1
|
Manzanilla O, Alegre M, Horrillo-Maysonnial A, Urrestarazu E, Valencia M. Cortical activation in REM behavior disorder mimics voluntary movement. An electroencephalography study. Clin Neurophysiol 2024; 166:191-198. [PMID: 39181097 DOI: 10.1016/j.clinph.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Motor symptoms of Parkinson's disease improve during REM sleep behavior disorder movement episodes. Our aim was to study cortical activity during these movement episodes, in patients with and without Parkinson's disease, in order to investigate the cortical involvement in the generation of its electromyographic activity and its potential relationship with Parkinson's disease. METHODS We looked retrospectively in our polysomnography database for patients with REM sleep behavior disorder, analyzing fifteen patients in total, seven with idiopathic REM sleep behavior disorder and eight associated with Parkinson's disease. We selected segments of REM sleep with the presence of movements (evidenced by electromyographic activation), and studied movement-related changes in cortical activity by averaging the electroencephalographic signal (premotor potential) and by means of time/frequency transforms. RESULTS We found a premotor potential and an energy decrease of alpha-beta oscillatory activity preceding the onset of electromyographic activity, together with an increase of gamma activity for the duration of the movement. All these changes were similarly present in REM sleep behavior disorder patients with and without Parkinson's disease. CONCLUSIONS Movement-related changes in electroencephalographic activity observed in REM sleep behavior disorder are similar to those observed during voluntary movements, regardless of the presence of Parkinson's disease motor symptoms. SIGNIFICANCE These results suggest a main involvement of the cortex in the generation of the movements during REM sleep.
Collapse
Affiliation(s)
- Oscar Manzanilla
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31080 Pamplona, Spain.
| | - Manuel Alegre
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31080 Pamplona, Spain; University of Navarra, CIMA, Biomedical Engineering Program, 31008 Pamplona, Spain.
| | - Alejandro Horrillo-Maysonnial
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31080 Pamplona, Spain.
| | - Elena Urrestarazu
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31080 Pamplona, Spain.
| | - Miguel Valencia
- IdiSNA, Navarra Institute for Health Research, 31080 Pamplona, Spain; University of Navarra, CIMA, Biomedical Engineering Program, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Hirano D, Wada M, Kimura N, Jinnai D, Goto Y, Taniguchi T. Effects of divided attention on movement-related cortical potential in community-dwelling elderly adults: A preliminary study. Heliyon 2024; 10:e34126. [PMID: 39071682 PMCID: PMC11283040 DOI: 10.1016/j.heliyon.2024.e34126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Dual-tasking is defined as performing two or more tasks concurrently. This study aimed to investigate the effect of divided attention on movement-related cortical potential (MRCP) during dual-task performance in 11 community-dwelling elderly individuals while the load of the secondary task was altered. MRCP was recorded during a single task (ST), simple dual task (S-DT), and complex dual task (C-DT) as no-, low-, and high-load divided attention tasks, respectively. The ST involved self-paced tapping with an extended right index finger. In the S-DT and C-DT, the subjects simultaneously performed the ST and a visual number counting task with different levels of load. The coefficient of variation of movement frequency was significantly more variable in the C-DT than in the ST. The MRCP amplitude from electroencephalography electrode C3, contralateral to the moving hand, was significantly higher in the C-DT than in the ST. Higher attention diversion led to a significant reduction in MRCP amplitude in the participants. These results suggest that attention division in dual-task situations plays an important role in movement preparation and execution. We propose that MRCP can serve as a marker for screening the ability of older individuals to perform dual-tasks.
