1
|
Almalki F. Review and research gap identification in genetics causes of syndromic and nonsyndromic hearing loss in Saudi Arabia. Ann Hum Genet 2024; 88:364-381. [PMID: 38517009 DOI: 10.1111/ahg.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.
Collapse
Affiliation(s)
- Faisal Almalki
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munwarah, Saudi Arabia
| |
Collapse
|
2
|
Bom Braga GO, Parrilli A, Zboray R, Bulatović M, Wagner F. Quantitative Evaluation of the 3D Anatomy of the Human Osseous Spiral Lamina Using MicroCT. J Assoc Res Otolaryngol 2023; 24:441-452. [PMID: 37407801 PMCID: PMC10504225 DOI: 10.1007/s10162-023-00904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
PURPOSE The osseous spiral lamina (OSL) is an inner cochlear bony structure that projects from the modiolus from base to apex, separating the cochlear canal into the scala vestibuli and scala tympani. The porosity of the OSL has recently attracted the attention of scientists due to its potential impact on the overall sound transduction. The bony pillars between the vestibular and tympanic plates of the OSL are not always visible in conventional histopathological studies, so imaging of such structures is usually lacking or incomplete. With this pilot study, we aimed, for the first time, to anatomically demonstrate the OSL in great detail and in 3D. METHODS We measured width, thickness, and porosity of the human OSL by microCT using increasing nominal resolutions up to 2.5-µm voxel size. Additionally, 3D models of the individual plates at the basal and middle turns and the apex were created from the CT datasets. RESULTS We found a constant presence of porosity in both tympanic plate and vestibular plate from basal turn to the apex. The tympanic plate appears to be more porous than vestibular plate in the basal and middle turns, while it is less porous in the apex. Furthermore, the 3D reconstruction allowed the bony pillars that lie between the OSL plates to be observed in great detail. CONCLUSION By enhancing our comprehension of the OSL, we can advance our comprehension of hearing mechanisms and enhance the accuracy and effectiveness of cochlear models.
Collapse
Affiliation(s)
- Gabriela O Bom Braga
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Annapaola Parrilli
- Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Robert Zboray
- Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Milica Bulatović
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Koh JY, Affortit C, Ranum PT, West C, Walls WD, Yoshimura H, Shao JQ, Mostaert B, Smith RJH. Single-cell RNA-sequencing of stria vascularis cells in the adult Slc26a4 -/- mouse. BMC Med Genomics 2023; 16:133. [PMID: 37322474 PMCID: PMC10268361 DOI: 10.1186/s12920-023-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.
Collapse
Affiliation(s)
- Jin-Young Koh
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Cody West
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jian Q Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Brian Mostaert
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J H Smith
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA.
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
5
|
Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness. Int J Mol Sci 2021; 22:ijms22031112. [PMID: 33498651 PMCID: PMC7865240 DOI: 10.3390/ijms22031112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
KCNQ1 encodes the voltage-gated potassium (Kv) channel KCNQ1, also known as KvLQT1 or Kv7.1. Together with its ß-subunit KCNE1, also denoted as minK, this channel generates the slowly activating cardiac delayed rectifier current IKs, which is a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function mutations in KCNQ1 cause congenital long QT1 (LQT1) syndrome, characterized by a delayed cardiac repolarization and a prolonged QT interval in the surface electrocardiogram. Autosomal dominant loss-of-function mutations in KCNQ1 result in long QT syndrome, called Romano–Ward Syndrome (RWS), while autosomal recessive mutations lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. Here, we identified a homozygous KCNQ1 mutation, c.1892_1893insC (p.P631fs*20), in a patient with an isolated LQT syndrome (LQTS) without hearing loss. Nevertheless, the inheritance trait is autosomal recessive, with heterozygous family members being asymptomatic. The results of the electrophysiological characterization of the mutant, using voltage-clamp recordings in Xenopus laevis oocytes, are in agreement with an autosomal recessive disorder, since the IKs reduction was only observed in homomeric mutants, but not in heteromeric IKs channel complexes containing wild-type channel subunits. We found that KCNE1 rescues the KCNQ1 loss-of-function in mutant IKs channel complexes when they contain wild-type KCNQ1 subunits, as found in the heterozygous state. Action potential modellings confirmed that the recessive c.1892_1893insC LQT1 mutation only affects the APD of homozygous mutation carriers. Thus, our study provides the molecular mechanism for an atypical autosomal recessive LQT trait that lacks hearing impairment.
Collapse
|
6
|
Juergens L, Bieniussa L, Voelker J, Hagen R, Rak K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem Cell Biol 2020; 154:671-681. [PMID: 32712744 PMCID: PMC7723944 DOI: 10.1007/s00418-020-01905-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.
Collapse
Affiliation(s)
- Lukas Juergens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
- Department of Ophthalmology, University of Duesseldorf, Duesseldorf, Germany
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
7
|
Talaei S, Schnee ME, Aaron KA, Ricci AJ. Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution. Front Cell Neurosci 2019; 13:471. [PMID: 31736710 PMCID: PMC6833940 DOI: 10.3389/fncel.2019.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critical to understanding function at the systems level. Additionally, there is a growing need for drug delivery to the inner ear for preventive and restorative treatments to the pathologies associated with hearing and balance dysfunction. We compare drug delivery to neonatal and adult inner ear by injection into the posterior semicircular canal (PSCC) or through the round window membrane (RWM). PSCC injections produced higher levels of dye delivery within the cochlea than did RWM injections. Neonatal PSCC injections produced a gradient in dye distribution; however, adult distributions were relatively uniform. RWM injections resulted in an early base to apex gradient that became more uniform over time, post injection. RWM injections lead to higher levels of dye distributions in the brain, likely demonstrating that injections can traverse the cochlea aqueduct. We hypothesize the relative position of the cochlear aqueduct between injection site and cochlea is instrumental in dictating dye distribution within the cochlea. Dye distribution is further compounded by the ability of some chemicals to cross inner ear membranes accessing the blood supply as demonstrated by the rapid distribution of gentamicin-conjugated Texas red (GTTR) throughout the body. These data allow for a direct evaluation of injection mode and age to compare strengths and weaknesses of the two approaches.
