1
|
Dávid C, Giber K, Kerti-Szigeti K, Köllő M, Nusser Z, Acsady L. A novel image segmentation method based on spatial autocorrelation identifies A-type potassium channel clusters in the thalamus. eLife 2024; 12:RP89361. [PMID: 39655901 PMCID: PMC11630814 DOI: 10.7554/elife.89361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Unsupervised segmentation in biological and non-biological images is only partially resolved. Segmentation either requires arbitrary thresholds or large teaching datasets. Here, we propose a spatial autocorrelation method based on Local Moran's I coefficient to differentiate signal, background, and noise in any type of image. The method, originally described for geoinformatics, does not require a predefined intensity threshold or teaching algorithm for image segmentation and allows quantitative comparison of samples obtained in different conditions. It utilizes relative intensity as well as spatial information of neighboring elements to select spatially contiguous groups of pixels. We demonstrate that Moran's method outperforms threshold-based method in both artificially generated as well as in natural images especially when background noise is substantial. This superior performance can be attributed to the exclusion of false positive pixels resulting from isolated, high intensity pixels in high noise conditions. To test the method's power in real situation, we used high power confocal images of the somatosensory thalamus immunostained for Kv4.2 and Kv4.3 (A-type) voltage-gated potassium channels in mice. Moran's method identified high-intensity Kv4.2 and Kv4.3 ion channel clusters in the thalamic neuropil. Spatial distribution of these clusters displayed strong correlation with large sensory axon terminals of subcortical origin. The unique association of the special presynaptic terminals and a postsynaptic voltage-gated ion channel cluster was confirmed with electron microscopy. These data demonstrate that Moran's method is a rapid, simple image segmentation method optimal for variable and high noise conditions.
Collapse
Affiliation(s)
- Csaba Dávid
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental MedicineBudapestHungary
- Department of Anatomy, Histology and Embryology, Semmelweis UniversityBudapestHungary
| | - Kristóf Giber
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental MedicineBudapestHungary
| | - Katalin Kerti-Szigeti
- Laboratory of Cellular Neurophysiology, HUN-REN Institute of Experimental MedicineBudapestHungary
- Novarino Group, Institute of Science and TechnologyKlosterneuburgAustria
| | - Mihály Köllő
- Laboratory of Cellular Neurophysiology, HUN-REN Institute of Experimental MedicineBudapestHungary
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick InstituteLondonUnited Kingdom
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, HUN-REN Institute of Experimental MedicineBudapestHungary
| | - Laszlo Acsady
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental MedicineBudapestHungary
| |
Collapse
|
2
|
Chakravorty A, Simons BD, Yoshida S, Cai L. Spatial Transcriptomics Reveals the Temporal Architecture of the Seminiferous Epithelial Cycle and Precise Sertoli-Germ Synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620681. [PMID: 39554074 PMCID: PMC11565904 DOI: 10.1101/2024.10.28.620681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Spermatogenesis is characterized by the seminiferous epithelial cycle, a periodic pattern of germ cell differentiation with a wave-like progression along the length of seminiferous tubules. While key signaling and metabolic components of the cycle are known, the transcriptional changes across the cycle and the correlations between germ cell and somatic lineages remain undefined. Here, we use spatial transcriptomics via RNA SeqFISH+ to profile 2,638 genes in 216,090 cells in mouse testis and identify a periodic transcriptional pattern across tubules that precisely recapitulates the seminiferous epithelial cycle, enabling us to map cells to specific timepoints along the developmental cycle. Analyzing gene expression in somatic cells reveals that Sertoli cells exhibit a cyclic transcriptional profile closely synchronized with germ cell development while other somatic cells do not demonstrate such synchronization. Remarkably, in mouse testis with drug-induced ablation of germ cells, Sertoli cells independently maintain their cyclic transcriptional dynamics. By analyzing expression data, we identify an innate retinoic acid cycle, a network of transcription factors with cyclic activation, and signaling from germ cells that could interact with this network. Together, this work leverages spatial geometries for mapping the temporal dynamics and reveals a regulatory mechanism in spermatogenesis where Sertoli cells oscillate and coordinate with the cyclical progression of germ cell development.
