1
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
What is fetal programming?: a lifetime health is under the control of in utero health. Obstet Gynecol Sci 2017; 60:506-519. [PMID: 29184858 PMCID: PMC5694724 DOI: 10.5468/ogs.2017.60.6.506] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 01/10/2023] Open
Abstract
The "Barker hypothesis" postulates that a number of organ structures and associated functions undergo programming during embryonic and fetal life, which determines the set point of physiological and metabolic responses that carry into adulthood. Hence, any stimulus or insult at a critical period of embryonic and fetal development can result in developmental adaptations that produce permanent structural, physiological and metabolic changes, thereby predisposing an individual to cardiovascular, metabolic and endocrine disease in adult life. This article will provide evidence linking these diseases to fetal undernutrition and an overview of previous studies in this area as well as current advances in understanding the mechanism and the role of the placenta in fetal programming.
Collapse
|
3
|
Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Sci Rep 2016; 6:37992. [PMID: 27901064 PMCID: PMC5128804 DOI: 10.1038/srep37992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Somatostatin (SST) and cortistatin (CORT) regulate numerous endocrine secretions and their absence [knockout (KO)-models] causes important endocrine-metabolic alterations, including pituitary dysregulations. We have demonstrated that the metabolic phenotype of single or combined SST/CORT KO-models is not drastically altered under normal conditions. However, the biological actions of SST/CORT are conditioned by the metabolic-status (e.g. obesity). Therefore, we used male/female SST- and CORT-KO mice fed low-fat (LF) or high-fat (HF) diet to explore the interplay between SST/CORT and obesity in the control of relevant pituitary-axes and whole-body metabolism. Our results showed that the SST/CORT role in the control of GH/prolactin secretions is maintained under LF- and HF-diet conditions as SST-KOs presented higher GH/prolactin-levels, while CORT-KOs displayed higher GH- and lower prolactin-levels than controls under both diets. Moreover, the impact of lack of SST/CORT on the metabolic-function was gender- and diet-dependent. Particularly, SST-KOs were more sensitive to HF-diet, exhibiting altered growth and body-composition (fat/lean percentage) and impaired glucose/insulin-metabolism, especially in males. Conversely, only males CORT-KO under LF-diet conditions exhibited significant alterations, displaying higher glucose-levels and insulin-resistance. Altogether, these data demonstrate a tight interplay between SST/CORT-axis and the metabolic status in the control of endocrine/metabolic functions and unveil a clear dissociation of SST/CORT roles.
Collapse
|
4
|
Jensen RB, Thankamony A, O'Connell SM, Salgin B, Kirk J, Donaldson M, Ivarsson SA, Söder O, Roche E, Hoey H, Dunger DB, Juul A. Baseline IGF-I levels determine insulin secretion and insulin sensitivity during the first year on growth hormone therapy in children born small for gestational age. Results from a North European Multicentre Study (NESGAS). Horm Res Paediatr 2014; 80:38-46. [PMID: 23860366 DOI: 10.1159/000353438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Developmental programming alters growth and metabolic outcome in children born small for gestational age (SGA). We explored insulin and glucose metabolism in SGA children treated with a fixed GH dose over 1 year. METHODS In the North European Small for Gestational Age Study (NESGAS), 110 short SGA children received GH at 67 µg/kg/day for 1 year. Insulin secretion was assessed by acute insulin response (AIR), insulin sensitivity (IS) by HOMA and disposition index (DI) by insulin secretion adjusted for IS. RESULTS First-year GH therapy led to increases in height and IGF-I standard deviation score (SDS), and reductions in IS (p < 0.0001). Compensatory increases in AIR (p < 0.0001) were insufficient and resulted in reduced DI (p = 0.032). Children in the highest IGF-I SDS tertile at baseline were the least insulin sensitive at baseline (p = 0.024) and 1 year (p = 0.006). IGF-I responses after 1 year were positively related to AIR (r = 0.30, p = 0.007) and DI (r = 0.29, p = 0.005). CONCLUSION In SGA children treated with a high GH dose for 1 year, baseline IGF-I levels were related to IS whilst gains in height and IGF-I responses were associated with insulin secretion. Defining heterogeneity in IGF-I in SGA children may be useful in predicting growth and metabolic response.