Collapse
Affiliation(s)
- Sara Talaei
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael E Schnee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ksenia A Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Miwa T, Minoda R, Ishikawa Y, Kajii T, Orita Y, Ohyama T. Role of Dach1 revealed using a novel inner ear-specific Dach1-knockdown mouse model. Biol Open 2019; 8:bio.043612. [PMID: 31405829 PMCID: PMC6737983 DOI: 10.1242/bio.043612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dach1 gene is expressed in the inner ear of normal mouse embryos in the area that differentiates into the cochlear stria vascularis (SV). We hypothesised that Dach1 downregulation in the inner ear would lead to SV dysplasia. However, because Dach1 knockout is embryonic lethal in mice, the role of Dach1 in the inner ear is unclear. Here, we established inner ear-specific Dach1-knockdown mice and showed that Dach1 downregulation resulted in hearing loss, reduced endocochlear potential and secondary outer hair cell loss. There were no abnormalities in marginal cells and basal cells in the SV or spiral ligament in inner ear-specific Dach1-knockdown mature mice. However, intermediate cell dysplasia and thinning of the SV were observed. Moreover, dynamic changes in the expression of key genes related to the epithelial-mesenchymal transition were observed in the lateral wall of the cochlear epithelium, which differentiated into the SV in inner ear-specific Dach1-knockdown mice at embryonic stages. In summary, suppression of Dach1 expression in the inner ear caused the epithelial-mesenchymal transition in the lateral wall of cochlear epithelium, resulting in loss of intermediate cells in the SV and SV dysplasia. This article has an associated First Person interview with the first author of the paper. Summary: Inner ear-specific downregulation of Dach1 reveals that the epithelial–mesenchymal transition is crucial for the generation of the stria vascularis.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology and Head and Neck Surgery, Graduate of School of Medicine, Kumamoto University, Kumamoto 8608556, Japan .,Otolaryngology-Head and Neck Surgery, JCHO Kumamoto General Hospital, Kumamoto 8668660, Japan
| | - Ryosei Minoda
- Otolaryngology-Head and Neck Surgery, JCHO Kumamoto General Hospital, Kumamoto 8668660, Japan
| | - Yoshihide Ishikawa
- Department of Otolaryngology and Head and Neck Surgery, Graduate of School of Medicine, Kumamoto University, Kumamoto 8608556, Japan
| | - Tomohito Kajii
- Department of Otolaryngology and Head and Neck Surgery, Graduate of School of Medicine, Kumamoto University, Kumamoto 8608556, Japan
| | - Yorihisa Orita
- Department of Otolaryngology and Head and Neck Surgery, Graduate of School of Medicine, Kumamoto University, Kumamoto 8608556, Japan
| | - Takahiro Ohyama
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Zhou Y, Song J, Wang YP, Zhang AM, Tan CY, Liu YH, Zhang ZP, Wang Y, Ma KT, Li L, Si JQ. Age‑associated variation in the expression and function of TMEM16A calcium‑activated chloride channels in the cochlear stria vascularis of guinea pigs. Mol Med Rep 2019; 20:1593-1604. [PMID: 31257512 PMCID: PMC6625423 DOI: 10.3892/mmr.2019.10423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
The present study was designed to investigate the expression and function of transmembrane protein 16 (TMEM16A), a calcium‑activated chloride channel (CaCC), in the stria vascularis (SV) of the cochlea of guinea pigs at different ages, and to understand the role of CaCCs in the pathogenesis of presbycusis (age‑related hearing loss), the most common type of sensorineural hearing loss that occurs with natural aging. Guinea pigs were divided into the following groups: 2 weeks (young group), 3 months (youth group), 1 year (adult group), D‑galactose intervention (D‑gal group; aging model induced by subcutaneous injection of D‑galactose) and T16Ainh‑A01 (intraperitoneal injection of 50 µg/kg/day TMEM16A inhibitor T16Ainh‑A01 for 2 weeks). Differences in the hearing of guinea pigs between the various age groups were analyzed using auditory brainstem response (ABR), and immunofluorescence staining was performed to detect TMEM16A expression in the SV and determine the distribution. Reverse transcription‑quantitative PCR and western blot analyses were conducted to detect the mRNA and protein levels of TMEM16A in SV in the different age groups. Morris water maze behavior analysis demonstrated that spatial learning ability and memory were damaged in the D‑gal group. Superoxide dismutase activity and malondialdehyde content assays indicated that there was oxidative stress damage in the D‑gal group. The ABR thresholds gradually increased with age, and the increase in the T16Ainh‑A01 group was pronounced. Immunofluorescence analysis in the cochlear SV of guinea pigs in different groups revealed that expression of TMEM16A increased with increasing age (2 weeks to 1 year); fluorescence intensity was reduced in the D‑gal model of aging. As the guinea pigs continued to mature, the protein and mRNA contents of TMEM16A in the cochlea SV increased gradually, but were decreased in the D‑gal group. The findings indicated that CaCCs in the cochlear SV of guinea pigs were associated with the development of hearing in guinea pigs, and that downregulation of TMEM16A may be associated with age‑associated hearing loss.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jia Song
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yan-Ping Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ai-Mei Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Chao-Yang Tan
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yan-Hui Liu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Zhi-Ping Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
10
|
Kim MA, Ryu N, Kim HM, Kim YR, Lee B, Kwon TJ, Bok J, Kim UK. Targeted Gene Delivery into the Mammalian Inner Ear Using Synthetic Serotypes of Adeno-Associated Virus Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:197-204. [PMID: 30805407 PMCID: PMC6374519 DOI: 10.1016/j.omtm.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Targeting specific cell types in the mammalian inner ear is important for treating genetic hearing loss due to the different cell type-specific functions. Adeno-associated virus (AAV) is an efficient in vivo gene transfer vector, and it has demonstrated promise for treating genetic hearing loss. Although more than 100 AAV serotypes have been identified, few studies have investigated whether AAV can be distributed to specific inner ear cell types. Here we screened three EGFP-AAV reporter constructs (serotypes DJ, DJ8, and PHP.B) in the neonatal mammalian inner ear by injection via the round window membrane to determine the cellular specificity of the AAV vectors. Sensory hair cells, supporting cells, cells in Reissner’s membrane, interdental cells, and root cells were successfully transduced. Hair cells in the cochlear sensory epithelial region were the most frequently transduced cell type by all tested AAV serotypes. The recombinant DJ serotype most effectively transduced a range of cell types at a high rate. Our findings provide a basis for improving treatment of hereditary hearing loss using targeted AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Min Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae-Jun Kwon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Corresponding author: Jinwoong Bok, PhD, Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Corresponding author: Un-Kyung Kim, PhD, Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Han Z, Gu YY, Cong N, Ma R, Chi FL. Celastrol enhances Atoh1 expression in inner ear stem cells and promotes their differentiation into functional auditory neuronal-like cells. Organogenesis 2018; 14:82-93. [PMID: 29902110 PMCID: PMC6150060 DOI: 10.1080/15476278.2018.1462433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We aimed to investigate the beneficial effect of Celastrol on inner ear stem cells and potential therapeutic value for hearing loss. The inner ear stem cells were isolated and characterized from utricular sensory epithelium of adult mice. The stemness was evaluated by sphere formation assay. The relative expressions of Atoh1, MAP-2 and Myosin VI were measured by RT-PCR and immunoblotting. The up-regulation of MAP-2 was also analysed with immunofluorescence. The in vitro neuronal excitability was interrogated by calcium oscillation. The electrophysiological property was determined by inward current recorded on patch clamp. Our results demonstrated that Celastrol treatment significantly improved the viability and proliferation of mouse inner ear stem cells, and facilitated sphere formation. Moreover, Celastrol stimulated differentiation of mouse inner ear stem cells to neuronal-like cells and enhanced neural excitability. Celastrol also enhanced neuronal-like cell identity in the inner ear stem cell derived neurons, as well as their electrophysiological function. Most notably, these effects were apparently associated with the upregulation of Atoh1 in response to Celastrol treatment. Celastrol showed beneficial effect on inner ear stem cells and held therapeutic promise against hearing loss.
