1
|
Šahinović I, Mandić S, Mihić D, Duvnjak M, Loinjak D, Sabadi D, Majić Z, Perić L, Šerić V. Endocannabinoids, Anandamide and 2-Arachidonoylglycerol, as Prognostic Markers of Sepsis Outcome and Complications. Cannabis Cannabinoid Res 2023; 8:802-811. [PMID: 35649233 PMCID: PMC10589499 DOI: 10.1089/can.2022.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: One of the major challenges in improving sepsis care is early prediction of sepsis complications. The endocannabinoid system has been intensely studied in recent years; however, little is known about its role in sepsis in humans. This study aimed to assess the prognostic role of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as early predictors of mortality, invasive mechanical ventilation (IMV) requirement, and length of stay (LOS) in patients with sepsis. Materials and Methods: In total, 106 patients with confirmed sepsis were enrolled in this study. The patients were divided into groups according to mortality outcome (survival, N=53; nonsurvival, N=53), IMV requirement (IMV group, N=26; non-IMV group, N=80), and LOS (LOS <10 days, N=59; LOS ≥10 days, N=47). Patients' clinical status was assessed along with laboratory biomarkers as well as AEA and 2-AG concentration measurements early on admission to emergency units. AEA and 2-AG levels were measured by enzyme-linked immunosorbent assay (ELISA) using an ELISA processor, EtiMax 3000 (DiaSorin, Saluggia, Italy). The predictive value of AEA and 2-AG for the studied sepsis outcomes and complications was analyzed using univariate and multivariate analyses and receiver operating characteristic (ROC) curve analysis. Results: Two endocannabinoids showed no significant difference between survivors and nonsurvivors, although an AEA concentration <7.16 μg/L predicted mortality outcome with a sensitivity of 57% (95% confidence interval [CI] 42-71) and specificity of 80% (95% CI 66-91). AEA concentrations ≤17.84 μg/L predicted LOS ≥10 days with sensitivity of 98% (95% CI 89-100) and specificity of 34% (95% CI 22-47). When analyzing IMV requirement, levels of AEA and 2-AG were significantly lower within the IMV group compared with the non-IMV group (5.94 μg/L [2.04-9.44] and 6.70 μg/L [3.50-27.04], p=0.043, and 5.68 μg/L [2.30-8.60] and 9.58 μg/L [4.83-40.05], p=0.002, respectively). The 2-AG showed the best performance for IMV requirement prediction, with both sensitivity and specificity of 69% (p<0.001). Endocannabinoid AEA was an independent risk factor of LOS ≥10 days (odds ratio [OR] 23.59; 95% CI 3.03-183.83; p=0.003) and IMV requirement in sepsis (OR 0.79; 95% CI, 0.67-0.93; p=0.004). Conclusion: Low AEA concentration is a prognostic factor of hospital LOS longer than 10 days. Lower AEA and 2-AG concentrations obtained at the time of admission to the hospital are predictors of IMV requirement.
Collapse
Affiliation(s)
- Ines Šahinović
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
| | - Sanja Mandić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
| | - Damir Mihić
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pulmonology and Intensive Care, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Mario Duvnjak
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Clinic of Infective Diseases, University Hospital Osijek, Osijek, Croatia
| | - Domagoj Loinjak
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pulmonology and Intensive Care, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Dario Sabadi
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Clinic of Infective Diseases, University Hospital Osijek, Osijek, Croatia
| | - Zlatko Majić
- Department of Pulmonology and Intensive Care, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Ljiljana Perić
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Clinic of Infective Diseases, University Hospital Osijek, Osijek, Croatia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
| |
Collapse
|
2
|
Straiker A, Dvorakova M, Bosquez-Berger T, Blahos J, Mackie K. A collection of cannabinoid-related negative findings from autaptic hippocampal neurons. Sci Rep 2023; 13:9610. [PMID: 37311900 PMCID: PMC10264370 DOI: 10.1038/s41598-023-36710-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Autaptic hippocampal neurons are an architecturally simple model of neurotransmission that express several forms of cannabinoid signaling. Over the past twenty years this model has proven valuable for studies ranging from enzymatic control of endocannabinoid production and breakdown, to CB1 receptor structure/function, to CB2 signaling, understanding 'spice' (synthetic cannabinoid) pharmacology, and more. However, while studying cannabinoid signaling in these neurons, we have occasionally encountered what one might call 'interesting negatives', valid and informative findings in the context of our experimental design that, given the nature of scientific publishing, may not otherwise find their way into the scientific literature. In autaptic hippocampal neurons we have found that: (1) The fatty acid binding protein (FABP) blocker SBFI-26 does not alter CB1-mediated neuroplasticity. (2) 1-AG signals poorly relative to 2-AG in autaptic neurons. (3) Indomethacin is not a CB1 PAM in autaptic neurons. (4) The CB1-associated protein SGIP1a is not necessary for CB1 desensitization. We are presenting these negative or perplexing findings in the hope that they will prove beneficial to other laboratories and elicit fruitful discussions regarding their relevance and significance.
