1
|
Bludau O, Weber A, Bosak V, Kuscha V, Dietrich K, Hans S, Brand M. Inflammation is a critical factor for successful regeneration of the adult zebrafish retina in response to diffuse light lesion. Front Cell Dev Biol 2024; 12:1332347. [PMID: 39071801 PMCID: PMC11272569 DOI: 10.3389/fcell.2024.1332347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Inflammation can lead to persistent and irreversible loss of retinal neurons and photoreceptors in mammalian vertebrates. In contrast, in the adult zebrafish brain, acute neural inflammation is both necessary and sufficient to stimulate regeneration of neurons. Here, we report on the critical, positive role of the immune system to support retina regeneration in adult zebrafish. After sterile ablation of photoreceptors by phototoxicity, we find rapid response of immune cells, especially monocytes/microglia and neutrophils, which returns to homeostatic levels within 14 days post lesion. Pharmacological or genetic impairment of the immune system results in a reduced Müller glia stem cell response, seen as decreased reactive proliferation, and a strikingly reduced number of regenerated cells from them, including photoreceptors. Conversely, injection of the immune stimulators flagellin, zymosan, or M-CSF into the vitreous of the eye, leads to a robust proliferation response and the upregulation of regeneration-associated marker genes in Müller glia. Our results suggest that neuroinflammation is a necessary and sufficient driver for retinal regeneration in the adult zebrafish retina.
Collapse
Affiliation(s)
- Oliver Bludau
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Anke Weber
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Viktoria Bosak
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Veronika Kuscha
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Kristin Dietrich
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Stefan Hans
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Michael Brand
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| |
Collapse
|
2
|
Apaydin O, Altaikyzy A, Filosa A, Sawamiphak S. Alpha-1 adrenergic signaling drives cardiac regeneration via extracellular matrix remodeling transcriptional program in zebrafish macrophages. Dev Cell 2023; 58:2460-2476.e7. [PMID: 37875117 DOI: 10.1016/j.devcel.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The autonomic nervous system plays a pivotal role in cardiac repair. Here, we describe the mechanistic underpinning of adrenergic signaling in fibrotic and regenerative response of the heart to be dependent on immunomodulation. A pharmacological approach identified adrenergic receptor alpha-1 as a key regulator of macrophage phenotypic diversification following myocardial damage in zebrafish. Genetic manipulation and single-cell transcriptomics showed that the receptor signals activation of an "extracellular matrix remodeling" transcriptional program in a macrophage subset, which serves as a key regulator of matrix composition and turnover. Mechanistically, adrenergic receptor alpha-1-activated macrophages determine activation of collagen-12-expressing fibroblasts, a cellular determinant of cardiac regenerative niche, through midkine-mediated paracrine crosstalk, allowing lymphatic and blood vessel growth and cardiomyocyte proliferation at the lesion site. These findings identify the mechanism of adrenergic signaling in macrophage phenotypic and functional determination and highlight the potential of neural modulation for regulation of fibrosis and coordination of myocardial regenerative response.
Collapse
Affiliation(s)
- Onur Apaydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Akerke Altaikyzy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
3
|
Botos MA, Arora P, Chouvardas P, Mercader N. Transcriptomic data meta-analysis reveals common and injury model specific gene expression changes in the regenerating zebrafish heart. Sci Rep 2023; 13:5418. [PMID: 37012284 PMCID: PMC10070245 DOI: 10.1038/s41598-023-32272-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Zebrafish have the capacity to fully regenerate the heart after an injury, which lies in sharp contrast to the irreversible loss of cardiomyocytes after a myocardial infarction in humans. Transcriptomics analysis has contributed to dissect underlying signaling pathways and gene regulatory networks in the zebrafish heart regeneration process. This process has been studied in response to different types of injuries namely: ventricular resection, ventricular cryoinjury, and genetic ablation of cardiomyocytes. However, there exists no database to compare injury specific and core cardiac regeneration responses. Here, we present a meta-analysis of transcriptomic data of regenerating zebrafish hearts in response to these three injury models at 7 days post injury (7dpi). We reanalyzed 36 samples and analyzed the differentially expressed genes (DEG) followed by downstream Gene Ontology Biological Processes (GO:BP) analysis. We found that the three injury models share a common core of DEG encompassing genes involved in cell proliferation, the Wnt signaling pathway and genes that are enriched in fibroblasts. We also found injury-specific gene signatures for resection and genetic ablation, and to a lower extent the cryoinjury model. Finally, we present our data in a user-friendly web interface that displays gene expression signatures across different injury types and highlights the importance to consider injury-specific gene regulatory networks when interpreting the results related to cardiac regeneration in the zebrafish. The analysis is freely available at: https://mybinder.org/v2/gh/MercaderLabAnatomy/PUB_Botos_et_al_2022_shinyapp_binder/HEAD?urlpath=shiny/bus-dashboard/ .
