences Lettres Research University, EPHE, Paris, France
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Szenker-Ravi E, Ott T, Khatoo M, Moreau de Bellaing A, Goh WX, Chong YL, Beckers A, Kannesan D, Louvel G, Anujan P, Ravi V, Bonnard C, Moutton S, Schoen P, Fradin M, Colin E, Megarbane A, Daou L, Chehab G, Di Filippo S, Rooryck C, Deleuze JF, Boland A, Arribard N, Eker R, Tohari S, Ng AYJ, Rio M, Lim CT, Eisenhaber B, Eisenhaber F, Venkatesh B, Amiel J, Crollius HR, Gordon CT, Gossler A, Roy S, Attie-Bitach T, Blum M, Bouvagnet P, Reversade B. Discovery of a genetic module essential for assigning left-right asymmetry in humans and ancestral vertebrates. Nat Genet 2022; 54:62-72. [PMID: 34903892 DOI: 10.1038/s41588-021-00970-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/14/2021] [Indexed: 01/24/2023]
Abstract
The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.
Collapse
Affiliation(s)
- Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore.
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Muznah Khatoo
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Anne Moreau de Bellaing
- Laboratoire de Cardiogénétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Wei Xuan Goh
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Yan Ling Chong
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Anja Beckers
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Darshini Kannesan
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Guillaume Louvel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Écologie, Systématique et Évolution, UMR 8079 CNRS - Université Paris-Saclay - AgroParisTech, Orsay, France
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital, Imperial College, London, UK
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Carine Bonnard
- Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Singapore
| | - Sébastien Moutton
- CPDPN, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | - André Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Institut Jérôme LEJEUNE, Paris, France
| | - Linda Daou
- Department of Pediatric Cardiology, Hôtel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
| | - Ghassan Chehab
- Department of Pediatric Cardiology, Hôtel Dieu de France University Medical Center, Saint Joseph University, Alfred Naccache Boulevard, Achrafieh, Beirut, Lebanon
- Department of Pediatrics, Lebanese University, Faculty of Medical Sciences, Hadath, Greater Beirut, Lebanon
| | - Sylvie Di Filippo
- Service de Cardiologie Pédiatrique, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Caroline Rooryck
- Service de Génétique, University of Bordeaux, MRGM, INSERM U1211, CHU de Bordeaux, Bordeaux, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Nicolas Arribard
- Service de Cardiologie Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Brussels, Belgium
| | - Rukiye Eker
- Pediatrics Department, Pediatric Cardiology Division, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Alvin Yu-Jin Ng
- Molecular Diagnosis Centre (MDC), National University Hospital (NUH), Singapore, Singapore
| | - Marlène Rio
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Developmental Brain Disorders Laboratory, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Chun Teck Lim
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), A*STAR, Singapore, Singapore
- Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore
| | - Jeanne Amiel
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Achim Gossler
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover, Germany
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Tania Attie-Bitach
- Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Genetics and Development of the Cerebral Cortex, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| | | | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore.
- Department of Pediatrics, National University of Singapore (NUS), Singapore, Singapore.
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.
| |
Collapse
|
6
|
Fanjul-Fernández M, Brown NJ, Hickey P, Diakumis P, Rafehi H, Bozaoglu K, Green CC, Rattray A, Young S, Alhuzaimi D, Mountford HS, Gillies G, Lukic V, Vick T, Finlay K, Coe BP, Eichler EE, Delatycki MB, Wilson SJ, Bahlo M, Scheffer IE, Lockhart PJ. A family study implicates GBE1 in the etiology of autism spectrum disorder. Hum Mutat 2022; 43:16-29. [PMID: 34633740 PMCID: PMC8720068 DOI: 10.1002/humu.24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/17/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders with an estimated heritability of >60%. Family-based genetic studies of ASD have generally focused on multiple small kindreds, searching for de novo variants of major effect. We hypothesized that molecular genetic analysis of large multiplex families would enable the identification of variants of milder effects. We studied a large multigenerational family of European ancestry with multiple family members affected with ASD or the broader autism phenotype (BAP). We identified a rare heterozygous variant in the gene encoding 1,4-ɑ-glucan branching enzyme 1 (GBE1) that was present in seven of seven individuals with ASD, nine of ten individuals with the BAP, and none of four tested unaffected individuals. We genotyped a community-acquired cohort of 389 individuals with ASD and identified three additional probands. Cascade analysis demonstrated that the variant was present in 11 of 13 individuals with familial ASD/BAP and neither of the two tested unaffected individuals in these three families, also of European ancestry. The variant was not enriched in the combined UK10K ASD cohorts of European ancestry but heterozygous GBE1 deletion was overrepresented in large ASD cohorts, collectively suggesting an association between GBE1 and ASD.
Collapse
Affiliation(s)
- Miriam Fanjul-Fernández
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute Victoria, Parkville, Victoria, Australia
- Royal Children’s Hospital Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Barwon Health, Geelong, Victoria, Australia
| | - Peter Hickey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Diakumis
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer, Melbourne, Victoria, Australia
| | - Haloom Rafehi
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kiymet Bozaoglu
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cherie C Green
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Audrey Rattray
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Savannah Young
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dana Alhuzaimi
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hayley S Mountford
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Greta Gillies
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Vesna Lukic
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Tanya Vick
- Barwon Health, Geelong, Victoria, Australia
| | | | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarah J Wilson
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute, Melbourne, Victoria, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Florey Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Paul J Lockhart
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Thompson-Lake DGY, Scerri TS, Block S, Turner SJ, Reilly S, Kefalianos E, Bonthrone AF, Helbig I, Bahlo M, Scheffer IE, Hildebrand MS, Liégeois FJ, Morgan AT. Atypical development of Broca's area in a large family with inherited stuttering. Brain 2021; 145:1177-1188. [PMID: 35296891 PMCID: PMC9724773 DOI: 10.1093/brain/awab364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 01/18/2023] Open
Abstract
Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.
Collapse
Affiliation(s)
| | - Thomas S Scerri
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia,Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville 305, Australia
| | - Susan Block
- Discipline of Speech Pathology, School of Allied Health, Human Services & Sport, La Trobe University, Bundoora 3086, Australia
| | - Samantha J Turner
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia
| | - Sheena Reilly
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia,Menzies Health Institute Queensland, Griffith University, Southport 4215, Australia
| | - Elaina Kefalianos
- Speech and Language, Murdoch Children’s Research Institute, Parkville 3052, Australia,Department of Audiology and Speech Pathology, University of Melbourne, Parkville 3052, Australia
| | | | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104USA,The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA 19104USA,Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104USA,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104USA
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia,Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville 305, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg 3084, Australia,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville 3052, Australia,Murdoch Children’s Research Institute, Parkville 3052, Australia,Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
| | - Michael S Hildebrand
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg 3084, Australia,Murdoch Children’s Research Institute, Parkville 3052, Australia
| | | | - Angela T Morgan
- Correspondence to: Angela T. Morgan Murdoch Children’s Research Institute Parkville 3052, Australia E-mail:
| |
Collapse
|
8
|
Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Hum Genet 2021; 140:1183-1200. [PMID: 34076780 PMCID: PMC8263547 DOI: 10.1007/s00439-021-02289-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Dyslexia is a common heritable developmental disorder involving impaired reading abilities. Its genetic underpinnings are thought to be complex and heterogeneous, involving common and rare genetic variation. Multigenerational families segregating apparent monogenic forms of language-related disorders can provide useful entrypoints into biological pathways. In the present study, we performed a genome-wide linkage scan in a three-generational family in which dyslexia affects 14 of its 30 members and seems to be transmitted with an autosomal dominant pattern of inheritance. We identified a locus on chromosome 7q21.11 which cosegregated with dyslexia status, with the exception of two cases of phenocopy (LOD = 2.83). Whole-genome sequencing of key individuals enabled the assessment of coding and noncoding variation in the family. Two rare single-nucleotide variants (rs144517871 and rs143835534) within the first intron of the SEMA3C gene cosegregated with the 7q21.11 risk haplotype. In silico characterization of these two variants predicted effects on gene regulation, which we functionally validated for rs144517871 in human cell lines using luciferase reporter assays. SEMA3C encodes a secreted protein that acts as a guidance cue in several processes, including cortical neuronal migration and cellular polarization. We hypothesize that these intronic variants could have a cis-regulatory effect on SEMA3C expression, making a contribution to dyslexia susceptibility in this family.
Collapse
|
9
|
Scriba CK, Beecroft SJ, Clayton JS, Cortese A, Sullivan R, Yau WY, Dominik N, Rodrigues M, Walker E, Dyer Z, Wu TY, Davis MR, Chandler DC, Weisburd B, Houlden H, Reilly MM, Laing NG, Lamont PJ, Roxburgh RH, Ravenscroft G. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain 2021; 143:2904-2910. [PMID: 33103729 DOI: 10.1093/brain/awaa263] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is a progressive late-onset, neurological disease. Recently, a pentanucleotide expansion in intron 2 of RFC1 was identified as the genetic cause of CANVAS. We screened an Asian-Pacific cohort for CANVAS and identified a novel RFC1 repeat expansion motif, (ACAGG)exp, in three affected individuals. This motif was associated with additional clinical features including fasciculations and elevated serum creatine kinase. These features have not previously been described in individuals with genetically-confirmed CANVAS. Haplotype analysis showed our patients shared the same core haplotype as previously published, supporting the possibility of a single origin of the RFC1 disease allele. We analysed data from >26 000 genetically diverse individuals in gnomAD to show enrichment of (ACAGG) in non-European populations.
