1
|
Cui J, Li X, Zhang Q, Du B, Ding Z, Yan C, Xue G, Gan L, Feng J, Fan Z, Xu Z, Yu Z, Fu T, Feng Y, Zhao H, Kong Y, Cui X, Tian Z, Liu Q, Yuan J. Existence and distribution of the microbiome in tumour tissues of children with hepatoblastoma. Heliyon 2024; 10:e39547. [PMID: 39553581 PMCID: PMC11564952 DOI: 10.1016/j.heliyon.2024.e39547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer microbiota have recently been demonstrated in several cancer types. The microbiome enhances inflammation in the cancer microenvironment and affects the disease pathology by regulating tumourigenesis, cancer progression, and chemotherapy resistance. Hepatoblastoma (HB), the most common childhood malignant tumour, is a malignant embryonic tumour. However, the pathogenesis and molecular basis of HB remain poorly understood. In this study, to explore the existence and distribution of the microbiome in tumour tissues and adjacent non-tumour tissues of children with HB, we mainly performed 16S rDNA sequencing, and the results showed that the diversity and abundance of the microbiome in children with HB were significantly different between HB tumours and adjacent non-tumour tissues (p < 0.01). At the phylum level, the dominant microbiome in the tumour tissues were Proteobacteria, Bacteroidetes, and Firmicutes. At the genus level, Ruminococcus was more abundant in HB tumours than in the adjacent non-tumour tissues. Simultaneously, the abundances of Bacteroides, Parabacteroides, Lachnospiracea-NK4A136, and Alistipes in HB tumours were lower than those in the adjacent non-tumour tissues. In addition, Romboutsia strongly correlated with alpha-fetoprotein, an important indicator of HB. Sphingomonas was abundant in primary HB tumours, whereas Oscillibacter and Pandoraea were abundant in metastatic HB tumours. However, whether these bacteria are associated with HB needs further evaluation. Therefore, we identified the microbiome that correlated with the occurrence and development of HB. Ruminococcus and Romboutsia were identified as potential bacterial markers of HB tumours. To conclude, we found that HB also contains cancer microbiome, and it is necessary to shed light on the microbiome characteristics of HB in the future.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoran Li
- Postgraduate Base of the PLA Rocket Force Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
- Department of Hematology and Oncology, 155th Hospital of Kaifeng, Kaifeng, 475003, Henan Province, China
| | - Qun Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yiming Kong
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Quanda Liu
- Postgraduate Base of the PLA Rocket Force Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
- Department of General Surgery, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, 100020, China
| |
Collapse
|
2
|
Mahongnao S, Sharma P, Nanda S. Characterization of fungal microbiome structure in leaf litter compost through metagenomic profiling for harnessing the bio-organic fertilizer potential. 3 Biotech 2024; 14:191. [PMID: 39113676 PMCID: PMC11300423 DOI: 10.1007/s13205-024-04028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/14/2024] [Indexed: 08/10/2024] Open
Abstract
Sustainable waste management through composting has gain renewed attention since it could upcycle organic waste into valuable bio-organic fertiliser. This study explored the composition of fungal communities in leaf litter and organic waste composts ecosystems by employing advanced internal transcribed spacer (ITS) metagenomic profiling. This approach provides insights into the diversity, composition, and potential functions of these fungi, offering practical implications for optimising composting processes and enhancing sustainable waste management practices. Various organic composts were collected, including leaf litter composts, from different sources in Delhi-National Capital Region, India, and fungal microbiome composition were characterised through ITS profiling. Results revealed that leaf litter composts and cow dung manure had the highest fungal read counts, while kitchen waste compost had the lowest. Alpha diversity indices, including Chao1 and Shannon, exhibited differences in species richness and diversity among composts, though statistical significance was limited. The leaf composts had relatively higher alpha diversity than the other organic waste composts analysed. The study also identified dominant fungal genera specifically, Wallemia, Geotrichum, Pichia, Mycothermus, Mortierella, Aspergillus, Fusarium, and Basidiobolus, across the compost samples. The presence of beneficial fungal genera like Pichia, Geotrichum, Trichoderma, Mortierella, Basidiobolus, Aspergillus, and others were detected in leaf waste compost and the other organic waste composts. There was also presence of some pathogenic genera viz. Alternaria, Fusarium, and Acremonium, in these composts which underscored the need for proper composting practices and source selection to optimise soil fertility and minimise disease risks in agriculture. Remarkably, leaf compost has highest proportion of beneficial genera with least observed abundance of pathogens. On the other hand, the municipal organic waste compost has least proportion of beneficial genera with higher abundance of pathogens. Overall, these findings contributed to characterisation of composting processes, advancing waste management practices, and enhancing the use of leaf compost as a bio-organic fertiliser. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04028-0.
