1
|
Kessler A, Mueller MB, Kalske A, Chautá A. Volatile-mediated plant-plant communication and higher-level ecological dynamics. Curr Biol 2023; 33:R519-R529. [PMID: 37279686 DOI: 10.1016/j.cub.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) in general and herbivory-induced plant volatiles (HIPVs) in particular are increasingly understood as major mediators of information transfer between plant tissues. Recent findings have moved the field of plant communication closer to a detailed understanding of how plants emit and perceive VOCs and seem to converge on a model that juxtaposes perception and emission mechanisms. These new mechanistic insights help to explain how plants can integrate different types of information and how environmental noise can affect the transmission of information. At the same time, ever-new functions of VOC-mediated plant-plant interactions are being revealed. Chemical information transfer between plants is now known to fundamentally affect plant organismal interactions and, additionally, population, community, and ecosystem dynamics. One of the most exciting new developments places plant-plant interactions along a behavioral continuum with an eavesdropping strategy at one end and mutually beneficial information-sharing among plants within a population at the other. Most importantly and based on recent findings as well as theoretical models, plant populations can be predicted to evolve different communication strategies depending on their interaction environment. We use recent studies from ecological model systems to illustrate this context dependency of plant communication. Moreover, we review recent key findings about the mechanisms and functions of HIPV-mediated information transfer and suggest conceptual links, such as to information theory and behavioral game theory, as valuable tools for a deeper understanding of how plant-plant communication affects ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Michael B Mueller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Alexander Chautá
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Orlando CG, Possell M, Price C, Banks PB, Mercorelli L, McArthur C. A new conceptual and quantitative approach to exploring and defining potential open-access olfactory information. THE NEW PHYTOLOGIST 2022; 236:1605-1619. [PMID: 35975694 PMCID: PMC9826502 DOI: 10.1111/nph.18432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
All organisms emit odour, providing 'open-access' olfactory information for any receiver with the right sensory apparatus. Characterizing open-access information emitted by groups of organisms, such as plant species, provides the means to answer significant questions about ecological interactions and their evolution. We present a new conceptual framework defining information reliability and a practical method to characterize and recover information from amongst olfactory noise. We quantified odour emissions from two tree species, one focal group and one outgroup, to demonstrate our approach using two new R statistical functions. We explore the consequences of relaxing or tightening criteria defining information and, from thousands of odour combinations, we identify and quantify those few likely to be informative. Our method uses core general principles characterizing information while incorporating knowledge of how receivers detect and discriminate odours. We can now map information in consistency-precision reliability space, explore the concept of information, and test information-noise boundaries, and between cues and signals.
Collapse
Affiliation(s)
| | - Malcolm Possell
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Catherine Price
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Peter B. Banks
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Louis Mercorelli
- The Sydney Informatics HubThe University of SydneySydneyNSW2006Australia
| | - Clare McArthur
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
3
|
Harrison AS, Rands SA. The Ability of Bumblebees Bombus terrestris (Hymenoptera: Apidae) to Detect Floral Humidity is Dependent Upon Environmental Humidity. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1010-1019. [PMID: 35899458 PMCID: PMC9585368 DOI: 10.1093/ee/nvac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/15/2023]
Abstract
Flowers produce local humidity that is often greater than that of the surrounding environment, and studies have shown that insect pollinators may be able to use this humidity difference to locate and identify suitable flowers. However, environmental humidity is highly heterogeneous, and is likely to affect the detectability of floral humidity, potentially constraining the contexts in which it can be used as a salient communication pathway between plants and their pollinators. In this study, we use differential conditioning techniques on bumblebees Bombus terrestris audax (Harris) to explore the detectability of an elevated floral humidity signal when presented against different levels of environmental noise. Artificial flowers were constructed that could be either dry or humid, and individual bumblebees were presented with consistent rewards in either the humid or dry flowers presented in an environment with four levels of constant humidity, ranging from low (~20% RH) to highly saturated (~95% RH). Ability to learn was dependent upon both the rewarding flower type and the environment: the bumblebees were able to learn rewarding dry flowers in all environments, but their ability to learn humid rewarding flowers was dependent on the environmental humidity, and they were unable to learn humid rewarding flowers when the environment was highly saturated. This suggests that floral humidity might be masked from bumblebees in humid environments, suggesting that it may be a more useful signal to insect pollinators in arid environments.