Collapse
Affiliation(s)
- Carolin K Scriba
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia.,Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Sarah J Beecroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Joshua S Clayton
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Andrea Cortese
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Roisin Sullivan
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Wai Yan Yau
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalia Dominik
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Miriam Rodrigues
- Neurology Department, Auckland City Hospital, Private Bag 92024, Auckland, New Zealand
| | - Elizabeth Walker
- Neurology Department, Auckland City Hospital, Private Bag 92024, Auckland, New Zealand
| | - Zoe Dyer
- Neurology Department, Auckland City Hospital, Private Bag 92024, Auckland, New Zealand
| | - Teddy Y Wu
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Mark R Davis
- Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - David C Chandler
- Australian Genome Research Facility, Harry Perkins, Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nigel G Laing
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | | | - Richard H Roxburgh
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.,Centre for Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
10
|
Beecroft SJ, Cortese A, Sullivan R, Yau WY, Dyer Z, Wu TY, Mulroy E, Pelosi L, Rodrigues M, Taylor R, Mossman S, Leadbetter R, Cleland J, Anderson T, Ravenscroft G, Laing NG, Houlden H, Reilly MM, Roxburgh RH. A Māori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain 2020; 143:2673-2680. [PMID: 32851396 PMCID: PMC7526724 DOI: 10.1093/brain/awaa203] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) is a recently recognized neurodegenerative disease with onset in mid- to late adulthood. The genetic basis for a large proportion of Caucasian patients was recently shown to be the biallelic expansion of a pentanucleotide (AAGGG)n repeat in RFC1. Here, we describe the first instance of CANVAS genetic testing in New Zealand Māori and Cook Island Māori individuals. We show a novel, possibly population-specific CANVAS configuration (AAAGG)10-25(AAGGG)exp, which was the cause of CANVAS in all patients. There were no apparent phenotypic differences compared with European CANVAS patients. Presence of a common disease haplotype among this cohort suggests this novel repeat expansion configuration is a founder effect in this population, which may indicate that CANVAS will be especially prevalent in this group. Haplotype dating estimated the most recent common ancestor at ∼1430 ce. We also show the same core haplotype as previously described, supporting a single origin of the CANVAS mutation.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Andrea Cortese
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Roisin Sullivan
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Wai Yan Yau
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Zoe Dyer
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Teddy Y Wu
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Eoin Mulroy
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Luciana Pelosi
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Miriam Rodrigues
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Rachael Taylor
- Centre for Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | - Stuart Mossman
- Neurology Department, Wellington Hospital, Wellington, New Zealand
| | - Ruth Leadbetter
- Neurology Department, Wellington Hospital, Wellington, New Zealand
| | - James Cleland
- Neurology Department, Tauranga Hospital, Tauranga, New Zealand
| | - Tim Anderson
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Nigel G Laing
- Neurogenetic Diseases Group, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Richard H Roxburgh
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
- Centre for Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Rafehi H, Szmulewicz DJ, Pope K, Wallis M, Christodoulou J, White SM, Delatycki MB, Lockhart PJ, Bahlo M. Rapid Diagnosis of Spinocerebellar Ataxia 36 in a Three-Generation Family Using Short-Read Whole-Genome Sequencing Data. Mov Disord 2020; 35:1675-1679. [PMID: 32407596 DOI: 10.1002/mds.28105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxias are often caused by expansions of short tandem repeats. Recent methodological advances have made repeat expansion (RE) detection with whole-genome sequencing (WGS) feasible. OBJECTIVES The objective of this study was to determine the genetic basis of ataxia in a multigenerational Australian pedigree with autosomal-dominant inheritance. METHODS AND RESULTS WGS was performed on 3 affected relatives. The sequence data were screened for known pathogenic REs using 2 RE detection tools: exSTRa and ExpansionHunter. This screen provided a clear and rapid diagnosis (<5 days from receiving the sequencing data) of spinocerebellar ataxia 36, a rare form of ataxia caused by an intronic GGCCTG RE in NOP56. CONCLUSIONS The diagnosis of rare ataxias caused by REs is highly feasible and cost-effective with WGS. We propose that WGS could potentially be implemented as the frontline, cost-effective methodology for the molecular testing of individuals with a clinical diagnosis of ataxia. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haloom Rafehi
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - David J Szmulewicz
- Cerebellar Ataxia Clinic, Neuroscience Department, Alfred Health, Melbourne, Victoria, Australia.,Balance Disorders and Ataxia Service, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, Australia
| | - Kate Pope
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Tasmania, Australia.,School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan M White
- Department of Pediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Services, Parkville, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Cabrera-Serrano M, Coote DJ, Azmanov D, Goullee H, Andersen E, McLean C, Davis M, Ishimura R, Stark Z, Vallat JM, Komatsu M, Kornberg A, Ryan M, Laing NG, Ravenscroft G. A homozygous UBA5 pathogenic variant causes a fatal congenital neuropathy. J Med Genet 2020; 57:835-842. [PMID: 32179706 DOI: 10.1136/jmedgenet-2019-106496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND UBA5 is the activating enzyme of UFM1 in the ufmylation post-translational modification system. Different neurological phenotypes have been associated with UBA5 pathogenic variants including epilepsy, intellectual disability, movement disorders and ataxia. METHODS AND RESULTS We describe a large multigenerational consanguineous family presenting with a severe congenital neuropathy causing early death in infancy. Whole exome sequencing and linkage analysis identified a novel homozygous UBA5 NM_024818.3 c.31C>T (p.Arg11Trp) mutation. Protein expression assays in mouse tissue showed similar levels of UBA5 in peripheral nerves to the central nervous system. CRISPR-Cas9 edited HEK (human embrionic kidney) cells homozygous for the UBA5 p.Arg11Trp mutation showed reduced levels of UBA5 protein compared with the wild-type. The mutant p.Arg11Trp UBA5 protein shows reduced ability to activate UFM1. CONCLUSION This report expands the phenotypical spectrum of UBA5 mutations to include fatal peripheral neuropathy.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Department of Neurology, Neuromuscular Unit and Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen del Rocío, Sevilla, Spain.,Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia.,Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Joseph Coote
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Dimitar Azmanov
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia.,Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Perth, Western Australia, Australia
| | - Hayley Goullee
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Erik Andersen
- Pediatrics, University of Otago Wellington, Wellington, New Zealand.,Department of Neurology and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Perth, Western Australia, Australia
| | - Ryosuke Ishimura
- Department of Physiology, Juntendo University School of Medicine Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jean-Michel Vallat
- Reference center for peripheral neuropathies, University Hospital, Limoges, France
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Andrew Kornberg
- Department of Neurology and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Monique Ryan
- Department of Neurology and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Nigel G Laing
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Gina Ravenscroft
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Whitman MC, Miyake N, Nguyen EH, Bell JL, Matos Ruiz PM, Chan WM, Di Gioia SA, Mukherjee N, Barry BJ, Bosley TM, Khan AO, Engle EC. Decreased ACKR3 (CXCR7) function causes oculomotor synkinesis in mice and humans. Hum Mol Genet 2020; 28:3113-3125. [PMID: 31211835 DOI: 10.1093/hmg/ddz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/17/2023] Open
Abstract
Oculomotor synkinesis is the involuntary movement of the eyes or eyelids with a voluntary attempt at a different movement. The chemokine receptor CXCR4 and its ligand CXCL12 regulate oculomotor nerve development; mice with loss of either molecule have oculomotor synkinesis. In a consanguineous family with congenital ptosis and elevation of the ptotic eyelid with ipsilateral abduction, we identified a co-segregating homozygous missense variant (c.772G>A) in ACKR3, which encodes an atypical chemokine receptor that binds CXCL12 and functions as a scavenger receptor, regulating levels of CXCL12 available for CXCR4 signaling. The mutant protein (p.V258M) is expressed and traffics to the cell surface but has a lower binding affinity for CXCL12. Mice with loss of Ackr3 have variable phenotypes that include misrouting of the oculomotor and abducens nerves. All embryos show oculomotor nerve misrouting, ranging from complete misprojection in the midbrain, to aberrant peripheral branching, to a thin nerve, which aberrantly innervates the lateral rectus (as seen in Duane syndrome). The abducens nerve phenotype ranges from complete absence, to aberrant projections within the orbit, to a normal trajectory. Loss of ACKR3 in the midbrain leads to downregulation of CXCR4 protein, consistent with reports that excess CXCL12 causes ligand-induced degradation of CXCR4. Correspondingly, excess CXCL12 applied to ex vivo oculomotor slices causes axon misrouting, similar to inhibition of CXCR4. Thus, ACKR3, through its regulation of CXCL12 levels, is an important regulator of axon guidance in the oculomotor system; complete loss causes oculomotor synkinesis in mice, while reduced function causes oculomotor synkinesis in humans.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Noriko Miyake