Collapse
Affiliation(s)
- Alex Straiker
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| | - Michaela Dvorakova
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Taryn Bosquez-Berger
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jaroslav Blahos
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
3
|
Pascual Cuadrado D, Todorov H, Lerner R, Islami L, Bindila L, Gerber S, Lutz B. Long-term molecular differences between resilient and susceptible mice after a single traumatic exposure. Br J Pharmacol 2021; 179:4161-4180. [PMID: 34599847 DOI: 10.1111/bph.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/14/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE PTSD is a heterogeneous disorder induced by trauma, resulting in severe long-term impairments of an individual's mental health. Interestingly, PTSD does not develop in every individual; thus, some individuals are more resilient than others. However, the underlying molecular mechanisms are poorly understood. Here, we aimed at shedding light on these processes. EXPERIMENTAL APPROACH We used a single-trauma PTSD model in mice to induce long-term maladaptive behaviours and profiled the mice four weeks post-trauma into resilient or susceptible individuals. The phenotype's classification was based on their individual responses in different behavioural experiments. We analysed microbiome, circulating endocannabinoids, and long-term changes in brain phospholipid and transcript levels. KEY RESULTS We found a plethora of molecular differences between resilient and susceptible individuals across multiple molecular domains, including lipidome, transcriptome, and gut microbiome. Some of these differences were stable even several weeks after the trauma, indicating the long-term impact of traumatic stimuli on the organism's physiology. Furthermore, the integration of these multi-layered molecular data revealed that resilient and susceptible individuals have very distinct molecular signatures across various physiological systems. CONCLUSIONS AND IMPLICATIONS We showed that trauma induces individual-specific behavioural responses that, in combination with a longitudinal characterization of mice, can be used to identify distinct sub-phenotypes within the trauma-exposed group. These groups differ significantly not only in their behaviour but also in specific molecular aspects across a variety of tissues and brain regions. This approach may reveal new targets and predictive biomarkers for the pharmacological treatment and prognosis of stress-related disorders.
Collapse
Affiliation(s)
- Diego Pascual Cuadrado
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research; Mainz, Germany
| |
Collapse
|
4
|
Fitzgerald JM, Chesney SA, Lee TS, Brasel K, Larson CL, Hillard CJ, deRoon-Cassini TA. Circulating endocannabinoids and prospective risk for depression in trauma-injury survivors. Neurobiol Stress 2021; 14:100304. [PMID: 33614866 PMCID: PMC7876629 DOI: 10.1016/j.ynstr.2021.100304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/19/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Biological mechanisms associated with response to trauma may impact risk for depression. One such mechanism is endocannabinoid signaling (eCB), a neuromodulatory system comprised of the CB1 subtype of cannabinoid receptors (CB1R), encoded by the CNR1 gene, and two primary endogenous ligands: 2-arachidonoylglycerol (2-AG) and N-arachidonylethanolamine (AEA), hydrolyzed by monoacylglycerol lipase (gene name MGLL) and fatty acid amide hydrolase (gene name FAAH). Preclinical data suggest that eCB/CB1R signaling acts as a stress buffer and its loss or suppression increases depression-like behaviors. We examined circulating concentrations of the eCBs (2-AG and AEA) days and six months after a traumatic injury as a marker of eCB/CB1R signaling and as predictors of Center for Epidemiologic Studies of Depression Scale-Revised [CESD-R] scores as a measure of depression severity six months after injury. We also explored associations of CNR1, FAAH, and MGLL genetic variance with depression severity at six months. Results from hierarchical multiple linear regressions showed that higher 2-AG serum concentrations after trauma predicted greater depression at six months (β = 0.23, p = 0.007); neither AEA after trauma, nor 2-AG and AEA at six months were significant predictors (p's > 0.305). Carriers of minor allele for the putative single nucleotide polymorphism in the CNR1 gene rs806371 (β = 0.19, p = 0.024) experienced greater depression at six months. These data suggest that the eCB signaling system is highly activated following trauma and that eCB/CB1R activity contributes to long-term depression risk.