Collapse
Affiliation(s)
- Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Misaki Wada
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Naotoshi Kimura
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Daisuke Jinnai
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Yoshinobu Goto
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Physiology, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-1-26 Akasaka, Minato, Tokyo, 107-8402, Japan
- Department of Occupational Therapy, School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| |
Collapse
|
3
|
Ota K, Charles L, Haggard P. Autonomous behaviour and the limits of human volition. Cognition 2024; 244:105684. [PMID: 38101173 DOI: 10.1016/j.cognition.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Humans and some other animals can autonomously generate action choices that contribute to solving complex problems. However, experimental investigations of the cognitive bases of human autonomy are challenging, because experimental paradigms typically constrain behaviour using controlled contexts, and elicit behaviour by external triggers. In contrast, autonomy and freedom imply unconstrained behaviour initiated by endogenous triggers. Here we propose a new theoretical construct of adaptive autonomy, meaning the capacity to make behavioural choices that are free from constraints of both immediate external triggers and of routine response patterns, but nevertheless show appropriate coordination with the environment. Participants (N = 152) played a competitive game in which they had to choose the right time to act, in the face of an opponent who punished (in separate blocks) either choice biases (such as always responding early), sequential patterns of action timing across trials (such as early, late, early, late…), or predictable action-outcome dependence (such as win-stay, lose-shift). Adaptive autonomy was quantified as the ability to maintain performance when each of these influences on action selection was punished. We found that participants could become free from habitual choices regarding when to act and could also become free from sequential action patterns. However, they were not able to free themselves from influences of action-outcome dependence, even when these resulted in poor performance. These results point to a new concept of autonomous behaviour as flexible adaptation of voluntary action choices in a way that avoids stereotypy. In a sequential analysis, we also demonstrated that participants increased their reliance on belief learning in which they attempt to understand the competitor's beliefs and intentions, when transition bias and reinforcement bias were punished. Taken together, our study points to a cognitive mechanism of adaptive autonomy in which competitive interactions with other agents could promote both social cognition and volition in the form of non-stereotyped action choices.
Collapse
Affiliation(s)
- Keiji Ota
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom.
| | - Lucie Charles
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
4
|
O’Bryan SR, Moher J, McCarthy JD, Song JH. Effector-independent Representations Guide Sequential Target Selection Biases in Action. J Cogn Neurosci 2024; 36:492-507. [PMID: 38165741 PMCID: PMC10923104 DOI: 10.1162/jocn_a_02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Previous work shows that automatic attention biases toward recently selected target features transfer across action and perception and even across different effectors such as the eyes and hands on a trial-by-trial basis. Although these findings suggest a common neural representation of selection history across effectors, the extent to which information about recently selected target features is encoded in overlapping versus distinct brain regions is unknown. Using fMRI and a priming of pop-out task where participants selected unpredictable, uniquely colored targets among homogeneous distractors via reach or saccade, we show that color priming is driven by shared, effector-independent underlying representations of recent selection history. Consistent with previous work, we found that the intraparietal sulcus (IPS) was commonly activated on trials where target colors were switched relative to those where the colors were repeated; however, the dorsal anterior insula exhibited effector-specific activation related to color priming. Via multivoxel cross-classification analyses, we further demonstrate that fine-grained patterns of activity in both IPS and the medial temporal lobe encode information about selection history in an effector-independent manner, such that ROI-specific models trained on activity patterns during reach selection could predict whether a color was repeated or switched on the current trial during saccade selection and vice versa. Remarkably, model generalization performance in IPS and medial temporal lobe also tracked individual differences in behavioral priming sensitivity across both types of action. These results represent a first step to clarify the neural substrates of experience-driven selection biases in contexts that require the coordination of multiple actions.
Collapse
Affiliation(s)
- Sean R. O’Bryan
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Jeff Moher
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
- Department of Psychology, Connecticut College, New London, CT 06320
| | - J. Daniel McCarthy
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| |
Collapse
|
5
|
Kudo J, Hoshiyama M. Connectivity of neural signals to the primary motor area during preparatory periods for movement following external and internal cues. Somatosens Mot Res 2024:1-10. [PMID: 38411161 DOI: 10.1080/08990220.2024.2319592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE We investigated the connectivity of neural signals from movement-related cortical areas to the primary motor area (M1) in the hemisphere contralateral to the movement side during the period of movement-related magnetic fields before movement. MATERIALS AND METHODS Participants were 13 healthy adults, and nerual signals were recorded using magnetoencephalography. Spontaneous extension of the right wrist was performed at the participant's own pace and following a visual cue in internal (IC) and external (EC) cue tasks. The connectivity of neural signals to M1 from each movement-related motor area was assessed by Granger causality analysis (GCA). The GCA was performed on the neural activity elicited in a frequency band between 7.8 and 46.9 Hz during the pre-movement periods, which occurred durng the readiness field (RF) and the negative slope prime (NSp). F-values, as connectivity values obtained by GCA, were compared between the EC and IC cue tasks. RESULTS For NSp periods, the connectivity of neural signals from the left superior frontal area (SF-L) to M1 was dominant in the IC task, whereas that from the left superior parietal area (SP-L) to M1 was dominant in the EC task. The F value in the GCA from SP-L to M1 was greater in the EC task during RF than in the IC task during equivalent periods. CONSLUSIONS In the present study, there were differences in the connectivity of neural signals to M1 between IC and EC tasks. The present results suggested that the pattern of pre-movement neural activity that resulted in a movement was not uniform but differed between movement tasks just before the movement.