Collapse
Affiliation(s)
- Marius Alexandru Botos
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Prateek Arora
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Panagiotis Chouvardas
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland.
- Centro Nacional de Investigaciones Cardiovasculares CNIC, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Sharpe M, González-Rosa JM, Wranitz F, Jeffrey S, Copenhaver K, Burns CG, Burns CE. Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Front Cell Dev Biol 2022; 10:800594. [PMID: 35178388 PMCID: PMC8844374 DOI: 10.3389/fcell.2022.800594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocyte proliferation is an important source of new myocardium during heart development and regeneration. Consequently, mutations in drivers of cardiomyocyte proliferation cause congenital heart disease, and infarcted human hearts scar because cardiomyocytes exit the cell cycle postnatally. To boost cardiomyocyte proliferation in either setting, critical regulators must be identified. Through an ENU screen in zebrafish, the liebeskummer (lik) mutant was isolated and described as having elevated cardiomyocyte numbers during embryogenesis. The lik mutation results in a three amino acid insertion into Ruvbl2, a highly conserved ATPase. Because both gain- and loss-of-function properties have been described for ruvbl2lik, it remains unclear whether Ruvbl2 positively or negatively regulates cardiomyocyte proliferation. Here, we demonstrate that Ruvbl2 is a suppressor of cardiomyocyte proliferation during zebrafish heart development and regeneration. First, we confirmed speculation that augmented cardiomyocyte numbers in ruvbl2lik/lik hearts arise by hyperproliferation. To characterize bona fide ruvbl2 null animals, we created a ruvbl2 locus deletion allele (ruvbl2Δ). Like ruvbl2lik/lik mutants, ruvbl2Δ/Δ and compound heterozygote ruvbl2lik/Δ animals display ventricular hyperplasia, demonstrating that lik is a loss of function allele and that ruvbl2 represses cardiomyocyte proliferation. This activity is autonomous because constitutive myocardial overexpression of Ruvbl2 is sufficient to suppress cardiomyocyte proliferation in control hearts and rescue the hyperproliferation observed in ruvbl2Δ/Δ mutant hearts. Lastly, heat-shock inducible overexpression of Ruvbl2 suppresses cardiomyocyte proliferation during heart regeneration and leads to scarring. Together, our data demonstrate that Ruvbl2 functions autonomously as a suppressor of cardiomyocyte proliferation during both zebrafish heart development and adult heart regeneration.
Collapse
Affiliation(s)
- Michka Sharpe
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Juan Manuel González-Rosa
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Felicia Wranitz
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Spencer Jeffrey
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Katherine Copenhaver
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
5
|
Cao Y, Xia Y, Balowski JJ, Ou J, Song L, Safi A, Curtis T, Crawford GE, Poss KD, Cao J. Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration. Development 2022; 149:dev200133. [PMID: 35179181 PMCID: PMC8918790 DOI: 10.1242/dev.200133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Joseph J. Balowski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Curtis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
6
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
7
|
Thiel W, Esposito EJ, Findley AP, Blume ZI, Mitchell DM. Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia. Biol Open 2021; 11:273656. [PMID: 34878094 PMCID: PMC8822359 DOI: 10.1242/bio.058990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS. Summary: Here we investigate expression of two apolipoprotein genes by microglia in the zebrafish model during normal development, and in contexts of pharmacological manipulations that target candidate regulatory receptors.