Collapse
Affiliation(s)
| | - Samantha A. Chesney
- Froedtert Memorial Lutheran Hospital - Neurological Rehabilitation Services, Milwaukee, WI, USA
| | | | - Karen Brasel
- Oregon Health & Science University, Portland, OR, USA
| | - Christine L. Larson
- University of Wisconsin – Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Cecilia J. Hillard
- Medical College of Wisconsin, Neuroscience Research Center and Department of Pharmacology and Toxicology, Milwaukee, WI, USA
| | - Terri A. deRoon-Cassini
- Medical College of Wisconsin, Department of Surgery, Division of Trauma & Acute Care Surgery, Milwaukee, WI, USA
| |
Collapse
|
5
|
Heart failure and the glutathione cycle: an integrated view. Biochem J 2021; 477:3123-3130. [PMID: 32886767 DOI: 10.1042/bcj20200429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Heart failure results from the heart's inability to carryout ventricular contraction and relaxation, and has now become a worldwide problem. During the onset of heart failure, several signatures are observed in cardiomyocytes that includes fetal reprogramming of gene expression where adult genes are repressed and fetal genes turned on, endoplasmic reticulum stress and oxidative stress. In this short review and analysis, we examine these different phenomenon from the viewpoint of the glutathione cycle and the role of the recently discovered Chac1 enzyme. Chac1, which belongs to the family of γ-glutamylcyclotransferases, is a recently discovered member of the glutathione cycle, being involved in the cytosolic degradation of glutathione. This enzyme is induced during the Endoplasmic Stress response, but also in the developing heart. Owing to its exclusive action on reduced glutathione, its induction leads to an increase in the oxidative redox potential of the cell that also serves as signaling mechanism for calcium ions channel activation. The end product of Chac1 action is 5-oxoproline, and studies with 5-oxoprolinase (OPLAH), an enzyme of the glutathione cycle has revealed that down-regulation of OPLAH can lead to the accumulation of 5-oxproline which is an important factor in heart failure. With these recent findings, we have re-examined the roles and regulation of the enzymes in the glutathione cycle which are central to these responses. We present an integrated view of the glutathione cycle in the cellular response to heart failure.
Collapse
|
6
|
Correia-Sá IB, Carvalho CM, Serrão PV, Loureiro AI, Fernandes-Lopes C, Marques M, Vieira-Coelho MA. A new role for anandamide: defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing. Sci Rep 2020; 10:11134. [PMID: 32636441 PMCID: PMC7341842 DOI: 10.1038/s41598-020-68058-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
The use of cannabinoids to treat fibrotic skin diseases is an emergent issue. Therefore, we aimed to evaluate systemic and skin endocannabinoid responses in the wound-healing process in humans. A prospective study was performed in 50 patients who underwent body-contouring surgery. Anandamide (N-arachidonoylethanolamine, AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were quantified using LC-MS/MS. Ten (20%) patients developed hypertrophic (HT) scars. No significant changes were observed between the normal (N) scar and HT scar groups in terms of plasma and skin endocannabinoids. Nevertheless, a positive correlation between plasma and skin AEA concentrations was found in the N group (r = 0.38, p = 0.015), which was absent in the HT group. Moreover, the AEA concentration was significantly lower in HT scar tissue than in normal scar tissue (0.77 ± 0.12 ng/g vs 1.15 ± 0.15 ng/g, p < 0.001). Interestingly, in all patients, the surgical intervention produced a time-dependent effect with a U shape for AEA, PEA and OEA plasma concentrations. In contrast, 2-AG plasma concentrations increased 5 days after surgery and were reduced and stabilized 3 months later. These results suggest crosstalk between systemic and local skin endocannabinoid systems during human wound healing. AEA appears to be the most likely candidate for this link, which is deficient in patients with HT scars.