Collapse
Affiliation(s)
- Jumpei Kudo
- Department of Integrative Health Sciences, School of Health Sciences, Faculty of Medicine, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Department of Integrative Health Sciences, School of Health Sciences, Faculty of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Chung LKH, Jack BN, Griffiths O, Pearson D, Luque D, Harris AWF, Spencer KM, Le Pelley ME, So SHW, Whitford TJ. Neurophysiological evidence of motor preparation in inner speech and the effect of content predictability. Cereb Cortex 2023; 33:11556-11569. [PMID: 37943760 PMCID: PMC10751289 DOI: 10.1093/cercor/bhad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
Self-generated overt actions are preceded by a slow negativity as measured by electroencephalogram, which has been associated with motor preparation. Recent studies have shown that this neural activity is modulated by the predictability of action outcomes. It is unclear whether inner speech is also preceded by a motor-related negativity and influenced by the same factor. In three experiments, we compared the contingent negative variation elicited in a cue paradigm in an active vs. passive condition. In Experiment 1, participants produced an inner phoneme, at which an audible phoneme whose identity was unpredictable was concurrently presented. We found that while passive listening elicited a late contingent negative variation, inner speech production generated a more negative late contingent negative variation. In Experiment 2, the same pattern of results was found when participants were instead asked to overtly vocalize the phoneme. In Experiment 3, the identity of the audible phoneme was made predictable by establishing probabilistic expectations. We observed a smaller late contingent negative variation in the inner speech condition when the identity of the audible phoneme was predictable, but not in the passive condition. These findings suggest that inner speech is associated with motor preparatory activity that may also represent the predicted action-effects of covert actions.
Collapse
Affiliation(s)
- Lawrence K-h Chung
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Building 39, Science Road, Canberra ACT 2601, Australia
| | - Oren Griffiths
- School of Psychological Sciences, University of Newcastle, Behavioural Sciences Building, University Drive, Callaghan NSW 2308, Australia
| | - Daniel Pearson
- School of Psychology, University of Sydney, Griffith Taylor Building, Manning Road, Camperdown NSW 2006, Australia
| | - David Luque
- Department of Basic Psychology and Speech Therapy, University of Malaga, Faculty of Psychology, Dr Ortiz Ramos Street, 29010 Malaga, Spain
| | - Anthony W F Harris
- Westmead Clinical School, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Kevin M Spencer
- Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, 150 South Huntington Avenue, Boston MA 02130, United States
| | - Mike E Le Pelley
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
| | - Suzanne H-w So
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Thomas J Whitford
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
7
|
Dempsey-Jones H, Majchrowicz B, Haggard P. Implicit signatures of voluntary action reduce with repeated motor practice. Exp Brain Res 2023; 241:2361-2370. [PMID: 37615696 PMCID: PMC10471669 DOI: 10.1007/s00221-023-06675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
The sense of controlling one's actions and their consequences is a critical aspect of successful motor activity. While motor performance typically improves with learning, it is unclear whether, how, and why higher order aspects of motor cognition are also affected. Here, we used an implicit measure of sense of agency-the 'intentional binding' effect-as participants learned to make a skilled action involving precise control of thumb adduction. These actions were predictably followed by a tone (the outcome). At pre-test, we showed the perceived time of the tone was shifted towards the thumb action, compared to a control condition in which tones occurred without actions. Next, a relevant training group learned to refine the direction of the thumb movement, while an irrelevant training group was trained on another movement. Manipulation checks demonstrated that, as expected, the relevant training group improved performance of the trained movement, while the irrelevant training group did not. Critically, while both groups still showed binding of the tone towards the thumb action at post-test, the relevant training group showed less binding than the irrelevant training group. Given the link between intentional binding and volitional control of action, we suggest our result demonstrates subjective agency over the outcome of a skilled action decreases as practice makes the skilled action more fluent. We suggest that this reduction in sense of agency over movement outcomes is consistent with the decreasing cognitive engagement, or automatization, that occurs during skill learning.