Collapse
Affiliation(s)
- Whitney Thiel
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Emma J Esposito
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Diana M Mitchell
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| |
Collapse
|
8
|
Tseng TL, Wang YT, Tsao CY, Ke YT, Lee YC, Hsu HJ, Poss KD, Chen CH. The RNA helicase Ddx52 functions as a growth switch in juvenile zebrafish. Development 2021; 148:271093. [PMID: 34323273 DOI: 10.1242/dev.199578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Vertebrate animals usually display robust growth trajectories during juvenile stages, and reversible suspension of this growth momentum by a single genetic determinant has not been reported. Here, we report a single genetic factor that is essential for juvenile growth in zebrafish. Using a forward genetic screen, we recovered a temperature-sensitive allele, pan (after Peter Pan), that suspends whole-organism growth at juvenile stages. Remarkably, even after growth is halted for a full 8-week period, pan mutants are able to resume a robust growth trajectory after release from the restrictive temperature, eventually growing into fertile adults without apparent adverse phenotypes. Positional cloning and complementation assays revealed that pan encodes a probable ATP-dependent RNA helicase (DEAD-Box Helicase 52; ddx52) that maintains the level of 47S precursor ribosomal RNA. Furthermore, genetic silencing of ddx52 and pharmacological inhibition of bulk RNA transcription similarly suspend the growth of flies, zebrafish and mice. Our findings reveal evidence that safe, reversible pauses of juvenile growth can be mediated by targeting the activity of a single gene, and that its pausing mechanism has high evolutionary conservation.
Collapse
Affiliation(s)
- Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Yu Tsao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Teng Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ching Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Du H, Song Z, Zhang M, Nie Y, Xu Y. The deletion of Schizosaccharomyces pombe decreased the production of flavor-related metabolites during traditional Baijiu fermentation. Food Res Int 2021; 140:109872. [PMID: 33648190 DOI: 10.1016/j.foodres.2020.109872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023]
Abstract
The microbiota in traditional solid-state fermentation is a complex microbiota that plays a key role in the production of feed, fuel, food and pharmaceutical products. The function of microbiota is an important factor dictating the quantity and quality of products. Core functional species play key metabolic roles in the microbiota, and their disappearance could result in the abnormal fermentation process. In this work, we combined Baijiu production and laboratory experiments to explore the keystone microbes and their metabolites. We found the deletion of core functional microbe resulted in the loss of multiple metabolites involved many alcohols and acids. In the traditional Baijiu production, the absence or appearance of Schizosaccharomyces pombe caused the content divergence in 227 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between abnormal and normal group (each content > 1 mg/kg and the content ratio of normal/abnormal group > 2). Schi. pombe increased the expression level of related genes involving alcohol dehydrogenase (ADH), acyl-CoA oxidase (ACOX) and trans-2-enoyl-CoA reductase (TER). Moreover, in the verification experiment of laboratory, the absence or appearance of Schizosaccharomyces pombe C-11 caused the content divergence in 136 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between Sp- and Sp+ group (each content > 1 mg/kg and the content ratio of Sp+/Sp- group > 2). Our results identified specific member that were essential for the function of fermentation microbiota. This study also suggests species deletions from fermentation microbiota and synthetic consortium could be a useful approach to illustrate relevant microbe-metabolites association and defining metabolic roles in the traditional solid-state fermentation.
Collapse
Affiliation(s)
- Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhewei Song
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Microbiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Nie
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
10
|
Dwaraka VB, Voss SR. Towards comparative analyses of salamander limb regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:129-144. [PMID: 31584252 PMCID: PMC8908358 DOI: 10.1002/jez.b.22902] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 08/29/2023]
Abstract
Among tetrapods, only salamanders can regenerate their limbs and tails throughout life. This amazing regenerative ability has attracted the attention of scientists for hundreds of years. Now that large, salamander genomes are beginning to be sequenced for the first time, omics tools and approaches can be used to integrate new perspectives into the study of tissue regeneration. Here we argue the need to move beyond the primary salamander models to investigate regeneration in other species. Salamanders at first glance come across as a phylogenetically conservative group that has not diverged greatly from their ancestors. While salamanders do present ancestral characteristics of basal tetrapods, including the ability to regenerate limbs, data from fossils and data from studies that have tested for species differences suggest there may be considerable variation in how salamanders develop and regenerate their limbs. We review the case for expanded studies of salamander tissue regeneration and identify questions and approaches that are most likely to reveal commonalities and differences in regeneration among species. We also address challenges that confront such an initiative, some of which are regulatory and not scientific. The time is right to gain evolutionary perspective about mechanisms of tissue regeneration from comparative studies of salamander species.