Collapse
|
3
|
Du L, Kang J, Hou Y, Sun HX, Zhang B. SpotGF: Denoising spatially resolved transcriptomics data using an optimal transport-based gene filtering algorithm. Cell Syst 2024; 15:969-981.e6. [PMID: 39378875 DOI: 10.1016/j.cels.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Spatially resolved transcriptomics (SRT) combines gene expression profiles with the physical locations of cells in their native states but suffers from unpredictable spatial noise due to cell damage during cryosectioning and exposure to reagents for staining and mRNA release. To address this noise, we developed SpotGF, an algorithm for denoising SRT data using optimal transport-based gene filtering. SpotGF quantifies diffusion patterns numerically, distinguishing widespread expression genes from aggregated expression genes and filtering out the former as noise. Unlike conventional denoising methods, SpotGF preserves raw sequencing data, thereby avoiding false positives that can arise from imputation. Additionally, SpotGF demonstrates superior performance in cell clustering, identifying potential marker genes, and annotating cell types. Overall, SpotGF has the potential to become a crucial preprocessing step in the downstream analysis of SRT data. The SpotGF software is freely available at GitHub. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Lin Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Beijing 102601, China
| | - Jingmin Kang
- BGI Research, Beijing 102601, China; BGI Research, Shenzhen 518083, China
| | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China
| | - Hai-Xi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Beijing 102601, China; BGI Research, Shenzhen 518083, China.
| | - Bohan Zhang
- BGI Research, Beijing 102601, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
4
|
Ruan Z, Zhou W, Liu H, Wei J, Pan Y, Yan C, Wei X, Xiang W, Yan C, Chen S, Liu J. Precise detection of cell-type-specific domains in spatial transcriptomics. CELL REPORTS METHODS 2024; 4:100841. [PMID: 39127046 PMCID: PMC11384096 DOI: 10.1016/j.crmeth.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Cell-type-specific domains are the anatomical domains in spatially resolved transcriptome (SRT) tissues where particular cell types are enriched coincidentally. It is challenging to use existing computational methods to detect specific domains with low-proportion cell types, which are partly overlapped with or even inside other cell-type-specific domains. Here, we propose De-spot, which synthesizes segmentation and deconvolution as an ensemble to generate cell-type patterns, detect low-proportion cell-type-specific domains, and display these domains intuitively. Experimental evaluation showed that De-spot enabled us to discover the co-localizations between cancer-associated fibroblasts and immune-related cells that indicate potential tumor microenvironment (TME) domains in given slices, which were obscured by previous computational methods. We further elucidated the identified domains and found that Srgn may be a critical TME marker in SRT slices. By deciphering T cell-specific domains in breast cancer tissues, De-spot also revealed that the proportions of exhausted T cells were significantly increased in invasive vs. ductal carcinoma.
Collapse
Affiliation(s)
- Zhihan Ruan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Weijun Zhou
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jinmao Wei
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Yichen Pan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chaoyang Yan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Xiaoyi Wei
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Wenting Xiang
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chengwei Yan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Shengquan Chen
- School of Mathematical Sciences, Nankai University, Tianjin 300350, China
| | - Jian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Computer Science, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Schmal C. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:549-564. [PMID: 37659985 PMCID: PMC11226496 DOI: 10.1007/s00359-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Circadian clocks are internal timing devices that have evolved as an adaption to the omnipresent natural 24 h rhythmicity of daylight intensity. Properties of the circadian system are photoperiod dependent. The phase of entrainment varies systematically with season. Plastic photoperiod-dependent re-arrangements in the mammalian circadian core pacemaker yield an internal representation of season. Output pathways of the circadian clock regulate photoperiodic responses such as flowering time in plants or hibernation in mammals. Here, we review the concepts of seasonal entrainment and photoperiodic encoding. We introduce conceptual phase oscillator models as their high level of abstraction, but, yet, intuitive interpretation of underlying parameters allows for a straightforward analysis of principles that determine entrainment characteristics. Results from this class of models are related and discussed in the context of more complex conceptual amplitude-phase oscillators as well as contextual molecular models that take into account organism, tissue, and cell-type-specific details.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
6
|
Kumbhare D, Weistroffer G, Goyanaga S, Huang ZL, Blagg J, Baron MS. Parkinsonism originates in a discrete secondary and dystonia in a primary motor cortical-basal ganglia subcircuit. J Neurosci Res 2024; 102:e25328. [PMID: 38651310 DOI: 10.1002/jnr.25328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.