Collapse
Affiliation(s)
- Zhao Han
- a Department of Otology and Skull Base Surgery of ENT Department , Eye and ENT Hospital, Fudan University , Shanghai , China.,b Shanghai Auditory Medicine Clinical Center of Shanghai Municipal Commission of Heath and Family Planning , Shanghai , PR China.,c Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China , Shanghai , PR China.,d ENT Institute, Eye and ENT Hospital of Fudan University , Shanghai , PR China
| | - Yu-Yan Gu
- a Department of Otology and Skull Base Surgery of ENT Department , Eye and ENT Hospital, Fudan University , Shanghai , China.,b Shanghai Auditory Medicine Clinical Center of Shanghai Municipal Commission of Heath and Family Planning , Shanghai , PR China.,c Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China , Shanghai , PR China.,d ENT Institute, Eye and ENT Hospital of Fudan University , Shanghai , PR China
| | - Ning Cong
- a Department of Otology and Skull Base Surgery of ENT Department , Eye and ENT Hospital, Fudan University , Shanghai , China.,b Shanghai Auditory Medicine Clinical Center of Shanghai Municipal Commission of Heath and Family Planning , Shanghai , PR China.,c Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China , Shanghai , PR China.,d ENT Institute, Eye and ENT Hospital of Fudan University , Shanghai , PR China
| | - Rui Ma
- a Department of Otology and Skull Base Surgery of ENT Department , Eye and ENT Hospital, Fudan University , Shanghai , China.,b Shanghai Auditory Medicine Clinical Center of Shanghai Municipal Commission of Heath and Family Planning , Shanghai , PR China.,c Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China , Shanghai , PR China.,d ENT Institute, Eye and ENT Hospital of Fudan University , Shanghai , PR China
| | - Fang-Lu Chi
- a Department of Otology and Skull Base Surgery of ENT Department , Eye and ENT Hospital, Fudan University , Shanghai , China.,b Shanghai Auditory Medicine Clinical Center of Shanghai Municipal Commission of Heath and Family Planning , Shanghai , PR China.,c Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China , Shanghai , PR China.,d ENT Institute, Eye and ENT Hospital of Fudan University , Shanghai , PR China
| |
Collapse
|
12
|
Palmer JC, Lord MS, Pinyon JL, Wise AK, Lovell NH, Carter PM, Enke YL, Housley GD, Green RA. Comparing perilymph proteomes across species. Laryngoscope 2017; 128:E47-E52. [DOI: 10.1002/lary.26885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan C. Palmer
- Graduate School of Biomedical EngineeringUniversity of New South Wales SydneySydneyNew South WalesAustralia
| | - Megan S. Lord
- Graduate School of Biomedical EngineeringUniversity of New South Wales SydneySydneyNew South WalesAustralia
| | - Jeremy L. Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Medical SciencesUniversity of New South Wales SydneySydneyNew South WalesAustralia
| | | | - Nigel H. Lovell
- Graduate School of Biomedical EngineeringUniversity of New South Wales SydneySydneyNew South WalesAustralia
| | - Paul M. Carter
- Cochlear LtdMacquarie UniversitySydneyNew South WalesAustralia
| | - Ya Lang Enke
- Cochlear LtdMacquarie UniversitySydneyNew South WalesAustralia
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical SciencesUniversity of New South Wales SydneySydneyNew South WalesAustralia
| | - Rylie A. Green
- Graduate School of Biomedical EngineeringUniversity of New South Wales SydneySydneyNew South WalesAustralia
- Department of BioengineeringImperial College LondonLondonUnited Kingdom
| |
Collapse
|
13
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
14
|
Differential Involvement during Latent Herpes Simplex Virus 1 Infection of the Superior and Inferior Divisions of the Vestibular Ganglia: Implications for Vestibular Neuritis. J Virol 2017; 91:JVI.00331-17. [PMID: 28446678 DOI: 10.1128/jvi.00331-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
Controversy still surrounds both the etiology and pathophysiology of vestibular neuritis (VN). Especially uncertain is why the superior vestibular nerve (SVN) is more frequently affected than the inferior vestibular nerve (IVN), which is partially or totally spared. To address this question, we developed an improved method for preparing human vestibular ganglia (VG) and nerve. Subsequently, macro- and microanatomical as well as PCR studies were performed on 38 human ganglia from 38 individuals. The SVN was 2.4 mm longer than the IVN, and in 65% of the cases, the IVN ran in two separate bony canals, which was not the case for the SVN. Anastomoses between the facial and cochlear nerves were more common for the SVN (14/38 and 9/38, respectively) than for the IVN (7/38 and 2/38, respectively). Using reverse transcription-quantitative PCR (RT-qPCR), we found only a few latently herpes simplex virus 1 (HSV-1)-infected VG (18.4%). In cases of two separate neuronal fields, infected neurons were located in the superior part only. In summary, these PCR and micro- and macroanatomical studies provide possible explanations for the high frequency of SVN infection in vestibular neuritis.IMPORTANCE Vestibular neuritis is known to affect the superior part of the vestibular nerve more frequently than the inferior part. The reason for this clinical phenomenon remains unclear. Anatomical differences may play a role, or if latent HSV-1 infection is assumed, the etiology may be due to the different distribution of the infection. To shed further light on this subject, we conducted different macro- and microanatomical studies. We also assessed the presence of HSV-1 in VG and in different sections of the VG. Our findings add new information on the macro- and microanatomy of the VG as well as the pathophysiology of vestibular neuritis. We also show that latent HSV-1 infection of VG neurons is less frequent than previously reported.
Collapse
|
15
|
Magariños M, Pulido S, Aburto MR, de Iriarte Rodríguez R, Varela-Nieto I. Autophagy in the Vertebrate Inner Ear. Front Cell Dev Biol 2017; 5:56. [PMID: 28603711 PMCID: PMC5445191 DOI: 10.3389/fcell.2017.00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a conserved catabolic process that results in the lysosomal degradation of cell components. During development, autophagy is associated with tissue and organ remodeling, and under physiological conditions it is tightly regulated as it plays a housekeeping role in removing misfolded proteins and damaged organelles. The vertebrate inner ear is a complex sensory organ responsible for the perception of sound and for balance. Cell survival, death and proliferation, as well as cell fate specification and differentiation, are processes that are strictly coordinated during the development of the inner ear in order to generate the more than a dozen specialized cell types that constitute this structure. Here, we review the existing evidence that implicates autophagy in the generation of the vertebrate inner ear. At early stages of chicken otic development, inhibiting autophagy impairs neurogenesis and causes aberrant otocyst morphogenesis. Autophagy provides energy for the clearing of dying cells and it favors neuronal differentiation. Moreover, autophagy is required for proper vestibular development in the mouse inner ear. The autophagy-related genes Becn1, Atg4g, Atg5, and Atg9, are expressed in the inner ear from late developmental stages to adulthood, and Atg4b mutants show impaired vestibular behavior associated to defects in otoconial biogenesis that are also common to Atg5 mutants. Autophagic flux appears to be age-regulated, augmenting from perinatal stages to young adulthood in mice. This up-regulation is concomitant with the functional maturation of the hearing receptor. Hence, autophagy can be considered an intracellular pathway fundamental for in vertebrate inner ear development and maturation.
Collapse
Affiliation(s)
- Marta Magariños
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain.,Departamento de Biología, Universidad Autónoma de MadridMadrid, Spain
| | - Sara Pulido
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain
| | - María R Aburto
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain
| | - Rocío de Iriarte Rodríguez
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain
| | - Isabel Varela-Nieto
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ)Madrid, Spain
| |
Collapse
|
16
|
Knockout of the LRRC26 subunit reveals a primary role of LRRC26-containing BK channels in secretory epithelial cells. Proc Natl Acad Sci U S A 2017; 114:E3739-E3747. [PMID: 28416688 DOI: 10.1073/pnas.1703081114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich-repeat-containing protein 26 (LRRC26) is the regulatory γ1 subunit of Ca2+- and voltage-dependent BK-type K+ channels. BK channels that contain LRRC26 subunits are active near normal resting potentials even without Ca2+, suggesting they play unique physiological roles, likely limited to very specific cell types and cellular functions. By using Lrrc26 KO mice with a β-gal reporter, Lrrc26 promoter activity is found in secretory epithelial cells, especially acinar epithelial cells in lacrimal and salivary glands, and also goblet and Paneth cells in intestine and colon, although absent from neurons. We establish the presence of LRRC26 protein in eight secretory tissues or tissues with significant secretory epithelium and show that LRRC26 protein coassembles with the pore-forming BK α-subunit in at least three tissues: lacrimal gland, parotid gland, and colon. In lacrimal, parotid, and submandibular gland acinar cells, LRRC26 KO shifts BK gating to be like α-subunit-only BK channels. Finally, LRRC26 KO mimics the effect of SLO1/BK KO in reducing [K+] in saliva. LRRC26-containing BK channels are competent to contribute to resting K+ efflux at normal cell membrane potentials with resting cytosolic Ca2+ concentrations and likely play a critical physiological role in supporting normal secretory function in all secretory epithelial cells.
