1
|
Weber F, Axmann M, Sezgin E, Amaro M, Sych T, Hochreiner A, Hof M, Schütz GJ, Stangl H, Plochberger B. "Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein. MEMBRANES 2024; 14:261. [PMID: 39728711 PMCID: PMC11677176 DOI: 10.3390/membranes14120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.
Collapse
Affiliation(s)
- Florian Weber
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet,171 77 Solna, Sweden; (E.S.); (T.S.)
| | - Markus Axmann
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet,171 77 Solna, Sweden; (E.S.); (T.S.)
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Science, 182 00 Prague, Czech Republic; (M.A.); (M.H.)
| | - Taras Sych
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet,171 77 Solna, Sweden; (E.S.); (T.S.)
| | - Armin Hochreiner
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Science, 182 00 Prague, Czech Republic; (M.A.); (M.H.)
| | | | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Plochberger
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria (M.A.); (A.H.)
- Research Group Nanoscopy, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| |
Collapse
|
2
|
Jain A, Nakahata Y, Pancani T, Watabe T, Rusina P, South K, Adachi K, Yan L, Simorowski N, Furukawa H, Yasuda R. Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature 2024; 635:151-159. [PMID: 39385027 PMCID: PMC11540904 DOI: 10.1038/s41586-024-08021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Behavioural time scale plasticity (BTSP) is non-Hebbian plasticity induced by integrating presynaptic and postsynaptic components separated by a behaviourally relevant time scale (seconds)1. BTSP in hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms that enable synapse-specific plasticity on a behavioural time scale are unknown. Here we show that BTSP can be induced in a single dendritic spine using two-photon glutamate uncaging paired with postsynaptic current injection temporally separated by a behavioural time scale. Using an improved Ca2+/calmodulin-dependent kinase II (CaMKII) sensor, we did not detect CaMKII activation during this BTSP induction. Instead, we observed dendritic, delayed and stochastic CaMKII activation (DDSC) associated with Ca2+ influx and plateau potentials 10-100 s after BTSP induction. DDSC required both presynaptic and postsynaptic activity, which suggests that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 15-30 s after the BTSP protocol inhibited synaptic potentiation, which indicated that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca2+ release facilitated both DDSC and BTSP. Thus, our study suggests that non-synapse-specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Collapse
Affiliation(s)
- Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Centre for High Impact Neuroscience and Translational Applications (CHINTA), TCG CREST, Kolkata, India
| | - Yoshihisa Nakahata
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Tristano Pancani
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Tetsuya Watabe
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Polina Rusina
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kelly South
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kengo Adachi
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Long Yan
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Noriko Simorowski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
3
|
Shrestha D, Bahasoan Y, Eggeling C. Cellular Output and Physicochemical Properties of the Membrane-Derived Vesicles Depend on Chemical Stimulants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48982-48992. [PMID: 39250321 PMCID: PMC11420866 DOI: 10.1021/acsami.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Synthetic liposomes are widely used as drug delivery vehicles in biomedical treatments, such as for mRNA-based antiviral vaccines like those recently developed against SARS-CoV-2. Extracellular vesicles (EVs), which are naturally produced by cells, have emerged as a next-generation delivery system. However, key questions regarding their origin within cells remain unresolved. In this regard, plasma membrane vesicles (PMVs), which are essentially produced from the cellular plasma membrane (PM), present a promising alternative. Unfortunately, their properties relevant to biomedical applications have not be extensively studied. Therefore, we conducted a thorough investigation of the methods used in the production of PMVs. By leveraging advanced fluorescence techniques in microscopy and flow cytometry, we demonstrated a strong dependence of the physicochemical attributes of PMVs on the chemicals used during their production. Following established protocols employing chemicals such as paraformaldehyde (PFA), N-ethylmaleimide (NEM) or dl-dithiothreitol (DTT) and by developing a modified NEM-based method that involved a hypotonic shock step, we generated PMVs from THP-1 CD1d cells. We systematically compared key parameters such as vesicle output, their size distribution, vesicular content analysis, vesicular membrane lipid organization and the mobility of a transmembrane protein. Our results revealed distinct trends: PMVs isolated using NEM-based protocols closely resembled natural vesicles, whereas PFA induced significant molecular cross-linking, leading to notable changes in the biophysical properties of the vesicles. Furthermore, our novel NEM protocol enhanced the efficiency of PMV production. In conclusion, our study highlights the unique characteristics of chemically produced PMVs and offers insights into their potentially diverse yet valuable biological functions.
Collapse
Affiliation(s)
- Dilip Shrestha
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Yusuf Bahasoan
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
| | - Christian Eggeling
- MRC
Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K.
- Department
of Biophysical Imaging, Leibniz Institute
of Photonic Technologies e.V., member of the Leibniz Centre for Photonics
in Infection Research (LPI), Albert- Einstein Strasse 9, 07745 Jena, Germany
- Institute
of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
4
|
Schneider F, Cespedes PF, Karedla N, Dustin ML, Fritzsche M. Quantifying biomolecular organisation in membranes with brightness-transit statistics. Nat Commun 2024; 15:7082. [PMID: 39152104 PMCID: PMC11329664 DOI: 10.1038/s41467-024-51435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Cells crucially rely on the interactions of biomolecules at their plasma membrane to maintain homeostasis. Yet, a methodology to systematically quantify biomolecular organisation, measuring diffusion dynamics and oligomerisation, represents an unmet need. Here, we introduce the brightness-transit statistics (BTS) method based on fluorescence fluctuation spectroscopy and combine information from brightness and transit times to elucidate biomolecular diffusion and oligomerisation in both cell-free in vitro and in vitro systems incorporating living cells. We validate our approach in silico with computer simulations and experimentally using oligomerisation of EGFP tethered to supported lipid bilayers. We apply our pipeline to study the oligomerisation of CD40 ectodomain in vitro and endogenous CD40 on primary B cells. While we find a potential for CD40 to oligomerize in a concentration or ligand depended manner, we do not observe mobile oligomers on B cells. The BTS method combines sensitive analysis, quantification, and intuitive visualisation of dynamic biomolecular organisation.
Collapse
Affiliation(s)
- Falk Schneider
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Translational Imaging Center, University of Southern California, Los Angeles, California, 90089, United States of America.
| | - Pablo F Cespedes
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Narain Karedla
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
5
|
Murdoch TJ, Quienne B, Pinaud J, Caillol S, Martín-Fabiani I. Understanding associative polymer self-assembly with shrinking gate fluorescence correlation spectroscopy. NANOSCALE 2024; 16:12660-12669. [PMID: 38888295 DOI: 10.1039/d4nr00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The self-assembly of polymers is integral to their role in liquid formulations. In this study, we combine a dye whose lifetime is sensitive to the nanoviscosity of its local environment with shrinking gate fluorescence correlation spectroscopy (sgFCS) to study the self-assembly of a model telechelic polymer, hydrophobically modified ethoxylated urethane (HEUR). Fluorescence lifetime measurements show a monotonic increase in average lifetime with increasing HEUR concentration driven by a small fraction of dye (<1%) with long lifetimes strongly bound to HEUR. Despite this small fraction, sgFCS isolates the diffusional dynamics of the bound fraction with no a priori assumptions as to the distribution of lifetimes. Sensitivity is greatly enhanced compared to standard FCS, revealing micellar aggregates forming between 0.2 and 1 wt% followed by formation of a percolated network. This sgFCS approach, which we apply for the first time to polymers in this work, is readily extendable to any dye that changes lifetime on binding.