Collapse
Affiliation(s)
- Inês B Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal. .,Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula V Serrão
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Centro de Investigação Farmacológica E Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | - Ana I Loureiro
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., Trofa, Portugal
| | - Carlos Fernandes-Lopes
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., Trofa, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Centro de Investigação Farmacológica E Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
8
|
Recent advances in LC-MS/MS methods to determine endocannabinoids in biological samples: Application in neurodegenerative diseases. Anal Chim Acta 2018; 1044:12-28. [DOI: 10.1016/j.aca.2018.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
|
9
|
Kaczocha M, Azim S, Nicholson J, Rebecchi MJ, Lu Y, Feng T, Romeiser JL, Reinsel R, Rizwan S, Shodhan S, Volkow ND, Benveniste H. Intrathecal morphine administration reduces postoperative pain and peripheral endocannabinoid levels in total knee arthroplasty patients: a randomized clinical trial. BMC Anesthesiol 2018; 18:27. [PMID: 29486720 PMCID: PMC6389072 DOI: 10.1186/s12871-018-0489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/08/2018] [Indexed: 11/24/2022] Open
Abstract
Background The primary goal of this study was to determine whether administration of intrathecal morphine reduces postoperative pain. The secondary goal was to determine the effect of intrathecal morphine upon circulating levels of the weakly analgesic endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and the related lipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Methods Forty two total knee arthroplasty (TKA) patients were enrolled in a prospective, double-blinded, randomized study. The intervention consisted of intrathecal morphine (200 μg) or placebo administered at the time of the spinal anesthesia. Postoperative pain was measured during the first 4 h after surgery while serum levels of AEA, 2-AG, PEA, OEA, and cortisol were measured at baseline and 4 h after surgery. Results Administration of intrathecal morphine reduced postoperative pain 4 h after TKA surgery compared to placebo (p = 0.005) and reduced postoperative systemic opioid consumption (p = 0.001). At baseline, intrathecal morphine led to a significant reduction in AEA, 2-AG, and OEA levels but did not affect PEA or cortisol levels. In patients administered intrathecal placebo, 2-AG levels were elevated 4 h after surgery; whereas patients receiving intrathecal morphine showed reductions in AEA, PEA, and OEA when compared to placebo. At 4 h after TKA surgery cortisol levels were significantly elevated in the placebo group and reduced in those receiving morphine. Conclusions These results indicate that intrathecal morphine reduces postoperative pain in TKA patients. Furthermore, activation of central opioid receptors negatively modulates the endocannabinoid tone, suggesting that potent analgesics may reduce the stimulus for production of peripheral endocannabinoids. This study is the first to document the existence of rapid communication between the central opioid and peripheral endocannabinoid systems in humans. Trial registration This trial was registered retrospectively. Trial registry: NCT02620631. Study to Examine Pain Relief With Supplemental Intrathecal Morphine in TKA Patients, NCT02620631, 12/03/2015.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA.
| | - Syed Azim
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - James Nicholson
- Department of Orthopaedics, Stony Brook University, Stony Brook, New York, USA
| | - Mario J Rebecchi
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Yong Lu
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Tian Feng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Jamie L Romeiser
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Ruth Reinsel
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Sabeen Rizwan
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Shivam Shodhan
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
11
|
Cannabinoid receptor CB2 is involved in tetrahydrocannabinol-induced anti-inflammation against lipopolysaccharide in MG-63 cells. Mediators Inflamm 2015; 2015:362126. [PMID: 25653478 PMCID: PMC4310496 DOI: 10.1155/2015/362126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 01/17/2023] Open
Abstract
Cannabinoid Δ9-tetrahydrocannabinol (THC) is effective in treating osteoarthritis (OA), and the mechanism, however, is still elusive. Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown. Cofilin-1 is a cytoskeleton protein, participating in the inflammation of OA. In this study, MG-63 cells, an osteosarcoma cell-line, were exposed to lipopolysaccharide (LPS) to mimic the inflammation of OA. We hypothesized that the activation of CB2 is involved in THC-induced anti-inflammation in the MG-63 cells exposed to LPS, and the anti-inflammation is mediated by cofilin-1. We found that THC suppressed the release of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin- (IL-) 1β, IL-6, and IL-8, decreased nuclear factor-κB (NF-κB) expression, and inhibited the upregulation of cofilin-1 protein in the LPS-stimulated MG-63 cells. However, administration of CB2 receptor antagonist or the CB2-siRNA, not CB1 antagonist AM251, partially abolished the THC-induced anti-inflammatory effects above. In addition, overexpression of cofilin-1 significantly reversed the THC-induced anti-inflammatory effects in MG-63 cells. These results suggested that CB2 is involved in the THC-induced anti-inflammation in LPS-stimulated MG-63 cells, and the anti-inflammation may be mediated by cofilin-1.