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Elaine H Nguyen
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Paola M Matos Ruiz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nisha Mukherjee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Brenda J Barry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - T M Bosley
- Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Pagnamenta AT, Heemeryck P, Martin HC, Bosc C, Peris L, Uszynski I, Gory-Fauré S, Couly S, Deshpande C, Siddiqui A, Elmonairy AA, Jayawant S, Murthy S, Walker I, Loong L, Bauer P, Vossier F, Denarier E, Maurice T, Barbier EL, Deloulme JC, Taylor JC, Blair EM, Andrieux A, Moutin MJ. Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum Mol Genet 2019; 28:3391-3405. [PMID: 31363758 PMCID: PMC6891070 DOI: 10.1093/hmg/ddz186] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pierre Heemeryck
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Bosc
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Ivy Uszynski
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Simon Couly
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Charu Deshpande
- South East Thames Regional Genetics Unit, Guys and St Thomas NHS Trust, London, UK
| | - Ata Siddiqui
- Department of Neuroradiology, Kings College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Alaa A Elmonairy
- Ministry of Health, Kuwait Medical Genetics Center, Sulaibikhat 80901, Kuwait
| | | | | | - Sandeep Jayawant
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | | | - Ian Walker
- Clinical Biochemistry, Wexham Park Hospital, Slough, UK
| | - Lucy Loong
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Frédérique Vossier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Eric Denarier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Tangui Maurice
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Emmanuel L Barbier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jean-Christophe Deloulme
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jenny C Taylor
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Edward M Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Annie Andrieux
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| |
Collapse
|
15
|
Rafehi H, Szmulewicz DJ, Bennett MF, Sobreira NLM, Pope K, Smith KR, Gillies G, Diakumis P, Dolzhenko E, Eberle MA, Barcina MG, Breen DP, Chancellor AM, Cremer PD, Delatycki MB, Fogel BL, Hackett A, Halmagyi GM, Kapetanovic S, Lang A, Mossman S, Mu W, Patrikios P, Perlman SL, Rosemergy I, Storey E, Watson SRD, Wilson MA, Zee DS, Valle D, Amor DJ, Bahlo M, Lockhart PJ. Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS. Am J Hum Genet 2019; 105:151-165. [PMID: 31230722 PMCID: PMC6612533 DOI: 10.1016/j.ajhg.2019.05.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/21/2019] [Indexed: 01/28/2023] Open
Abstract
Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - David J Szmulewicz
- Cerebellar Ataxia Clinic, Neuroscience Department, Alfred Health, Melbourne, VIC 3004, Australia; Balance Disorders and Ataxia Service, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, 245 Burgundy Street, Heidelberg, VIC 3084, Australia
| | - Nara L M Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia
| | - Katherine R Smith
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Greta Gillies
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia
| | - Peter Diakumis
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Egor Dolzhenko
- Illumina Inc, 5200 Illumina Way, San Diego, CA 92122, USA
| | | | - María García Barcina
- Genetic Unit, Basurto University Hospital, OSI Bilbao-Basurto, avenida Montevideo 18, 48013 Bilbao, Spain
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, Scotland; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, Scotland; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, Scotland
| | - Andrew M Chancellor
- Department of Neurology, Tauranga Hospital, Private Bag, Cameron Road, Tauranga 3171, New Zealand
| | - Phillip D Cremer
- University of Sydney, Camperdown, NSW 2006, Australia; Royal North Shore Hospital, Pacific Hwy, St Leonards, NSW 2065, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Rd, Parkville, VIC 3052, Australia
| | - Brent L Fogel
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Anna Hackett
- Hunter Genetics, Hunter New England Health Service, Waratah, Newcastle, NSW 2300, Australia; University of Newcastle, Newcastle, NSW 2300, Australia
| | - G Michael Halmagyi
- Neurology Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Central Clinical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Solange Kapetanovic
- Servicio de Neurología, Hospital de Basurto, Avenida de Montevideo 18, 48013 Bilbao, Bizkaia, Spain
| | - Anthony Lang
- Edmond J. Safra Program in Parkinson disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada; Department of Medicine, Division of Neurology, University Health Network and the University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Stuart Mossman
- Department of Neurology, Wellington Hospital, Wellington 6021, New Zealand
| | - Weiyi Mu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Susan L Perlman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ian Rosemergy
- Department of Neurology, Wellington Hospital, Newtown, Wellington 6021, New Zealand
| | - Elsdon Storey
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Hospital Campus, Commercial Road, Melbourne, VIC 3004, Australia
| | - Shaun R D Watson
- Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Michael A Wilson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia
| | - David S Zee
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David J Amor
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Rd, Parkville, VIC 3052, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Rd, Parkville, VIC 3052, Australia.
| |
Collapse
|
16
|
Linkage analysis and whole exome sequencing reveals AHNAK2 as a novel genetic cause for autosomal recessive CMT in a Malaysian family. Neurogenetics 2019; 20:117-127. [DOI: 10.1007/s10048-019-00576-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
17
|
A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A. Sci Rep 2019; 9:2959. [PMID: 30814609 PMCID: PMC6393482 DOI: 10.1038/s41598-019-39648-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The genetics of many congenital heart diseases (CHDs) can only unsatisfactorily be explained by known chromosomal or Mendelian syndromes. Here, we present sequencing data of a family with a potentially multigenic origin of CHD. Twelve of nineteen family members carry a familial mutation [NM_004329.2:c.1328 G > A (p.R443H)] which encodes a predicted deleterious variant of BMPR1A. This mutation co-segregates with a linkage region on chromosome 1 that associates with the emergence of severe CHDs including Ebstein's anomaly, atrioventricular septal defect, and others. We show that the continuous overexpression of the zebrafish homologous mutation bmpr1aap.R438H within endocardium causes a reduced AV valve area, a downregulation of Wnt/ß-catenin signalling at the AV canal, and growth of additional tissue mass in adult zebrafish hearts. This finding opens the possibility of testing genetic interactions between BMPR1A and other candidate genes within linkage region 1 which may provide a first step towards unravelling more complex genetic patterns in cardiovascular disease aetiology.
Collapse
|
18
|
Cameron-Christie SR, Wells CF, Simon M, Wessels M, Tang CZN, Wei W, Takei R, Aarts-Tesselaar C, Sandaradura S, Sillence DO, Cordier MP, Veenstra-Knol HE, Cassina M, Ludwig K, Trevisson E, Bahlo M, Markie DM, Jenkins ZA, Robertson SP. Recessive Spondylocarpotarsal Synostosis Syndrome Due to Compound Heterozygosity for Variants in MYH3. Am J Hum Genet 2018; 102:1115-1125. [PMID: 29805041 PMCID: PMC5992117 DOI: 10.1016/j.ajhg.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/13/2018] [Indexed: 11/23/2022] Open
Abstract
Spondylocarpotarsal synostosis syndrome (SCTS) is characterized by intervertebral fusions and fusion of the carpal and tarsal bones. Biallelic mutations in FLNB cause this condition in some families, whereas monoallelic variants in MYH3, encoding embryonic heavy chain myosin 3, have been implicated in dominantly inherited forms of the disorder. Here, five individuals without FLNB mutations from three families were hypothesized to be affected by recessive SCTS on account of sibling recurrence of the phenotype. Initial whole-exome sequencing (WES) showed that all five were heterozygous for one of two independent splice-site variants in MYH3. Despite evidence indicating that three of the five individuals shared two allelic haplotypes encompassing MYH3, no second variant could be located in the WES datasets. Subsequent genome sequencing of these three individuals demonstrated a variant altering a 5' UTR splice donor site (rs557849165 in MYH3) not represented by exome-capture platforms. When the cohort was expanded to 16 SCTS-affected individuals without FLNB mutations, nine had truncating mutations transmitted by unaffected parents, and six inherited the rs557849165 variant in trans, an observation at odds with the population allele frequency for this variant. The rs557849165 variant disrupts splicing in the 5' UTR but is still permissive of MYH3 translational initiation, albeit with reduced efficiency. Although some MYH3 variants cause dominant SCTS, these data indicate that others (notably truncating variants) do not, except in the context of compound heterozygosity for a second hypomorphic allele. These observations make genetic diagnosis challenging in the context of simplex presentations of the disorder.