Collapse
|
17
|
Parker A, Chessum L, Mburu P, Sanderson J, Bowl MR. Light and Electron Microscopy Methods for Examination of Cochlear Morphology in Mouse Models of Deafness. ACTA ACUST UNITED AC 2016; 6:272-306. [PMID: 27584554 DOI: 10.1002/cpmo.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mice are an invaluable model organism for the study of auditory function. Even though there are differences in size and frequency response, the anatomy and physiology of the mouse and human ear are remarkably similar. In addition, the tools available for genetic manipulation in the mouse have enabled the generation of models carrying mutations in orthologous human deafness-causing genes, helping to validate these lesions and assess their functional consequence. Reciprocally, novel gene mutations discovered to cause auditory deficits in the mouse highlight potential new loci for human hearing loss, and expand our basic knowledge of the mechanisms and pathways important for the function of the mammalian ear. Microscopy and imaging are invaluable techniques that allow detailed characterization of cochlear pathologies associated with particular gene mutations. However, the highly organized, delicate, and intricate structures responsible for transduction of sound waves into nerve impulses are encapsulated in one of the hardest bones in the body - the temporal bone. This makes sample preparation without damage to the soft tissue, be it from dissection or processing, somewhat challenging. Fortunately, there are numerous methods for achieving high-quality images of the mouse cochlea. Reported in this article are a selection of sample preparation and imaging techniques that can be used routinely to assess cochlear morphology. Several protocols are also described for immunodetection of proteins in the cochlea. In addition, the advantages and disadvantages between different imaging platforms and their suitability for different types of microscopic examination are highlighted. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew Parker
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| | - Lauren Chessum
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| | - Philomena Mburu
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| | - Jeremy Sanderson
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
18
|
Bergeron KF, Nguyen CMA, Cardinal T, Charrier B, Silversides DW, Pilon N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis Model Mech 2016; 9:1283-1293. [PMID: 27585883 PMCID: PMC5117235 DOI: 10.1242/dmm.026773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Collapse
Affiliation(s)
- Karl-F Bergeron
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Chloé M A Nguyen
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - David W Silversides
- Veterinary Genetics Laboratory, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| |
Collapse
|
19
|
Klapal L, Igelhorst BA, Dietzel-Meyer ID. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18. Front Neurol 2016; 7:44. [PMID: 27065940 PMCID: PMC4812774 DOI: 10.3389/fneur.2016.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here, we demonstrate that the addition of 5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures upregulates Na+ current densities (INavD) of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a major cytokine released by activated microglia, upregulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5–10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose–response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines, microglial cells upregulate Na+ current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released, this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger upregulation of INavD in response to TNF-α as well as respond to smaller concentrations of IL-18, our results offer an explanation for the finding, that in certain conditions of brain inflammations periods of dizziness are followed by epileptic seizures.
Collapse
Affiliation(s)
- Lars Klapal
- Department of Biochemistry II, Ruhr-University Bochum , Bochum , Germany
| | - Birte A Igelhorst
- Department of Biochemistry II, Ruhr-University Bochum , Bochum , Germany
| | | |
Collapse
|
20
|
Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration. Proc Natl Acad Sci U S A 2015; 112:E3431-40. [PMID: 26080415 DOI: 10.1073/pnas.1501835112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson's disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts.
Collapse
|
21
|
Recker F, Zaniew M, Böckenhauer D, Miglietti N, Bökenkamp A, Moczulska A, Rogowska-Kalisz A, Laube G, Said-Conti V, Kasap-Demir B, Niemirska A, Litwin M, Siteń G, Chrzanowska KH, Krajewska-Walasek M, Sethi SK, Tasic V, Anglani F, Addis M, Wasilewska A, Szczepańska M, Pawlaczyk K, Sikora P, Ludwig M. Characterization of 28 novel patients expands the mutational and phenotypic spectrum of Lowe syndrome. Pediatr Nephrol 2015; 30:931-43. [PMID: 25480730 DOI: 10.1007/s00467-014-3013-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked multi-systemic disorder, almost always characterized by the triad of congenital cataract, cognitive and behavioral impairment and a proximal tubulopathy. METHODS Twenty-eight novel patients with suspected Lowe syndrome were studied. RESULTS All patients carried OCRL gene defects with mutational hot spots at CpG dinucleotides. Mutations previously unknown in Lowe syndrome were observed in ten of the 28 patients, and carriership was identified in 30.4 % of the mothers investigated. Mapping the exact breakpoints of a complete OCRL gene deletion revealed involvement of several flanking repeat elements. We noted a similar pattern of documented clinically relevant symptoms, and even though the patient cohort comprised relatively young patients, 32 % of these patients already showed advanced chronic kidney disease. Thrombocytopenia was seen in several patients, and hyperosmia and/or hyperacusis were reported recurrently. A p.Asp523Asn mutation in a Polish patient, associated with the typical cerebrorenal spectrum but with late cataract (10 year), was also evident in two milder affected Italian brothers with ocular involvement of similar progression. CONCLUSIONS We have identified clinical features in 28 patients with suspected Lowe syndrome that had not been recognized in Lowe syndrome prior to our study. We also provide further evidence that OCRL mutations cause a phenotypic continuum with selective and/or time-dependent organ involvement. At least some of these mutants might exhibit a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Florian Recker
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mellott AJ, Devarajan K, Shinogle HE, Moore DS, Talata Z, Laurence JS, Forrest ML, Noji S, Tanaka E, Staecker H, Detamore MS. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A 2015; 21:1795-809. [PMID: 25760435 DOI: 10.1089/ten.tea.2014.0340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor atonal homolog 1 (ATOH1) has multiple homologues that are functionally conserved across species and is responsible for the generation of sensory hair cells. To evaluate potential functional differences between homologues, human and mouse ATOH1 (HATH1 and MATH-1, respectively) were nonvirally delivered to human Wharton's jelly cells (hWJCs) for the first time. Delivery of HATH1 to hWJCs demonstrated superior expression of inner ear hair cell markers and characteristics than delivery of MATH-1. Inhibition of HES1 and HES5 signaling further increased the atonal effect. Transfection of hWJCs with HATH1 DNA, HES1 siRNA, and HES5 siRNA displayed positive identification of key hair cell and support cell markers found in the cochlea, as well as a variety of cell shapes, sizes, and features not native to hair cells, suggesting the need for further examination of other cell types induced by HATH1 expression. In the first side-by-side evaluation of HATH1 and MATH-1 in human cells, substantial differences were observed, suggesting that the two atonal homologues may not be interchangeable in human cells, and artificial expression of HATH1 in hWJCs requires further study. In the future, this line of research may lead to engineered systems that would allow for evaluation of drug ototoxicity or potentially even direct therapeutic use.