Collapse
Affiliation(s)
- Rikke Beck Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Unlimited access to low-energy diet causes acute malnutrition in dams and alters biometric and biochemical parameters in offspring. J Dev Orig Health Dis 2013; 5:45-55. [DOI: 10.1017/s2040174413000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we analyze the outcomes of unlimited access to a low-energy (LE) diet in dams and their offspring. At 3 weeks’ gestation, pregnant Wistar rats were divided into two groups: (1) the control group received a normoenergetic diet; and (2) the experimental group received the LE diet. In dams, lactation outcomes, food intake, body weight, plasma IGF-1, prealbumin, transferrin and retinol-binding protein levels were evaluated; in offspring, biometric and biochemical parameters and food intake were evaluated. No differences were observed during pregnancy. However, after lactation, dams that received the LE diet demonstrated significant reductions in body weight (P<0.05), plasma IGF-1 (P=0.01), prealbumin and visceral fat (P<0.001). Pups born to dams that received the LE diet demonstrated reduced body length and weight at weaning (P<0.001) and were lighter than the control animals at the end of the experimental period. Pups also demonstrated reduced plasma, low-density lipoprotein (P=0.04), triglycerides (P=0.002) and glucose levels (P<0.05), and differences were noted in visceral fat. These results indicate that feeding dams with LE diet during the reproductive period induces acute malnutrition and impairs the growth and development of offspring, as well as certain metabolic parameters.
Collapse
|
6
|
Affiliation(s)
- M. J. Sheriff
- Institute of Arctic Biology; University of Alaska Fairbanks; Fairbanks; AK; USA
| | - O. P. Love
- Department of Biological Sciences; University of Windsor; Windsor; ON; Canada
| |
Collapse
|
7
|
Córdoba-Chacón J, Gahete MD, Pozo-Salas AI, Martínez-Fuentes AJ, de Lecea L, Gracia-Navarro F, Kineman RD, Castaño JP, Luque RM. Cortistatin is not a somatostatin analogue but stimulates prolactin release and inhibits GH and ACTH in a gender-dependent fashion: potential role of ghrelin. Endocrinology 2011; 152:4800-12. [PMID: 21971153 PMCID: PMC3230064 DOI: 10.1210/en.2011-1542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cortistatin (CST) and somatostatin (SST) evolve from a common ancestral gene and share remarkable structural, pharmacological, and functional homologies. Although CST has been considered as a natural SST-analogue acting through their shared receptors (SST receptors 1-5), emerging evidence indicates that these peptides might in fact exert unique roles via selective receptors [e.g. CST, not SST, binds ghrelin receptor growth hormone secretagogue receptor type 1a (GHS-R1a)]. To determine whether the role of endogenous CST is different from SST, we characterized the endocrine-metabolic phenotype of male/female CST null mice (cort-/-) at hypothalamic-pituitary-systemic (pancreas-stomach-adrenal-liver) levels. Also, CST effects on hormone expression/secretion were evaluated in primary pituitary cell cultures from male/female mice and female primates (baboons). Specifically, CST exerted an unexpected stimulatory role on prolactin (PRL) secretion, because both male/female cort-/- mice had reduced PRL levels, and CST treatment (in vivo and in vitro) increased PRL secretion, which could be blocked by a GHS-R1a antagonist in vitro and likely relates to the decreased success of female cort-/- in first-litter pup care at weaning. In contrast, CST inhibited GH and adrenocorticotropin-hormone axes in a gender-dependent fashion. In addition, a rise in acylated ghrelin levels was observed in female cort-/- mice, which were associated with an increase in stomach ghrelin/ghrelin O-acyl transferase expression. Finally, CST deficit uncovered a gender-dependent role of this peptide in the regulation of glucose-insulin homeostasis, because male, but not female, cort-/- mice developed insulin resistance. The fact that these actions are not mimicked by SST and are strongly gender dependent offers new grounds to investigate the hitherto underestimated physiological relevance of CST in the regulation of physiological/metabolic processes.