Collapse
Affiliation(s)
- Sophia R Cameron-Christie
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Constance F Wells
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; Paris Diderot University, Sorbonne Paris Cité, Faculty of Medicine, Paris 75007, France; Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre Hospitalier Universitaire de Montpellier, Université de Montpellier 34295, Montpellier Cedex 5, France
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Marja Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Candy Z N Tang
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Riku Takei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | | | - Sarah Sandaradura
- Department of Clinical Genetics Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - David O Sillence
- Department of Clinical Genetics Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Genetic Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Marie-Pierre Cordier
- Clinical Genetics, Hôpital Femme Mère Enfant, Hôpitaux de Lyon, Lyon 69677, France
| | - Hermine E Veenstra-Knol
- Department of Medical Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova 35128, Italy
| | - Kathrin Ludwig
- Cardiovascular Pathology Unit, University Hospital of Padova, Padova 35128, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova 35128, Italy
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - David M Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
19
|
Gao Z, Chen X, Zhao Y, Zhao X, Zhang S, Yang Y, Wang Y, Zhang J. Forensic genetic informativeness of an SNP panel consisting of 19 multi-allelic SNPs. Forensic Sci Int Genet 2018; 34:49-56. [DOI: 10.1016/j.fsigen.2018.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/07/2018] [Accepted: 01/26/2018] [Indexed: 11/28/2022]
|
20
|
Lawrie A, Han S, Sud A, Hosking F, Cezard T, Turner D, Clark C, Murray GI, Culligan DJ, Houlston RS, Vickers MA. Combined linkage and association analysis of classical Hodgkin lymphoma. Oncotarget 2018; 9:20377-20385. [PMID: 29755658 PMCID: PMC5945548 DOI: 10.18632/oncotarget.24872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
The heritability of classical Hodgkin lymphoma (cHL) has yet to be fully deciphered. We report a family with five members diagnosed with nodular sclerosis cHL. Genetic analysis of the family provided evidence of linkage at chromosomes 2q35-37, 3p14-22 and 21q22, with logarithm of odds score >2. We excluded the possibility of common genetic variation influencing cHL risk at regions of linkage, by analysing GWAS data from 2,201 cHL cases and 12,460 controls. Whole exome sequencing of affected family members identified the shared missense mutations p.(Arg76Gln) in FAM107A and p.(Thr220Ala) in SLC26A6 at 3p21 as being predicted to impact on protein function. FAM107A expression was shown to be low or absent in lymphoblastoid cell lines and SLC26A6 expression lower in lymphoblastoid cell lines derived from p.(Thr220Ala) mutation carriers. Expression of FAM107A and SLC26A6 was low or absent in Hodgkin Reed-Sternberg (HRS) cell lines and in HRS cells in Hodgkin lymphoma tissue. No sequence variants were detected in KLHDC8B, a gene previously suggested as a cause of familial cHL linked to 3p21. Our findings provide evidence for candidate gene susceptibility to familial cHL.
Collapse
Affiliation(s)
- Alastair Lawrie
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shuo Han
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Current address: Clinical Trials Manager, MD Anderson Cancer Centre Investigational Cancer Therapeutics, Houston, TX, USA
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Fay Hosking
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Timothee Cezard
- The Genepool, University of Edinburgh, Edinburgh, United Kingdom
| | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Caroline Clark
- Department of Medical Genetics, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Graeme I. Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominic J. Culligan
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark A. Vickers
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| |
Collapse
|
21
|
The phenotypic spectrum of ARHGEF9 includes intellectual disability, focal epilepsy and febrile seizures. J Neurol 2017. [DOI: 10.1007/s00415-017-8539-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Beecroft SJ, McLean CA, Delatycki MB, Koshy K, Yiu E, Haliloglu G, Orhan D, Lamont PJ, Davis MR, Laing NG, Ravenscroft G. Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord 2017; 27:607-615. [PMID: 28554554 DOI: 10.1016/j.nmd.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Autosomal dominant mutations of DYNC1H1 cause a range of neurogenetic diseases, including mental retardation with cortical malformations, hereditary spastic paraplegia and spinal muscular atrophy. Using SNP array, linkage analysis and next generation sequencing, we identified two families and one isolated proband sharing a known spinal muscular atrophy, lower extremity predominant (SMALED) causing mutation DYNC1H1 c.1792C>T, p.Arg598Cys, and another family harbouring a c.2327C>T, p.Pro776Leu mutation. Here, we present a detailed clinical and pathological examination of these patients, and show that patients with DYNC1H1 mutations may present with a phenotype mimicking a congenital myopathy. We also highlight features that increase the phenotypic overlap with BICD2, which causes SMALED2. Serial muscle biopsies were available for several patients, spanning from infancy and early childhood to middle age. These provide a unique insight into the developmental and pathological origins of SMALED, suggesting in utero denervation with reinnervation by surrounding intact motor neurons and segmental anterior horn cell deficits. We characterise biopsy features that may make diagnosis of this condition easier in the future.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Catriona A McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Commercial Rd, Prahran, Vic. 3181, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville, Vic. 3052, Australia; Victorian Clinical Genetics Services, Parkville, Vic. 3052, Australia
| | - Kurian Koshy
- Launceston General Hospital, Launceston, Tas. 7250, Australia
| | - Eppie Yiu
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville, Vic. 3052, Australia; Neurology Department, Royal Children's Hospital, Melbourne, Vic. 3052, Australia
| | - Goknur Haliloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara 06100, Turkey
| | - Diclehan Orhan
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara 06100, Turkey
| | - Phillipa J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Australia
| | - Mark R Davis
- Neurogenetic Unit, Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Nigel G Laing
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Neurogenetic Unit, Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| |
Collapse
|
23
|
Cipriani V, Kalhoro A, Arno G, Silva RS, Pontikos N, Puech V, McClements ME, Hunt DM, van Heyningen V, Michaelides M, Webster AR, Moore AT, Puech B. Genome-wide linkage and haplotype sharing analysis implicates the MCDR3 locus as a candidate region for a developmental macular disorder in association with digit abnormalities. Ophthalmic Genet 2017. [DOI: 10.1080/13816810.2017.1289544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Valentina Cipriani
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Ambreen Kalhoro
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gavin Arno
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Raquel S. Silva
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Nikolas Pontikos
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | | | - Michelle E. McClements
- Nuffield Department of Clinical Neurosciences (Ophthalmology), University of Oxford, Oxford, UK
| | - David M. Hunt
- Lions Eye Institute and School of Animal Biology, University of Western Australia, Perth, Western Australia, Australia
| | - Veronica van Heyningen
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Andrew R. Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
| | - Anthony T. Moore
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital, London, UK
- Ophthalmology Department, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Bernard Puech
- Service d’Exploration de la Vision CHU, Lille, France
| |
Collapse
|
24
|
Riley LG, Cowley MJ, Gayevskiy V, Roscioli T, Thorburn DR, Prelog K, Bahlo M, Sue CM, Balasubramaniam S, Christodoulou J. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis 2017; 40:261-269. [PMID: 27995398 DOI: 10.1007/s10545-016-0010-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/02/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
SLC39A8 variants have recently been reported to cause a type II congenital disorder of glycosylation (CDG) in patients with intellectual disability and cerebellar atrophy. Here we report a novel SLC39A8 variant in siblings with features of Leigh-like mitochondrial disease. Two sisters born to consanguineous Lebanese parents had profound developmental delay, dystonia, seizures and failure to thrive. Brain MRI of both siblings identified bilateral basal ganglia hyperintensities on T2-weighted imaging and cerebral atrophy. CSF lactate was elevated in patient 1 and normal in patient 2. Respiratory chain enzymology was only performed on patient 1 and revealed complex IV and II + III activity was low in liver, with elevated complex I activity. Complex IV activity was borderline low in patient 1 muscle and pyruvate dehydrogenase activity was reduced. Whole genome sequencing identified a homozygous Chr4(GRCh37):g.103236869C>G; c.338G>C; p.(Cys113Ser) variant in SLC39A8, located in one of eight regions identified by homozygosity mapping. SLC39A8 encodes a manganese and zinc transporter which localises to the cell and mitochondrial membranes. Patient 2 blood and urine manganese levels were undetectably low. Transferrin electrophoresis of patient 2 serum revealed a type II CDG defect. Oral supplementation with galactose and uridine led to improvement of the transferrin isoform pattern within 14 days of treatment initiation. Oral manganese has only recently been added to the treatment. These results suggest SLC39A8 deficiency can cause both a type II CDG and Leigh-like syndrome, possibly via reduced activity of the manganese-dependent enzymes β-galactosyltransferase and mitochondrial manganese superoxide dismutase.
Collapse
Affiliation(s)
- Lisa G Riley
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, KRI, Level 3, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Tony Roscioli
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, Australia
| | - David R Thorburn
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Kristina Prelog
- Medical Imaging Department, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Melanie Bahlo
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Carolyn M Sue
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Department of Neurogenetics, Kolling Institute of Medical Research, University of Sydney and Royal North Shore Hospital, Sydney, NSW, Australia
| | - Shanti Balasubramaniam
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, The Children's Hospital at Westmead, KRI, Level 3, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Kivity S, Oliver KL, Afawi Z, Damiano JA, Arsov T, Bahlo M, Berkovic SF. SCN1A clinical spectrum includes the self-limited focal epilepsies of childhood. Epilepsy Res 2017; 131:9-14. [PMID: 28192756 DOI: 10.1016/j.eplepsyres.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/18/2017] [Accepted: 01/28/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Amongst autosomal dominant genetic epilepsy with febrile seizures plus (GEFS+) families, SCN1A variants are the most common genetic cause. Initially regarded as a generalized form of epilepsy, the GEFS+ spectrum is now known to include some focal epilepsies, but it is generally not conceptualized as extending to the self-limited focal epilepsies of childhood, such as Panayiotopoulos syndrome. There are, however, three reports of SCN1A variants in Panayiotopoulos syndrome. We describe the variable clinical phenotypes that include the self-limited focal epilepsies of childhood, present in a large GEFS+ family, segregating a heterozygous SCN1A missense variant. MATERIAL AND METHODS Electro-clinical details on all putatively affected family members were sought and blood samples were taken for genetic analysis. Two individuals were chosen for SCN1A testing. All 26 exons and exon-intron junctions were amplified, sequenced and analyzed. This was followed by pedigree segregation analysis of the variant identified. RESULTS A pathogenic heterozygous SCN1A (c.2624C>A; p.Thr875Lys) variant was identified. Sixteen of the 18 variant positive family members were affected (88% penetrance): 8 with febrile seizures, 2 febrile seizures plus, 1 unclassified seizures and 5 with self-limited focal epilepsy of childhood. Of these, one was diagnosed with atypical childhood epilepsy with centrotemporal spikes and four with Panayiotopoulos syndrome. DISCUSSION By characterizing the heterogeneous clinical phenotypes in a large, SCN1A mutation positive GEFS+ family, we conclude that the GEFS+ spectrum can extend to the self-limited focal epilepsies of childhood, including Panayiotopoulos syndrome, and in turn highlight the complex genotype-phenotype correlations associated with SCN1A-related epilepsies.