Collapse
Affiliation(s)
- Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, UK
- School of Psychology, University of Queensland, Brisbane, Australia
| | | | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
8
|
Chu T, Lee S, Jung IY, Song Y, Kim HA, Shin JW, Tak S. Task-residual effective connectivity of motor network in transient ischemic attack. Commun Biol 2023; 6:843. [PMID: 37580508 PMCID: PMC10425379 DOI: 10.1038/s42003-023-05212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Transient ischemic attack (TIA) is a temporary episode of neurological dysfunction that results from focal brain ischemia. Although TIA symptoms are quickly resolved, patients with TIA have a high risk of stroke and persistent impairments in multiple domains of cognitive and motor functions. In this study, using spectral dynamic causal modeling, we investigate the changes in task-residual effective connectivity of patients with TIA during fist-closing movements. 28 healthy participants and 15 age-matched patients with TIA undergo functional magnetic resonance imaging at 7T. Here we show that during visually cued motor movement, patients with TIA have significantly higher effective connectivity toward the ipsilateral primary motor cortex and lower connectivity to the supplementary motor area than healthy controls. Our results imply that TIA patients have aberrant connections among motor regions, and these changes may reflect the decreased efficiency of primary motor function and disrupted control of voluntary movement in patients with TIA.
Collapse
Affiliation(s)
- Truc Chu
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seonjin Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Il-Young Jung
- Department of Rehabilitation Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea
| | - Youngkyu Song
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hyun-Ah Kim
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Jong Wook Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea.
| | - Sungho Tak
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
9
|
Wakim KM, Foxe JJ, Molholm S. Cued motor processing in autism and typical development: A high-density electrical mapping study of response-locked neural activity in children and adolescents. Eur J Neurosci 2023; 58:2766-2786. [PMID: 37340622 DOI: 10.1111/ejn.16063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Motor atypicalities are common in autism spectrum disorder (ASD) and are often evident prior to classical ASD symptoms. Despite evidence of differences in neural processing during imitation in autistic individuals, research on the integrity and spatiotemporal dynamics of basic motor processing is surprisingly sparse. To address this need, we analysed electroencephalography (EEG) data recorded from a large sample of autistic (n = 84) and neurotypical (n = 84) children and adolescents while they performed an audiovisual speeded reaction time (RT) task. Analyses focused on RTs and response-locked motor-related electrical brain responses over frontoparietal scalp regions: the late Bereitschaftspotential, the motor potential and the reafferent potential. Evaluation of behavioural task performance indicated greater RT variability and lower hit rates in autistic participants compared to typically developing age-matched neurotypical participants. Overall, the data revealed clear motor-related neural responses in ASD, but with subtle differences relative to typically developing participants evident over fronto-central and bilateral parietal scalp sites prior to response onset. Group differences were further parsed as a function of age (6-9, 9-12 and 12-15 years), sensory cue preceding the response (auditory, visual and bi-sensory audiovisual) and RT quartile. Group differences in motor-related processing were most prominent in the youngest group of children (age 6-9), with attenuated cortical responses observed for young autistic participants. Future investigations assessing the integrity of such motor processes in younger children, where larger differences may be present, are warranted.
Collapse
Affiliation(s)
- Kathryn-Mary Wakim
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
10
|
Doganci N, Iannotti GR, Ptak R. Task-based functional connectivity identifies two segregated networks underlying intentional action. Neuroimage 2023; 268:119866. [PMID: 36610680 DOI: 10.1016/j.neuroimage.2023.119866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
While much of motor behavior is automatic, intentional action is necessary for the selection and initiation of controlled motor acts and is thus an essential part of goal-directed behavior. Neuroimaging studies have shown that self-generated action implicates several dorsal and ventral frontoparietal areas. However, knowledge of the functional coupling between these brain regions during intentional action remains limited. We here studied brain activations and functional connectivity (FC) of thirty right-handed healthy participants performing a finger pressing task instructed to use a specific finger (externally-triggered action) or to select one of four fingers randomly (internally-generated action). Participants performed the task in alternating order either with their dominant right hand or the left hand. Consistent with previous studies, we observed stronger involvement of posterior parietal cortex and premotor regions when contrasting internally-generated with externally-triggered action. Interestingly, this contrast also revealed significant engagement of medial occipitotemporal regions including the left lingual and right fusiform gyrus. Task-based FC analysis identified increased functional coupling among frontoparietal regions as well as increased and decreased coupling between occipitotemporal regions, thus differentiating between two segregated networks. When comparing results of the dominant and nondominant hand we found less activation, but stronger connectivity for the former, suggesting increased neural efficiency when participants use their dominant hand. Taken together, our results reveal that two segregated networks that encompass the frontoparietal and occipitotemporal cortex contribute independently to intentional action.