Collapse
Affiliation(s)
- Adam J Mellott
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas
| | | | - Heather E Shinogle
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - David S Moore
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - Zsolt Talata
- 4Department of Mathematics, University of Kansas, Lawrence, Kansas
| | - Jennifer S Laurence
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - Sumihare Noji
- 6Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Eiji Tanaka
- 7Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Hinrich Staecker
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,8Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael S Detamore
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,9Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
23
|
In vitro preparation of newt inner ear sensory epithelia as a model for repair and regeneration. Methods Mol Biol 2015; 1290:253-65. [PMID: 25740492 DOI: 10.1007/978-1-4939-2495-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The sensory "hair" cells of the inner ear transform sound energy into electrical signals, but are readily lost through aging, excessive noise, and ototoxic agents. The newt provides an excellent model in which to explore regeneration and whilst loss of hair cells from inner ear epithelia does not require whole organ regeneration, new hair cells are generated from differentiated supporting cells that transdifferentiate without an intervening mitotic event. Here we describe the methods for maintaining the sensory epithelia in long term culture; for the use of the aminoglycoside, gentamicin, to kill the hair cells; and for the examination of the tissue by electron microscopy or fluorescence microscopy. Demembranation of the epithelium reveals the underlying ultrastructure of the tissue for examination by scanning electron microscopy (SEM) and is a technique that can be utilized with immunogold labelling.
Collapse
|
24
|
Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 2014; 5:71. [PMID: 24611052 PMCID: PMC3933781 DOI: 10.3389/fphys.2014.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
Gap-junction channels (GJCs) are aqueous channels that communicate adjacent cells. They are formed by head-to-head association of two hemichannels (HCs), one from each of the adjacent cells. Functional HCs are connexin hexamers composed of one or more connexin isoforms. Deafness is the most frequent sensineural disorder, and mutations of Cx26 are the most common cause of genetic deafness. Cx43 is the most ubiquitous connexin, expressed in many organs, tissues, and cell types, including heart, brain, and kidney. Alterations in its expression and function play important roles in the pathophysiology of very frequent medical problems such as those related to cardiac and brain ischemia. There is extensive information on the relationship between phosphorylation and Cx43 targeting, location, and function from experiments in cells and organs in normal and pathological conditions. However, the molecular mechanisms of Cx43 regulation by phosphorylation are hard to tackle in complex systems. Here, we present the use of purified HCs as a model for functional and structural studies. Cx26 and Cx43 are the only isoforms that have been purified, reconstituted, and subjected to functional and structural analysis. Purified Cx26 and Cx43 HCs have properties compatible with those demonstrated in cells, and present methodologies for the functional analysis of purified HCs reconstituted in liposomes. We show that phosphorylation of serine 368 by PKC produces a partial closure of the Cx43 HCs, changing solute selectivity. We also present evidence that the effect of phosphorylation is highly cooperative, requiring modification of several connexin subunits, and that phosphorylation of serine 368 elicits conformational changes in the purified HCs. The use of purified HCs is starting to provide critical data to understand the regulation of HCs at the molecular level.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis Reuss
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
25
|
The expression of PTEN in the development of mouse cochlear lateral wall. Neuroscience 2014; 258:263-9. [DOI: 10.1016/j.neuroscience.2013.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
|
26
|
Efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology in the chinchilla. Gene Ther 2013; 21:10-8. [PMID: 24108151 PMCID: PMC3881030 DOI: 10.1038/gt.2013.49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/21/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022]
Abstract
The use of small-interfering RNA (siRNA) has great potential for the development of drugs designed to knock down the expression of damage- or disease-causing genes. However, because of the high molecular weight and negative charge of siRNA, it is restricted from crossing the blood-cochlear barrier, which limits the concentration and size of molecules that are able to gain access to cells of the inner ear. Intratympanic approaches, which deliver siRNA to the middle ear, rely on permeation through the round window for access to the structures of the inner ear. We developed an innovative siRNA delivery recombination protein, TAT double-stranded RNA-binding domains (TAT-DRBDs), which can transfect Cy3-labeled siRNA into cells of the inner ear, including the inner and outer hair cells, crista ampullaris, macula utriculi and macula sacculi, through intact round-window permeation in the chinchilla in vivo, and there were no apparent morphological damages for the time of observation. We also found that Cy3-labeled siRNA could directly enter spiral ganglion neurons and the epithelium of the stria vascularis independently; however, the mechanism is unknown. Therefore, as a non-viral vector, TAT-DRBD is a good candidate for the delivery of double-stranded siRNAs for treating various inner ear ailments and preservation of hearing function.
Collapse
|
27
|
Anttonen T, Kirjavainen A, Belevich I, Laos M, Richardson WD, Jokitalo E, Brakebusch C, Pirvola U. Cdc42-dependent structural development of auditory supporting cells is required for wound healing at adulthood. Sci Rep 2012; 2:978. [PMID: 23248743 PMCID: PMC3523287 DOI: 10.1038/srep00978] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/14/2012] [Indexed: 11/20/2022] Open
Abstract
Cdc42 regulates the initial establishment of cytoskeletal and junctional structures, but only little is known about its role at later stages of cellular differentiation. We studied Cdc42′s role in vivo in auditory supporting cells, epithelial cells with high structural complexity. Cdc42 inactivation was induced early postnatally using the Cdc42loxP/loxP;Fgfr3-iCre-ERT2 mice. Cdc42 depletion impaired elongation of adherens junctions and F-actin belts, leading to constriction of the sensory epithelial surface. Fragmented F-actin belts, junctions containing ectopic lumens and misexpression of a basolateral membrane protein in the apical domain were observed. These defects and changes in aPKCλ/ι expression suggested that apical polarization is impaired. Following a lesion at adulthood, supporting cells with Cdc42 loss-induced maturational defects collapsed and failed to remodel F-actin belts, a process that is critical to scar formation. Thus, Cdc42 is required for structural differentiation of auditory supporting cells and this proper maturation is necessary for wound healing in adults.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Magariños M, Contreras J, Aburto MR, Varela-Nieto I. Early development of the vertebrate inner ear. Anat Rec (Hoboken) 2012; 295:1775-90. [PMID: 23044927 DOI: 10.1002/ar.22575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
This is a review of the biological processes and the main signaling pathways required to generate the different otic cell types, with particular emphasis on the actions of insulin-like growth factor I. The sensory organs responsible of hearing and balance have a common embryonic origin in the otic placode. Lineages of neural, sensory, and support cells are generated from common otic neuroepithelial progenitors. The sequential generation of the cell types that will form the adult inner ear requires the coordination of cell proliferation with cell differentiation programs, the strict regulation of cell survival, and the metabolic homeostasis of otic precursors. A network of intracellular signals operates to coordinate the transcriptional response to the extracellular input. Understanding the molecular clues that direct otic development is fundamental for the design of novel treatments for the protection and repair of hearing loss and balance disorders.
Collapse
Affiliation(s)
- Marta Magariños
- Instituto de Investigaciones Biomédicas, Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Powers TR, Virk SM, Trujillo-Provencio C, Serrano EE. Probing the Xenopus laevis inner ear transcriptome for biological function. BMC Genomics 2012; 13:225. [PMID: 22676585 PMCID: PMC3532188 DOI: 10.1186/1471-2164-13-225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 05/21/2012] [Indexed: 01/27/2023] Open
Abstract
Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the impediment imposed by insufficient gene annotation. These findings heighten the relevance of Xenopus as a model organism for genetic investigations of inner ear organogenesis, morphogenesis, and regeneration.
Collapse
Affiliation(s)
- TuShun R Powers
- Biology Department, New Mexico State University, Las Cruces, USA
| | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Hearing loss in Paget's disease of bone (PDB) is typically mixed and bilateral. Although different mechanisms have been proposed, the pathophysiology of hearing impairment remains unclear. OBJECTIVE The purpose of this study is to describe the histopathologic findings of temporal bones in patients with PDB and elucidate possible pathologic mechanisms related to hearing impairment. METHODS This is an archival human temporal bone study of 8 subjects diagnosed with Paget's disease from the temporal bone collection of the UCL Ear Institute. RESULTS A fractured stapes footplate was observed in 1 temporal bone and stapes footplate fixation in 2 other specimens. Obliteration of Cotugno's canal by extensive bone remodeling was observed in 78% of temporal bones. An intracochlear vestibular schwannoma was observed in 1 specimen (previously reported in the literature). Other findings include microfissures and microfractures of the otic capsule, bleeding in the scalae, strial atrophy, and cystic lesions in the spiral ligament. CONCLUSION This study is the first to report a fractured stapes footplate, as a causative lesion of conductive hearing loss in PDB. Extensive bone remodeling around Cotugno canal also was a frequent finding, not reported before in the literature. We hypothesize that sensorineural hearing loss in patients with PDB of the temporal bone may, in some cases, be attributed to obliteration of Cotugno's canal by remodeling pagetoid bone, thus obstructing the venous drainage of the cochlea, with a subsequent effect on the function of stria vascularis and spiral ligament. This seems to be consistent with experimental studies in animals.