Collapse
Affiliation(s)
- Timothy J Murdoch
- Department of Materials, Loughborough University, LE11 1RJ Loughborough, UK.
| | | | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
6
|
Dasgupta A, Koerfer A, Kokot B, Urbančič I, Eggeling C, Carravilla P. Effects and avoidance of photoconversion-induced artifacts in confocal and STED microscopy. Nat Methods 2024; 21:1171-1174. [PMID: 38834747 PMCID: PMC11543600 DOI: 10.1038/s41592-024-02297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Fluorescence microscopy is limited by photoconversion due to continuous illumination, which results in not only photobleaching but also conversion of fluorescent molecules into species of different spectral properties through photoblueing. Here, we determined different fluorescence parameters of photoconverted products for various fluorophores under standard confocal and stimulated emission depletion (STED) microscopy conditions. We observed changes in both fluorescence spectra and lifetimes that can cause artifacts in quantitative measurements, which can be avoided by using exchangeable dyes.
Collapse
Affiliation(s)
- Anindita Dasgupta
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology e.V., member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Agnes Koerfer
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology e.V., member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | | | | | - Christian Eggeling
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute of Photonic Technology e.V., member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.
- Jena Center for Soft Matter (JCSM), Jena, Germany.
| | - Pablo Carravilla
- Leibniz Institute of Photonic Technology e.V., member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
7
|
Seltmann A, Carravilla P, Reglinski K, Eggeling C, Waithe D. Neural network informed photon filtering reduces fluorescence correlation spectroscopy artifacts. Biophys J 2024; 123:745-755. [PMID: 38384131 PMCID: PMC10995453 DOI: 10.1016/j.bpj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Fluorescence correlation spectroscopy (FCS) techniques are well-established tools to investigate molecular dynamics in confocal and super-resolution microscopy. In practice, users often need to handle a variety of sample- or hardware-related artifacts, an example being peak artifacts created by bright, slow-moving clusters. Approaches to address peak artifacts exist, but measurements suffering from severe artifacts are typically nonanalyzable. Here, we trained a one-dimensional U-Net to automatically identify peak artifacts in fluorescence time series and then analyzed the purified, nonartifactual fluctuations by time-series editing. We show that, in samples with peak artifacts, the transit time and particle number distributions can be restored in simulations and validated the approach in two independent biological experiments. We propose that it is adaptable for other FCS artifacts, such as detector dropout, membrane movement, or photobleaching. In conclusion, this simulation-based, automated, open-source pipeline makes measurements analyzable that previously had to be discarded and extends every FCS user's experimental toolbox.
Collapse
Affiliation(s)
- Alexander Seltmann
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany.
| | | | - Katharina Reglinski
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Eggeling
- Institute for Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - Dominic Waithe
- MRC Centre for Computational Biology and Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Brans V, Gray MD, Sezgin E, Stride EPJ. Protein-Decorated Microbubbles for Ultrasound-Mediated Cell Surface Manipulation. ACS APPLIED BIO MATERIALS 2023; 6:5746-5758. [PMID: 38048163 PMCID: PMC10731656 DOI: 10.1021/acsabm.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Delivering cargo to the cell membranes of specific cell types in the body is a major challenge for a range of treatments, including immunotherapy. This study investigates employing protein-decorated microbubbles (MBs) and ultrasound (US) to "tag" cellular membranes of interest with a specific protein. Phospholipid-coated MBs were produced and functionalized with a model protein using a metallochelating complex through an NTA(Ni) and histidine residue interaction. Successful "tagging" of the cellular membrane was observed using microscopy in adherent cells and was promoted by US exposure. Further modification of the MB surface to enable selective binding to target cells was then achieved by functionalizing the MBs with a targeting protein (transferrin) that specifically binds to a receptor on the target cell membrane. Attachment and subsequent transfer of material from MBs functionalized with transferrin to the target cells significantly increased, even in the absence of US. This work demonstrates the potential of these MBs as a platform for the noninvasive delivery of proteins to the surface of specific cell types.
Collapse
Affiliation(s)
- Veerle
A. Brans
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| | - Michael D. Gray
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| | - Erdinc Sezgin
- Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Eleanor P. J. Stride
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| |
Collapse
|
9
|
Jain A, Nakahata Y, Watabe T, Rusina P, South K, Adachi K, Yan L, Simorowski N, Furukawa H, Yasuda R. Dendritic, delayed, and stochastic CaMKII activation underlies behavioral time scale plasticity in CA1 synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.549180. [PMID: 37577549 PMCID: PMC10418109 DOI: 10.1101/2023.08.01.549180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Behavioral time scale plasticity (BTSP), is a form of non-Hebbian plasticity induced by integrating pre- and postsynaptic components separated by behavioral time scale (seconds). BTSP in the hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms underlying this behavioral time scale (eligibility trace) and synapse specificity are unknown. CaMKII can be activated in a synapse-specific manner and remain active for a few seconds, making it a compelling candidate for the eligibility trace during BTSP. Here, we show that BTSP can be induced in a single dendritic spine using 2-photon glutamate uncaging paired with postsynaptic current injection temporally separated by behavioral time scale. Using an improved CaMKII sensor, we saw no detectable CaMKII activation during this BTSP induction. Instead, we observed a dendritic, delayed, and stochastic CaMKII activation (DDSC) associated with Ca 2+ influx and plateau 20-40 s after BTSP induction. DDSC requires both pre-and postsynaptic activity, suggesting that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 30 s after the BTSP protocol inhibited synaptic potentiation, indicating that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca 2+ release facilitates both DDSC and BTSP. Thus, our study suggests that the non-synapse specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Collapse
|
10
|
Sternstein C, Böhm TM, Fink J, Meyr J, Lüdemann M, Krug M, Kriukov K, Gurdap CO, Sezgin E, Ebert R, Seibel J. Development of an Effective Functional Lipid Anchor for Membranes (FLAME) for the Bioorthogonal Modification of the Lipid Bilayer of Mesenchymal Stromal Cells. Bioconjug Chem 2023; 34:1221-1233. [PMID: 37328799 DOI: 10.1021/acs.bioconjchem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).