Collapse
Affiliation(s)
- Sophayo Mahongnao
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| | - Pooja Sharma
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| | - Sarita Nanda
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| |
Collapse
|
3
|
Gomes BPFA, Berber VB, Chiarelli-Neto VM, Aveiro E, Chapola RC, Passini MRZ, Lopes EM, Chen T, Paster BJ. Microbiota present in combined endodontic-periodontal diseases and its risks for endocarditis. Clin Oral Investig 2023; 27:4757-4771. [PMID: 37401984 DOI: 10.1007/s00784-023-05104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Infective endocarditis (IE) is an inflammatory disease usually caused by bacteria that enter the bloodstream and establish infections in the inner linings or valves of the heart, including blood vessels. Despite the availability of modern antimicrobial and surgical treatments, IE continues to cause substantial morbidity and mortality. Oral microbiota is considered one of the most significant risk factors for IE. The objective of this study was to evaluate the microbiota present in root canal (RC) and periodontal pocket (PP) clinical samples in cases with combined endo-periodontal lesions (EPL) to detect species related to IE using NGS. METHODS Microbial samples were collected from 15 RCs and their associated PPs, also from 05 RCs with vital pulp tissues (negative control, NC). Genomic studies associated with bioinformatics, combined with structuring of a database (genetic sequences of bacteria reported for infective endocarditis), allowed for the assessment of the microbial community at both sites. Functional prediction was conducted using PICRUSt2. RESULTS Parvimonas, Streptococcus, and Enterococcus were the major genera detected in the RCs and PPs. A total of 79, 96, and 11 species were identified in the RCs, PPs, and NCs, respectively. From them, a total of 34 species from RCs, 53 from PPs, and 2 from NCs were related to IE. Functional inference demonstrated that CR and PP microbiological profiles may not be the only risk factors for IE but may also be associated with systemic diseases, including myocarditis, human cytomegalovirus infection, bacterial invasion of epithelial cells, Huntington's disease, amyotrophic lateral sclerosis, and hypertrophic cardiomyopathy. Additionally, it was possible to predict antimicrobial resistance variants for broad-spectrum drugs, including ampicillin, tetracycline, and macrolides. CONCLUSION Microorganisms present in the combined EPL may not be the only risk factor for IE but also for systemic diseases. Antimicrobial resistance variants for broad-spectrum drugs were inferred based on PICRUSt-2. State-of-the-art sequencing combined with bioinformatics has proven to be a powerful tool for conducting studies on microbial communities and could considerably assist in the diagnosis of serious infections. CLINICAL RELEVANCE Few studies have investigated the microbiota in teeth compromised by combined endo-periodontal lesions (EPL), but none have correlated the microbiological findings to any systemic condition, particularly IE, using NGS techniques. In such cases, the presence of apical periodontitis and periodontal disease can increase IE risk in susceptible patients.
Collapse
Affiliation(s)
- Brenda P F A Gomes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil.