Collapse
Affiliation(s)
- Amy S Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | | |
Collapse
|
4
|
Ozone Pollution Alters Olfaction and Behavior of Pollinators. Antioxidants (Basel) 2021; 10:antiox10050636. [PMID: 33919364 PMCID: PMC8143334 DOI: 10.3390/antiox10050636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
Concentration of air pollutants, particularly ozone (O3), has dramatically increased since pre-industrial times in the troposphere. Due to the strong oxidative potential of O3, negative effects on both emission and lifetime in the atmosphere of plant volatile organic compounds (VOCs) have already been highlighted. VOCs alteration by O3 may potentially affect the attraction of pollinators that rely on these chemical signals. Surprisingly, direct effects of O3 on the olfaction and the behavioral response of pollinators have not been investigated so far. We developed a comprehensive experiment under controlled conditions to assess O3 physiological and behavioral effects on two pollinator species, differing in their ecological traits. Using several realistic concentrations of O3 and various exposure times, we investigated the odor antennal detection and the attraction to VOCs present in the floral scents of their associated plants. Our results showed, in both species, a clear effect of exposure to high O3 concentrations on the ability to detect and react to the floral VOCs. These effects depend on the VOC tested and its concentration, and the O3 exposure (concentration and duration) on the pollinator species. Pollination systems may, therefore, be impaired in different ways by increased levels of O3, the effects of which will likely depend on whether the exposure is chronic or, as in this study, punctual, likely causing some pollination systems to be more vulnerable than others. While several studies have already shown the negative impact of O3 on VOCs emission and lifetime in the atmosphere, this study reveals, for the first time, that this impact alters the pollinator detection and behavior. These findings highlight the urgent need to consider air pollution when evaluating threats to pollinators.
Collapse
|
5
|
Nguyen DMT, Iuzzolino ML, Mankel A, Bozek K, Stephens GJ, Peleg O. Flow-mediated olfactory communication in honeybee swarms. Proc Natl Acad Sci U S A 2021; 118:e2011916118. [PMID: 33758099 PMCID: PMC8020754 DOI: 10.1073/pnas.2011916118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy: Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow.
Collapse
Affiliation(s)
- Dieu My T Nguyen
- Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Michael L Iuzzolino
- Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309
| | - Aaron Mankel
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
| | - Katarzyna Bozek
- Biological Physics Theory Unit, Okinawa Institute of Technology, Okinawa 904-0495, Japan
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Greg J Stephens
- Biological Physics Theory Unit, Okinawa Institute of Technology, Okinawa 904-0495, Japan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Orit Peleg
- Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
- Santa Fe Institute, Santa Fe, NM 87501
| |
Collapse
|
6
|
Pruett JL, Weissburg MJ. Environmental stress gradients regulate the relative importance of predator density- and trait-mediated indirect effects in oyster reef communities. Ecol Evol 2021; 11:796-805. [PMID: 33520167 PMCID: PMC7820151 DOI: 10.1002/ece3.7082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Predators affect community structure by influencing prey density and traits, but the importance of these effects often is difficult to predict. We measured the strength of blue crab predator effects on mud crab prey consumption of juvenile oysters across a flow gradient that inflicts both physical and sensory stress to determine how the relative importance of top predator density-mediated indirect effects (DMIEs) and trait-mediated indirect effects (TMIEs) change within systems. Overall, TMIEs dominated in relatively benign flow conditions where blue crab predator cues increased oyster survivorship by reducing mud crab-oyster consumption. Blue crab DMIEs became more important in high sensory stress conditions, which impaired mud crab perception of blue crab chemical cues. At high physical stress, the environment benefitted oyster survival by physically constraining mud crabs. Thus, factors that structure communities may be predicted based on an understanding of how physical and sensory performances change across environmental stress gradients.