Collapse
|
12
|
Knight JM, Szabo A, Zhao S, Lyness JM, Sahler OJZ, Liesveld JL, Sander T, Rizzo JD, Hillard CJ, Moynihan JA. Circulating endocannabinoids during hematopoietic stem cell transplantation: A pilot study. Neurobiol Stress 2015; 2:44-50. [PMID: 26114153 PMCID: PMC4476410 DOI: 10.1016/j.ynstr.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Hematopoietic stem cell transplantation (HCT) is a stressful and rigorous medical procedure involving significant emotional and immune challenges. The endocannabinoid (eCB) signaling system is involved in regulation of both the immune system and emotional reactivity, yet little is known about its function during HCT. We investigated the role of the eCB signaling system in a group of HCT recipients. Methods A total of 19 HCT recipients were enrolled and provided psychosocial data and blood samples at three peri-transplant time points: prior to transplant, hospital discharge, and approximately 100 days post-transplant. Psychosocial factors, inflammatory molecules, and the eCBs were determined and assessed for changes over this period and association with each other. Results HCT recipients demonstrated significant changes over the peri-transplant period in inflammatory molecules and psychosocial functioning, but not in circulating concentrations of the eCBs. Associations among these variables were most likely to be present pre-transplant and least likely to be present immediately post-transplant, with depressive symptoms and inflammation most significantly associated. The eCB 2-arachidonoylglycerol (2-AG) was significantly, positively associated with both interleukin (IL)-6 and C-reactive protein (CRP) and negatively associated with depressive symptoms. Conclusions The eCB signaling system may have alternative sources and regulatory mechanisms in addition to the immune system. Given the significant associations with inflammatory molecules and depressive symptoms in the peri-transplant period, it is important to better understand this system and its potential implications in the setting of complex and stressful medical procedures such as HCT.
Collapse
Affiliation(s)
- Jennifer M Knight
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin
| | - Shi Zhao
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin
| | - Jeffrey M Lyness
- Rochester Center for Mind-Body Research, Department of Psychiatry, University of Rochester Medical Center
| | - Olle Jane Z Sahler
- Division of Hematology/Oncology, Department of Pediatrics, University of Rochester Medical Center ; Medical Humanities, University of Rochester Medical Center
| | - Jane L Liesveld
- Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center
| | - Tara Sander
- Pediatric Pathology, Medical College of Wisconsin
| | - J Douglas Rizzo
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin
| | - Jan A Moynihan
- Rochester Center for Mind-Body Research, Department of Psychiatry, University of Rochester Medical Center
| |
Collapse
|
13
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
14
|
Hillard CJ, Liu QS. Endocannabinoid signaling in the etiology and treatment of major depressive illness. Curr Pharm Des 2014; 20:3795-811. [PMID: 24180398 PMCID: PMC4002665 DOI: 10.2174/13816128113196660735] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/28/2022]
Abstract
The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Brain/drug effects
- Brain/enzymology
- Brain/metabolism
- Brain/pathology
- Cannabis
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Humans
- Magnetic Resonance Imaging
- Neurogenesis/drug effects
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | - Qing-song Liu
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226.