Collapse
Affiliation(s)
- Deepak Kumbhare
- Department of Neurosurgery, Virginia Commonwealth University Health System, Richmond, Virginia, USA
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - George Weistroffer
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Department Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sofia Goyanaga
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zi Ling Huang
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jacob Blagg
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Mark S Baron
- Southeast Parkinson's Disease Research, Education and Clinical Center (PADRECC), Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Department of Neurology, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
7
|
Fischer SC, Schardt S, Lilao-Garzón J, Muñoz-Descalzo S. The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors. iScience 2023; 26:108106. [PMID: 37915595 PMCID: PMC10616410 DOI: 10.1016/j.isci.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Simon Schardt
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| |
Collapse
|
8
|
Verma M, Panwar S, Sahoo SS, Grover GS, Aggarwal S, Tripathy JP, Shah J, Kakkar R. Mapping the stability of febrile illness hotspots in Punjab from 2012 to 2019- a spatial clustering and regression analysis. BMC Public Health 2023; 23:2014. [PMID: 37845663 PMCID: PMC10580620 DOI: 10.1186/s12889-023-16930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Febrile illnesses (FI) represent a typical spectrum of diseases in low-resource settings, either in isolation or with other common symptoms. They contribute substantially to morbidity and mortality in India. The primary objective was to study the burden of FI based on Integrated Disease Surveillance Programme (IDSP) data in Punjab, analyze geospatial and temporal trends and patterns, and identify the potential hotspots for effective intervention. METHODS A retrospective ecological study used the district-level IDSP reports between 2012 and 2019. Diseases responsible for FI on a large scale, like Dengue, Chikungunya, Malaria (Plasmodium Falciparum, P. Vivax), Enteric fever, and Pyrexia of Unknown Origin (PUO), were included in the analysis. The digital map of Punjab was obtained from GitHub. Spatial autocorrelation and cluster analysis were done using Moran's I and Getis-Ord G* to determine hotspots of FI using the incidence and crude disease numbers reported under IDSP. Further, negative binomial regression was used to determine the association between Spatio-temporal and population variables per the census 2011. Stable hotspots were depicted using heat maps generated from district-wise yearly data. RESULTS PUO was the highest reported FI. We observed a rising trend in the incidence of Dengue, Chikungunya, and Enteric fever, which depicted occasional spikes during the study period. FI expressed significant inter-district variations and clustering during the start of the study period, with more dispersion in the latter part of the study period. P.Vivax malaria depicted stable hotspots in southern districts of Punjab. In contrast, P. Falciparum malaria, Chikungunya, and PUO expressed no spatial patterns. Enteric Fever incidence was high in central and northeastern districts but depicted no stable spatial patterns. Certain districts were common incidence hotspots for multiple diseases. The number of cases in each district has shown over-dispersion for each disease and has little dependence on population, gender, or residence as per regression analysis. CONCLUSIONS The study demonstrates that information obtained through IDSP can describe the spatial epidemiology of FI at crude spatial scales and drive concerted efforts against FI by identifying actionable points.
Collapse
Affiliation(s)
- Madhur Verma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India.
| | - Shweta Panwar
- Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Soumya Swaroop Sahoo
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Gagandeep Singh Grover
- Directorate of Health and Family Welfare Punjab and State Programme Officer, Integrated Disease Surveillance Program Punjab, Chandigarh, India
| | - Seema Aggarwal
- Directorate of Health and Family Welfare Punjab and State Programme Officer, Integrated Disease Surveillance Program Punjab, Chandigarh, India
| | - Jaya Prasad Tripathy
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Jitendra Shah
- Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rakesh Kakkar
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
9
|
Peirats-Llobet M, Yi C, Liew L, Berkowitz O, Narsai R, Lewsey M, Whelan J. Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res 2023; 51:7798-7819. [PMID: 37351575 PMCID: PMC10450182 DOI: 10.1093/nar/gkad521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.