Collapse
Affiliation(s)
- Christine Sternstein
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa-Maria Böhm
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Meyr
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Lüdemann
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Kirill Kriukov
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Gurdap CO, Wedemann L, Sych T, Sezgin E. Influence of the extracellular domain size on the dynamic behavior of membrane proteins. Biophys J 2022; 121:3826-3836. [PMID: 36110044 PMCID: PMC9674980 DOI: 10.1016/j.bpj.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic behavior of plasma membrane proteins mediates various cellular processes such as cellular motility, communication, and signaling. It is widely accepted that the dynamics of the membrane proteins is determined either by the interactions of the transmembrane domain with the surrounding lipids or by the interactions of the intracellular domain with cytosolic components such as cortical actin. Although initiation of different cellular signaling events at the plasma membrane has been attributed to the extracellular domain (ECD) properties recently, the impact of ECDs on the dynamic behavior of membrane proteins is rather unexplored. Here, we investigate how ECD properties influence protein dynamics in the lipid bilayer by reconstituting ECDs of different sizes or glycosylation in model membrane systems and analyzing ECD-driven protein sorting in lipid domains as well as protein mobility. Our data show that increasing the ECD mass or glycosylation leads to a decrease in ordered domain partitioning and diffusivity. Our data reconcile different mechanisms proposed for the initiation of cellular signaling by linking the ECD size of membrane proteins with their localization and diffusion dynamics in the plasma membrane.
Collapse
Affiliation(s)
- Cenk Onur Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linda Wedemann
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
12
|
Steinacker TL, Wong SS, Novak ZA, Saurya S, Gartenmann L, van Houtum EJ, Sayers JR, Lagerholm BC, Raff JW. Centriole growth is limited by the Cdk/Cyclin-dependent phosphorylation of Ana2/STIL. J Cell Biol 2022; 221:e202205058. [PMID: 35861803 PMCID: PMC9442473 DOI: 10.1083/jcb.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Centrioles duplicate once per cell cycle, but it is unclear how daughter centrioles assemble at the right time and place and grow to the right size. Here, we show that in Drosophila embryos the cytoplasmic concentrations of the key centriole assembly proteins Asl, Plk4, Ana2, Sas-6, and Sas-4 are low, but remain constant throughout the assembly process-indicating that none of them are limiting for centriole assembly. The cytoplasmic diffusion rate of Ana2/STIL, however, increased significantly toward the end of S-phase as Cdk/Cyclin activity in the embryo increased. A mutant form of Ana2 that cannot be phosphorylated by Cdk/Cyclins did not exhibit this diffusion change and allowed daughter centrioles to grow for an extended period. Thus, the Cdk/Cyclin-dependent phosphorylation of Ana2 seems to reduce the efficiency of daughter centriole assembly toward the end of S-phase. This helps to ensure that daughter centrioles stop growing at the correct time, and presumably also helps to explain why centrioles cannot duplicate during mitosis.
Collapse
Affiliation(s)
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Zsofia A. Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Judith R. Sayers
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Aydogan MG, Hankins LE, Steinacker TL, Mofatteh M, Saurya S, Wainman A, Wong SS, Lu X, Zhou FY, Raff JW. Centriole distal-end proteins CP110 and Cep97 influence centriole cartwheel growth at the proximal-end. J Cell Sci 2022; 135:275722. [PMID: 35707992 PMCID: PMC9450887 DOI: 10.1242/jcs.260015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are composed of a central cartwheel tethered to nine-fold symmetric microtubule (MT) blades. The centriole cartwheel and MTs are thought to grow from opposite ends of these organelles, so it is unclear how they coordinate their assembly. We previously showed that in Drosophila embryos an oscillation of Polo-like kinase 4 (Plk4) helps to initiate and time the growth of the cartwheel at the proximal end. Here, in the same model, we show that CP110 and Cep97 form a complex close to the distal-end of the centriole MTs whose levels rise and fall as the new centriole MTs grow, in a manner that appears to be entrained by the core cyclin-dependent kinase (Cdk)–Cyclin oscillator that drives the nuclear divisions in these embryos. These CP110 and Cep97 dynamics, however, do not appear to time the period of centriole MT growth directly. Instead, we find that changing the levels of CP110 and Cep97 appears to alter the Plk4 oscillation and the growth of the cartwheel at the proximal end. These findings reveal an unexpected potential crosstalk between factors normally concentrated at opposite ends of the growing centrioles, which might help to coordinate centriole growth. This article has an associated First Person interview with the first authors of the paper. Summary: Cp110 and Cep97, proteins that are normally located at the distal-end of the centriole, appear able to influence the assembly of the centriole cartwheel at the proximal end.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Laura E Hankins
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Galiani S, Reglinski K, Carravilla P, Barbotin A, Urbančič I, Ott J, Sehr J, Sezgin E, Schneider F, Waithe D, Hublitz P, Schliebs W, Erdmann R, Eggeling C. Diffusion and interaction dynamics of the cytosolic peroxisomal import receptor PEX5. BIOPHYSICAL REPORTS 2022; 2:None. [PMID: 36299769 PMCID: PMC9586885 DOI: 10.1016/j.bpr.2022.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Cellular functions rely on proper actions of organelles such as peroxisomes. These organelles rely on the import of proteins from the cytosol. The peroxisomal import receptor PEX5 takes up target proteins in the cytosol and transports them to the peroxisomal matrix. However, its cytosolic molecular interactions have so far not directly been disclosed. Here, we combined advanced optical microscopy and spectroscopy techniques such as fluorescence correlation spectroscopy and stimulated emission depletion microscopy with biochemical tools to present a detailed characterization of the cytosolic diffusion and interaction dynamics of PEX5. Among other features, we highlight a slow diffusion of PEX5, independent of aggregation or target binding, but associated with cytosolic interaction partners via its N-terminal domain. This sheds new light on the functionality of the receptor in the cytosol as well as highlighting the potential of using complementary microscopy tools to decipher molecular interactions in the cytosol by studying their diffusion dynamics.
Collapse
Affiliation(s)
- S. Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - K. Reglinski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Leibniz-Institute of Photonic Technologies e.V., Jena, Germany
- Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- University Hospital Jena, Jena, Germany
| | - P. Carravilla
- Leibniz-Institute of Photonic Technologies e.V., Jena, Germany
- Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - A. Barbotin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - I. Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - J. Ott
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - J. Sehr
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - E. Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - F. Schneider
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - D. Waithe
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- WIMM Centre for Computational Biology , MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - P. Hublitz
- WIMM Genome Engineering Services, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - W. Schliebs
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - R. Erdmann
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - C. Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Leibniz-Institute of Photonic Technologies e.V., Jena, Germany
- Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Jena, Germany
| |
Collapse
|
15
|
Colin-York H, Heddleston J, Wait E, Karedla N, deSantis M, Khuon S, Chew TL, Sbalzarini IF, Fritzsche M. Quantifying Molecular Dynamics within Complex Cellular Morphologies using LLSM-FRAP. SMALL METHODS 2022; 6:e2200149. [PMID: 35344286 DOI: 10.1002/smtd.202200149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Quantifying molecular dynamics within the context of complex cellular morphologies is essential toward understanding the inner workings and function of cells. Fluorescence recovery after photobleaching (FRAP) is one of the most broadly applied techniques to measure the reaction diffusion dynamics of molecules in living cells. FRAP measurements typically restrict themselves to single-plane image acquisition within a subcellular-sized region of interest due to the limited temporal resolution and undesirable photobleaching induced by 3D fluorescence confocal or widefield microscopy. Here, an experimental and computational pipeline combining lattice light sheet microscopy, FRAP, and numerical simulations, offering rapid and minimally invasive quantification of molecular dynamics with respect to 3D cell morphology is presented. Having the opportunity to accurately measure and interpret the dynamics of molecules in 3D with respect to cell morphology has the potential to reveal unprecedented insights into the function of living cells.