Collapse
|
8
|
Moisa SS, Nozdrachev AD. Disturbances of carbohydrate metabolism and factors stimulating its development in ontogenesis. ADVANCES IN GERONTOLOGY 2011. [DOI: 10.1134/s2079057011040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Is chromium from stainless steel utensils responsible for epidemic of type 2 diabetes? Med Hypotheses 2011; 77:84-6. [DOI: 10.1016/j.mehy.2011.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/17/2011] [Indexed: 11/21/2022]
|
10
|
Tsuzuki Y, Takeba Y, Kumai T, Matsumoto N, Mizuno M, Murano K, Asoh K, Takagi M, Yamamoto H, Kobayashi S. Antenatal glucocorticoid therapy increase cardiac alpha-enolase levels in fetus and neonate rats. Life Sci 2009; 85:609-16. [PMID: 19583970 DOI: 10.1016/j.lfs.2009.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/16/2009] [Accepted: 06/24/2009] [Indexed: 11/15/2022]
Abstract
AIMS Antenatal glucocorticoid therapy has been shown to prevent acute diseases including infant respiratory distress syndrome and reduce mortality, although little is known about the effects on cardiac function-related proteins in the fetus or neonate. We investigated whether cardiac function-related proteins were altered in cardiac tissues of fetuses and neonates born to pregnant rats treated by glucocorticoid. MAIN METHODS Dexamethasone (DEX) was administered to pregnant rats for 2 days on day 17 and 18 or day 19 and 20 of gestation to simulate antenatal DEX therapy, and cardiac tissues of 19- and 21-day fetuses and 1-, 3-, and 5-day neonates were analyzed using a proteomic technique with liquid chromatography-mass spectrometry/mass spectrometry. KEY FINDINGS The identified five proteins; alpha-enolase, creatine kinase-M type, beta-tubulin, troponin T, and ATP synthase beta-chain, were significantly increased in fetal cardiac tissues with DEX administration. We observed that significant increase of alpha-enolase in the 19-day fetuses by DEX using Western blotting and immunohistochemistry. ATP and cAMP levels were also increased in the fetal heart tissue. In addition, pyruvate levels were significantly increased in the fetus groups by DEX. SIGNIFICANCE These results suggest that increased alpha-enolase may contribute to acceleration of glycolysis in the preterm heart.
Collapse
Affiliation(s)
- Yoshimitsu Tsuzuki
- Department of Pharmacology, St. Marianna University School of Medicine 2-16-1 Sugao, Kawasaki, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chin EH, Love OP, Verspoor JJ, Williams TD, Rowley K, Burness G. Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proc Biol Sci 2009; 276:499-505. [PMID: 18842541 DOI: 10.1098/rspb.2008.1294] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exposure to maternally derived glucocorticoids during embryonic development impacts offspring phenotype. Although many of these effects appear to be transiently 'negative', embryonic exposure to maternally derived stress hormones is hypothesized to induce preparative responses that increase survival prospects for offspring in low-quality environments; however, little is known about how maternal stress influences longer-term survival-related performance traits in free-living individuals. Using an experimental elevation of yolk corticosterone (embryonic signal of low maternal quality), we examined potential impacts of embryonic exposure to maternally derived stress on flight performance, wing loading, muscle morphology and muscle physiology in juvenile European starlings (Sturnus vulgaris). Here we report that fledglings exposed to experimentally increased corticosterone in ovo performed better during flight performance trials than control fledglings. Consistent with differences in performance, individuals exposed to elevated embryonic corticosterone fledged with lower wing loading and had heavier and more functionally mature flight muscles compared with control fledglings. Our results indicate that the positive effects on a survival-related trait in response to embryonic exposure to maternally derived stress hormones may balance some of the associated negative developmental costs that have recently been reported. Moreover, if embryonic experience is a good predictor of the quality or risk of future environments, a preparative phenotype associated with exposure to apparently negative stimuli during development may be adaptive.