Collapse
|
31
|
Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction. Proc Natl Acad Sci U S A 2012; 109:4473-8. [PMID: 22396594 DOI: 10.1073/pnas.1101003109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The striated organelle (SO), a cytoskeletal structure located in the apical region of cochlear and vestibular hair cells, consists of alternating, cross-linked, thick and thin filamentous bundles. In the vestibular periphery, the SO is well developed in both type I and type II hair cells. We studied the 3D structure of the SO with intermediate-voltage electron microscopy and electron microscope tomography. We also used antibodies to α-2 spectrin, one protein component, to trace development of the SO in vestibular hair cells over the first postnatal week. In type I cells, the SO forms an inverted open-ended cone attached to the cell membrane along both its upper and lower circumferences and separated from the cuticular plate by a dense cluster of exceptionally large mitochondria. In addition to contacts with the membrane and adjacent mitochondria, the SO is connected both directly and indirectly, via microtubules, to some stereociliary rootlets. The overall architecture of the apical region in type I hair cells--a striated structure restricting a cluster of large mitochondria between its filaments, the cuticular plate, and plasma membrane--suggests that the SO might serve two functions: to maintain hair-cell shape and to alter transduction by changing the geometry and mechanical properties of hair bundles.
Collapse
|
32
|
Abstract
The increased availability of mouse models of human genetic ciliary diseases has led to advances in our understanding of the diverse cellular roles played by cilia. The family of so-called "ciliopathies" includes Alström Syndrome, Bardet-Biedl Syndrome, Primary Ciliary Dyskinesia, and Polycystic Kidney Disease, among many others. In mouse models of Alström Syndrome and Bardet-Biedl Syndrome, we have shown developmental defects in the mechano-sensory stereociliary bundles on the apical surfaces of "hair" cells in the cochlea, the mammalian hearing organ. Stereocilia are specialized actin-based microvilli, whose characteristic patterning is thought to be dependent on the hair cell's primary cilium ("kinocilium"). Ciliopathy-associated proteins are localized to the ciliary axoneme and/or the ciliary basal body, or to the bundle itself. Ciliopathy-associated genes functionally interact with genes of the noncanonical Wnt pathway, and so implicate PCP in the control of hair cell development.
Collapse
Affiliation(s)
- Daniel J Jagger
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK.
| | | |
Collapse
|
33
|
Ghosh PK, Goldstein LM, Narayanan SS. Processing speech signal using auditory-like filterbank provides least uncertainty about articulatory gestures. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:4014-4022. [PMID: 21682422 PMCID: PMC3135153 DOI: 10.1121/1.3573987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 02/19/2011] [Accepted: 03/13/2011] [Indexed: 05/30/2023]
Abstract
Understanding how the human speech production system is related to the human auditory system has been a perennial subject of inquiry. To investigate the production-perception link, in this paper, a computational analysis has been performed using the articulatory movement data obtained during speech production with concurrently recorded acoustic speech signals from multiple subjects in three different languages: English, Cantonese, and Georgian. The form of articulatory gestures during speech production varies across languages, and this variation is considered to be reflected in the articulatory position and kinematics. The auditory processing of the acoustic speech signal is modeled by a parametric representation of the cochlear filterbank which allows for realizing various candidate filterbank structures by changing the parameter value. Using mathematical communication theory, it is found that the uncertainty about the articulatory gestures in each language is maximally reduced when the acoustic speech signal is represented using the output of a filterbank similar to the empirically established cochlear filterbank in the human auditory system. Possible interpretations of this finding are discussed.
Collapse
Affiliation(s)
- Prasanta Kumar Ghosh
- Signal Analysis and Interpretation Laboratory, Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA.
| | | | | |
Collapse
|
34
|
Bassyouni IH, Emad Y, Rafaat HA, Dabbous AO. Relationship between nailfold capillary abnormalities and vestibular dysfunction in systemic sclerosis. Joint Bone Spine 2011; 78:266-9. [DOI: 10.1016/j.jbspin.2010.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
35
|
Kelly JJ, Forge A, Jagger DJ. Development of gap junctional intercellular communication within the lateral wall of the rat cochlea. Neuroscience 2011; 180:360-9. [PMID: 21320575 DOI: 10.1016/j.neuroscience.2011.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/03/2011] [Accepted: 02/05/2011] [Indexed: 01/27/2023]
Abstract
Auditory function depends on gap junctional intercellular communication (GJIC) between fibrocytes within the cochlear spiral ligament, and basal cells and intermediate cells within stria vascularis. This communication within the lateral wall is hypothesized to support recirculation of K+ from perilymph to the intra-strial space, and thus is essential for the high [K+] measured within endolymph, and the generation of the endocochlear potential. In rats, the [K+] within endolymph reaches adult levels by postnatal day 7 (P7), several days before hearing onset, suggesting that GJIC matures before auditory responses are detectable. In this study we have mapped the postnatal development of GJIC within the cochlear lateral wall, to determine the stage at which direct communication first exists between the spiral ligament and stria vascularis. Connexin 30 immunofluorescence revealed a progressive increase of gap junction plaque numbers from P0 onwards, initially in the condensing mesenchyme behind strial marginal cells, and spreading throughout the lateral wall by P7-P8. Whole-cell patch clamp experiments revealed compartmentalized intercellular dye-coupling in the lateral wall between P2 and P5. There was extensive dye-coupling throughout the fibrocyte syncytium by P7. Also, by P7 dye introduced to fibrocytes could also be detected within strial basal cells and intermediate cells. These data suggest that lateral wall function matures several days in advance of hearing onset, and provide anatomical evidence of the existence of a putative K+ recirculation pathway within the cochlear lateral wall.
Collapse
Affiliation(s)
- J J Kelly
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X8EE, UK
| | | | | |
Collapse
|
36
|
Sommerlad S, McRae AF, McDonald B, Johnstone I, Cuttell L, Seddon JM, O'Leary CA. Congenital sensorineural deafness in Australian stumpy-tail cattle dogs is an autosomal recessive trait that maps to CFA10. PLoS One 2010; 5:e13364. [PMID: 20967282 PMCID: PMC2953516 DOI: 10.1371/journal.pone.0013364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022] Open
Abstract
Background Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease. Methodology/Principal Findings A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 −log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations. Conclusions Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.
