1
|
Li Y, Liu F, Zhou Y, Liu X, Wang Q. Large-scale geographic patterns and environmental and anthropogenic drivers of wetland plant diversity in the Qinghai-Tibet Plateau. BMC Ecol Evol 2024; 24:74. [PMID: 38831426 PMCID: PMC11145778 DOI: 10.1186/s12862-024-02263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The geographic patterns of plant diversity in the Qinghai-Tibet Plateau (QTP) have been widely studied, but few studies have focused on wetland plants. This study quantified the geographic patterns of wetland plant diversity in the QTP through a comprehensive analysis of taxonomic, phylogenetic and functional indices. METHODS Based on a large number of floras, monographs, specimens and field survey data, we constructed a comprehensive dataset of 1,958 wetland plant species in the QTP. Species richness (SR), phylogenetic diversity (PD), functional diversity (FD), net relatedness index (NRI) and net functional relatedness index (NFRI) were used to assess the taxonomic, phylogenetic and functional diversity of wetland plants. We explored the relationships between the diversity indices and four categories of environmental variables (i.e. energy-water, climate seasonality, topography and human activities). We used four diversity indices, namely endemic species richness, weighted endemism, phylogenetic endemism and functional endemism, together with the categorical analysis of neo- and paleo-endemism (CANAPE), to identify the endemic centers of wetland plants in the QTP. RESULTS SR, PD and FD were highly consistent and showed a decreasing trend from southeast to northwest, decreasing with increasing elevation. The phylogenetic structure of wetland plant assemblages in most parts of the plateau is mainly clustered. The functional structure of wetland plant assemblages in the southeast of the plateau is overdispersed, while the functional structure of wetland plant assemblages in other areas is clustered. Energy-water and climate seasonality were the two most important categories of variables affecting wetland plant diversity. Environmental variables had a greater effect on the functional structure of wetland plants than on the phylogenetic structure. This study identified seven endemic centres, mainly in the Himalayas and Hengduan Mountains. CONCLUSIONS Climate and topography are the main factors determining the geographic distribution of wetland plant diversity at large scales. The majority of grid cells in the QTP with significant phylogenetic endemism were mixed and super-endemism. At large scales, compared to climate and topography, human activities may not have a negative impact on wetland plant diversity in the QTP.
Collapse
Affiliation(s)
- Yigang Li
- College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, China
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Fan Liu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yadong Zhou
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| | - Xing Liu
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa, China
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qingfeng Wang
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Huie JM, Prates I, Bell RC, de Queiroz K. Convergent patterns of adaptive radiation between island and mainland Anolis lizards. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Uncovering convergent and divergent patterns of diversification is a major goal of evolutionary biology. On four Greater Antillean islands, Anolis lizards have convergently evolved sets of species with similar ecologies and morphologies (ecomorphs). However, it is unclear whether closely related anoles from Central and South America exhibit similar patterns of diversification. We generated an extensive morphological data set to test whether mainland Draconura-clade anoles are assignable to the Caribbean ecomorphs. Based on a new classification framework that accounts for different degrees of morphological support, we found morphological evidence for mainland representatives of all six Caribbean ecomorphs and evidence that many ecomorphs have also evolved repeatedly on the mainland. We also found strong evidence that ground-dwelling anoles from both the Caribbean and the mainland constitute a new and distinct ecomorph class. Beyond the ecomorph concept, we show that the island and mainland anole faunas exhibit exceptional morphological convergence, suggesting that they are more similar than previously understood. However, the island and mainland radiations are not identical, indicating that regional differences and historical contingencies can lead to replicate yet variable radiations. More broadly, our findings suggest that replicated radiations occur beyond island settings more often than previously recognized.