| |
Collapse
|
15
|
Thieme U, Schelling G, Hauer D, Greif R, Dame T, Laubender RP, Bernhard W, Thieme D, Campolongo P, Theiler L. Quantification of anandamide and 2-arachidonoylglycerol plasma levels to examine potential influences of tetrahydrocannabinol application on the endocannabinoid system in humans. Drug Test Anal 2013; 6:17-23. [PMID: 24424856 DOI: 10.1002/dta.1561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 01/05/2023]
Abstract
The effects of tetrahydrocannabinol (THC) and endogenous cannabinoids (endocannabinoids, ECs) are both mediated by activation of the cannabinoid receptors CB1 and CB2. Exogenous activation of these receptors by THC could therefore alter EC levels. We tested this hypothesis in healthy volunteers (n = 25) who received a large intravenous dose of THC (0.10 mg/kg). Effects on the EC system were quantified by serial measurements of plasma ECs after THC administration. Eleven blood samples were drawn during the first 5 h after THC administration and two more samples after 24 and 48 h. THC, its metabolites THC-OH (biologically active) and THC-COOH (non-active), and the ECs anandamide and 2-arachidonoylglycerol (2-AG) were quantified by liquid chromatography-mass spectrometry. EC-plasma levels showed a biphasic response after THC injection reaching maximal values at 30 min. Anandamide increased slightly from 0.58 ± 0.21 ng/ml at baseline to 0.64 ± 0.24 ng/ml (p < 0.05) and 2-AG from 7.60 ± 4.30 ng/ml to 9.50 ± 5.90 ng/ml (p < 0.05). After reaching maximal concentrations, EC plasma levels decreased markedly to a nadir of 300 min after THC administration (to 0.32 ± 0.15 ng/ml for anandamide and to 5.50 ± 3.01 ng/ml for 2-AG, p < 0.05). EC plasma concentrations returned to near baseline levels until 48 h after the experiment. THC (0.76 ± 0.16 ng/ml) and THC-OH (0.36 ± 0.17 ng/ml) were still measurable at 24 h and remained detectible until 48 h after THC administration. Although the underlying mechanism is not clear, high doses of intravenous THC appear to influence endogenous cannabinoid concentrations and presumably EC-signalling.
Collapse
Affiliation(s)
- Ulrike Thieme
- Department of Anaesthesiology, Ludwig - Maximilians University of Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B, Hamuni G, Karabatsiakis A, Atsak P, Vogeser M, Kolassa IT. Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS One 2013; 8:e62741. [PMID: 23667516 PMCID: PMC3647054 DOI: 10.1371/journal.pone.0062741] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/25/2013] [Indexed: 01/12/2023] Open
Abstract
Background Endocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. Methods We determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS), which also assesses traumatic events. Results Individuals with PTSD showed significantly higher plasma concentrations of ANA (0.48±0.11 vs. 0.36±0.14 ng/ml, p = 0.01), 2-AG (8.93±3.20 vs. 6.26±2.10 ng/ml, p<0.01), OEA (5.90±2.10 vs. 3.88±1.85 ng/ml, p<0.01), SEA (2.70±3.37 vs. 0.83±0.47, ng/ml, p<0.05) and significantly lower plasma levels of OLDA (0.12±0.05 vs. 0.45±0.59 ng/ml, p<0.05) than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93±3.20 vs. 6.01±1.32 ng/ml, p = 0.03) and also higher plasma concentrations of PEA (4.06±1.87 vs. 2.63±1.34 ng/ml, p<0.05) than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19) correlated positively with PEA (r = 0.55, p = 0.02) and negatively with OLDA plasma levels (r = −0.68, p<0.01). CAPS subscores for intrusions (r = −0.65, p<0.01), avoidance (r = −0.60, p<0.01) and hyperarousal (r = −0.66, p<0.01) were all negatively related to OLDA plasma concentrations. Conclusions PTSD appears to be associated with changes in plasma EC/NAE concentrations. This may have pathophysiological and diagnostic consequences but will need to be reproduced in larger cohorts.