| | - Vanessa B Berber
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Vito M Chiarelli-Neto
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Emelly Aveiro
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Rafaela C Chapola
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Maicon R Z Passini
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Erica M Lopes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil
| | - Tsute Chen
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Bruce J Paster
- Microbiology Department, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Scull CE, Luo M, Jennings S, Taylor CM, Wang G. Cftr deletion in mouse epithelial and immune cells differentially influence the intestinal microbiota. Commun Biol 2022; 5:1130. [PMID: 36289287 PMCID: PMC9605958 DOI: 10.1038/s42003-022-04101-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disorder, caused by mutations in the CF transmembrane-conductance regulator gene (cftr) that encodes CFTR, a cAMP-activated chloride and bicarbonate channel. Clinically, CF lung disease dominates the adult patient population. However, its gastrointestinal illness claims the early morbidity and mortality, manifesting as intestinal dysbiosis, inflammation and obstruction. As CF is widely accepted as a disease of epithelial dysfunction, it is unknown whether CFTR loss-of-function in immune cells contributes to these clinical outcomes. Using cftr genetic knockout and bone marrow transplantation mouse models, we performed 16S rRNA gene sequencing of the intestinal microbes. Here we show that cftr deletion in both epithelial and immune cells collectively influence the intestinal microbiota. However, the immune defect is a major factor determining the dysbiosis in the small intestine, while the epithelial defect largely influences that in the large intestine. This finding revises the current concept by suggesting that CF epithelial defect and immune defect play differential roles in CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
5
|
Degree of Freedom of Gene Expression in Saccharomyces cerevisiae. Microbiol Spectr 2022; 10:e0083821. [PMID: 35230153 PMCID: PMC9045123 DOI: 10.1128/spectrum.00838-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complexity of genome-wide gene expression has not yet been adequately addressed due to a lack of comprehensive statistical analyses. In the present study, we introduce degree of freedom (DOF) as a summary statistic for evaluating gene expression complexity. Because DOF can be interpreted by a state-space representation, application of the DOF is highly useful for understanding gene activities. We used over 11,000 gene expression data sets to reveal that the DOF of gene expression in Saccharomyces cerevisiae is not greater than 450. We further demonstrated that various degrees of freedom of gene expression can be interpreted by different sequence motifs within promoter regions and Gene Ontology (GO) terms. The well-known TATA box is the most significant one among the identified motifs, while the GO term "ribosome genesis" is an associated biological process. On the basis of transcriptional freedom, our findings suggest that the regulation of gene expression can be modeled using only a few state variables. IMPORTANCE Yeast works like a well-organized factory. Each of its components works in its own way, while affecting the activities of others. The order of all activities is largely governed by the regulation of gene expression. In recent decades, biologists have recognized many regulations for yeast genes. However, it is not known how closely the regulation links each gene together to make all components of the cell work as a whole. In other words, biologists are very interested in how many independent control factors are needed to operate an artificial "cell" that works the same as a real one. In this work, we suggested that only 450 control factors were sufficient to represent the regulation of all 5800 yeast genes.
Collapse
|
6
|
He J, He X, Ma Y, Yang L, Fang H, Shang S, Xia H, Lian G, Tang H, Wang Q, Wang J, Lin Z, Wen J, Liu Y, Zhai C, Wang W, Jiang X, Xuan J, Liu M, Lu S, Li X, Wang H, Ouyang C, Cao M, Lin A, Zhang B, Wu D, Chen Y, Xiao C. A comprehensive approach to stool donor screening for faecal microbiota transplantation in China. Microb Cell Fact 2021; 20:216. [PMID: 34838016 PMCID: PMC8626716 DOI: 10.1186/s12934-021-01705-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background Faecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridium difficile infections and chronic gastrointestional infections. However, the risks of FMT and the selection process of suitable donors remain insufficiently characterized. The eligibility rate for screening, underlying microbial basis, and core ethical issues of stool donors for FMT are yet to be elucidated in China. Results The potential stool donors were screened from December 2017 to December 2019 with the help of an online survey, clinical assessments, and stool and blood testing. Bioinformatics analyses were performed, and the composition and stability of gut microbiota in stool obtained from eligible donors were dynamically observed using metagenomics. Meanwhile, we build a donor microbial evaluation index (DoMEI) for stool donor screening. In the screening process, we also focused on ethical principles and requirements. Of the 2071 participants, 66 donors were selected via the screening process (3.19% success rate). Although there were significant differences in gut microbiota among donors, we found that the changes in the gut microbiota of the same donor were typically more stable than those between donors over time. Conclusions DoMEI provides a potential reference index for regular stool donor re-evaluation. In this retrospective study, we summarised the donor recruitment and screening procedure ensuring the safety and tolerability for FMT in China. Based on the latest advances in this field, we carried out rigorous recommendation and method which can assist stool bank and clinicians to screen eligible stool donor for FMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01705-0.