Collapse
Affiliation(s)
- Marta Peirats-Llobet
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Research Centre for Engineering Biology, College of Life Science, Zhejiang University, 718 East Haizhou Road, Haining, Jiaxing, Zhejiang 314400, China
| |
Collapse
|
10
|
Lutomska LM, Miok V, Krahmer N, González García I, Gruber T, Le Thuc O, Murat CD, Legutko B, Sterr M, Saher G, Lickert H, Müller TD, Ussar S, Tschöp MH, Lutter D, García-Cáceres C. Diet triggers specific responses of hypothalamic astrocytes in time and region dependent manner. Glia 2022; 70:2062-2078. [PMID: 35802021 DOI: 10.1002/glia.24237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.
Collapse
Affiliation(s)
- Luiza Maria Lutomska
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Viktorian Miok
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ismael González García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cahuê Db Murat
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Michael Sterr
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Technical University of Munich (TUM), Munich, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Technical University of Munich (TUM), Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Technical University of Munich (TUM), Munich, Germany.,RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Technical University of Munich (TUM), Munich, Germany
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Medizinische Klinik and Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
12
|
Abstract
Experiments that compare rhythmic properties across different genetic alterations and entrainment conditions underlie some of the most important breakthroughs in circadian biology. A robust estimation of the rhythmic properties of the circadian signals goes hand in hand with these discoveries. Widely applied traditional signal analysis methods such as fitting cosine functions or Fourier transformations rely on the assumption that oscillation periods do not change over time. However, novel high-resolution recording techniques have shown that, most commonly, circadian signals exhibit time-dependent changes of periods and amplitudes which cannot be captured with the traditional approaches. In this chapter we introduce a method to determine time-dependent properties of oscillatory signals, using the novel open-source Python-based Biological Oscillations Analysis Toolkit (pyBOAT). We show with examples how to detect rhythms, compute and interpret high-resolution time-dependent spectral results, analyze the main oscillatory component, and to subsequently determine these main components' time-dependent instantaneous period, amplitude, and phase. We introduce step-by-step how such an analysis can be done by means of the easy-to-use point-and-click graphical user interface (GUI) provided by pyBOAT or executed within a Python programming environment. Concepts are explained using simulated signals as well as experimentally obtained time series.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Gregor Mönke
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Combining experiments and in silico modeling to infer the role of adhesion and proliferation on the collective dynamics of cells. Sci Rep 2021; 11:19894. [PMID: 34615941 PMCID: PMC8494750 DOI: 10.1038/s41598-021-99390-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The collective dynamics of cells on surfaces and interfaces poses technological and theoretical challenges in the study of morphogenesis, tissue engineering, and cancer. Different mechanisms are at play, including, cell–cell adhesion, cell motility, and proliferation. However, the relative importance of each one is elusive. Here, experiments with a culture of glioblastoma multiforme cells on a substrate are combined with in silico modeling to infer the rate of each mechanism. By parametrizing these rates, the time-dependence of the spatial correlation observed experimentally is reproduced. The obtained results suggest a reduction in cell–cell adhesion with the density of cells. The reason for such reduction and possible implications for the collective dynamics of cancer cells are discussed.
Collapse
|
14
|
Abstract
Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.