Collapse
Affiliation(s)
- Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK
| | - John Heddleston
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Eric Wait
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Narain Karedla
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, UK
| | - Michael deSantis
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Ivo F Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, 01187, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, UK
| |
Collapse
|
16
|
Hanke L, Das H, Sheward DJ, Perez Vidakovics L, Urgard E, Moliner-Morro A, Kim C, Karl V, Pankow A, Smith NL, Porebski B, Fernandez-Capetillo O, Sezgin E, Pedersen GK, Coquet JM, Hällberg BM, Murrell B, McInerney GM. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat Commun 2022; 13:155. [PMID: 35013189 PMCID: PMC8748511 DOI: 10.1038/s41467-021-27610-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vivien Karl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alec Pankow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalie L Smith
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bartlomiej Porebski
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Karolinska Institutet VR-RÅC, Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany.
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Hanke L, Das H, Sheward DJ, Perez Vidakovics L, Urgard E, Moliner-Morro A, Kim C, Karl V, Pankow A, Smith NL, Porebski B, Fernandez-Capetillo O, Sezgin E, Pedersen GK, Coquet JM, Hällberg BM, Murrell B, McInerney GM. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat Commun 2022. [PMID: 35013189 DOI: 10.1101/2021.03.20.436243v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vivien Karl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alec Pankow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalie L Smith
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bartlomiej Porebski
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Karolinska Institutet VR-RÅC, Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany.
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Carravilla P, Dasgupta A, Zhurgenbayeva G, Danylchuk DI, Klymchenko AS, Sezgin E, Eggeling C. Long-term STED imaging of membrane packing and dynamics by exchangeable polarity-sensitive dyes. BIOPHYSICAL REPORTS 2021; 1:None. [PMID: 34939048 PMCID: PMC8651516 DOI: 10.1016/j.bpr.2021.100023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022]
Abstract
Understanding the plasma membrane nanoscale organization and dynamics in living cells requires microscopy techniques with high spatial and temporal resolution that permit for long acquisition times and allow for the quantification of membrane biophysical properties, such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolutions, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dye is showcased by live-cell real-time three-dimensional STED recordings of bleb formation and lipid exchange during membrane fusion as well as by STED-fluorescence correlation spectroscopy experiments for the simultaneous quantification of membrane dynamics and lipid packing that correlate in model and live-cell membranes.
Collapse
Affiliation(s)
- Pablo Carravilla
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
| | - Anindita Dasgupta
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Dmytro I. Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Christian Eggeling
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Jena Center for Soft Matter, Jena, Germany
| |
Collapse
|
19
|
Rota IA, Handel AE, Maio S, Klein F, Dhalla F, Deadman ME, Cheuk S, Newman JA, Michaels YS, Zuklys S, Prevot N, Hublitz P, Charles PD, Gkazi AS, Adamopoulou E, Qasim W, Davies EG, Hanson I, Pagnamenta AT, Camps C, Dreau HM, White A, James K, Fischer R, Gileadi O, Taylor JC, Fulga T, Lagerholm BC, Anderson G, Sezgin E, Holländer GA. FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. SCIENCE ADVANCES 2021; 7:eabj9247. [PMID: 34860543 PMCID: PMC8641933 DOI: 10.1126/sciadv.abj9247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor’s transcriptional activity. FOXN1’s C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.
Collapse
Affiliation(s)
- Ioanna A. Rota
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam E. Handel
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fabian Klein
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joseph A. Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Yale S. Michaels
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saulius Zuklys
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
| | - Nicolas Prevot
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Philip Hublitz
- MRC Weatherall Institute of Molecular Medicine, Genome engineering services, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D. Charles
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Athina Soragia Gkazi
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Eleni Adamopoulou
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Waseem Qasim
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Edward Graham Davies
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Imelda Hanson
- Department of Pediatrics, Section of Pediatric Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carme Camps
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helene M. Dreau
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrea White
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Kieran James
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tudor Fulga
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - B. Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Erdinc Sezgin
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Georg A. Holländer
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
20
|
Urbančič I, Schiffelers L, Jenkins E, Gong W, Santos AM, Schneider F, O'Brien-Ball C, Vuong MT, Ashman N, Sezgin E, Eggeling C. Aggregation and mobility of membrane proteins interplay with local lipid order in the plasma membrane of T cells. FEBS Lett 2021; 595:2127-2146. [PMID: 34160065 DOI: 10.1002/1873-3468.14153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
To disentangle the elusive lipid-protein interactions in T-cell activation, we investigate how externally imposed variations in mobility of key membrane proteins (T-cell receptor [TCR], kinase Lck, and phosphatase CD45) affect the local lipid order and protein colocalisation. Using spectral imaging with polarity-sensitive membrane probes in model membranes and live Jurkat T cells, we find that partial immobilisation of proteins (including TCR) by aggregation or ligand binding changes their preference towards a more ordered lipid environment, which can recruit Lck. Our data suggest that the cellular membrane is poised to modulate the frequency of protein encounters upon alterations of their mobility, for example in ligand binding, which offers new mechanistic insight into the involvement of lipid-mediated interactions in membrane-hosted signalling events.
Collapse
Affiliation(s)
- Iztok Urbančič
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Lisa Schiffelers
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Edward Jenkins
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Weijian Gong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Ana Mafalda Santos
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Falk Schneider
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | - Mai Tuyet Vuong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Nicole Ashman
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
- Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Christian Eggeling
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Jena, Germany
| |
Collapse
|
21
|
Ozalp O, Cark O, Azbazdar Y, Haykir B, Cucun G, Kucukaylak I, Alkan-Yesilyurt G, Sezgin E, Ozhan G. Nradd Acts as a Negative Feedback Regulator of Wnt/β-Catenin Signaling and Promotes Apoptosis. Biomolecules 2021; 11:100. [PMID: 33466728 PMCID: PMC7828832 DOI: 10.3390/biom11010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling controls many biological processes for the generation and sustainability of proper tissue size, organization and function during development and homeostasis. Consequently, mutations in the Wnt pathway components and modulators cause diseases, including genetic disorders and cancers. Targeted treatment of pathway-associated diseases entails detailed understanding of the regulatory mechanisms that fine-tune Wnt signaling. Here, we identify the neurotrophin receptor-associated death domain (Nradd), a homolog of p75 neurotrophin receptor (p75NTR), as a negative regulator of Wnt/β-catenin signaling in zebrafish embryos and in mammalian cells. Nradd significantly suppresses Wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Nradd is localized at the plasma membrane, physically interacts with the Wnt receptor complex and enhances apoptosis in cooperation with Wnt/β-catenin signaling. Our functional analyses indicate that the N-glycosylated N-terminus and the death domain-containing C-terminus regions are necessary for both the inhibition of Wnt signaling and apoptosis. Finally, Nradd can induce apoptosis in mammalian cells. Thus, Nradd regulates cell death as a modifier of Wnt/β-catenin signaling during development.