Collapse
Affiliation(s)
- Eunice H Chin
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9J 7B8
| | | | | | | | | | | |
Collapse
|
12
|
Love OP, Williams TD. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am Nat 2008; 172:E135-49. [PMID: 18793091 DOI: 10.1086/590959] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The question of why maternal stress influences offspring phenotype is of significant interest to evolutionary physiologists. Although embryonic exposure to maternally derived glucocorticoids (i.e., corticosterone) generally reduces offspring quality, effects may adaptively match maternal quality with offspring demand. We present results from an interannual field experiment in European starlings (Sturnus vulgaris) designed explicitly to examine the fitness consequences of exposing offspring to maternally derived stress hormones. We combined a manipulation of yolk corticosterone (yolk injections) with a manipulation of maternal chick-rearing ability (feather clipping of mothers) to quantify the adaptive value of corticosterone-induced offspring phenotypes in relation to maternal quality. We then examined how corticosterone-induced "matching" within this current reproductive attempt affected future fecundity and maternal survival. First, our results provide support that low-quality mothers transferring elevated corticosterone to eggs invest in daughters as predicted by sex allocation theory. Second, corticosterone-mediated sex-biased investment resulted in rapid male-biased mortality resulting in brood reduction, which provided a better match between maternal quality and brood demand. Third, corticosterone-mediated matching reduced investment in current reproduction for low-quality mothers, resulting in fitness gains through increased survival and future fecundity. Results indicate that the transfer of stress hormones to eggs by low-quality mothers can be adaptive since corticosterone-mediated sex-biased investment matches the quality of a mother to offspring demand, ultimately increasing maternal fitness. Our results also indicate that the branding of the proximate effects of maternal glucocorticoids on offspring as negative ignores the possibility that short-term phenotypic changes may actually increase maternal fitness.
Collapse
Affiliation(s)
- Oliver P Love
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | | |
Collapse
|
13
|
Abstract
Cardiovascular disease risk rises sharply with menopause, likely due to the coincident increase in insulin resistance and related atherogenic changes that together comprise the metabolic or insulin resistance syndrome, a cluster of metabolic and hemodynamic abnormalities strongly implicated in the pathogenesis and progression of cardiovascular disease. A growing body of research suggests that traditional mind-body practices such as yoga, tai chi, and qigong may offer safe and cost-effective strategies for reducing insulin resistance syndrome-related risk factors for cardiovascular disease in older populations, including postmenopausal women. Current evidence suggests that these practices may reduce insulin resistance and related physiological risk factors for cardiovascular disease; improve mood, well-being, and sleep; decrease sympathetic activation; and enhance cardiovagal function. However, additional rigorous studies are needed to confirm existing findings and to examine long-term effects on cardiovascular health.
Collapse
Affiliation(s)
- Kim E Innes
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health Systems, Charlottesville, VA 22908-0905, USA.