Collapse
Affiliation(s)
- Jessica L. Pruett
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Marc J. Weissburg
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
7
|
Foster SP, Anderson KG. Sex pheromone biosynthesis, storage and release in a female moth: making a little go a long way. Proc Biol Sci 2020; 287:20202775. [PMID: 33323090 DOI: 10.1098/rspb.2020.2775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Moth pheromone research has pioneered much of our understanding of long-distance chemical communication. Two important characteristics of this communication have, however, remained largely unaddressed: the release of small quantities of pheromone by most moth species, despite potential advantages of releasing greater amounts, and the intermittency of release in some species, limiting the time of mate attraction. We addressed the proximate mechanisms underlying these characteristics by manipulating biosynthesis, storage and release of pheromone in females of the noctuid moth Chloridea virescens. We found that (i) mass release is determined by pheromone mass on the gland surface; (ii) amounts synthesized are limited by pheromone biosynthesis activating neuropeptide concentration, not precursor availability; (iii) some gland structural feature limits mass release rate; (iv) intermittent calling enables release at a mass rate greater than biosynthetic rate; and (v) at typical mass release rates, the periodicity of pheromone availability on the gland surface roughly matches the periodicity (intermittency) of calling. We conclude that mass release in C. virescens and possibly many other species is low because of constraints on biosynthesis, storage and gland structure. Further, it appears the behaviour of intermittent calling in C. virescens may have evolved as a co-adaptation with pheromone availability, allowing females to release pheromone intermittently at higher mass rates than the biosynthesis rate.
Collapse
Affiliation(s)
- Stephen P Foster
- Entomology Department, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| | - Karin G Anderson
- Entomology Department, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| |
Collapse
|
8
|
McArthur C, Finnerty PB, Schmitt MH, Shuttleworth A, Shrader AM. Plant volatiles are a salient cue for foraging mammals: elephants target preferred plants despite background plant odour. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Haavisto F, Jormalainen V. Water‐borne defence induction of a rockweed in the wild. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fiia Haavisto
- Department of Biology University of Turku Turku Finland
| | | |
Collapse
|
10
|
Aartsma Y, Cusumano A, Fernández de Bobadilla M, Rusman Q, Vosteen I, Poelman EH. Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems. CURRENT OPINION IN INSECT SCIENCE 2019; 32:54-60. [PMID: 31113632 DOI: 10.1016/j.cois.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic levels and hypothesize that higher trophic level organisms require a larger number of steps in their foraging decisions. We identify important knowledge gaps of information integration strategies by insects that belong to higher trophic levels.
Collapse
Affiliation(s)
- Yavanna Aartsma
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Antonino Cusumano
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | | | - Quint Rusman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ilka Vosteen
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Erik H Poelman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
11
|
Kessler A, Kalske A. Plant Secondary Metabolite Diversity and Species Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062406] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ever since the first plant secondary metabolites (PSMs) were isolated and identified, questions about their ecological functions and diversity have been raised. Recent advances in analytical chemistry and complex data computation, as well as progress in chemical ecology from mechanistic to functional and evolutionary questions, open a new box of hypotheses. Addressing these hypotheses includes the measurement of complex traits, such as chemodiversity, in a context-dependent manner and allows for a deeper understanding of the multifunctionality and functional redundancy of PSMs. Here we review a hypothesis framework that addresses PSM diversity on multiple ecological levels (α, β, and γ chemodiversity), its variation in space and time, and the potential agents of natural selection. We use the concept of chemical information transfer as mediator of antagonistic and mutualistic interaction to interpret functional and microevolutionary studies and create a hypothesis framework for understanding chemodiversity as a factor driving ecological processes.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| |
Collapse
|
12
|
Kessler A. Introduction to a special feature issue - New insights into plant volatiles. THE NEW PHYTOLOGIST 2018; 220:655-658. [PMID: 30324737 DOI: 10.1111/nph.15494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
13
|
High levels of abiotic noise in volatile organic compounds released by a desert perennial: implications for the evolution and ecology of airborne chemical communication. Oecologia 2018; 188:367-379. [DOI: 10.1007/s00442-018-4225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
|
14
|
Lawson DA, Whitney HM, Rands SA. Colour as a backup for scent in the presence of olfactory noise: testing the efficacy backup hypothesis using bumblebees ( Bombus terrestris). ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 29291092 DOI: 10.5061/dryad.3g591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The majority of floral displays simultaneously broadcast signals from multiple sensory modalities, but these multimodal displays come at both a metabolic cost and an increased conspicuousness to floral antagonists. Why then do plants invest in these costly multimodal displays? The efficacy backup hypothesis suggests that individual signal components act as a backup for others in the presence of environmental variability. Here, we test the efficacy backup hypothesis by investigating the ability of bumblebees to differentiate between sets of artificial flowers in the presence of either chemical interference or high wind speeds, both of which have the potential to impede the transmission of olfactory signals. We found that both chemical interference and high wind speeds negatively affected forager learning times, but these effects were mitigated in the presence of a visual signal component. Our results suggest that visual signals can act as a backup for olfactory signals in the presence of chemical interference and high wind speeds, and support the efficacy backup hypothesis as an explanation for the evolution of multimodal floral displays.