Collapse
Affiliation(s)
- Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Ozge Cark
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Betul Haykir
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gokhan Cucun
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Ismail Kucukaylak
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Institute of Zoology-Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Gozde Alkan-Yesilyurt
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden;
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, UK
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| |
Collapse
|
22
|
Plochberger B, Sych T, Weber F, Novacek J, Axmann M, Stangl H, Sezgin E. Lipoprotein Particles Interact with Membranes and Transfer Their Cargo without Receptors. Biochemistry 2020; 59:4421-4428. [PMID: 33147967 PMCID: PMC7677925 DOI: 10.1021/acs.biochem.0c00748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipid transfer from lipoprotein particles to cells is essential for lipid homeostasis. High-density lipoprotein (HDL) particles are mainly captured by cell membrane-associated scavenger receptor class B type 1 (SR-B1) from the bloodstream, while low-density and very-low-density lipoprotein (LDL and VLDL, respectively) particles are mostly taken up by receptor-mediated endocytosis. However, the role of the target lipid membrane itself in the transfer process has been largely neglected so far. Here, we study how lipoprotein particles (HDL, LDL, and VLDL) interact with synthetic lipid bilayers and cell-derived membranes and transfer their cargo subsequently. Employing cryo-electron microscopy, spectral imaging, and fluorescence (cross) correlation spectroscopy allowed us to observe integration of all major types of lipoprotein particles into the membrane and delivery of their cargo in a receptor-independent manner. Importantly, the biophysical properties of the target cell membranes change upon delivery of cargo. The concept of receptor-independent interaction of lipoprotein particles with membranes helps us to better understand lipoprotein particle biology and can be exploited for novel treatments of dyslipidemia diseases.
Collapse
Affiliation(s)
- Birgit Plochberger
- TU Wien, Institute of Applied Physics, Vienna 1040, Austria.,Johannes Kepler University Linz, Institute of Biophysics, Linz 4020, Austria.,Upper Austria University of Applied Sciences, Campus Linz, Linz 4020, Austria
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Florian Weber
- Upper Austria University of Applied Sciences, Campus Linz, Linz 4020, Austria.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Jiri Novacek
- CEITEC, Masaryk University, University Campus Bohunice, Brno 62500, Czech Republic
| | - Markus Axmann
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna 1090, Austria
| | - Herbert Stangl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna 1090, Austria
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| |
Collapse
|
23
|
Titlow J, Robertson F, Järvelin A, Ish-Horowicz D, Smith C, Gratton E, Davis I. Syncrip/hnRNP Q is required for activity-induced Msp300/Nesprin-1 expression and new synapse formation. J Cell Biol 2020; 219:133707. [PMID: 32040548 PMCID: PMC7055005 DOI: 10.1083/jcb.201903135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
Memory and learning involve activity-driven expression of proteins and cytoskeletal reorganization at new synapses, requiring posttranscriptional regulation of localized mRNA a long distance from corresponding nuclei. A key factor expressed early in synapse formation is Msp300/Nesprin-1, which organizes actin filaments around the new synapse. How Msp300 expression is regulated during synaptic plasticity is poorly understood. Here, we show that activity-dependent accumulation of Msp300 in the postsynaptic compartment of the Drosophila larval neuromuscular junction is regulated by the conserved RNA binding protein Syncrip/hnRNP Q. Syncrip (Syp) binds to msp300 transcripts and is essential for plasticity. Single-molecule imaging shows that msp300 is associated with Syp in vivo and forms ribosome-rich granules that contain the translation factor eIF4E. Elevated neural activity alters the dynamics of Syp and the number of msp300:Syp:eIF4E RNP granules at the synapse, suggesting that these particles facilitate translation. These results introduce Syp as an important early acting activity-dependent regulator of a plasticity gene that is strongly associated with human ataxias.
Collapse
Affiliation(s)
- Joshua Titlow
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Aino Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David Ish-Horowicz
- Department of Biochemistry, University of Oxford, Oxford, UK.,Medical Research Council Lab for Molecular Cell Biology, University College London, London, UK
| | - Carlas Smith
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Aydogan MG, Steinacker TL, Mofatteh M, Wilmott ZM, Zhou FY, Gartenmann L, Wainman A, Saurya S, Novak ZA, Wong SS, Goriely A, Boemo MA, Raff JW. An Autonomous Oscillation Times and Executes Centriole Biogenesis. Cell 2020; 181:1566-1581.e27. [PMID: 32531200 PMCID: PMC7327525 DOI: 10.1016/j.cell.2020.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/19/2019] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The accurate timing and execution of organelle biogenesis is crucial for cell physiology. Centriole biogenesis is regulated by Polo-like kinase 4 (Plk4) and initiates in S-phase when a daughter centriole grows from the side of a pre-existing mother. Here, we show that a Plk4 oscillation at the base of the growing centriole initiates and times centriole biogenesis to ensure that centrioles grow at the right time and to the right size. The Plk4 oscillation is normally entrained to the cell-cycle oscillator but can run autonomously of it-potentially explaining why centrioles can duplicate independently of cell-cycle progression. Mathematical modeling indicates that the Plk4 oscillation can be generated by a time-delayed negative feedback loop in which Plk4 inactivates the interaction with its centriolar receptor through multiple rounds of phosphorylation. We hypothesize that similar organelle-specific oscillations could regulate the timing and execution of organelle biogenesis more generally.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Thomas L Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zachary M Wilmott
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Michael A Boemo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
25
|
Kulenkampff K, Lippert AH, McColl J, Santos AM, Ponjavic A, Jenkins E, Humphrey J, Winkel A, Franze K, Lee SF, Davis SJ, Klenerman D. The Costs of Close Contacts: Visualizing the Energy Landscape of Cell Contacts at the Nanoscale. Biophys J 2020; 118:1261-1269. [PMID: 32075748 PMCID: PMC7091464 DOI: 10.1016/j.bpj.2020.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cell-cell contacts often underpin signaling between cells. For immunology, the binding of a T cell receptor to an antigen-presenting pMHC initiates downstream signaling and an immune response. Although this contact is mediated by proteins on both cells creating interfaces with gap sizes typically around 14 nm, many, often contradictory observations have been made regarding the influence of the contact on parameters such as the binding kinetics, spatial distribution, and diffusion of signaling proteins within the contact. Understanding the basic physical constraints on probes inside this crowded environment will help inform studies on binding kinetics and dynamics of signaling of relevant proteins in the synapse. By tracking quantum dots of different dimensions for extended periods of time, we have shown that it is possible to obtain the probability of a molecule entering the contact, the change in its diffusion upon entry, and the impact of spatial heterogeneity of adhesion protein density in the contact. By analyzing the contacts formed by a T cell interacting with adhesion proteins anchored to a supported lipid bilayer, we find that probes are excluded from contact entry in a size-dependent manner for gap-to-probe differences of 4.1 nm. We also observed probes being trapped inside the contact and a decrease in diffusion of up to 85% in dense adhesion protein contacts. This approach provides new, to our knowledge, insights into the nature of cell-cell contacts, revealing that cell contacts are highly heterogeneous because of topography- and protein-density-related processes. These effects are likely to profoundly influence signaling between cells.