| | | | | |
Collapse
|
14
|
Loizzo A, Loizzo S, Galietta G, Caiola S, Spampinato S, Campana G, Seghieri G, Ghirlanda G, Franconi F. Overweight and metabolic and hormonal parameter disruption are induced in adult male mice by manipulations during lactation period. Pediatr Res 2006; 59:111-5. [PMID: 16326992 DOI: 10.1203/01.pdr.0000190575.12965.ce] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal manipulations (10 min of maternal separation plus s.c. sham injection, daily for the first 21 d of life) determine overweight in male adult mice. In this work, we investigated the mechanisms underlying mild obesity and the alteration of caloric balance. Neonatally manipulated mice become overweight after onset of maturity, showing increased fat tissue and hypertrophic epididymal adipocytes. Increase in body weight occurs in the presence of a small increase in daily food intake (significant only in the adult period) and the absence of a decrease in spontaneous locomotor activity, while the calculated caloric efficiency is higher in manipulated mice, especially in adulthood. Fasting adult animals show hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and hyperleptinemia. Soon after weaning and in the adulthood, plasma corticosterone and adrenocorticotropin (ACTH) are also significantly increased. Thus, neonatal manipulations in nongenetically susceptible male mice program mild obesity, with metabolic and hormonal alterations that are similar to those found in experimental models of diabetes mellitus, suggesting that this metabolic derangement may have at least part of its roots early on in life and, more interestingly, that psychological and nociceptive stimuli induce these features.
Collapse
Affiliation(s)
- Alberto Loizzo
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Love OP, Chin EH, Wynne-Edwards KE, Williams TD. Stress Hormones: A Link between Maternal Condition and Sex‐Biased Reproductive Investment. Am Nat 2005; 166:751-66. [PMID: 16475090 DOI: 10.1086/497440] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 07/15/2005] [Indexed: 11/03/2022]
Abstract
In species where offspring fitness is sex-specifically influenced by maternal reproductive condition, sex allocation theory predicts that poor-quality mothers should invest in the evolutionarily less expensive sex. Despite an accumulation of evidence that mothers can sex-specifically modulate investment in offspring in relation to maternal quality, few mechanisms have been proposed as to how this is achieved. We explored a hormonal mechanism for sex-biased maternal investment by measuring and experimentally manipulating baseline levels of the stress hormone corticosterone in laying wild female European starlings (Sturnus vulgaris) and examining effects on sex ratio and sex-specific offspring phenotype adjustment. Here we show that baseline plasma corticosterone is negatively correlated with energetic body condition in laying starlings, and subsequent experimental elevation of maternal baseline plasma corticosterone increased yolk corticosterone without altering maternal condition or egg quality per se. Hormonal elevation resulted in the following: female-biased hatching sex ratios (caused by elevated male embryonic mortality), lighter male offspring at hatching (which subsequently grew more slowly during postnatal development), and lower cell-mediated immune (phytohemagglutinin) responses in males compared with control-born males; female offspring were unaffected by the manipulation in both years of the study. Elevated maternal corticosterone therefore resulted in a sex-biased adjustment of offspring quality favorable to female offspring via both a sex ratio bias and a modulation of male phenotype at hatching. In birds, deposition of yolk corticosterone may benefit mothers by acting as a bet-hedging strategy in stochastic environments where the correlation between environmental cues at laying (and therefore potentially maternal condition) and conditions during chick-rearing might be low and unpredictable. Together with recent studies in other vertebrate taxa, these results suggest that maternal stress hormones provide a mechanistic link between maternal quality and sex-biased maternal investment in offspring.