Collapse
Affiliation(s)
- Daniela Hauer
- Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Hannah Gola
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Julia Morath
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gilava Hamuni
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Alexander Karabatsiakis
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, University of Ulm, Ulm, Germany
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Michael Vogeser
- Department of Clinical Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Iris-Tatjana Kolassa
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Jarzimski C, Karst M, Zoerner AA, Rakers C, May M, Suchy MT, Tsikas D, Krauss JK, Scheinichen D, Jordan J, Engeli S. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? Br J Clin Pharmacol 2012; 74:54-9. [PMID: 22242687 DOI: 10.1111/j.1365-2125.2012.04175.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Available data from animal studies suggest that the narcotic drug propofol interacts with the endocannabinoid system. Inhibition of enzymatic degradation of anandamide could explain some of the characteristics of propofol. Direct measurements have not been reported yet in humans. WHAT THIS STUDY ADDS • Propofol does not change the time course of anandamide plasma concentrations during anaesthesia. Furthermore, propofol does not inhibit fatty acid amide hydrolase activity ex vivo or in vitro. Thus, specific characteristics of the narcotic drug propofol cannot be explained by peripheral inhibition of anandamide degradation in humans. AIMS The aim of our study was to describe the time course of endocannabinoids during different anaesthesia protocols in more detail, and to challenge the hypothesis that propofol acts as a FAAH inhibitor. METHODS Endocannabinoids were measured during the first hour of anaesthesia in 14 women and 14 men undergoing general anaesthesia with propofol and in 14 women and 14 men receiving thiopental/sevoflurane. We also incubated whole human blood samples ex vivo with propofol and the known FAAH inhibitor oloxa and determined FAAH enzyme kinetics. RESULTS Plasma anandamide decreased similarly with propofol and thiopental/sevoflurane anaesthesia, and reached a nadir after 10 min. Areas under the curve for anandamide (mean and 95% CI) were 53.3 (47.4, 59.2) nmol l(-1) 60 min with propofol and 48.5 (43.1, 53.8) nmol l(-1) 60 min with thiopental/sevoflurane (P= NS). Anandamide and propofol plasma concentrations were not correlated at any time point. Ex vivo FAAH activity was not inhibited by propofol. Enzyme kinetics (mean ± SD) of recombinant human FAAH were K(m) = 16.9 ± 8.8 µmol l(-1) and V(max) = 44.6 ± 15.8 nmol mg(-1) min(-1) FAAH without, and K(m) = 16.6 ± 4.0 µmol l(-1) and V(max) = 44.0 ± 7.6 nmol mg( 1 ) min(-1) FAAH with 50 µmol l(-1) propofol (P= NS for both). CONCLUSIONS Our findings challenge the idea that propofol anaesthesia and also propofol addiction are directly mediated by FAAH inhibition, but we cannot exclude other indirect actions on cannabinoid receptors.
Collapse
Affiliation(s)
- Carina Jarzimski
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The endocannabinoid (eCB) system is involved in processes as diverse as control of appetite, perception of pain and the limitation of cancer cell growth and invasion. The enzymes responsible for eCB breakdown are attractive pharmacological targets, and fatty acid amide hydrolase inhibitors, which potentiate the levels of the eCB anandamide, are now undergoing pharmaceutical development. 'Drugable' selective inhibitors of monoacylglycerol lipase, a key enzyme regulating the levels of the other main eCB, 2-arachidonoylglycerol, were however not identified until very recently. Their availability has resulted in a large expansion of our knowledge concerning the pharmacological consequences of monoacylglycerol lipase inhibition and hence the role(s) played by the enzyme in the body. In this review, the pharmacology of monoacylglycerol lipase will be discussed, together with an analysis of the therapeutic potential of monoacylglycerol lipase inhibitors as analgesics and anticancer agents.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| |
Collapse
|
19
|
Klein C, Hill MN, Chang SCH, Hillard CJ, Gorzalka BB. Circulating endocannabinoid concentrations and sexual arousal in women. J Sex Med 2012; 9:1588-601. [PMID: 22462722 DOI: 10.1111/j.1743-6109.2012.02708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Several lines of evidence point to the potential role of the endocannabinoid system in female sexual functioning. These include results from studies describing the subjective effects of exogenous cannabinoids on sexual functioning in humans and the observable effects of exogenous cannabinoids on sexual functioning in other species, as well as results from studies investigating the location of cannabinoid receptors in the brain and periphery, and the effects of cannabinoid receptor activation on neurotransmitters implicated in sexual functioning. While these lines of research suggest a role for the endocannabinoid system in female sexual functioning, no studies investigating the relationship between concentrations of endogenous cannabinoids (i.e., arachidonoylethanolamide [AEA] and 2-arachidonoylglycerol [2-AG]) and sexual functioning have been conducted in any species. AIM To measure circulating endocannabinoid concentrations in relation to subjective and physiological indices of sexual arousal in women (N = 21). METHODS Serum endocannabinoid (AEA and 2-AG) concentrations were measured immediately prior to, and immediately following, viewing of neutral (control) and erotic (experimental) film stimuli in a repeated measures design. Physiological sexual arousal was measured via vaginal photoplethysmography. Subjective sexual arousal was measured both continuously and noncontinuously. Pearson's correlations were used to investigate the relationships between endocannabinoid concentrations and sexual arousal. MAIN OUTCOME MEASURES Changes in AEA and 2-AG concentrations from pre- to post-film and in relation to physiological and subjective indices of sexual arousal. RESULTS Results revealed a significant relationship between endocannabinoid concentrations and female sexual arousal, whereby increases in both physiological and subjective indices of sexual arousal were significantly associated with decreases in AEA, and increases in subjective indices of sexual arousal were significantly associated with decreases in 2-AG. CONCLUSIONS These findings support the hypothesis that the endocannabinoid system is involved in female sexual functioning, with implications for furthering understanding of the biological mechanisms underlying female sexual functioning.