Collapse
Affiliation(s)
- Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petah Tiqvah, Israel
| | - Karen L Oliver
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Zaid Afawi
- Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - John A Damiano
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Todor Arsov
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Australia.
| |
Collapse
|
26
|
Skopkova M, Hennig F, Shin BS, Turner CE, Stanikova D, Brennerova K, Stanik J, Fischer U, Henden L, Müller U, Steinberger D, Leshinsky-Silver E, Bottani A, Kurdiova T, Ukropec J, Nyitrayova O, Kolnikova M, Klimes I, Borck G, Bahlo M, Haas SA, Kim JR, Lotspeich-Cole LE, Gasperikova D, Dever TE, Kalscheuer VM. EIF2S3 Mutations Associated with Severe X-Linked Intellectual Disability Syndrome MEHMO. Hum Mutat 2017; 38:409-425. [PMID: 28055140 DOI: 10.1002/humu.23170] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022]
Abstract
Impairment of translation initiation and its regulation within the integrated stress response (ISR) and related unfolded-protein response has been identified as a cause of several multisystemic syndromes. Here, we link MEHMO syndrome, whose genetic etiology was unknown, to this group of disorders. MEHMO is a rare X-linked syndrome characterized by profound intellectual disability, epilepsy, hypogonadism and hypogenitalism, microcephaly, and obesity. We have identified a C-terminal frameshift mutation (Ile465Serfs) in the EIF2S3 gene in three families with MEHMO syndrome and a novel maternally inherited missense EIF2S3 variant (c.324T>A; p.Ser108Arg) in another male patient with less severe clinical symptoms. The EIF2S3 gene encodes the γ subunit of eukaryotic translation initiation factor 2 (eIF2), crucial for initiation of protein synthesis and regulation of the ISR. Studies in patient fibroblasts confirm increased ISR activation due to the Ile465Serfs mutation and functional assays in yeast demonstrate that the Ile465Serfs mutation impairs eIF2γ function to a greater extent than tested missense mutations, consistent with the more severe clinical phenotype of the Ile465Serfs male mutation carriers. Thus, we propose that more severe EIF2S3 mutations cause the full MEHMO phenotype, while less deleterious mutations cause a milder form of the syndrome with only a subset of the symptoms.
Collapse
Affiliation(s)
- Martina Skopkova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Friederike Hennig
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Clesson E Turner
- Department of Genetics, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Daniela Stanikova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Katarina Brennerova
- First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Juraj Stanik
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia.,Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, University of Leipzig, Germany
| | - Ute Fischer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lyndal Henden
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ulrich Müller
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Daniela Steinberger
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany.,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - Esther Leshinsky-Silver
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel.,Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Timea Kurdiova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Miriam Kolnikova
- Department of Pediatric Neurology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Iwar Klimes
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Leda E Lotspeich-Cole
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Gasperikova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
27
|
Chung RH, Tsai WY, Kang CY, Yao PJ, Tsai HJ, Chen CH. FamPipe: An Automatic Analysis Pipeline for Analyzing Sequencing Data in Families for Disease Studies. PLoS Comput Biol 2016; 12:e1004980. [PMID: 27272119 PMCID: PMC4894624 DOI: 10.1371/journal.pcbi.1004980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/12/2016] [Indexed: 11/18/2022] Open
Abstract
In disease studies, family-based designs have become an attractive approach to analyzing next-generation sequencing (NGS) data for the identification of rare mutations enriched in families. Substantial research effort has been devoted to developing pipelines for automating sequence alignment, variant calling, and annotation. However, fewer pipelines have been designed specifically for disease studies. Most of the current analysis pipelines for family-based disease studies using NGS data focus on a specific function, such as identifying variants with Mendelian inheritance or identifying shared chromosomal regions among affected family members. Consequently, some other useful family-based analysis tools, such as imputation, linkage, and association tools, have yet to be integrated and automated. We developed FamPipe, a comprehensive analysis pipeline, which includes several family-specific analysis modules, including the identification of shared chromosomal regions among affected family members, prioritizing variants assuming a disease model, imputation of untyped variants, and linkage and association tests. We used simulation studies to compare properties of some modules implemented in FamPipe, and based on the results, we provided suggestions for the selection of modules to achieve an optimal analysis strategy. The pipeline is under the GNU GPL License and can be downloaded for free at http://fampipe.sourceforge.net.
Collapse
Affiliation(s)
- Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- * E-mail:
| | - Wei-Yun Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chen-Yu Kang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Po-Ju Yao
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hui-Ju Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Gueishan, Taoyuan, Taiwan
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
28
|
Gray B, Bagnall RD, Lam L, Ingles J, Turner C, Haan E, Davis A, Yang PC, Clancy CE, Sy RW, Semsarian C. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2016; 13:1652-60. [PMID: 27157848 DOI: 10.1016/j.hrthm.2016.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal inherited arrhythmia syndrome characterized by adrenergically stimulated ventricular tachycardia. Mutations in the cardiac ryanodine receptor gene (RYR2) cause an autosomal dominant form of CPVT, while mutations in the cardiac calsequestrin 2 gene (CASQ2) cause an autosomal recessive form. OBJECTIVE The aim of this study was to clinically and genetically evaluate a large family with severe autosomal dominant CPVT. METHODS Clinical evaluation of family members was performed, including detailed history, physical examination, electrocardiogram, exercise stress test, and autopsy review of decedents. We performed genome-wide linkage analysis in 12 family members and exome sequencing in 2 affected family members. In silico models of mouse and rabbit myocyte electrophysiology were used to predict potential disease mechanisms. RESULTS Severe CPVT with dominant inheritance in 6 members was diagnosed in a large family with 2 sudden deaths, 2 resuscitated cardiac arrests, and multiple appropriate implantable cardioverter-defibrillator shocks. A comprehensive analysis of cardiac arrhythmia genes did not reveal a pathogenic variant. Exome sequencing identified a novel heterozygous missense variant in CASQ2 (Lys180Arg) affecting a highly conserved residue, which cosegregated with disease and was absent in unaffected family members. Genome-wide linkage analysis confirmed a single linkage peak at the CASQ2 locus (logarithm of odds ratio score 3.01; θ = 0). Computer simulations predicted that haploinsufficiency was unlikely to cause the severe CPVT phenotype and suggested a dominant negative mechanism. CONCLUSION We show for the first time that a variant in CASQ2 causes autosomal dominant CPVT. Genetic testing in dominant CPVT should include screening for heterozygous CASQ2 variants.
Collapse
Affiliation(s)
- Belinda Gray
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia
| | - Richard D Bagnall
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia
| | - Lien Lam
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia
| | - Jodie Ingles
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia
| | - Christian Turner
- Department of Cardiology, Westmead Children's Hospital, Sydney, New South Wales, Australia
| | - Eric Haan
- Adult Genetics Unit, South Australian Clinical Genetics Service, SA Pathology and School of Medicine, University of Adelaide, Adelaide, New South Wales, Australia
| | - Andrew Davis
- Department of Cardiology, The Royal Children's Hospital Melbourne, Melbourne, New South Wales, Victoria, Australia
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, California, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, California, USA
| | - Raymond W Sy
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Semsarian
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
29
|
Nato AQ, Chapman NH, Sohi HK, Nguyen HD, Brkanac Z, Wijsman EM. PBAP: a pipeline for file processing and quality control of pedigree data with dense genetic markers. Bioinformatics 2015; 31:3790-8. [PMID: 26231429 PMCID: PMC4668752 DOI: 10.1093/bioinformatics/btv444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/07/2015] [Accepted: 07/25/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Huge genetic datasets with dense marker panels are now common. With the availability of sequence data and recognition of importance of rare variants, smaller studies based on pedigrees are again also common. Pedigree-based samples often start with a dense marker panel, a subset of which may be used for linkage analysis to reduce computational burden and to limit linkage disequilibrium between single-nucleotide polymorphisms (SNPs). Programs attempting to select markers for linkage panels exist but lack flexibility. RESULTS We developed a pedigree-based analysis pipeline (PBAP) suite of programs geared towards SNPs and sequence data. PBAP performs quality control, marker selection and file preparation. PBAP sets up files for MORGAN, which can handle analyses for small and large pedigrees, typically human, and results can be used with other programs and for downstream analyses. We evaluate and illustrate its features with two real datasets. AVAILABILITY AND IMPLEMENTATION PBAP scripts may be downloaded from http://faculty.washington.edu/wijsman/software.shtml. CONTACT wijsman@uw.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - Hiep D Nguyen
- Division of Medical Genetics, Department of Medicine
| | | | - Ellen M Wijsman
- Division of Medical Genetics, Department of Medicine, Department of Biostatistics and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Guimier A, Gabriel GC, Bajolle F, Tsang M, Liu H, Noll A, Schwartz M, El Malti R, Smith LD, Klena NT, Jimenez G, Miller NA, Oufadem M, Moreau de Bellaing A, Yagi H, Saunders CJ, Baker CN, Di Filippo S, Peterson KA, Thiffault I, Bole-Feysot C, Cooley LD, Farrow EG, Masson C, Schoen P, Deleuze JF, Nitschké P, Lyonnet S, de Pontual L, Murray SA, Bonnet D, Kingsmore SF, Amiel J, Bouvagnet P, Lo CW, Gordon CT. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nat Genet 2015; 47:1260-3. [PMID: 26437028 PMCID: PMC5620017 DOI: 10.1038/ng.3376] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/10/2015] [Indexed: 12/26/2022]
Abstract
Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole-exome sequencing, whole-genome sequencing and high-throughput cohort resequencing, we identified recessive mutations in MMP21 (encoding matrix metallopeptidase 21) in nine index cases with heterotaxy. In addition, Mmp21-mutant mice and mmp21-morphant zebrafish displayed heterotaxy and abnormal cardiac looping, respectively, suggesting a new role for extracellular matrix remodeling in the establishment of laterality in vertebrates.