Collapse
Affiliation(s)
- David A Lawson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
15
|
Lawson DA, Whitney HM, Rands SA. Colour as a backup for scent in the presence of olfactory noise: testing the efficacy backup hypothesis using bumblebees ( Bombus terrestris). ROYAL SOCIETY OPEN SCIENCE 2017; 4:170996. [PMID: 29291092 PMCID: PMC5717666 DOI: 10.1098/rsos.170996] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/26/2017] [Indexed: 05/22/2023]
Abstract
The majority of floral displays simultaneously broadcast signals from multiple sensory modalities, but these multimodal displays come at both a metabolic cost and an increased conspicuousness to floral antagonists. Why then do plants invest in these costly multimodal displays? The efficacy backup hypothesis suggests that individual signal components act as a backup for others in the presence of environmental variability. Here, we test the efficacy backup hypothesis by investigating the ability of bumblebees to differentiate between sets of artificial flowers in the presence of either chemical interference or high wind speeds, both of which have the potential to impede the transmission of olfactory signals. We found that both chemical interference and high wind speeds negatively affected forager learning times, but these effects were mitigated in the presence of a visual signal component. Our results suggest that visual signals can act as a backup for olfactory signals in the presence of chemical interference and high wind speeds, and support the efficacy backup hypothesis as an explanation for the evolution of multimodal floral displays.
Collapse
Affiliation(s)
- David A. Lawson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | | |
Collapse
|
16
|
Finnerty PB, Stutz RS, Price CJ, Banks PB, McArthur C. Leaf odour cues enable non‐random foraging by mammalian herbivores. J Anim Ecol 2017; 86:1317-1328. [DOI: 10.1111/1365-2656.12748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick B. Finnerty
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Rebecca S. Stutz
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
- Department of ZoologyStockholm University Stockholm Sweden
| | - Catherine J. Price
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Peter B. Banks
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| | - Clare McArthur
- School of Life & Environmental SciencesThe University of Sydney Sydney NSW Australia
| |
Collapse
|
17
|
Marneweck C, Jürgens A, Shrader AM. Temporal Variation of White Rhino Dung Odours. J Chem Ecol 2017; 43:955-965. [PMID: 28983753 DOI: 10.1007/s10886-017-0890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022]
Abstract
In order for an olfactory signal to be effective, it must persist in the environment for an extended period. White rhino dung odours transmit information about sex, age, territorial and oestrous states. As these odours relay important information, temporal changes in the odour emission rate and/or composition may be critical in order for other individuals to obtain this information. Here, we examine how the dung odours of adult white rhinos (male: territorial and non-territorial; female: oestrous and non-oestrous) change over the short (hours) and long (seasons) term using headspace extraction. Additionally, we measure seasonal midden visitation and defecation frequency to link behaviours to seasonal changes in odour longevity. We found that during the dry season, territorial male dung odours persisted for 48 hours, while the odours of all other adults persisted for >48 hours. The high temperature and humidity of the wet season did not affect odour longevity of oestrous females, but decreased dung odour longevity (i.e. increased emission) of territorial males, non-territorial males, and non-oestrous females. Despite this reduction, neither males nor females adjusted their seasonal visitation or defecation frequency. With regard to a temporal indicator, 3,7-dimethly-1,6-octadiene signalled dung age during the wet season, while acetophenone signalled dung age during the dry season. Ultimately, our results provide the first detailed account of temporal changes of dung VOCs, and highlight the limitations of dung as a signalling medium.