Collapse
Affiliation(s)
- Klara Kulenkampff
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Edward Jenkins
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexander Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Beckers D, Urbancic D, Sezgin E. Impact of Nanoscale Hindrances on the Relationship between Lipid Packing and Diffusion in Model Membranes. J Phys Chem B 2020; 124:1487-1494. [PMID: 32026676 PMCID: PMC7050011 DOI: 10.1021/acs.jpcb.0c00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Membrane
models have allowed for precise study of the plasma membrane’s
biophysical properties, helping to unravel both structural and dynamic
motifs within cell biology. Freestanding and supported bilayer systems
are popular models to reconstitute membrane-related processes. Although
it is well-known that each have their advantages and limitations,
comprehensive comparison of their biophysical properties is still
lacking. Here, we compare the diffusion and lipid packing in giant
unilamellar vesicles, planar and spherical supported membranes, and
cell-derived giant plasma membrane vesicles. We apply florescence
correlation spectroscopy (FCS), spectral imaging, and super-resolution
stimulated emission depletion FCS to study the diffusivity, lipid
packing, and nanoscale architecture of these membrane systems, respectively.
Our data show that lipid packing and diffusivity is tightly correlated
in freestanding bilayers. However, nanoscale interactions in the supported
bilayers cause deviation from this correlation. These data are essential
to develop accurate theoretical models of the plasma membrane and
will serve as a guideline for suitable model selection in future studies
to reconstitute biological processes.
Collapse
Affiliation(s)
- Daniel Beckers
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K
| | - Dunja Urbancic
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Faculty of Pharmacy , University of Ljubljana , Askerceva cesta 7 , 1000 Ljubljana , Slovenia
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Science for Life Laboratory, Department of Women's and Children's Health , Karolinska Institutet , Solna , Sweden
| |
Collapse
|
27
|
Sezgin E, Carugo D, Levental I, Stride E, Eggeling C. Creating Supported Plasma Membrane Bilayers Using Acoustic Pressure. MEMBRANES 2020; 10:E30. [PMID: 32085393 PMCID: PMC7074417 DOI: 10.3390/membranes10020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Model membrane systems are essential tools for the study of biological processes in a simplified setting to reveal the underlying physicochemical principles. As cell-derived membrane systems, giant plasma membrane vesicles (GPMVs) constitute an intermediate model between live cells and fully artificial structures. Certain applications, however, require planar membrane surfaces. Here, we report a new approach for creating supported plasma membrane bilayers (SPMBs) by bursting cell-derived GPMVs using ultrasound within a microfluidic device. We show that the mobility of outer leaflet molecules is preserved in SPMBs, suggesting that they are accessible on the surface of the bilayers. Such model membrane systems are potentially useful in many applications requiring detailed characterization of plasma membrane dynamics.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Dario Carugo
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, Institute for Life Sciences (IfLS), University of Southampton, SO17 1BJ Southampton, UK;
| | - Ilya Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
28
|
Stanly TA, Fritzsche M, Banerji S, Shrestha D, Schneider F, Eggeling C, Jackson DG. The cortical actin network regulates avidity-dependent binding of hyaluronan by the lymphatic vessel endothelial receptor LYVE-1. J Biol Chem 2020; 295:5036-5050. [PMID: 32034091 PMCID: PMC7152780 DOI: 10.1074/jbc.ra119.011992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Tess A Stanly
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,Kennedy Institute for Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Suneale Banerji
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom .,Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
| | - David G Jackson
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
29
|
Ballweg S, Sezgin E, Doktorova M, Covino R, Reinhard J, Wunnicke D, Hänelt I, Levental I, Hummer G, Ernst R. Regulation of lipid saturation without sensing membrane fluidity. Nat Commun 2020; 11:756. [PMID: 32029718 PMCID: PMC7005026 DOI: 10.1038/s41467-020-14528-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. We have reconstituted the core machinery for regulating lipid saturation in baker’s yeast to study its molecular mechanism. By combining molecular dynamics simulations with experiments, we uncover a remarkable sensitivity of the transcriptional regulator Mga2 to the abundance, position, and configuration of double bonds in lipid acyl chains, and provide insights into the molecular rules of membrane adaptation. Our data challenge the prevailing hypothesis that membrane fluidity serves as the measured variable for regulating lipid saturation. Rather, we show that Mga2 senses the molecular lipid-packing density in a defined region of the membrane. Our findings suggest that membrane property sensors have evolved remarkable sensitivities to highly specific aspects of membrane structure and dynamics, thus paving the way toward the development of genetically encoded reporters for such properties in the future. Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. Here authors reconstituted the core machinery for regulating lipid saturation in baker’s yeast to directly characterize its response to defined membrane environments and uncover its mode-of-action.
Collapse
Affiliation(s)
- Stephanie Ballweg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany. .,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
30
|
Pinkwart K, Schneider F, Lukoseviciute M, Sauka-Spengler T, Lyman E, Eggeling C, Sezgin E. Nanoscale dynamics of cholesterol in the cell membrane. J Biol Chem 2019; 294:12599-12609. [PMID: 31270209 PMCID: PMC6709632 DOI: 10.1074/jbc.ra119.009683] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Cholesterol constitutes ∼30-40% of the mammalian plasma membrane, a larger fraction than of any other single component. It is a major player in numerous signaling processes as well as in shaping molecular membrane architecture. However, our knowledge of the dynamics of cholesterol in the plasma membrane is limited, restricting our understanding of the mechanisms regulating its involvement in cell signaling. Here, we applied advanced fluorescence imaging and spectroscopy approaches on in vitro (model membranes) and in vivo (live cells and embryos) membranes as well as in silico analysis to systematically study the nanoscale dynamics of cholesterol in biological membranes. Our results indicate that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. Interestingly, a detailed statistical diffusion analysis suggested two-component diffusion for cholesterol in the plasma membrane of live cells. One of these components was similar to a freely diffusing phospholipid analogue, whereas the other one was significantly faster. When a cholesterol analogue was localized to the outer leaflet only, the fast diffusion of cholesterol disappeared, and it diffused similarly to phospholipids. Overall, our results suggest that cholesterol diffusion in the cell membrane is heterogeneous and that this diffusional heterogeneity is due to cholesterol's nanoscale interactions and localization in the membrane.