Collapse
Affiliation(s)
- Anne Guimier
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fanny Bajolle
- Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hui Liu
- Laboratoire Cardiogénétique, Hospices Civils de Lyon, Bron, France
- EA 4173, Université Lyon 1 and Hôpital Nord Ouest, Lyon, France
| | - Aaron Noll
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Molly Schwartz
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajae El Malti
- Laboratoire Cardiogénétique, Hospices Civils de Lyon, Bron, France
- EA 4173, Université Lyon 1 and Hôpital Nord Ouest, Lyon, France
| | - Laurie D Smith
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Nikolai T Klena
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gina Jimenez
- Laboratoire Cardiogénétique, Hospices Civils de Lyon, Bron, France
- EA 4173, Université Lyon 1 and Hôpital Nord Ouest, Lyon, France
| | - Neil A Miller
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Myriam Oufadem
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Anne Moreau de Bellaing
- Laboratoire Cardiogénétique, Hospices Civils de Lyon, Bron, France
- EA 4173, Université Lyon 1 and Hôpital Nord Ouest, Lyon, France
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carol J Saunders
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | | | - Sylvie Di Filippo
- Service de Cardiologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | | | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Christine Bole-Feysot
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Linda D Cooley
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Emily G Farrow
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Cécile Masson
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Patric Schoen
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Jean-François Deleuze
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Evry, France
| | - Patrick Nitschké
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
- Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Loic de Pontual
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Damien Bonnet
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
- Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stephen F Kingsmore
- Center for Pediatric Genomic Medicine, Departments of Pediatrics and Pathology, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
- Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Patrice Bouvagnet
- Laboratoire Cardiogénétique, Hospices Civils de Lyon, Bron, France
- EA 4173, Université Lyon 1 and Hôpital Nord Ouest, Lyon, France
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| |
Collapse
|
31
|
Damiano JA, Afawi Z, Bahlo M, Mauermann M, Misk A, Arsov T, Oliver KL, Dahl HHM, Shearer AE, Smith RJH, Hall NE, Mahmood K, Leventer RJ, Scheffer IE, Muona M, Lehesjoki AE, Korczyn AD, Herrmann H, Berkovic SF, Hildebrand MS. Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia. Hum Mol Genet 2015; 24:4483-90. [PMID: 25954030 PMCID: PMC6281347 DOI: 10.1093/hmg/ddv171] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022] Open
Abstract
We studied a consanguineous Palestinian Arab family segregating an autosomal recessive progressive myoclonus epilepsy (PME) with early ataxia. PME is a rare, often fatal syndrome, initially responsive to antiepileptic drugs which over time becomes refractory and can be associated with cognitive decline. Linkage analysis was performed and the disease locus narrowed to chromosome 19p13.3. Fourteen candidate genes were screened by conventional Sanger sequencing and in one, LMNB2, a novel homozygous missense mutation was identified that segregated with the PME in the family. Whole exome sequencing excluded other likely pathogenic coding variants in the linked interval. The p.His157Tyr mutation is located in an evolutionarily highly conserved region of the alpha-helical rod of the lamin B2 protein. In vitro assembly analysis of mutant lamin B2 protein revealed a distinct defect in the assembly of the highly ordered fibrous arrays typically formed by wild-type lamin B2. Our data suggests that disruption of the organisation of the nuclear lamina in neurons, perhaps through abnormal neuronal migration, causes the epilepsy and early ataxia syndrome and extends the aetiology of PMEs to include dysfunction in nuclear lamin proteins.
Collapse
Affiliation(s)
- John A Damiano
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Zaid Afawi
- Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Melanie Bahlo
- Bioinformatics Division, The Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Centre, Heidelberg, Germany
| | - Adel Misk
- Department of Neurology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Todor Arsov
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Karen L Oliver
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Hans-Henrik M Dahl
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - A Eliot Shearer
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Richard J H Smith
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Nathan E Hall
- Life Sciences Computation Centre, VLSCI, Melbourne, VIC, Australia, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Khalid Mahmood
- Life Sciences Computation Centre, VLSCI, Melbourne, VIC, Australia
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia, Murdoch Children's Research Institute, Melbourne, VIC, Australia, Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikko Muona
- Institute for Molecular Medicine, Neuroscience Centre and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland and Folkhålsan Institute of Genetics, Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Institute for Molecular Medicine, Neuroscience Centre and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland and Folkhålsan Institute of Genetics, Helsinki, Finland
| | - Amos D Korczyn
- Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Centre, Heidelberg, Germany
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Michael S Hildebrand
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne, VIC, Australia,
| |
Collapse
|
32
|
Sadleir LG, Paterson S, Smith KR, Redshaw N, Ranta A, Kalnins R, Berkovic SF, Bahlo M, Hildebrand MS, Scheffer IE. Myoclonic occipital photosensitive epilepsy with dystonia (MOPED): A familial epilepsy syndrome. Epilepsy Res 2015; 114:98-105. [DOI: 10.1016/j.eplepsyres.2015.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
33
|
Hildebrand MS, Tankard R, Gazina EV, Damiano JA, Lawrence KM, Dahl HHM, Regan BM, Shearer AE, Smith RJH, Marini C, Guerrini R, Labate A, Gambardella A, Tinuper P, Lichetta L, Baldassari S, Bisulli F, Pippucci T, Scheffer IE, Reid CA, Petrou S, Bahlo M, Berkovic SF. PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy. Ann Clin Transl Neurol 2015; 2:821-30. [PMID: 26339676 PMCID: PMC4554443 DOI: 10.1002/acn3.224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022] Open
Abstract
Objective Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. Methods Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. Results Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. Interpretation PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease.
Collapse
Affiliation(s)
- Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia
| | - Rick Tankard
- Bioinformatics Division, The Walter and Eliza Hall Institute Melbourne, Victoria, Australia
| | - Elena V Gazina
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne Melbourne, Victoria, Australia
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia
| | - Kate M Lawrence
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia
| | - Hans-Henrik M Dahl
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia
| | - Brigid M Regan
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia
| | - Aiden Eliot Shearer
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics Iowa City, Iowa
| | - Richard J H Smith
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics Iowa City, Iowa
| | - Carla Marini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital-University of Florence Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital-University of Florence Florence, Italy
| | - Angelo Labate
- Institute of Neurology, University Magna Græcia Catanzaro, Italy ; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR) Germaneto, CZ, Italy
| | - Antonio Gambardella
- Institute of Neurology, University Magna Græcia Catanzaro, Italy ; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR) Germaneto, CZ, Italy
| | - Paolo Tinuper
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi and Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Laura Lichetta
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi and Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Sara Baldassari
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi and Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Francesca Bisulli
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi and Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi and Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia ; Department of Paediatrics, Royal Children's Hospital, University of Melbourne Melbourne, Victoria, Australia
| | - Christopher A Reid
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne Melbourne, Victoria, Australia
| | - Steven Petrou
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne Melbourne, Victoria, Australia
| | - Melanie Bahlo
- Bioinformatics Division, The Walter and Eliza Hall Institute Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbogurne Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Shaw M, Yap TY, Henden L, Bahlo M, Gardner A, Kalscheuer VM, Haan E, Christie L, Hackett A, Gecz J. Identical by descent L1CAM mutation in two apparently unrelated families with intellectual disability without L1 syndrome. Eur J Med Genet 2015; 58:364-8. [DOI: 10.1016/j.ejmg.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
35
|
Kumar R, Corbett MA, Smith NJC, Jolly LA, Tan C, Keating DJ, Duffield MD, Utsumi T, Moriya K, Smith KR, Hoischen A, Abbott K, Harbord MG, Compton AG, Woenig JA, Arts P, Kwint M, Wieskamp N, Gijsen S, Veltman JA, Bahlo M, Gleeson JG, Haan E, Gecz J. Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder. Hum Mol Genet 2014; 24:2000-10. [DOI: 10.1093/hmg/ddu614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Late-onset spastic ataxia phenotype in a patient with a homozygous DDHD2 mutation. Sci Rep 2014; 4:7132. [PMID: 25417924 PMCID: PMC5384088 DOI: 10.1038/srep07132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/04/2014] [Indexed: 11/08/2022] Open
Abstract
Autosomal recessive cerebellar ataxias and autosomal recessive hereditary spastic paraplegias (ARHSPs) are clinically and genetically heterogeneous neurological disorders. Herein we describe Japanese siblings with a midlife-onset, slowly progressive type of cerebellar ataxia and spastic paraplegia, without intellectual disability. Using whole exome sequencing, we identified a homozygous missense mutation in DDHD2, whose mutations were recently identified as the cause of early-onset ARHSP with intellectual disability. Brain MRI of the patient showed a thin corpus callosum. Cerebral proton magnetic resonance spectroscopy revealed an abnormal lipid peak in the basal ganglia, which has been reported as the hallmark of DDHD2-related ARHSP (SPG 54). The mutation caused a marked reduction of phospholipase A1 activity, supporting that this mutation is the cause of SPG54. Our cases indicate that the possibility of SPG54 should also be considered when patients show a combination of adult-onset spastic ataxia and a thin corpus callosum. Magnetic resonance spectroscopy may be helpful in the differential diagnosis of patients with spastic ataxia phenotype.