Collapse
Affiliation(s)
- Oliver P Love
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | | | | | | |
Collapse
|
16
|
Tulipano G, Rossi E, Culler MD, Taylor JE, Bonadonna S, Locatelli V, Cocchi D, Giustina A. The somatostatin subtype-2 receptor antagonist, BIM-23627, improves the catabolic effects induced by long-term glucocorticoid treatment in the rat. ACTA ACUST UNITED AC 2005; 125:85-92. [PMID: 15582718 DOI: 10.1016/j.regpep.2004.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 07/20/2004] [Accepted: 07/26/2004] [Indexed: 11/26/2022]
Abstract
BIM-23627 is a synthetic peptide with "in vitro" and "in vivo" properties consistent with a pure sst2 antagonist. The aim of the present study was to evaluate the effects of long-term administration of BIM-23627 and the combined effects of BIM-23627 and dexamethasone (DEX) on the somatotropic axis, including growth, epididymal fat accumulation, glucose homeostasis and insulin activity, in young male rats. Beginning on day 23 of age, 16 animals were treated daily with saline or DEX (40 microg/kg/daily). Each group was subdivided into two paired groups and treated with either vehicle or BIM-23627 (0.5 mg/kg, t.i.d.). The treatment period lasted 31 days. The animals were killed by decapitation; trunk blood and pituitaries were collected for the determination of hormone concentrations and GH mRNA expression, respectively. Based on plasma GH and IGF-I concentrations and GH mRNA expression in the pituitary, BIM-23627 was able to counteract the inhibitory effects of DEX on the somatotropic axis; however, only a partial reversal of somatic growth inhibition was observed. DEX-treated rats remained euglycemic, but their insulin levels were significantly increased, indicating an incipient insulin resistance. Although BIM-23627 itself tended to increase insulin concentration in saline-treated rats, its administration to DEX-treated rats reduced insulin levels (saline: 25+/-3; DEX: 55+/-16*; DEX+BIM-23627: 34+/-5; BIM-23627: 38+/-7 microIU/ml; *P<0.05 vs. saline), apparently improving the degree of insulin sensitivity. DEX administration significantly reduced circulating ghrelin, whereas the sst2 antagonist had no significant effect. An inverse correlation was found between ghrelin concentrations and plasma insulin levels. Both rats receiving DEX and rats receiving BIM-23627 had decreased plasma concentration of total testosterone (P<0.05); however, the effects of DEX and BIM-23627 were not additive. In conclusion, BIM-23627 may represent a new pharmacological agent to reduce the suppression of the GH-IGF-I axis in long-term GC treated patients and enhance insulin sensitivity. Further studies are required in order to fully optimize the SSTR-2 antagonist-induced reversal of DEX-induced somatic growth inhibition.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Current epidemiologic models concerning the fetal origins of later health risk are evaluated from the perspectives of evolutionary and developmental biology. Claims of adaptive value for and biological status of fetal programming are critically examined. Life history theory is applied to identify key trade-offs in adaptive strategies that constrain developmental design to use information from the environment to guide ontogeny and establish cost-benefit trade-offs that weigh early survival advantage against remote or unlikely future costs. Expectable environments of evolutionary adaptedness, particularly of gestation, are characterized and their impact on human adaptive design discussed. The roles of neuroendocrine mechanisms in scaffolding life course development, negotiating ongoing cost-benefit trade-offs, and mediating their long-term impacts on function and health are reviewed in detail. Overviews of gestational biology and the postnatal physiologic, cognitive-affective, and behavioral effects of gestational stress identify a shared central role for the hypothalamic-pituitary-adrenal (HPA) axis. Rather than merely mediating stress responses, the axis emerges an agent of resource allocation that draws a common thread among conditions of gestation, postnatal environments, and functional and health-related outcomes. The preponderance of evolutionary and developmental analysis identifies environments as agents on both sides of the health risk equation, by influencing vulnerabilities and capacities established in early and later life course development, and determining exposures and demands encountered over the life course.