Collapse
Affiliation(s)
- Kerstin Pinkwart
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martyna Lukoseviciute
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Edward Lyman
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
31
|
Colombo L, Pagliazzi M, Sekar SKV, Contini D, Mora AD, Spinelli L, Torricelli A, Durduran T, Pifferi A. Effects of the instrument response function and the gate width in time-domain diffuse correlation spectroscopy: model and validations. NEUROPHOTONICS 2019; 6:035001. [PMID: 31312668 PMCID: PMC6624407 DOI: 10.1117/1.nph.6.3.035001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/18/2019] [Indexed: 05/12/2023]
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging noninvasive optical technique with the potential to resolve blood flow (BF) and optical coefficients (reduced scattering and absorption) in depth. Here, we study the effects of finite temporal resolution and gate width in a realistic TD-DCS experiment. We provide a model for retrieving the BF from gated intensity autocorrelations based on the instrument response function, which allows for the use of broad time gates. This, in turn, enables a higher signal-to-noise ratio that is critical for in vivo applications. In numerical simulations, the use of the proposed model reduces the error in the estimated late gate BF from 34% to 3%. Simulations are also performed for a wide set of optical properties and source–detector separations. In a homogeneous phantom experiment, the discrepancy between later gates BF index and ungated BF index is reduced from 37% to 2%. This work not only provides a tool for data analysis but also physical insights, which can be useful for studying and optimizing the system performance.
Collapse
Affiliation(s)
- Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Address all correspondence to Lorenzo Colombo, E-mail:
| | - Marco Pagliazzi
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Turgut Durduran
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| |
Collapse
|
32
|
Colin-York H, Javanmardi Y, Skamrahl M, Kumari S, Chang VT, Khuon S, Taylor A, Chew TL, Betzig E, Moeendarbary E, Cerundolo V, Eggeling C, Fritzsche M. Cytoskeletal Control of Antigen-Dependent T Cell Activation. Cell Rep 2019; 26:3369-3379.e5. [PMID: 30893608 PMCID: PMC6426652 DOI: 10.1016/j.celrep.2019.02.074] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/06/2018] [Accepted: 02/20/2019] [Indexed: 11/23/2022] Open
Abstract
Cytoskeletal actin dynamics is essential for T cell activation. Here, we show evidence that the binding kinetics of the antigen engaging the T cell receptor influences the nanoscale actin organization and mechanics of the immune synapse. Using an engineered T cell system expressing a specific T cell receptor and stimulated by a range of antigens, we found that the peak force experienced by the T cell receptor during activation was independent of the unbinding kinetics of the stimulating antigen. Conversely, quantification of the actin retrograde flow velocity at the synapse revealed a striking dependence on the antigen unbinding kinetics. These findings suggest that the dynamics of the actin cytoskeleton actively adjusted to normalize the force experienced by the T cell receptor in an antigen-specific manner. Consequently, tuning actin dynamics in response to antigen kinetics may thus be a mechanism that allows T cells to adjust the lengthscale and timescale of T cell receptor signaling.
Collapse
Affiliation(s)
- Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Mark Skamrahl
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Sudha Kumari
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Satya Khuon
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Aaron Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK.
| |
Collapse
|
33
|
Mobarak E, Javanainen M, Kulig W, Honigmann A, Sezgin E, Aho N, Eggeling C, Rog T, Vattulainen I. How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:2436-2445. [PMID: 30028957 DOI: 10.1016/j.bbamem.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
Organic dye-tagged lipid analogs are essential for many fluorescence-based investigations of complex membrane structures, especially when using advanced microscopy approaches. However, lipid analogs may interfere with membrane structure and dynamics, and it is not obvious that the properties of lipid analogs would match those of non-labeled host lipids. In this work, we bridged atomistic simulations with super-resolution imaging experiments and biomimetic membranes to assess the performance of commonly used sphingomyelin-based lipid analogs. The objective was to compare, on equal footing, the relative strengths and weaknesses of acyl chain labeling, headgroup labeling, and labeling based on poly-ethyl-glycol (PEG) linkers in determining biomembrane properties. We observed that the most appropriate strategy to minimize dye-induced membrane perturbations and to allow consideration of Brownian-like diffusion in liquid-ordered membrane environments is to decouple the dye from a membrane by a PEG linker attached to a lipid headgroup. Yet, while the use of PEG linkers may sound a rational and even an obvious approach to explore membrane dynamics, the results also suggest that the dyes exploiting PEG linkers interfere with molecular interactions and their dynamics. Overall, the results highlight the great care needed when using fluorescent lipid analogs, in particular accurate controls.
Collapse
Affiliation(s)
- Edouard Mobarak
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland; Laboratory of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland; Laboratory of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland; Laboratory of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | - Noora Aho
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom; Institute of Applied Optics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany; Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Tomasz Rog
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland; Laboratory of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland; Laboratory of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland; MEMPHYS - Center for Biomembrane Physics (www.memphys.dk).
| |
Collapse
|
34
|
Jenkins E, Santos AM, O'Brien-Ball C, Felce JH, Wilcock MJ, Hatherley D, Dustin ML, Davis SJ, Eggeling C, Sezgin E. Reconstitution of immune cell interactions in free-standing membranes. J Cell Sci 2018; 132:jcs219709. [PMID: 30209137 PMCID: PMC6398472 DOI: 10.1242/jcs.219709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
The spatiotemporal regulation of signalling proteins at the contacts formed between immune cells and their targets determines how and when immune responses begin and end. Therapeutic control of immune responses therefore relies on thorough elucidation of the molecular processes occurring at these interfaces. However, the detailed investigation of each component's contribution to the formation and regulation of the contact is hampered by the complexities of cell composition and architecture. Moreover, the transient nature of these interactions creates additional challenges, especially in the use of advanced imaging technology. One approach that circumvents these problems is to establish in vitro systems that faithfully mimic immune cell interactions, but allow complexity to be 'dialled-in' as needed. Here, we present an in vitro system that makes use of synthetic vesicles that mimic important aspects of immune cell surfaces. Using this system, we began to explore the spatial distribution of signalling molecules (receptors, kinases and phosphatases) and how this changes during the initiation of signalling. The GUV/cell system presented here is expected to be widely applicable.
Collapse
Affiliation(s)
- Edward Jenkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Caitlin O'Brien-Ball
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Martin J Wilcock
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Deborah Hatherley
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Simon J Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Institute of Applied Optics Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
35
|
Urbančič I, Brun J, Shrestha D, Waithe D, Eggeling C, Chojnacki J. Lipid Composition but Not Curvature Is the Determinant Factor for the Low Molecular Mobility Observed on the Membrane of Virus-Like Vesicles. Viruses 2018; 10:v10080415. [PMID: 30096847 PMCID: PMC6116177 DOI: 10.3390/v10080415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.
Collapse
Affiliation(s)
- Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- "Jožef Stefan" Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
| | - Juliane Brun
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Dilip Shrestha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany.