Collapse
|
37
|
Lessel D, Vaz B, Halder S, Lockhart PJ, Marinovic-Terzic I, Lopez-Mosqueda J, Philipp M, Sim JCH, Smith KR, Oehler J, Cabrera E, Freire R, Pope K, Nahid A, Norris F, Leventer RJ, Delatycki MB, Barbi G, von Ameln S, Högel J, Degoricija M, Fertig R, Burkhalter MD, Hofmann K, Thiele H, Altmüller J, Nürnberg G, Nürnberg P, Bahlo M, Martin GM, Aalfs CM, Oshima J, Terzic J, Amor DJ, Dikic I, Ramadan K, Kubisch C. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet 2014; 46:1239-44. [PMID: 25261934 PMCID: PMC4343211 DOI: 10.1038/ng.3103] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022]
Abstract
Age-related degenerative and malignant diseases represent major challenges for health care systems. Elucidation of the molecular mechanisms underlying carcinogenesis and age-associated pathologies is thus of growing biomedical relevance. We identified biallelic germline mutations in SPRTN (also called C1orf124 or DVC1) in three patients from two unrelated families. All three patients are affected by a new segmental progeroid syndrome characterized by genomic instability and susceptibility toward early onset hepatocellular carcinoma. SPRTN was recently proposed to have a function in translesional DNA synthesis and the prevention of mutagenesis. Our in vivo and in vitro characterization of identified mutations has uncovered an essential role for SPRTN in the prevention of DNA replication stress during general DNA replication and in replication-related G2/M-checkpoint regulation. In addition to demonstrating the pathogenicity of identified SPRTN mutations, our findings provide a molecular explanation of how SPRTN dysfunction causes accelerated aging and susceptibility toward carcinoma.
Collapse
Affiliation(s)
- Davor Lessel
- 1] Institute of Human Genetics, University of Ulm, Ulm, Germany. [2] Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Swagata Halder
- 1] Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK. [2] Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Paul J Lockhart
- 1] Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia. [2] Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Ivana Marinovic-Terzic
- Department of Immunology and Medical Genetics, University of Split, School of Medicine, Split, Croatia
| | - Jaime Lopez-Mosqueda
- 1] Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt (Main), Germany. [2] Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
| | - Melanie Philipp
- Department of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Joe C H Sim
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Katherine R Smith
- 1] Bioinformatics Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Judith Oehler
- 1] Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK. [2] Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Tenerife, Spain
| | - Kate Pope
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Amsha Nahid
- Bioinformatics Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Fiona Norris
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Richard J Leventer
- 1] Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia. [2] Neuroscience Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia. [3] Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Martin B Delatycki
- 1] Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia. [2] Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia. [3] Clinical Genetics, Austin Health, Heidelberg, Victoria, Australia
| | - Gotthold Barbi
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Simon von Ameln
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Marina Degoricija
- Department of Immunology and Medical Genetics, University of Split, School of Medicine, Split, Croatia
| | - Regina Fertig
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | | | - Kay Hofmann
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- 1] Cologne Center for Genomics, University of Cologne, Cologne, Germany. [2] Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Melanie Bahlo
- 1] Bioinformatics Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia. [2] Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Cora M Aalfs
- Department of Clinical Genetics, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Janos Terzic
- Department of Immunology and Medical Genetics, University of Split, School of Medicine, Split, Croatia
| | - David J Amor
- 1] Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia. [2] Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Ivan Dikic
- 1] Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt (Main), Germany. [2] Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
| | - Kristijan Ramadan
- 1] Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK. [2] Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Christian Kubisch
- 1] Institute of Human Genetics, University of Ulm, Ulm, Germany. [2] Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Bahlo M, Tankard R, Lukic V, Oliver KL, Smith KR. Using familial information for variant filtering in high-throughput sequencing studies. Hum Genet 2014; 133:1331-41. [PMID: 25129038 PMCID: PMC4185103 DOI: 10.1007/s00439-014-1479-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/07/2014] [Indexed: 12/30/2022]
Abstract
High-throughput sequencing studies (HTS) have been highly successful in identifying the genetic causes of human disease, particularly those following Mendelian inheritance. Many HTS studies to date have been performed without utilizing available family relationships between samples. Here, we discuss the many merits and occasional pitfalls of using identity by descent information in conjunction with HTS studies. These methods are not only applicable to family studies but are also useful in cohorts of apparently unrelated, ‘sporadic’ cases and small families underpowered for linkage and allow inference of relationships between individuals. Incorporating familial/pedigree information not only provides powerful filtering options for the extensive variant lists that are usually produced by HTS but also allows valuable quality control checks, insights into the genetic model and the genotypic status of individuals of interest. In particular, these methods are valuable for challenging discovery scenarios in HTS analysis, such as in the study of populations poorly represented in variant databases typically used for filtering, and in the case of poor-quality HTS data.
Collapse
Affiliation(s)
- Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
39
|
Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1. Eur J Hum Genet 2014; 23:486-93. [PMID: 25099250 PMCID: PMC4666572 DOI: 10.1038/ejhg.2014.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/03/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022] Open
Abstract
Disorders of sex development (DSDs) encompass a broad spectrum of conditions affecting the development of the gonads and genitalia. The underlying causes for DSDs include gain or loss of function variants in genes responsible for gonad development or steroidogenesis. Most patients with DSD have an unknown genetic etiology and cannot be given an accurate diagnosis. We used whole exome capture and massively parallel sequencing to analyse a large family with 46,XY DSD and 46,XX premature ovarian insufficiency. In addition, we used a recently developed method for linkage analysis using genotypes extracted from the MPS data. This approach identified a unique linkage peak on chromosome 9 and a novel, 3 bp, in-frame deletion in exon six of NR5A1 (steroidogenic factor-1 or SF1) in all affected individuals. We confirmed that the variant disrupts the SF1 protein and its ability to bind and regulate downstream genes. NR5A1 has key roles at multiple points in gonad development and steroidogenic pathways. The variant described here affects the function of SF1 in early testis development and later ovarian function, ultimately leading to the 46,XY DSD and 46,XX premature ovarian insufficiency phenotypes, respectively. This study shows that even at low coverage, whole exome sequencing, when combined with linkage analysis, can be a powerful tool to identify rapidly the disease-causing variant in large pedigrees.
Collapse
|
40
|
Lim S, Smith K, Stroud D, Compton A, Tucker E, Dasvarma A, Gandolfo L, Marum J, McKenzie M, Peters H, Mowat D, Procopis P, Wilcken B, Christodoulou J, Brown G, Ryan M, Bahlo M, Thorburn D. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome. Am J Hum Genet 2014; 94:209-22. [PMID: 24462369 DOI: 10.1016/j.ajhg.2013.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022] Open
Abstract
Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon.
Collapse
|
41
|
Lee H, Lin MCA, Kornblum HI, Papazian DM, Nelson SF. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet 2014; 23:3481-9. [PMID: 24501278 DOI: 10.1093/hmg/ddu056] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism.