Collapse
Affiliation(s)
- Carol M Worthman
- Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
18
|
Tanaka Y, Kikuchi T, Nagasaki K, Hiura M, Ogawa Y, Uchiyama M. Lower Birth Weight and Visceral Fat Accumulation Are Related to Hyperinsulinemia and Insulin Resistance in Obese Japanese Children. Hypertens Res 2005; 28:529-36. [PMID: 16231759 DOI: 10.1291/hypres.28.529] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study aimed to reveal the relation of birth weight (or the birth weight standard deviation score [BWSDS]) and visceral fat accumulation to hyperinsulinemia and insulin resistance. We examined obese Japanese children (650 boys and 317 girls) with a mean age of 10.3 years (range, 6-15 years). The mean percentage of overweight to the standard body weight of Japanese children was 52.1% in boys and 51.4% in girls. Abdominal fat thickness (maximum preperitoneal fat thickness; Pmax) was measured using ultrasonography. The fasting serum insulin and plasma glucose levels were measured, and the homeostasis model assessment-insulin resistance (HOMA-R) and quantitative insulin sensitivity check index (QUICKI) were calculated. We divided the subjects into four groups according to their birth weight or BWSDS, and compared anthropometric measurements, Pmax, blood pressure, serum insulin levels, HOMA-R and QUICKI among the quartiles. The relationships of both birth weight (or BWSDS) and Pmax to serum insulin levels (or HOMA-R, QUICKI) were examined with multiple regression analyses. The fasting serum insulin level and HOMA-R were highest in the quartile with the lowest birth weight or BWSDS. The birth weight and BWSDS were inversely related to the serum insulin levels and HOMA-R, positively related to QUICKI, and independent of Pmax. Our findings suggest that both lower birth weight and visceral fat accumulation may be independently related to hyperinsulinemia and insulin resistance in obese Japanese children.
Collapse
Affiliation(s)
- Yukie Tanaka
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medicine and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Bazuine M, Carlotti F, Tafrechi RSJ, Hoeben RC, Maassen JA. Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 and -4 Attenuate p38 MAPK during Dexamethasone-Induced Insulin Resistance in 3T3-L1 Adipocytes. Mol Endocrinol 2004; 18:1697-707. [PMID: 15184525 DOI: 10.1210/me.2003-0213] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prolonged use of glucocorticoids induces pronounced insulin resistance in vivo. In vitro, treatment of 3T3-L1 adipocytes with dexamethasone for 48 h reduces the maximal level of insulin- and stress (arsenite)-induced glucose uptake by approximately 50%. Although phosphatidylinositol 3-kinase signaling was slightly attenuated, phosphorylation of its downstream effectors such as protein kinase B and protein kinase C-lambda remained intact. Nor was any effect of dexamethasone treatment observed on insulin- or arsenite-induced translocation of glucose transporter 4 (GLUT4) toward the plasma membrane. However, for a maximal response to either arsenite- or insulin-induced glucose uptake in these cells, functional p38 MAPK signaling is required. Dexamethasone treatment markedly attenuated p38 MAPK phosphorylation coincident with an up-regulation of the MAPK phosphatases MKP-1 and MKP-4. Employing lentivirus-mediated ectopic expression in fully differentiated 3T3-L1 adipocytes demonstrated a differential effect of these phosphatases: whereas MKP-1 was a more potent inhibitor of insulin-induced glucose uptake, MKP-4 more efficiently inhibited arsenite-induced glucose uptake. This coincided with the effects of these phosphatases on p38 MAPK phosphorylation, i.e. MKP-1 and MKP-4 attenuated p38 MAPK phosphorylation by insulin and arsenite, respectively. Taken together, these data provide evidence that in 3T3-L1 adipocytes dexamethasone inhibits the activation of the GLUT4 in the plasma membrane by a p38 MAPK-dependent process, rather than in a defect in GLUT4 translocation per se.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Koukoulas I, Risvanis J, Douglas-Denton R, Burrell LM, Moritz KM, Wintour EM. Vasopressin receptor expression in the placenta. Biol Reprod 2003; 69:679-86. [PMID: 12724283 DOI: 10.1095/biolreprod.102.013458] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The arginine vasopressin (AVP) type 1a receptor (V1a) is well known to mediate vasoconstriction. In pregnancy, blood flow in the placenta is crucial for sustaining normal growth and development of the fetus. This is the first AVP receptor study in the placenta and fetal membranes. The aim was to compare, quantitatively, the level of V1a gene expression with that of a known marker for vascularization, aquaporin 1 (AQP1). V1a and AQP1 gene expression did not correlate; placental V1a mRNA levels were significantly upregulated at 45 and 66+/-1 compared with 27, 100+/-4, and 140 days (term approximately 150 days). V1a mRNA levels were much lower in fetal membranes in which no significant difference across gestation was observed. In situ hybridization histochemistry localized V1a gene expression in the maternal component of the placenta similar to the receptor-binding studies using 125I-labeled [d(CH2)5, sarcosine7] vasopressin. No AVP gene expression was observed in the placenta and fetal membranes, which eliminates local AVP production. This increase in V1a expression at 45 and 66+/-1 days of gestation correlates with the period of maximal placental growth in the sheep and suggests that AVP and V1a receptors may play a hitherto unrecognized role in placental growth, differentiation, and/or function, particularly in the deleterious effects of heat stress, early in pregnancy, on fetal growth.