Collapse
Affiliation(s)
- Jianquan He
- School of Medicine, Xiamen University, Xiamen, China
| | - Xingxiang He
- Department of Gastroenterology, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yonghui Ma
- School of Medicine, Xiamen University, Xiamen, China
| | - Luxi Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Haiming Fang
- Department of Gastroenterology and Hepatology, The Second Hospital of Anhui Medical Univerisity, Hefei, China
| | - Shu Shang
- Department of Gastroenterology, The Fifth People's Hospital of Shenyang, Shenyang, China
| | - Huping Xia
- Anorectal Diagnosis and Treatment Center, The General Hospital of Xinjiang Military Region, Wulumuqi, China
| | - Guanghui Lian
- Department of Gastroenterology, Xiangya Hospital, Changsha, China
| | - Hailing Tang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junping Wang
- Department of Gastroenterology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhihui Lin
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianbo Wen
- Department of Gastroenterology, Pingxiang People's Hospital, Pingxiang, China
| | - Yuedong Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chunbao Zhai
- Department of Proctology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Wen Wang
- Department of Gastroenterology, 900th Hospital of PLA, Fuzhou, China
| | - Xueliang Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Hospital, Nanjing, China
| | - Morong Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiyun Lu
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
| | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Han Wang
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Cong Ouyang
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Aiqiang Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | | | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Chen
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
7
|
Toribio-Mateas MA, Bester A, Klimenko N. Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods 2021; 10:2040. [PMID: 34574149 PMCID: PMC8465665 DOI: 10.3390/foods10092040] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Eating less meat is increasingly seen as a healthier, more ethical option. This is leading to growing numbers of flexitarian consumers looking for plant-based meat alternatives (PBMAs) to replace at least some of the animal meat they consume. Popular PBMA products amongst flexitarians, including plant-based mince, burgers, sausages and meatballs, are often perceived as low-quality, ultra-processed foods. However, we argue that the mere industrial processing of ingredients of plant origin does not make a PBMA product ultra-processed by default. To test our hypothesis, we conducted a randomised controlled trial to assess the changes to the gut microbiota of a group of 20 participants who replaced several meat-containing meals per week with meals cooked with PBMA products and compared these changes to those experienced by a size-matched control. Stool samples were subjected to 16S rRNA sequencing. The resulting raw data was analysed in a compositionality-aware manner, using a range of innovative bioinformatic methods. Noteworthy changes included an increase in butyrate metabolising potential-chiefly in the 4-aminobutyrate/succinate and glutarate pathways-and in the joint abundance of butyrate-producing taxa in the intervention group compared to control. We also observed a decrease in the Tenericutes phylum in the intervention group and an increase in the control group. Based on our findings, we concluded that the occasional replacement of animal meat with PBMA products seen in flexitarian dietary patterns can promote positive changes in the gut microbiome of consumers.
Collapse
Affiliation(s)
- Miguel A. Toribio-Mateas
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK;
- School of Health and Education, Middlesex University, London SE1 0AA, UK
| | - Adri Bester
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK;
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Research and Development Department, Knomics LLC, Skolkovo Innovation Center, 121205 Moscow, Russia
| |
Collapse
|
8
|
Gail MH, Wan Y, Shi J. Power of Microbiome Beta-Diversity Analyses Based on Standard Reference Samples. Am J Epidemiol 2021; 190:439-447. [PMID: 32976571 DOI: 10.1093/aje/kwaa204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
A simple method to analyze microbiome beta-diversity computes mean beta-diversity distances from a test sample to standard reference samples. We used reference stool and nasal samples from the Human Microbiome Project and regressed an outcome on mean distances (2 degrees-of-freedom (df) test) or additionally on squares and cross-product of mean distances (5-df test). We compared the power of 2-df and 5-df tests with the microbiome regression-based kernel association test (MiRKAT). In simulations, MiRKAT had moderately greater power than the 2-df test for discriminating skin versus saliva and skin versus nasal samples, but differences were negligible for skin versus stool and stool versus nasal samples. The 2-df test had slightly greater power than MiRKAT for Dirichlet multinomial samples. In associating body mass index with beta-diversity in stool samples from the American Gut Project, the 5-df test yielded smaller P values than MiRKAT for most taxonomic levels and beta-diversity measures. Unlike procedures like MiRKAT that are based on the beta-diversity matrix, mean distances to reference samples can be analyzed with standard statistical tools and shared or meta-analyzed without sharing primary DNA data. Our data indicate that standard reference tests have power comparable to MiRKAT's (and to permutational multivariate analysis of variance), but more simulations and applications are needed to confirm this.
Collapse
|
9
|
D'Angelo CR, Sudakaran S, Callander NS. Clinical effects and applications of the gut microbiome in hematologic malignancies. Cancer 2020; 127:679-687. [PMID: 33369893 DOI: 10.1002/cncr.33400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The gut microbiome and its effects on host immunity have exciting implications for cancer prognosis and therapy. Examples in allogeneic hematopoietic stem cell transplantation (allo-SCT) demonstrate the role of the gut microbiome as a biomarker for clinical outcomes, and animal models demonstrate how microbiota manipulation may augment therapeutic responses. There are multiple mechanisms that gut microbiota may have in affecting distant tumor environments, including control of cytokine release, dendritic cell activation, and T-cell lymphocyte stimulation. Recently, there has been a marked interest in understanding interactions between host and microbiome in hematologic malignancies. This review summarizes the current understanding of the gut microbiome and its impact on leukemia, lymphoma, multiple myeloma, and allo-SCT and highlights several broad methods for targeting the gut microbiome in therapeutic trials.