Collapse
Affiliation(s)
- Hane Lee
- Department of Pathology and Laboratory Medicine
| | | | - Harley I Kornblum
- Department of Psychiatry, Department of Molecular and Medical Pharmacology, Department of Pediatrics
| | | | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Stevenson WS, Morel-Kopp MC, Chen Q, Liang HP, Bromhead CJ, Wright S, Turakulov R, Ng AP, Roberts AW, Bahlo M, Ward CM. GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost 2013; 11:2039-47. [PMID: 23927492 DOI: 10.1111/jth.12368] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND GFI1B is a transcription factor important for erythropoiesis and megakaryocyte development but previously unknown to be associated with human disease. METHODS A family with a novel bleeding disorder was identified and characterized. Genetic linkage analysis and massively parallel sequencing were used to localize the mutation causing the disease phenotype on chromosome 9. Functional studies were then performed in megakaryocytic cell lines to determine the biological effects of the mutant transcript. RESULTS We have identified a family with an autosomal dominant bleeding disorder associated with macrothrombocytopenia, red cell anisopoikilocytosis, and platelet dysfunction. The severity of bleeding is variable with some affected individuals experiencing spontaneous bleeding while other family members exhibit only abnormal bleeding with surgery. A single nucleotide insertion was identified in GFI1B that predicts a frameshift mutation in the fifth zinc finger DNA-binding domain. This mutation alters the transcriptional activity of the protein, resulting in a reduction in platelet α-granule content and aberrant expression of key platelet proteins. CONCLUSIONS GFI1B mutation represents a novel human bleeding disorder, and the described phenotype identifies GFI1B as a critical regulator of platelet shape, number, and function.
Collapse
Affiliation(s)
- W S Stevenson
- Department of Haematology, Royal North Shore Hospital, Sydney, NSW, Australia; Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mutations in SH3PXD2B cause Borrone dermato-cardio-skeletal syndrome. Eur J Hum Genet 2013; 22:741-7. [PMID: 24105366 DOI: 10.1038/ejhg.2013.229] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/08/2013] [Accepted: 08/31/2013] [Indexed: 11/08/2022] Open
Abstract
Borrone Dermato-Cardio-Skeletal (BDCS) syndrome is a severe progressive autosomal recessive disorder characterized by coarse facies, thick skin, acne conglobata, dysmorphic facies, vertebral abnormalities and mitral valve prolapse. We identified a consanguineous kindred with a child clinically diagnosed with BDCS. Linkage analysis of this family (BDCS1) identified five regions homozygous by descent with a maximum LOD score of 1.75. Linkage analysis of the family that originally defined BDCS (BDCS3) identified an overlapping linkage peak at chromosome 5q35.1. Sequence analysis identified two different homozygous mutations in BDCS1 and BDCS3, affecting the gene encoding the protein SH3 and PX domains 2B (SH3PXD2B), which localizes to 5q35.1. Western blot analysis of patient fibroblasts derived from affected individuals in both families demonstrated complete loss of SH3PXD2B. Homozygosity mapping and sequence analysis in a second published BDCS family (BDCS2) excluded SH3PXD2B. SH3PXD2B is required for the formation of functional podosomes, and loss-of-function mutations in SH3PXD2B have recently been shown to underlie 7 of 13 families with Frank-Ter Haar syndrome (FTHS). FTHS and BDCS share some overlapping clinical features; therefore, our results demonstrate that a proportion of BDCS and FTHS cases are allelic. Mutations in other gene(s) functioning in podosome formation and regulation are likely to underlie the SH3PXD2B-mutation-negative BDSC/FTHS patients.
Collapse
|
44
|
Kondo Y, Koshimizu E, Megarbane A, Hamanoue H, Okada I, Nishiyama K, Kodera H, Miyatake S, Tsurusaki Y, Nakashima M, Doi H, Miyake N, Saitsu H, Matsumoto N. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies. Am J Med Genet A 2013; 161A:1543-6. [PMID: 23703728 DOI: 10.1002/ajmg.a.35983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/09/2013] [Indexed: 01/21/2023]
Abstract
Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling.
Collapse
Affiliation(s)
- Yukiko Kondo
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Identification and functional study of a new missense mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11). PLoS One 2013; 8:e55178. [PMID: 23383098 PMCID: PMC3558421 DOI: 10.1371/journal.pone.0055178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed.
Collapse
|
46
|
Smith KR, Dahl HHM, Canafoglia L, Andermann E, Damiano J, Morbin M, Bruni AC, Giaccone G, Cossette P, Saftig P, Grötzinger J, Schwake M, Andermann F, Staropoli JF, Sims KB, Mole SE, Franceschetti S, Alexander NA, Cooper JD, Chapman HA, Carpenter S, Berkovic SF, Bahlo M. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet 2013; 22:1417-23. [PMID: 23297359 DOI: 10.1093/hmg/dds558] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.
Collapse
Affiliation(s)
- Katherine R Smith
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oates EC, Reddel S, Rodriguez ML, Gandolfo LC, Bahlo M, Hawke SH, Lamandé SR, Clarke NF, North KN. Autosomal dominant congenital spinal muscular atrophy: a true form of spinal muscular atrophy caused by early loss of anterior horn cells. ACTA ACUST UNITED AC 2012; 135:1714-23. [PMID: 22628388 DOI: 10.1093/brain/aws108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Autosomal dominant congenital spinal muscular atrophy is characterized by predominantly lower limb weakness and wasting, and congenital or early-onset contractures of the hip, knee and ankle. Mutations in TRPV4, encoding a cation channel, have recently been identified in one large dominant congenital spinal muscular atrophy kindred, but the genetic basis of dominant congenital spinal muscular atrophy in many families remains unknown. It has been hypothesized that differences in the timing and site of anterior horn cell loss in the central nervous system account for the variations in clinical phenotype between different forms of spinal muscular atrophy, but there has been a lack of neuropathological data to support this concept in dominant congenital spinal muscular atrophy. We report clinical, electrophysiology, muscle magnetic resonance imaging and histopathology findings in a four generation family with typical dominant congenital spinal muscular atrophy features, without mutations in TRPV4, and in whom linkage to other known dominant neuropathy and spinal muscular atrophy genes has been excluded. The autopsy findings in the proband, who died at 14 months of age from an unrelated illness, provided a rare opportunity to study the neuropathological basis of dominant congenital spinal muscular atrophy. There was a reduction in anterior horn cell number in the lumbar and, to a lesser degree, the cervical spinal cord, and atrophy of the ventral nerve roots at these levels, in the absence of additional peripheral nerve pathology or abnormalities elsewhere along the neuraxis. Despite the young age of the child at the time of autopsy, there was no pathological evidence of ongoing loss or degeneration of anterior horn cells suggesting that anterior horn cell loss in dominant congenital spinal muscular atrophy occurs in early life, and is largely complete by the end of infancy. These findings confirm that dominant congenital spinal muscular atrophy is a true form of spinal muscular atrophy caused by a loss of anterior horn cells localized to lumbar and cervical regions early in development.
Collapse
Affiliation(s)
- Emily C Oates
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales, 2145, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smith K, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, Rossi G, Pareyson D, Mole S, Staropoli J, Sims K, Lewis J, Lin WL, Dickson D, Dahl HH, Bahlo M, Berkovic S. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 2012; 90:1102-7. [PMID: 22608501 DOI: 10.1016/j.ajhg.2012.04.021] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/21/2012] [Accepted: 04/26/2012] [Indexed: 01/19/2023] Open
Abstract
We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.
Collapse
|
49
|
Smith KR, Bromhead CJ, Hildebrand MS, Shearer AE, Lockhart PJ, Najmabadi H, Leventer RJ, McGillivray G, Amor DJ, Smith RJ, Bahlo M. Reducing the exome search space for mendelian diseases using genetic linkage analysis of exome genotypes. Genome Biol 2011; 12:R85. [PMID: 21917141 PMCID: PMC3308048 DOI: 10.1186/gb-2011-12-9-r85] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/28/2011] [Accepted: 09/13/2011] [Indexed: 11/29/2022] Open
Abstract
Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.
Collapse
Affiliation(s)
- Katherine R Smith
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Doi H, Yoshida K, Yasuda T, Fukuda M, Fukuda Y, Morita H, Ikeda SI, Kato R, Tsurusaki Y, Miyake N, Saitsu H, Sakai H, Miyatake S, Shiina M, Nukina N, Koyano S, Tsuji S, Kuroiwa Y, Matsumoto N. Exome sequencing reveals a homozygous SYT14 mutation in adult-onset, autosomal-recessive spinocerebellar ataxia with psychomotor retardation. Am J Hum Genet 2011; 89:320-7. [PMID: 21835308 DOI: 10.1016/j.ajhg.2011.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 01/29/2023] Open
Abstract
Autosomal-recessive cerebellar ataxias (ARCAs) are clinically and genetically heterogeneous disorders associated with diverse neurological and nonneurological features that occur before the age of 20. Currently, mutations in more than 20 genes have been identified, but approximately half of the ARCA patients remain genetically unresolved. In this report, we describe a Japanese family in which two siblings have slow progression of a type of ARCA with psychomotor retardation. Using whole-exome sequencing combined with homozygosity mapping, we identified a homozygous missense mutation in SYT14, encoding synaptotagmin XIV (SYT14). Expression analysis of the mRNA of SYT14 by a TaqMan assay confirmed that SYT14 mRNA was highly expressed in human fetal and adult brain tissue as well as in the mouse brain (especially in the cerebellum). In an in vitro overexpression system, the mutant SYT14 showed intracellular localization different from that of the wild-type. An immunohistochemical analysis clearly showed that SYT14 is specifically localized to Purkinje cells of the cerebellum in humans and mice. Synaptotagmins are associated with exocytosis of secretory vesicles (including synaptic vesicles), indicating that the alteration of the membrane-trafficking machinery by the SYT14 mutation may represent a distinct pathomechanism associated with human neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroshi Doi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|