Collapse
Affiliation(s)
- Irene Koukoulas
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, 3010 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Medical research is increasingly focusing on the contribution of nutritional programming to disease in later life. Programming is a process whereby a stimulus during a critical window of time permanently affects subsequent structure, function or developmental schedule of the organism. The thrifty phenotype hypothesis is widely used to interpret such studies, with early growth restriction seen as adaptation to environmental deprivation. However, such permanent adjustment is less beneficial than maintaining flexibility so as to recover from early growth deficits if the environment improves. Thus, the existing thrifty phenotype hypothesis fails to explain why plasticity is lost so early in development in species with extended growth. One explanation is that the developing organism simply cannot maintain phenotypic plasticity throughout the period of organ growth. This article adds a life history perspective, arguing that programming of the offspring may in some species benefit maternal fitness more than it does that of individual offspring. Closing the critical window early in development allows the preservation of maternal strategy in offspring phenotype, which in humans benefits the mother by constraining offspring demand after weaning. The offspring gains by being buffered against environmental fluctuations during the most sensitive period of development, allowing coherent adaptation of organ growth to the state of the environment. The critical window is predicted to close when offspring physiology becomes independent of maternal physiology, the timing of which depends on offspring trait. Because placental nutrition and lactation buffer against short-term environmental fluctuations, maternal strategy is predicted to derive from long-term experience, encapsulated in maternal size and nutritional status. Such an approach implies that public health programmes for improving birth weight may be more effective if they target maternal development rather than nutrition during pregnancy. Equally, aggressive nutritional management of infants born small or pre-term may induce the very environmental fluctuations that are naturally softened by maternal nutrition.
Collapse
Affiliation(s)
- Jonathan C K Wells
- MRC Childhood Nutrition Research Centre, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
23
|
Brawley L, Poston L, Hanson MA. Mechanisms underlying the programming of small artery dysfunction: review of the model using low protein diet in pregnancy in the rat. Arch Physiol Biochem 2003; 111:23-35. [PMID: 12715272 DOI: 10.1076/apab.111.1.23.15138] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human and animal studies have shown that unbalanced maternal nutrition is associated with the development of cardiovascular and metabolic disease in adulthood. In the Southampton maternal low protein model (SMLP), protein deprivation (50%) throughout pregnancy in rats leads to elevated blood pressure in adult offspring. Impaired peripheral arterial function may contribute to the cardiovascular dysfunction observed in these offspring. This review discusses the impact of such a dietary insult on the vascular function of resistance arteries from pregnant rats (pF(o)), their offspring (F(1)), the pregnant offspring (pF(1)) and the second generation (F(2)). At each stage, disturbances in endothelium-dependent relaxation were observed, implicating changes in endothelial nitric oxide (NO)-guanylate cyclase (GC) signalling pathway in the vascular adaptations to pregnancy and the programmed effects on offspring.
Collapse
Affiliation(s)
- L Brawley
- Centre for Fetal Origins of Adult Disease, Princess Anne Hospital, Southampton, UK.
| | | | | |
Collapse
|