Collapse
Affiliation(s)
- Christopher R D'Angelo
- Division of Hematology/Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sailendharan Sudakaran
- Microbiome Hub, Wisconsin Institute of Discovery, University of Wisconsin, Madison, Wisconsin
| | - Natalie S Callander
- Section of Hematology/Oncology and Bone Marrow Transplantation, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
10
|
Huybrechts I, Zouiouich S, Loobuyck A, Vandenbulcke Z, Vogtmann E, Pisanu S, Iguacel I, Scalbert A, Indave I, Smelov V, Gunter MJ, Michels N. The Human Microbiome in Relation to Cancer Risk: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2020; 29:1856-1868. [PMID: 32727720 PMCID: PMC7541789 DOI: 10.1158/1055-9965.epi-20-0288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/06/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The microbiome has been hypothesized to play a role in cancer development. Because of the diversity of published data, an overview of available epidemiologic evidence linking the microbiome with cancer is now needed. We conducted a systematic review using a tailored search strategy in Medline and EMBASE databases to identify and summarize the current epidemiologic literature on the relationship between the microbiome and different cancer outcomes published until December 2019. We identified 124 eligible articles. The large diversity of parameters used to describe microbial composition made it impossible to harmonize the different studies in a way that would allow meta-analysis, therefore only a qualitative description of results could be performed. Fifty studies reported differences in the gut microbiome between patients with colorectal cancer and various control groups. The most consistent findings were for Fusobacterium, Porphyromonas, and Peptostreptococcus being significantly enriched in fecal and mucosal samples from patients with colorectal cancer. For the oral microbiome, significantly increased and decreased abundance was reported for Fusobacterium and Streptococcus, respectively, in patients with oral cancer compared with controls. Overall, although there was a large amount of evidence for some of these alterations, most require validation in high-quality, preferably prospective, epidemiologic studies.
Collapse
Affiliation(s)
| | - Semi Zouiouich
- International Agency for Research on Cancer, Lyon, France
| | - Astrid Loobuyck
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Zeger Vandenbulcke
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Emily Vogtmann
- Division of Cancer Epidemiology & Genetics, NCI, Bethesda, Maryland
| | - Silvia Pisanu
- International Agency for Research on Cancer, Lyon, France
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cagliari, Italy
| | - Isabel Iguacel
- International Agency for Research on Cancer, Lyon, France
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain
| | | | - Iciar Indave
- International Agency for Research on Cancer, Lyon, France
| | - Vitaly Smelov
- International Agency for Research on Cancer, Lyon, France
- Division of Noncommunicable Diseases and Promoting Health through the Life-course, WHO Regional Office for Europe, Copenhagen, Denmark
| | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| | - Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Ren CC, Sylvia KE, Munley KM, Deyoe JE, Henderson SG, Vu MP, Demas GE. Photoperiod modulates the gut microbiome and aggressive behavior in Siberian hamsters. ACTA ACUST UNITED AC 2020; 223:jeb.212548. [PMID: 31862850 DOI: 10.1242/jeb.212548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Seasonally breeding animals undergo shifts in physiology and behavior in response to changes in photoperiod (day length). Interestingly, some species, such as Siberian hamsters (Phodopus sungorus), are more aggressive during the short-day photoperiods of the non-breeding season, despite gonadal regression. While our previous data suggest that Siberian hamsters employ a 'seasonal switch' from gonadal to adrenal regulation of aggression during short-day photoperiods, there is emerging evidence that the gut microbiome, an environment of symbiotic bacteria within the gastrointestinal tract, may also change seasonally and modulate social behaviors. The goal of this study was to compare seasonal shifts in the gut microbiome, circulating levels of adrenal dehydroepiandrosterone (DHEA) and aggression in male and female Siberian hamsters. Hamsters were housed in either long-day (LD) or short-day (SD) photoperiods for 9 weeks. Fecal samples were collected and behaviors were recorded following 3, 6 and 9 weeks of housing, and circulating DHEA was measured at week 9. SD females that were responsive to changes in photoperiod (SD-R), but not SD-R males, displayed increased aggression following 9 weeks of treatment. SD-R males and females also exhibited distinct changes in the relative abundance of gut bacterial phyla and families, yet showed no change in circulating DHEA. The relative abundance of some bacterial families (e.g. Anaeroplasmataceae in females) was associated with aggression in SD-R but not LD or SD non-responder (SD-NR) hamsters after 9 weeks of treatment. Collectively, this study provides insight into the complex role of the microbiome in regulating social behavior in seasonally breeding species.