Collapse
Affiliation(s)
- Susan Sommerlad
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Allan F. McRae
- Queensland Statistical Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Brenda McDonald
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Isobel Johnstone
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Leigh Cuttell
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Jennifer M. Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Caroline A. O'Leary
- Centre for Companion Animal Health, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
37
|
Is hearing loss a feature of Joubert syndrome, a ciliopathy? Int J Pediatr Otorhinolaryngol 2010; 74:1034-8. [PMID: 20591505 DOI: 10.1016/j.ijporl.2010.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/30/2010] [Accepted: 05/31/2010] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To assess if hearing loss is a feature of Joubert syndrome (JBS), one of the ciliopathies and therefore possibly associated with hearing loss. DESIGN Retrospective case series. SETTING University Children's Hospital. PATIENTS Dutch patients with JBS. MAIN OUTCOME MEASURES Audiological data. RESULTS Data from 22 Dutch Joubert syndrome (JBS) cases (17 males, 5 females) aged 3-40 years were available. Audiological tests were successfully performed in 14 cases. Three cases (aged 17-26 years) showed very mild sensorineural hearing loss (SNHL) at different frequencies. Conductive hearing loss due to middle ear infections occurred frequently in young JBS children (6 out of 22 cases). In three cases (aged 3-13 years) the parents reported the child was hypersensitive to sound. CONCLUSION We found no evidence for significant hearing loss in Joubert syndrome patients. However, given the compromised speech development in JBS, conductive hearing loss due to middle ear infections should be treated vigorously. SNHL at a later age cannot be excluded on the basis of our data, given the sample size. Three of the older cases showed discretely increased hearing thresholds. Analogous to the ciliopathy Bardet-Biedl syndrome, where hearing thresholds were reported to be subclinically increased in a group of adolescents patients, we recommend follow-up of JBS patients in view of the possibility of progressive, late-onset SNHL.
Collapse
|
38
|
CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol 2010; 11:407-18. [PMID: 20386946 DOI: 10.1007/s10162-010-0211-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/24/2010] [Indexed: 01/20/2023] Open
Abstract
Cluster of differentiation antigens (CD proteins) are classically used as immune cell markers. However, their expression within the inner ear is still largely undefined. In this study, we explored the possibility that specific CD proteins might be useful for defining inner ear cell populations. mRNA expression profiling of microdissected auditory and vestibular sensory epithelia revealed 107 CD genes as expressed in the early postnatal mouse inner ear. The expression of 68 CD genes was validated with real-time RT-PCR using RNA extracted from microdissected sensory epithelia of cochleae, utricles, saccules, and cristae of newborn mice. Specifically, CD44 was identified as preferentially expressed in the auditory sensory epithelium. Immunohistochemistry revealed that within the early postnatal organ of Corti, the expression of CD44 is restricted to outer pillar cells. In order to confirm and expand this finding, we characterized the expression of CD44 in two different strains of mice with loss- and gain-of-function mutations in Fgfr3 which encodes a receptor for FGF8 that is essential for pillar cell development. We found that the expression of CD44 is abolished from the immature pillar cells in homozygous Fgfr3 knockout mice. In contrast, both the outer pillar cells and the aberrant Deiters' cells in the Fgfr3 ( P244R/ ) (+) mice express CD44. The deafness phenotype segregating in DFNB51 families maps to a linkage interval that includes CD44. To study the potential role of CD44 in hearing, we characterized the auditory system of CD44 knockout mice and sequenced the entire open reading frame of CD44 of affected members of DFNB51 families. Our results suggest that CD44 does not underlie the deafness phenotype of the DFNB51 families. Finally, our study reveals multiple potential new cell type-specific markers in the mouse inner ear and identifies a new marker for outer pillar cells.
Collapse
|
39
|
Abstract
Cell differentiation in multicellular organisms is a complex process whose mechanism can be understood by a reductionist approach, in which the individual processes that control the generation of different cell types are identified. Alternatively, a large-scale approach in search of different organizational features of the growth stages promises to reveal its modular global structure with the goal of discovering previously unknown relations between cell types. Here, we sort and analyze a large set of scattered data to construct the network of human cell differentiation (NHCD) based on cell types (nodes) and differentiation steps (links) from the fertilized egg to a developed human. We discover a dynamical law of critical branching that reveals a self-similar regularity in the modular organization of the network, and allows us to observe the network at different scales. The emerging picture clearly identifies clusters of cell types following a hierarchical organization, ranging from sub-modules to super-modules of specialized tissues and organs on varying scales. This discovery will allow one to treat the development of a particular cell function in the context of the complex network of human development as a whole. Our results point to an integrated large-scale view of the network of cell types systematically revealing ties between previously unrelated domains in organ functions.
Collapse
|
40
|
Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010; 223:464-72. [PMID: 20109446 DOI: 10.1016/j.expneurol.2010.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/26/2022]
Abstract
Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.
Collapse
Affiliation(s)
- Seiji B Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, 1150 W. Med. Cntr. Dr., Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zadro C, Alemanno MS, Bellacchio E, Ficarella R, Donaudy F, Melchionda S, Zelante L, Rabionet R, Hilgert N, Estivill X, Van Camp G, Gasparini P, Carella M. Are MYO1C and MYO1F associated with hearing loss? Biochim Biophys Acta Mol Basis Dis 2008; 1792:27-32. [PMID: 19027848 DOI: 10.1016/j.bbadis.2008.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 10/15/2008] [Accepted: 10/17/2008] [Indexed: 11/15/2022]
Abstract
The role of myosins in the pathogenesis of hearing loss is well established: five genes encoding unconventional myosins and two genes encoding nonmuscle conventional myosins have so far been described to be essential for normal auditory function and mutations in these genes associated with hearing impairment. To better understand the role of this gene family we performed a mutational screening on two candidate genes, MYO1C and MYO1F, analyzing hundreds of patients, affected by bilateral sensorineural hearing loss and coming from different European countries. This research activity led to the identification of 6 heterozygous missense mutations in MYO1C and additional 5 heterozygous missense mutations in MYO1F. Homology modelling suggests that some of these mutations could have a potential influence on the structure of the ATP binding site and could probably affect the ATPase activity or the actin binding process of both myosins. This study suggests a role of the above mentioned myosin genes in the pathogenesis of hearing loss.
Collapse
Affiliation(s)
- Cristina Zadro
- Unit of Medical Genetics, Department of Reproductive Science and Development, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" - Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV. EMBO J 2008; 27:2907-17. [PMID: 18833191 DOI: 10.1038/emboj.2008.203] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 09/12/2008] [Indexed: 12/11/2022] Open
Abstract
Human Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a beta-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in mice now reveals that the positive potential, but not the high potassium concentration, of the scala media depends on the presence of these channels in the epithelium of the stria vascularis. The reduced driving force for K(+)-entry through mechanosensitive channels into sensory hair cells entails a profound congenital hearing loss and subtle vestibular symptoms. Although retaining all cell types and intact tight junctions, the thickness of the stria is reduced early on. Cochlear outer hair cells degenerate over several months. A collapse of endolymphatic space was seen when mice had additionally renal salt and fluid loss due to partial barttin deletion in the kidney. Bsnd(-/-) mice thus demonstrate a novel function of Cl(-) channels in generating the endocochlear potential and reveal the mechanism leading to deafness in human Bartter syndrome IV.
Collapse
|
43
|
Alves-Silva J, Hahn I, Huber O, Mende M, Reissaus A, Prokop A. Prominent actin fiber arrays in Drosophila tendon cells represent architectural elements different from stress fibers. Mol Biol Cell 2008; 19:4287-97. [PMID: 18667532 PMCID: PMC2555930 DOI: 10.1091/mbc.e08-02-0182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tendon cells are specialized cells of the insect epidermis that connect basally attached muscle tips to the cuticle on their apical surface via prominent arrays of microtubules. Tendon cells of Drosophila have become a useful genetic model system to address questions with relevance to cell and developmental biology. Here, we use light, confocal, and electron microscopy to present a refined model of the subcellular organization of tendon cells. We show that prominent arrays of F-actin exist in tendon cells that fully overlap with the microtubule arrays, and that type II myosin accumulates in the same area. The F-actin arrays in tendon cells seem to represent a new kind of actin structure, clearly distinct from stress fibers. They are highly resistant to F-actin-destabilizing drugs, to the application of myosin blockers, and to loss of integrin, Rho1, or mechanical force. They seem to represent an important architectural element of tendon cells, because they maintain a connection between apical and basal surfaces even when microtubule arrays of tendon cells are dysfunctional. Features reported here and elsewhere for tendon cells are reminiscent of the structural and molecular features of support cells in the inner ear of vertebrates, and they might have potential translational value.