Collapse
Affiliation(s)
- Courtney Marneweck
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Andreas Jürgens
- Chemical Plant Ecology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Adrian M Shrader
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.,Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Ong TH, Mendum T, Geurtsen G, Kelley J, Ostrinskaya A, Kunz R. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency. Anal Chem 2017; 89:6482-6490. [PMID: 28598144 DOI: 10.1021/acs.analchem.7b00451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants. Existing methodology assumes that the handler's intention is an adequate surrogate for actual knowledge of the odors cuing the canine, but canines are easily exposed to unintentional explosive odors through training material cross-contamination. A sensitive, real-time (∼1 s) vapor analysis mass spectrometer was developed to provide tools, techniques, and knowledge to better understand, train, and utilize canines. The instrument has a detection library of nine explosives and explosive-related materials consisting of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), triacetone triperoxide (TATP), hexamethylene triperoxide diamine (HMTD), and cyclohexanone, with detection limits in the parts-per-trillion to parts-per-quadrillion range by volume. The instrument can illustrate aspects of vapor plume dynamics, such as detecting plume filaments at a distance. The instrument was deployed to support canine training in the field, detecting cross-contamination among training materials, and developing an evaluation method based on the odor environment. Support for training material production and handling was provided by studying the dynamic headspace of a nonexplosive HMTD training aid that is in development. These results supported existing canine training and identified certain areas that may be improved.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Chemical, Microsystem, and Nanoscale Technology Group, Massachusetts Institure of Technology Lincoln Laboratory , Lexington, Massachusetts 02420, United States
| | - Ted Mendum
- Chemical, Microsystem, and Nanoscale Technology Group, Massachusetts Institure of Technology Lincoln Laboratory , Lexington, Massachusetts 02420, United States
| | - Geoff Geurtsen
- Chemical, Microsystem, and Nanoscale Technology Group, Massachusetts Institure of Technology Lincoln Laboratory , Lexington, Massachusetts 02420, United States
| | - Jude Kelley
- Chemical, Microsystem, and Nanoscale Technology Group, Massachusetts Institure of Technology Lincoln Laboratory , Lexington, Massachusetts 02420, United States
| | - Alla Ostrinskaya
- Chemical, Microsystem, and Nanoscale Technology Group, Massachusetts Institure of Technology Lincoln Laboratory , Lexington, Massachusetts 02420, United States
| | - Roderick Kunz
- Chemical, Microsystem, and Nanoscale Technology Group, Massachusetts Institure of Technology Lincoln Laboratory , Lexington, Massachusetts 02420, United States
| |
Collapse
|
19
|
Wilson JK, Woods HA. Innate and Learned Olfactory Responses in a Wild Population of the Egg Parasitoid Trichogramma (Hymenoptera: Trichogrammatidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew108. [PMID: 27965403 PMCID: PMC5155552 DOI: 10.1093/jisesa/iew108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Parasitoid insects face the fundamental problem of finding a suitable host in environments filled with competing stimuli. Many are deft sensors of olfactory cues emitted by other insects and the plants they live on, and use these cues to find hosts. Using olfactory cues from host-plants is effective because plants release volatile organic compounds (VOCs), in response to herbivory or oviposition, that contain information about the presence of hosts. However, plant-produced cues can also be misleading because they are influenced by a variety of stimuli (abiotic variation, infection and multiple sources of induction via herbivory or oviposition). Flexible behavior is one strategy that parasitoids may use to cope with variation in olfactory cues. We examine the innate and learned responses of a natural population of wasp egg parasitoids (Trichogramma deion and Trichogramma sathon) using a series of laboratory and field Y-olfactometer experiments. Wasps typically attack eggs of the hawkmoth Manduca sexta and Manduca quinquemaculata on native Datura wrightii plants in the southwestern United States. We show that Trichogramma wasps responded innately to VOCs produced by D. wrightii and could distinguish plants recently attacked by M. sexta from non-attacked plants. Furthermore, adult Trichogramma wasps were able to learn components of the VOC blend given off by D. wrightii, though they did not learn during exposure as pupae. By further exploring the behavioral ecology of a natural population of Trichogramma, we gain greater insight into how egg parasitoids function in tri-trophic systems.