Collapse
Affiliation(s)
- Carolin Klein
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.
Collapse
Affiliation(s)
- Saoirse E O'Sullivan
- School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
21
|
Hillard CJ, Weinlander KM, Stuhr KL. Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence. Neuroscience 2011; 204:207-29. [PMID: 22123166 DOI: 10.1016/j.neuroscience.2011.11.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 11/28/2022]
Abstract
The endocannabinoid signaling system is a widespread, neuromodulatory system in brain and is also widely utilized in the periphery to modulate metabolic functions and the immune system. Preclinical data demonstrate that endocannabinoid signaling is an important stress buffer and modulates emotional and cognitive functions. These data suggest the hypothesis that endocannabinoid signaling could be dysfunctional in a number of mental disorders. Genetic polymorphisms in the human genes for two important proteins of the endocannabinoid signaling system, the CB1 cannabinoid receptor (CB1R) and fatty acid amide hydrolase (FAAH), have been explored in the context of normal and pathological conditions. In the case of the gene for FAAH, the mechanistic relationships among the common genetic polymorphism, the expression of the FAAH protein, and its likely impact on endocannabinoid signaling are understood. However, multiple polymorphisms in the gene for the CB1R occur and are associated with human phenotypic differences without an understanding of the functional relationships among the gene, mRNA, protein, and protein function. The endocannabinoid ligands are found in the circulation, and several studies have identified changes in their concentrations under various conditions. These data are reviewed for the purpose of generating hypotheses and to encourage further studies in this very interesting and important area.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | |
Collapse
|
22
|
Liu S, Wang B, Li S, Zhou Y, An L, Wang Y, Lv H, Zhang G, Fang F, Liu Z, Han R, Jiang T, Kang X. Immune cell populations decrease during craniotomy under general anesthesia. Anesth Analg 2011; 113:572-7. [PMID: 21813628 DOI: 10.1213/ane.0b013e3182278237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Postoperative infections are common and potentially fatal complications in neurosurgical intensive care medicine. An impairment of immune function after central nervous system surgery is associated with higher risk of infection and postoperative complications. The aim of our study was to investigate how the immune cell population changes during the anesthesia process in patients undergoing craniotomy surgery. METHODS Patients undergoing craniotomy who had an inhaled general anesthetic were studied. Blood samples were collected before anesthesia and 30, 45, 60, 120, and 240 minutes after anesthesia began. Blood counts for neutrophils, monocytes, and lymphocytes were determined along with lymphocyte subpopulations (T cells, inducer and helper T cells, suppressor and cytotoxic T cells, natural killer cells, and B cells). Plasma concentrations of interleukin (IL)-2, IL-4, IL-6, and IL-10 were also measured along with tumor necrosis factor-α and interferon-γ. Data were analyzed by SPSS 13.0 software using repeated-measures analysis of variance followed by a Bonferroni correction. RESULTS Eighteen patients were enrolled in this study. In the comparison of the immune cell counts during neuroanesthesia, we found that at 30 minutes after anesthesia induction, neutrophils, monocytes, and lymphocytes decreased 18% (95% confidence interval [CI]: 11.0%-24.6%), 34% (95% CI: 16.2%-51.1%), and 39% (95% CI: 29.0%-48.9%) compared with their levels before anesthesia. At extubation the neutrophils returned to the base level. It also showed that natural killer cells decreased significantly during anesthesia. The concentration of cytokines in peripheral blood did not change significantly. CONCLUSION Our results showed that anesthesia and surgery upset the balance of the immune system during craniotomy, and a significant decrease in immune cell populations emerged after induction under general anesthesia.
Collapse
Affiliation(s)
- Shujing Liu
- Capital Medical University, Laboratory Diagnosis Center, Beijing Tiantan Hospital, No.6 Tiantan Xili, Chongwen Men District, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-3. [PMID: 21522003 DOI: 10.1097/med.0b013e3283457c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|