Collapse
Affiliation(s)
- Varun B. Dwaraka
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Issaka Salia O, Mitchell DM. Bioinformatic analysis and functional predictions of selected regeneration-associated transcripts expressed by zebrafish microglia. BMC Genomics 2020; 21:870. [PMID: 33287696 PMCID: PMC7720500 DOI: 10.1186/s12864-020-07273-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike mammals, zebrafish have a remarkable capacity to regenerate a variety of tissues, including central nervous system tissue. The function of macrophages in tissue regeneration is of great interest, as macrophages respond and participate in the landscape of events that occur following tissue injury in all vertebrate species examined. Understanding macrophage populations in regenerating tissue (such as in zebrafish) may inform strategies that aim to regenerate tissue in humans. We recently published an RNA-seq experiment that identified genes enriched in microglia/macrophages in regenerating zebrafish retinas. Interestingly, a small number of transcripts differentially expressed by retinal microglia/macrophages during retinal regeneration did not have predicted orthologs in human or mouse. We reasoned that at least some of these genes could be functionally important for tissue regeneration, but most of these genes have not been studied experimentally and their functions are largely unknown. To reveal their possible functions, we performed a variety of bioinformatic analyses aimed at identifying the presence of functional protein domains as well as orthologous relationships to other species. RESULTS Our analyses identified putative functional domains in predicted proteins for a number of selected genes. For example, we confidently predict kinase function for one gene, cytokine/chemokine function for another, and carbohydrate enzymatic function for a third. Predicted orthologs were identified for some, but not all, genes in species with described regenerative capacity, and functional domains were consistent with identified orthologs. Comparison to other published gene expression datasets suggest that at least some of these genes could be important in regenerative responses in zebrafish and not necessarily in response to microbial infection. CONCLUSIONS This work reveals previously undescribed putative function of several genes implicated in regulating tissue regeneration. This will inform future work to experimentally determine the function of these genes in vivo, and how these genes may be involved in microglia/macrophage roles in tissue regeneration.
Collapse
Affiliation(s)
- Ousseini Issaka Salia
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA.,Present affiliation: Kellog Biological Station and Department of Plant Biology, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI, 49060, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
12
|
Sanz-Morejón A, Mercader N. Recent insights into zebrafish cardiac regeneration. Curr Opin Genet Dev 2020; 64:37-43. [PMID: 32599303 DOI: 10.1016/j.gde.2020.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
In humans, myocardial infarction results in ventricular remodeling, progressing ultimately to cardiac failure, one of the leading causes of death worldwide. In contrast to the adult mammalian heart, the zebrafish model organism has a remarkable regenerative capacity, offering the possibility to research the bases of natural regeneration. Here, we summarize recent insights into the cellular and molecular mechanisms that govern cardiac regeneration in the zebrafish.
Collapse
Affiliation(s)
- Andrés Sanz-Morejón
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
13
|
Harris MP, Daane JM, Lanni J. Through veiled mirrors: Fish fins giving insight into size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e381. [PMID: 32323915 DOI: 10.1002/wdev.381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022]
Abstract
Faithful establishment and maintenance of proportion is seen across biological systems and provides a glimpse at fundamental rules of scaling that underlie development and evolution. Dysregulation of proportion is observed in a range of human diseases and growth disorders, indicating that proper scaling is an essential component of normal anatomy and physiology. However, when viewed through an evolutionary lens, shifts in the regulation of relative proportion are one of the most striking sources of morphological diversity among organisms. To date, the mechanisms via which relative proportion is specified and maintained remain unclear. Through the application of powerful experimental, genetic and molecular approaches, the teleost fin has provided an effective model to investigate the regulation of scaling, size, and relative growth in vertebrate organisms. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Regulation of Organ Diversity.
Collapse
Affiliation(s)
- Matthew P Harris
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Daane
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. J Neurosci 2019; 40:1232-1247. [PMID: 31882403 PMCID: PMC7002140 DOI: 10.1523/jneurosci.1675-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS. SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.
Collapse
|
15
|
Lanni JS, Peal D, Ekstrom L, Chen H, Stanclift C, Bowen ME, Mercado A, Gamba G, Kahle KT, Harris MP. Integrated K+ channel and K+Cl- cotransporter functions are required for the coordination of size and proportion during development. Dev Biol 2019; 456:164-178. [PMID: 31472116 PMCID: PMC7235970 DOI: 10.1016/j.ydbio.2019.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/07/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
The coordination of growth during development establishes proportionality within and among the different anatomic structures of organisms. Innate memory of this proportionality is preserved, as shown in the ability of regenerating structures to return to their original size. Although the regulation of this coordination is incompletely understood, mutant analyses of zebrafish with long-finned phenotypes have uncovered important roles for bioelectric signaling in modulating growth and size of the fins and barbs. To date, long-finned mutants identified are caused by hypermorphic mutations, leaving unresolved whether such signaling is required for normal development. We isolated a new zebrafish mutant, schleier, with proportional overgrowth phenotypes caused by a missense mutation and loss of function in the K+-Cl- cotransporter Kcc4a. Creation of dominant negative Kcc4a in wild-type fish leads to loss of growth restriction in fins and barbs, supporting a requirement for Kcc4a in regulation of proportion. Epistasis experiments suggest that Kcc4a and the two-pore potassium channel Kcnk5b both contribute to a common bioelectrical signaling response in the fin. These data suggest that an integrated bioelectric signaling pathway is required for the coordination of size and proportion during development.