Collapse
Affiliation(s)
- J Keaton Wilson
- Center for Insect Science, University of Arizona, 1007 E Lowell Street, P.O. Box 210106, Tucson, AZ 85721
| | - H Arthur Woods
- Organismal Biology, Ecology and Evolution, Division of Biological Sciences, University of Montana, 32 Campus Drive HS104, Missoula, MT 59812
| |
Collapse
|
20
|
Morrell K, Kessler A. Plant communication in a widespread goldenrod: keeping herbivores on the move. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12793] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kimberly Morrell
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY14853 USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY14853 USA
| |
Collapse
|
21
|
Jürgens A, Bischoff M. Changing odour landscapes: the effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Jürgens
- Department of Biology, Plant Chemical Ecology Technische Universität Darmstadt Schnittspahnstrasse 10 64287 Darmstadt Germany
- School of Life Sciences University of KwaZulu‐Natal P. Bag X01 Scottsville Pietermaritzburg3209 South Africa
| | - Mascha Bischoff
- Department of Biology, Plant Chemical Ecology Technische Universität Darmstadt Schnittspahnstrasse 10 64287 Darmstadt Germany
| |
Collapse
|
22
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
23
|
Rusch C, Broadhead GT, Raguso RA, Riffell JA. Olfaction in context-sources of nuance in plant-pollinator communication. CURRENT OPINION IN INSECT SCIENCE 2016; 15:53-60. [PMID: 27436732 DOI: 10.1016/j.cois.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 05/09/2023]
Abstract
Floral scents act as long-distance signals to attract pollinators, but volatiles emitted from the vegetation and neighboring plant community may modify this mutualistic communication system. What impact does the olfactory background have on pollination systems and their evolution? We consider recent behavioral studies that address the context of when and where volatile backgrounds influence a pollinator's perception of floral blends. In parallel, we review neurophysiological studies that show the importance of blend composition and background in modifying the representation of floral blends in the pollinator brain, as well as experience-dependent plasticity in increasing the representation of a rewarding odor. Here, we suggest that the efficacy of the floral blend in different environments may be an important selective force shaping differences in pollinator olfactory receptor expression and underlying neural mechanisms that mediate flower visitation and plant reproductive isolation.
Collapse
Affiliation(s)
- Claire Rusch
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Geoffrey T Broadhead
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, United States
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, United States.
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
24
|
Borges RM. On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Caruso CM, Parachnowitsch AL. Do Plants Eavesdrop on Floral Scent Signals? TRENDS IN PLANT SCIENCE 2016; 21:9-15. [PMID: 26476624 DOI: 10.1016/j.tplants.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 05/18/2023]
Abstract
Plants emit a diverse array of volatile organic compounds that can function as cues to other plants. Plants can use volatiles emitted by neighbors to gain information about their environment, and respond by adjusting their phenotype. Less is known about whether the many different volatile signals that plants emit are all equally likely to function as cues to other plants. We review evidence for the function of floral volatile signals and conclude that plants are as likely to perceive and respond to floral volatiles as to other, better-studied volatiles. We propose that eavesdropping on floral volatile cues is particularly likely to be adaptive because plants can respond to these cues by adjusting traits that directly affect pollination and mating.
Collapse
Affiliation(s)
- Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Amy L Parachnowitsch
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
26
|
Wilson JK, Woods HA. Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants. Oecologia 2015; 179:1159-71. [PMID: 26298191 DOI: 10.1007/s00442-015-3419-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
Abstract
Insect carnivores frequently use olfactory cues from plants to find prey or hosts. For plants, the benefits of attracting parasitoids have been controversial, partly because parasitoids often do not kill their host insect immediately. Furthermore, most research has focused on the effects of solitary parasitoids on growth and feeding of hosts, even though many parasitoids are gregarious (multiple siblings inhabit the same host). Here, we examine how a gregarious parasitoid, the tachinid fly Drino rhoeo, uses olfactory cues from the host plant Datura wrightii to find the sphingid herbivore Manduca sexta, and how parasitism affects growth and feeding of host larvae. In behavioral trials using a Y-olfactometer, female flies were attracted to olfactory cues emitted by attacked plants and by cues emitted from the frass produced by larval Manduca sexta. M. sexta caterpillars that were parasitized by D. rhoeo grew to lower maximum weights, grew more slowly, and ate less of their host plant. We also present an analytical model to predict how tri-trophic interactions change with varying herbivory levels, parasitization rates and plant sizes. This model predicted that smaller plants gain a relatively greater benefit compared to large plants in attracting D. rhoeo. By assessing the behavior, the effects of host performance, and the variation in ecological parameters of the system, we can better understand the complex interactions between herbivorous insects, the plants they live on and the third trophic level members that attack them.
Collapse
Affiliation(s)
- J K Wilson
- University of Montana, Missoula, MT, USA.
| | - H A Woods
- University of Montana, Missoula, MT, USA
| |
Collapse
|