Collapse
Affiliation(s)
- Chris N Micklem
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CH3 0HE, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
15
|
Schopp M, Dharmaprani D, Kuklik P, Quah J, Lahiri A, Tiver K, Meyer C, Willems S, McGavigan AD, Ganesan AN. Spatial concentration and distribution of phase singularities in human atrial fibrillation: Insights for the AF mechanism. J Arrhythm 2021; 37:922-930. [PMID: 34386118 PMCID: PMC8339121 DOI: 10.1002/joa3.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by the repetitive regeneration of unstable rotational events, the pivot of which are known as phase singularities (PSs). The spatial concentration and distribution of PSs have not been systematically investigated using quantitative statistical approaches. OBJECTIVES We utilized a geospatial statistical approach to determine the presence of local spatial concentration and global clustering of PSs in biatrial human AF recordings. METHODS 64-electrode conventional basket (~5 min, n = 18 patients, persistent AF) recordings were studied. Phase maps were produced using a Hilbert-transform based approach. PSs were characterized spatially using the following approaches: (i) local "hotspots" of high phase singularity (PS) concentration using Getis-Ord Gi* (Z ≥ 1.96, P ≤ .05) and (ii) global spatial clustering using Moran's I (inverse distance matrix). RESULTS Episodes of AF were analyzed from basket catheter recordings (H: 41 epochs, 120 000 s, n = 18 patients). The Getis-Ord Gi* statistic showed local PS hotspots in 12/41 basket recordings. As a metric of spatial clustering, Moran's I showed an overall mean of 0.033 (95% CI: 0.0003-0.065), consistent with the notion of complete spatial randomness. CONCLUSION Using a systematic, quantitative geospatial statistical approach, evidence for the existence of spatial concentrations ("hotspots") of PSs were detectable in human AF, along with evidence of spatial clustering. Geospatial statistical approaches offer a new approach to map and ablate PS clusters using substrate-based approaches.
Collapse
Affiliation(s)
- Madeline Schopp
- College of Science and EngineeringFlinders University of South AustraliaAdelaideSAAustralia
| | - Dhani Dharmaprani
- College of Science and EngineeringFlinders University of South AustraliaAdelaideSAAustralia
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
| | - Pawel Kuklik
- Department of CardiologyUniversity Medical CentreHamburgGermany
| | - Jing Quah
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Anandaroop Lahiri
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Kathryn Tiver
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Christian Meyer
- Department of CardiologyUniversity Medical CentreHamburgGermany
| | - Stephan Willems
- Department of CardiologyUniversity Medical CentreHamburgGermany
| | - Andrew D. McGavigan
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Anand N. Ganesan
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| |
Collapse
|
16
|
Ranciati S, Roverato A, Luati A. Fused graphical lasso for brain networks with symmetries. J R Stat Soc Ser C Appl Stat 2021. [DOI: 10.1111/rssc.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saverio Ranciati
- Department of Statistical Sciences University of Bologna Bologna Italy
| | - Alberto Roverato
- Department of Statistical Sciences University of Padova Padova Italy
| | - Alessandra Luati
- Department of Statistical Sciences University of Bologna Bologna Italy
| |
Collapse
|
17
|
Duan J, Zhai W, Cheng C. Crowd Detection in Mass Gatherings Based on Social Media Data: A Case Study of the 2014 Shanghai New Year's Eve Stampede. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228640. [PMID: 33233800 PMCID: PMC7699846 DOI: 10.3390/ijerph17228640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022]
Abstract
The Shanghai New Year’s Eve stampede on 31 December 2014, caused 36 deaths and 47 other injuries, generating attention from around the world. This research aims to explore crowd aggregation from the perspective of Sina Weibo check-in data and evaluate the potential of crowd detection based on social media data. We develop a framework using Weibo check-in data in three dimensions: the aggregation level of check-in data, the topic changes in posts and the sentiment fluctuations of citizens. The results show that the numbers of check-ins in all of Shanghai on New Years’ Eve is twice that of other days and that Moran’s I reaches a peak on this date, implying a spatial autocorrelation mode. Additionally, the results of topic modeling indicate that 72.4% of the posts were related to the stampede, reflecting public attitudes and views on this incident from multiple angles. Moreover, sentiment analysis based on Weibo posts illustrates that the proportion of negative posts increased both when the stampede occurred (40.95%) and a few hours afterwards (44.33%). This study demonstrates the potential of using geotagged social media data to analyze population spatiotemporal activities, especially in emergencies.