Collapse
Affiliation(s)
- Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Kristyn E Sylvia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Sarah G Henderson
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Michael P Vu
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Vogtmann E, Han Y, Caporaso JG, Bokulich N, Mohamadkhani A, Moayyedkazemi A, Hua X, Kamangar F, Wan Y, Suman S, Zhu B, Hutchinson A, Dagnall C, Jones K, Hicks B, Shi J, Malekzadeh R, Abnet CC, Pourshams A. Oral microbial community composition is associated with pancreatic cancer: A case-control study in Iran. Cancer Med 2020; 9:797-806. [PMID: 31750624 PMCID: PMC6970053 DOI: 10.1002/cam4.2660] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/15/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Oral microbiota may be related to pancreatic cancer risk because periodontal disease, a condition linked to multiple specific microbes, has been associated with increased risk of pancreatic cancer. We evaluated the association between oral microbiota and pancreatic cancer in Iran. METHODS A total of 273 pancreatic adenocarcinoma cases and 285 controls recruited from tertiary hospitals and a specialty clinic in Tehran, Iran provided saliva samples and filled out a questionnaire regarding demographics and lifestyle characteristics. DNA was extracted from saliva and the V4 region of the 16S rRNA gene was PCR amplified and sequenced on the MiSeq. The sequencing data were processed using the DADA2 plugin in QIIME 2 and taxonomy was assigned against the Human Oral Microbiome Database. Logistic regression and MiRKAT models were calculated with adjustment for potential confounders. RESULTS No association was observed for alpha diversity with an average of 91.11 (standard deviation [SD] 2.59) sequence variants for cases and 89.42 (SD 2.58) for controls. However, there was evidence for an association between beta diversity and case status. The association between the Bray-Curtis dissimilarity and pancreatic cancer was particularly strong with a MiRKAT P-value of .000142 and specific principal coordinate vectors had strong associations with cancer risk. Several specific taxa were also associated with case status after adjustment for multiple comparisons. CONCLUSION The overall microbial community appeared to differ between pancreatic cancer cases and controls. Whether these reflect differences evident before development of pancreatic cancer will need to be evaluated in prospective studies.
Collapse
Affiliation(s)
- Emily Vogtmann
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Yongli Han
- Biostatistics BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - J. Gregory Caporaso
- Center for Applied Microbiome SciencePathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffAZUSA
| | - Nicholas Bokulich
- Center for Applied Microbiome SciencePathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffAZUSA
| | - Ashraf Mohamadkhani
- Digestive Oncology Research CenterDigestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Alireza Moayyedkazemi
- Department of Internal MedicineLorestan University of Medical SciencesKhorramabadIran
- Liver and Pancreatobiliary Diseases Research CenterDigestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Xing Hua
- Biostatistics BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Farin Kamangar
- Department of BiologySchool of Computer, Mathematical, and Natural SciencesMorgan State UniversityBaltimoreMDUSA
| | - Yunhu Wan
- Biostatistics BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Shalabh Suman
- Cancer Genomics Research LaboratoryDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
- Leidos Biomedical Research Laboratory, Inc.Frederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Bin Zhu
- Cancer Genomics Research LaboratoryDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
- Leidos Biomedical Research Laboratory, Inc.Frederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Amy Hutchinson
- Cancer Genomics Research LaboratoryDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
- Leidos Biomedical Research Laboratory, Inc.Frederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Casey Dagnall
- Cancer Genomics Research LaboratoryDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
- Leidos Biomedical Research Laboratory, Inc.Frederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Kristine Jones
- Cancer Genomics Research LaboratoryDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
- Leidos Biomedical Research Laboratory, Inc.Frederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Belynda Hicks
- Cancer Genomics Research LaboratoryDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
- Leidos Biomedical Research Laboratory, Inc.Frederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Jianxin Shi
- Biostatistics BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Reza Malekzadeh
- Digestive Oncology Research CenterDigestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Digestive Disease Research CenterDigestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Christian C. Abnet
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Akram Pourshams
- Digestive Oncology Research CenterDigestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Liver and Pancreatobiliary Diseases Research CenterDigestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|