Collapse
Affiliation(s)
- Jonathan M Huie
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Herpetology Department, California Academy of Sciences, San Francisco, CA, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
7
|
Garcia-Porta J, Irisarri I, Kirchner M, Rodríguez A, Kirchhof S, Brown JL, MacLeod A, Turner AP, Ahmadzadeh F, Albaladejo G, Crnobrnja-Isailovic J, De la Riva I, Fawzi A, Galán P, Göçmen B, Harris DJ, Jiménez-Robles O, Joger U, Jovanović Glavaš O, Karış M, Koziel G, Künzel S, Lyra M, Miles D, Nogales M, Oğuz MA, Pafilis P, Rancilhac L, Rodríguez N, Rodríguez Concepción B, Sanchez E, Salvi D, Slimani T, S'khifa A, Qashqaei AT, Žagar A, Lemmon A, Moriarty Lemmon E, Carretero MA, Carranza S, Philippe H, Sinervo B, Müller J, Vences M, Wollenberg Valero KC. Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat Commun 2019; 10:4077. [PMID: 31501432 PMCID: PMC6733905 DOI: 10.1038/s41467-019-11943-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/13/2019] [Indexed: 11/09/2022] Open
Abstract
Climatic conditions changing over time and space shape the evolution of organisms at multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied by an increasing disparity among occupied bioclimatic niches, especially in the last 10 Ma, during a period of progressive global cooling. Temperate species also underwent a genome-wide slowdown in molecular substitution rates compared to tropical and desert-adapted lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic parameters, indicating physiological adaptations to climate. Tropical, but also some populations of cool-adapted species experience maximum temperatures close to their preferred temperatures. We hypothesize these species-specific physiological preferences may constitute a handicap to prevail under rapid global warming, and contribute to explaining local lizard extinctions in cool and humid climates.
Collapse
Affiliation(s)
- Joan Garcia-Porta
- CREAF, 08193, Cerdanyola del Vallès, Spain
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, USA
| | - Iker Irisarri
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Kirchner
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Ariel Rodríguez
- Institute of Zoology, Tierärztliche Hochschule Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Sebastian Kirchhof
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Jason L Brown
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Amy MacLeod
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Alexander P Turner
- School of Engineering and Computer Science, University of Hull, Cottingham Road, HU6 7RX, Kingston-Upon-Hull, UK
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, G.C, Tehran, Iran
| | - Gonzalo Albaladejo
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Jelka Crnobrnja-Isailovic
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Institute for Biological Research "S. Stanković" University of Belgrade, Despota Stefana 142, Belgrade, 11000, Serbia
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Adnane Fawzi
- Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Pedro Galán
- Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Grupo de Investigación en Biología Evolutiva (GIBE), 15071, A Coruña, Spain
| | - Bayram Göçmen
- Zoology Section, Biology Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - D James Harris
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Octavio Jiménez-Robles
- Department of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ulrich Joger
- Staatliches Naturhistorisches Museum, Braunschweig, Germany
| | | | - Mert Karış
- Department of Chemistry and Chemical Process Technologies, Acıgöl Vocational High School of Technical Sciences, Nevşehir Hacı Bektaş Veli University, 50300, Nevşehir, Turkey
| | - Giannina Koziel
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mariana Lyra
- Departamento de Zoologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil
| | - Donald Miles
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Manuel Nogales
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Mehmet Anıl Oğuz
- Zoology Section, Biology Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens, 157-84, Greece
| | - Loïs Rancilhac
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Noemí Rodríguez
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Benza Rodríguez Concepción
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Eugenia Sanchez
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Daniele Salvi
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Department of Health, Life and Environmental Sciences, University of L'Aquila, 67100, Coppito, L'Aquila, Italy
| | - Tahar Slimani
- Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Abderrahim S'khifa
- Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Ali Turk Qashqaei
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, G.C, Tehran, Iran
| | - Anamarija Žagar
- National Institute of Biology NIB, Department of Organisms and Ecosystems Research, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Alan Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, USA
| | | | - Miguel Angel Carretero
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat, Pompeu Fabra), Passeig Marítim de la Barceloneta 37-,49, 08003, Barcelona, Spain
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, 09200, Moulis, France
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, and Institute for the Study of the Ecological and Evolutionary Climate Impacts, University of California, 130 McAllister Way, Coastal Biology Building, Santa Cruz, CA, 95064, USA
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany.
| | | |
Collapse
|