Collapse
Affiliation(s)
- Jiexiong Duan
- School of Earth and Space Sciences, Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing 100871, China;
| | - Weixin Zhai
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Correspondence: ; Tel.: +86-158-1066-9005
| | - Chengqi Cheng
- College of Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
18
|
Guo J, Wang Z, Weng Y, Yuan H, Yoshida K, Ikegame M, Uchibe K, Kamioka H, Ochiai K, Okamura H, Qiu L. N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium. Cell Signal 2020; 75:109740. [PMID: 32818672 DOI: 10.1016/j.cellsig.2020.109740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is associated with periapical periodontitis. The lesions are characterized by a disorder in osteoblast metabolism. Quorum sensing molecular N-(3-oxododecanoyl)-homoserine lactone (AHL) is secreted by P. aeruginosa and governs the expression of numerous virulence factors. AHL can trigger intracellular calcium ([Ca2+]i) fluctuations in many host cells. However, it is unclear whether AHL can regulate osteoblast metabolism by affecting [Ca2+]i changes or its spatial correlation. We explored AHL-induced apoptosis and differentiation in pre-osteoblastic MC3T3-E1 cells and evaluated [Ca2+]i mobilization using several extraction methods. The spatial distribution pattern of [Ca2+]i among cells was investigated by Moran's I, an index of spatial autocorrelation. We found that 30 μM and 50 μM AHL triggered opposing osteoblast fates. At 50 μM, AHL inhibited osteoblast differentiation by promoting mitochondrial-dependent apoptosis and negatively regulating osteogenic marker genes, including Runx2, Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). In contrast, prolonged treatment with 30 μM AHL promoted osteoblast differentiation concomitantly with cell apoptosis. The elevation of [Ca2+]i levels in osteoblasts treated with 50 μM AHL was spatially autocorrelated, while no such phenomenon was observed in 30 μM AHL-treated osteoblasts. The blocking of cell-to-cell spatial autocorrelation in the osteoblasts provoked by 50 μM AHL significantly inhibited apoptosis and partially restored differentiation. Our observations suggest that AHL affects the fate of osteoblasts (apoptosis and differentiation) by affecting the spatial correlation of [Ca2+]i changes. Thus, AHL acts as a double-edged sword for osteoblast function.
Collapse
Affiliation(s)
- Jiajie Guo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China; Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Haoze Yuan
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Lihong Qiu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
19
|
Perinelli A, Tabarelli D, Miniussi C, Ricci L. Dependence of connectivity on geometric distance in brain networks. Sci Rep 2019; 9:13412. [PMID: 31527782 PMCID: PMC6746748 DOI: 10.1038/s41598-019-50106-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022] Open
Abstract
In any network, the dependence of connectivity on physical distance between nodes is a direct consequence of trade-off mechanisms between costs of establishing and sustaining links, processing rates, propagation speed of signals between nodes. Despite its universality, there are still few studies addressing this issue. Here we apply a recently-developed method to infer links between nodes, and possibly subnetwork structures, to determine connectivity strength as a function of physical distance between nodes. The model system we investigate is brain activity reconstructed on the cortex out of magnetoencephalography recordings sampled on a set of healthy subjects in resting state. We found that the dependence of the time scale of observability of a link on its geometric length follows a power-law characterized by an exponent whose extent is inversely proportional to connectivity. Our method provides a new tool to highlight and investigate networks in neuroscience.
Collapse
Affiliation(s)
| | - Davide Tabarelli
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Carlo Miniussi
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, 38123, Trento, Italy.
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy.
| |
Collapse
|
20
|
Abstract
Mammalian circadian clocks have a hierarchical organization, governed by the suprachiasmatic nucleus (SCN) in the hypothalamus. The brain itself contains multiple loci that maintain autonomous circadian rhythmicity, but the contribution of the non-SCN clocks to this hierarchy remains unclear. We examine circadian oscillations of clock gene expression in various brain loci and discovered that in mouse, robust, higher amplitude, relatively faster oscillations occur in the choroid plexus (CP) compared to the SCN. Our computational analysis and modeling show that the CP achieves these properties by synchronization of “twist” circadian oscillators via gap-junctional connections. Using an in vitro tissue coculture model and in vivo targeted deletion of the Bmal1 gene to silence the CP circadian clock, we demonstrate that the CP clock adjusts the SCN clock likely via circulation of cerebrospinal fluid, thus finely tuning behavioral circadian rhythms. The suprachiasmatic nucleus (SCN) has been thought of as the master circadian clock, but peripheral circadian clocks do exist. Here, the authors show that the choroid plexus displays oscillations more robust than the SCN and that can be described as a Poincaré oscillator with negative twist.
Collapse
|
21
|
Abstract
Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Berlin, Germany
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|