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Jakub Chojnacki
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
36
|
Reina F, Galiani S, Shrestha D, Sezgin E, de Wit G, Cole D, Christoffer Lagerholm B, Kukura P, Eggeling C. Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:235401. [PMID: 29853718 PMCID: PMC5964363 DOI: 10.1088/1361-6463/aac04f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag-gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50 ⩽ t ⩽ 100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag-gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2-3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.
Collapse
Affiliation(s)
- Francesco Reina
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dilip Shrestha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gabrielle de Wit
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Daniel Cole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Applied Optics, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| |
Collapse
|
37
|
Pagliazzi M, Sekar SKV, Di Sieno L, Colombo L, Durduran T, Contini D, Torricelli A, Pifferi A, Mora AD. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation. OPTICS LETTERS 2018; 43:2450-2453. [PMID: 29856401 DOI: 10.1364/ol.43.002450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.
Collapse
|
38
|
Waithe D, Schneider F, Chojnacki J, Clausen MP, Shrestha D, de la Serna JB, Eggeling C. Optimized processing and analysis of conventional confocal microscopy generated scanning FCS data. Methods 2018; 140-141:62-73. [PMID: 28963070 PMCID: PMC6026296 DOI: 10.1016/j.ymeth.2017.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 01/18/2023] Open
Abstract
Scanning Fluorescence Correlation Spectroscopy (scanning FCS) is a variant of conventional point FCS that allows molecular diffusion at multiple locations to be measured simultaneously. It enables disclosure of potential spatial heterogeneity in molecular diffusion dynamics and also the acquisition of a large amount of FCS data at the same time, providing large statistical accuracy. Here, we optimize the processing and analysis of these large-scale acquired sets of FCS data. On one hand we present FoCuS-scan, scanning FCS software that provides an end-to-end solution for processing and analysing scanning data acquired on commercial turnkey confocal systems. On the other hand, we provide a thorough characterisation of large-scale scanning FCS data over its intended time-scales and applications and propose a unique solution for the bias and variance observed when studying slowly diffusing species. Our manuscript enables researchers to straightforwardly utilise scanning FCS as a powerful technique for measuring diffusion across a broad range of physiologically relevant length scales without specialised hardware or expensive software.
Collapse
Affiliation(s)
- Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dilip Shrestha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
39
|
Pagliazzi M, Sekar SKV, Colombo L, Martinenghi E, Minnema J, Erdmann R, Contini D, Mora AD, Torricelli A, Pifferi A, Durduran T. Time domain diffuse correlation spectroscopy with a high coherence pulsed source: in vivo and phantom results. BIOMEDICAL OPTICS EXPRESS 2017; 8:5311-5325. [PMID: 29188122 PMCID: PMC5695972 DOI: 10.1364/boe.8.005311] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 05/18/2023]
Abstract
Diffuse correlation spectroscopy (DCS), combined with time-resolved reflectance spectroscopy (TRS) or frequency domain spectroscopy, aims at path length (i.e. depth) resolved, non-invasive and simultaneous assessment of tissue composition and blood flow. However, while TRS provides a path length resolved data, the standard DCS does not. Recently, a time domain DCS experiment showed path length resolved measurements for improved quantification with respect to classical DCS, but was limited to phantoms and small animal studies. Here, we demonstrate time domain DCS for in vivo studies on the adult forehead and the arm. We achieve path length resolved DCS by means of an actively mode-locked Ti:Sapphire laser that allows high coherence pulses, thus enabling adequate signal-to-noise ratio in relatively fast (~1 s) temporal resolution. This work paves the way to the translation of this approach to practical in vivo use.
Collapse
Affiliation(s)
- M. Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | | | - L. Colombo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - E. Martinenghi
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - J. Minnema
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | | | - D. Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - A. Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - A. Torricelli
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - A. Pifferi
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - T. Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
40
|
A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 2017; 8:15940. [PMID: 28653671 PMCID: PMC5490264 DOI: 10.1038/ncomms15940] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion ‘injectisome’. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol. Binding to the injectisome stabilizes these cytosolic complexes, whereas the free cytosolic complexes, which include the type III secretion ATPase, constitute a highly dynamic and adaptive network. The extracellular calcium concentration, which triggers activation of the T3SS, directly influences the cytosolic complexes, possibly through the essential component SctK/YscK, revealing a potential mechanism involved in the regulation of type III secretion. Bacterial type III secretion systems (T3SS) play important roles in pathogenesis. Here, Diepold et al. show the dynamic nature of complexes formed of essential T3SS components in live bacteria, and that extracellular calcium concentrations influence these cytosolic complexes likely via SctK/YscK.
Collapse
|
41
|
Schneider F, Waithe D, Clausen MP, Galiani S, Koller T, Ozhan G, Eggeling C, Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol Biol Cell 2017; 28:1507-1518. [PMID: 28404749 DOI: 10.1101/076109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 05/22/2023] Open
Abstract
Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signaling and are suggested to be strongly associated with the actin cytoskeleton. Here we use superresolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live-cell plasma membrane and in actin cytoskeleton-free, cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids is abolished in the GPMVs, whereas transient nanodomain incorporation of ganglioside lipid GM1 is apparent in both the live-cell membrane and GPMVs. For GPI-APs, we detect two molecular pools in living cells; one pool shows high mobility with transient incorporation into nanodomains, and the other pool forms immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules and highlight a powerful experimental approach to decipher specific influences on molecular plasma membrane dynamics.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Thomas Koller
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
- Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Christian Eggeling
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| |
Collapse
|
42
|
Schneider F, Waithe D, Clausen MP, Galiani S, Koller T, Ozhan G, Eggeling C, Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol Biol Cell 2017; 28:1507-1518. [PMID: 28404749 PMCID: PMC5449149 DOI: 10.1091/mbc.e16-07-0536] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/04/2023] Open
Abstract
Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signaling and are suggested to be strongly associated with the actin cytoskeleton. Here we use superresolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live-cell plasma membrane and in actin cytoskeleton-free, cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids is abolished in the GPMVs, whereas transient nanodomain incorporation of ganglioside lipid GM1 is apparent in both the live-cell membrane and GPMVs. For GPI-APs, we detect two molecular pools in living cells; one pool shows high mobility with transient incorporation into nanodomains, and the other pool forms immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules and highlight a powerful experimental approach to decipher specific influences on molecular plasma membrane dynamics.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Thomas Koller
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
- Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Christian Eggeling
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| |
Collapse
|
43
|
Sezgin E, Can FB, Schneider F, Clausen MP, Galiani S, Stanly TA, Waithe D, Colaco A, Honigmann A, Wüstner D, Platt F, Eggeling C. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J Lipid Res 2015; 57:299-309. [PMID: 26701325 DOI: 10.1194/jlr.m065326] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Fatma Betul Can
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Tess A Stanly
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Dominic Waithe
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| | - Alexandria Colaco
- Department of Pharmacology, University of Oxford, OX13QT Oxford, United Kingdom
| | - Alf Honigmann
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Frances Platt
- Department of Pharmacology, University of Oxford, OX13QT Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS Oxford, United Kingdom
| |
Collapse
|