Collapse
Affiliation(s)
| | - David Peal
- Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA
| | - Laura Ekstrom
- Department of Biology, Wheaton College, Norton, MA, 02766, USA
| | - Haining Chen
- Department of Biology, Wheaton College, Norton, MA, 02766, USA
| | | | - Margot E Bowen
- Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA
| | | | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, and NIH-Rockefeller Center for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA; Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA
| |
Collapse
|
16
|
Genetic Reprogramming of Positional Memory in a Regenerating Appendage. Curr Biol 2019; 29:4193-4207.e4. [PMID: 31786062 DOI: 10.1016/j.cub.2019.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/01/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Certain vertebrates such as salamanders and zebrafish are able to regenerate complex tissues (e.g., limbs and fins) with remarkable fidelity. However, how positional information of the missing structure is recalled by appendage stump cells has puzzled researchers for centuries. Here, we report that sizing information for adult zebrafish tailfins is encoded within proliferating blastema cells during a critical period of regeneration. Using a chemical mutagenesis screen, we identified a temperature-sensitive allele of the gene encoding DNA polymerase alpha subunit 2 (pola2) that disrupts fin regeneration in zebrafish. Temperature shift assays revealed a 48-h window of regeneration, during which positional identities could be disrupted in pola2 mutants, leading to regeneration of miniaturized appendages. These fins retained memory of the new size in subsequent rounds of amputation and regeneration. Similar effects were observed upon transient genetic or pharmacological disruption of progenitor cell proliferation after plucking of zebrafish scales or head or tail amputation in amphioxus and annelids. Our results provide evidence that positional information in regenerating tissues is not hardwired but malleable, based on regulatory mechanisms that appear to be evolutionarily conserved across distantly related phyla.
Collapse
|
17
|
Schmidt JR, Geurtzen K, von Bergen M, Schubert K, Knopf F. Glucocorticoid Treatment Leads to Aberrant Ion and Macromolecular Transport in Regenerating Zebrafish Fins. Front Endocrinol (Lausanne) 2019; 10:674. [PMID: 31636606 PMCID: PMC6787175 DOI: 10.3389/fendo.2019.00674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Long-term glucocorticoid administration in patients undergoing immunosuppressive and anti-inflammatory treatment is accompanied by impaired bone formation and increased fracture risk. Furthermore, glucocorticoid treatment can lead to impaired wound healing and altered cell metabolism. Recently, we showed that exposure of zebrafish to the glucocorticoid prednisolone during fin regeneration impacts negatively on the length, bone formation, and osteoblast function of the regenerate. The underlying cellular and molecular mechanisms of impairment, however, remain incompletely understood. In order to further elucidate the anti-regenerative effects of continued glucocorticoid exposure on fin tissues, we performed proteome profiling of fin regenerates undergoing prednisolone treatment, in addition to profiling of homeostatic fin tissue and fins undergoing undisturbed regeneration. By using LC-MS (liquid chromatography-mass spectrometry) we identified more than 6,000 proteins across all tissue samples. In agreement with previous reports, fin amputation induces changes in chromatin structure and extracellular matrix (ECM) composition within the tissue. Notably, prednisolone treatment leads to impaired expression of selected ECM components in the fin regenerate. Moreover, the function of ion transporting ATPases and other proteins involved in macromolecule and vesicular transport mechanisms of the cell appears to be altered by prednisolone treatment. In particular, acidification of membrane-enclosed organelles such as lysosomes is inhibited. Taken together, our data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Karina Geurtzen
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- *Correspondence: Kristin Schubert
| | - Franziska Knopf
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität (TU) Dresden, Dresden, Germany
- Franziska Knopf
| |
Collapse
|