Collapse
Affiliation(s)
- Juliana Alves-Silva
- Faculty of Life Sciences, Wellcome Trust Centre of Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Trowe MO, Maier H, Schweizer M, Kispert A. Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes. Development 2008; 135:1725-34. [PMID: 18353863 DOI: 10.1242/dev.014043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the cochlea, fibrocytes play important physiological roles, including the maintenance of the ionic composition of the endolymph. Human deafness upon fibrocyte alterations witnesses their crucial role for hearing. We demonstrate that differentiation of otic fibrocytes requires the T-box transcription factor gene Tbx18. Tbx18 expression during inner ear development is restricted to the sub-region of otic mesenchyme that is fated to differentiate into fibrocytes. We rescued the somitic defect that underlies the perinatal lethality of Tbx18-mutant mice by a transgenic approach, and measured auditory brainstem responses. Adult Tbx18-deficient mice showed profound deafness and a complete disruption of the endocochlear potential that is essential for the transduction of sound by sensory hair cells. The differentiation of otic fibrocytes of the spiral ligament was severely compromised. Tissue architecture of the stria vascularis of the lateral wall was disrupted, exhibiting an almost complete absence of the basal cell layer, and a reduction and changes of intermediate and marginal cells, respectively. Stria vascularis defects resulted from the failure of Tbx18-mutant otic fibrocytes to generate the basal cell layer by a mesenchymal-epithelial transition. Defects in otic fibrocyte differentiation may be subordinate to a primary role of Tbx18 in early compartmentalization of the otic mesenchyme, as lineage restriction and boundary formation between otic fibrocytes and the surrounding otic capsule were severely affected in the mutant. Our study sheds light on the genetic control of patterning and differentiation of the otic mesenchyme, uncovers distinct steps of stria vascularis formation and illuminates the importance of non-epithelially-derived otic cell types for normal hearing and the etiology of deafness.
Collapse
Affiliation(s)
- Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor that is activated by native collagen. The physiological functions of DDR1 include matrix homeostasis and cell growth, adhesion, branching, and migration, but the specific role of DDR1 in the development and function of the inner ear has not been analyzed. Here, we show that deletion of the DDR1 gene in mouse is associated with a severe decrease in auditory function and substantial structural alterations in the inner ear. Immunohistochemical analysis demonstrated DDR1 expression in several locations in the cochlea, mostly associated with basement membrane and fibrillar collagens; in particular in basal cells of the stria vascularis, type III fibrocytes, and cells lining the basilar membrane of the organ of Corti. In the stria vascularis, loss of DDR1 function resulted in altered morphology of the basal cells and accumulation of electron-dense matrix within the strial epithelial layer in conjunction with a focal and progressive deterioration of strial cells. Cell types in proximity to the basilar membrane, such as Claudius', inner and outer sulcus cells, also showed marked ultrastructural alterations. Changes in the organ of Corti, such as deterioration of the supporting cells, specifically the outer hair cells, Deiters', Hensen's and bordering cells, are likely to interfere with mechanical properties of the organ and may be responsible for the hearing loss observed in DDR1-null mice. These findings may also have relevance to the role of DDR1 in other disease processes, for example, those affecting the kidney.
Collapse
|
46
|
|
47
|
Deng Y, Chen Y, Reuss L, Altenberg GA. Mutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels. Hear Res 2006; 220:87-94. [PMID: 16945493 DOI: 10.1016/j.heares.2006.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 11/27/2022]
Abstract
Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin of the cochlea, are its most frequent cause. Mutations of R75 cause deafness and disrupt gap-junctional communication. Here, we determined the effects of substitutions of R75 with different residues (alanine, asparagine, aspartic acid, lysine, phenylalanine, tyrosine or tryptophan) on formation of gap-junctional channels and hemichannels. We show that connexin 26 R75 is essential for the formation of gap-junctional channels. Substitution of R75 with aromatic residues yields functional hemichannels that display altered voltage dependence, whereas substitution with other residues yields non-functional hemichannels. The expression of R75 mutants has a dominant negative effect on gap-junctional communication mediated by wild-type connexin 26, independently of the ability of the mutants to form functional gap-junctional hemichannels. Our results show that the arginine located at position 75 of connexin 26 is essential for function, and cannot be replaced by other residues.
Collapse
Affiliation(s)
- Yanqin Deng
- Department of Neuroscience and Cell Biology, and the Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0437, United States
| | | | | | | |
Collapse
|
48
|
Thalmann I, Hughes I, Tong BD, Ornitz DM, Thalmann R. Microscale analysis of proteins in inner ear tissues and fluids with emphasis on endolymphatic sac, otoconia, and organ of Corti. Electrophoresis 2006; 27:1598-608. [PMID: 16609936 PMCID: PMC2080577 DOI: 10.1002/elps.200500768] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Here we describe preparatory techniques adapted for the study of proteins of inner ear tissues and fluids that have allowed us to apply state-of-the-art analytical techniques in spite of the minute size and anatomical complexities of this organ. Illustrative examples address unresolved issues of functional and clinical significance. First, we demonstrate how quick-freezing and freeze drying prevents artifacts that arise from sampling endolymphatic sac (ES) content in the liquid state. This set the stage for the generation of the first protein profile of the ES. Identification of crucial proteins will help elucidate mechanisms of endolymph volume regulation and pathogenesis of Meniere's disease. Second, we show how a unique situation allowed identification of otoconial proteins by mass spectrometric analysis without prior separation and we discuss possible roles for these minor otoconins in otoconial development and prevention of degenerative diseases that affect balance. Finally, we demonstrate techniques for the precise dissection of organ of Corti and its substructures, while preserving their near normal chemical state. We extended an earlier study in which we identified a novel calcium-binding protein by IEF, oncomodulin, localized in the outer hair cells and show here the applicability of prefractionation for the screening of calcium-binding proteins of organ of Corti. These studies demonstrate how advanced preparatory and analytical techniques can be applied to studies of the inner ear.
Collapse
Affiliation(s)
- Isolde Thalmann
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
49
|
Holley MC. Keynote review: The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 2005; 10:1269-82. [PMID: 16214671 DOI: 10.1016/s1359-6446(05)03595-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a huge potential market for the treatment of hearing loss. Drugs are already available to ameliorate predictable, damaging effects of excessive noise and ototoxic drugs. The biggest challenge now is to develop drug-based treatments for regeneration of sensory cells following noise-induced and age-related hearing loss. This requires careful consideration of the physiological mechanisms of hearing loss and identification of key cellular and molecular targets. There are many molecular cues for the discovery of suitable drug targets and a full range of experimental resources are available for initial screening through to functional analysis in vivo. There is now an unparalleled opportunity for translational research.
Collapse
Affiliation(s)
- Matthew C Holley
- Department of Biomedical Sciences, Addison Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
50
|
Shaikh RS, Ramzan K, Nazli S, Sattar S, Khan SN, Riazuddin S, Ahmed ZM, Friedman TB, Riazuddin S. A new locus for nonsyndromic deafness DFNB51 maps to chromosome 11p13-p12. Am J Med Genet A 2005; 138:392-5. [PMID: 16158433 PMCID: PMC2572776 DOI: 10.1002/ajmg.a.30949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rehan Sadiq Shaikh
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khushnooda Ramzan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sabiha Nazli
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sameera Sattar
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saima Riazuddin
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Zubair M. Ahmed
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Thomas B. Friedman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|