Collapse
Affiliation(s)
- Naz Doganci
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland
| | - Giannina Rita Iannotti
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Department of Radiology and Medical Informatics, University Hospitals of Geneva, Switzerland; Department of Neurosurgery, University Hospitals of Geneva, Switzerland
| | - Radek Ptak
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Switzerland.
| |
Collapse
|
11
|
Kumral E, Çetin FE, Özdemir HN. A Neuropsychiatric and Neuroimaging Study of Unilateral and Bilateral Striatal Ischemic Lesions. J Neuropsychiatry Clin Neurosci 2023; 35:48-58. [PMID: 35872616 DOI: 10.1176/appi.neuropsych.21030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Neuropsychiatric disorders after striatal territory stroke have not been studied systematically. The investigators aimed to study the spectrum of cognitive and behavioral disorders following striatal infarcts. METHODS Different aspects of cognitive functions, including executive, frontal lobe, memory, visuospatial, language, and semantic processing, were assessed among patients with striatal infarct. Structural MRI data sets were obtained 3 months after stroke to delineate affected territories of the striatum. MRIcroGL software was used to acquire multiple layers of images, generate volume renderings, and draw volumes of interest. To determine the brain locus most frequently affected in patients with distinct cognitive disorders, ischemic area distributions in patients with cognitive dysfunction versus those without cognitive impairment were contrasted. RESULTS Among 60 patients in this study, six different striatal infarction types were significantly associated with seven different cognitive categories (p<0.001). Unilateral caudate lesion was characterized by attention, planning, and executive disorders (38%), and unilateral lentiform infarct was characterized by executive (36%) and frontal (36%) dysfunctions. Bilateral caudate infarcts caused impairments in frontal and executive functions (75%), as well as in autobiographical (50%) and episodic (50%) memory. In those with bilateral caudate plus lentiform infarcts, all components of frontal and executive functions were dramatically impaired. The anteromedial striatum was affected more frequently in patients with language impairment compared with patients with other types of cognitive dysfunction (p<0.001). CONCLUSIONS Following striatal stroke, a wide range of frontal-like cognitive impairments occurred, along with impaired working memory, declarative memory, executive function, speech fluency, and motor function.
Collapse
Affiliation(s)
- Emre Kumral
- Neurology Department, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Psychology Department, Uskudar University, Istanbul, Turkey (Bayam)
| | - Fatma Ece Çetin
- Neurology Department, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Psychology Department, Uskudar University, Istanbul, Turkey (Bayam)
| | - Hüseyin Nezih Özdemir
- Neurology Department, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Psychology Department, Uskudar University, Istanbul, Turkey (Bayam)
| |
Collapse
|
12
|
Guérin SMR, Vincent MA, Delevoye-Turrell YN. Effects of motor pacing on frontal-hemodynamic responses during continuous upper-limb and whole-body movements. Psychophysiology 2022; 60:e14226. [PMID: 36567446 DOI: 10.1111/psyp.14226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
Advances in timing research advocate for the existence of two timing mechanisms (automatic vs. controlled) that are related to the level of cognitive control intervening for motor behavior regulation. In the present study, we used the functional near-infrared spectroscopy (fNIRS) cutting-edge technique to examine the hypothesis that prefrontal inhibitory control is needed to perform slow motor activities. Participants were asked to perform a sensorimotor-synchronization task at various paces (i.e., slow, close-to-spontaneous, fast). We contrasted upper-limb circle drawing to a more naturalistic behavior that required whole-body movements (i.e., steady-state walking). Results indicated that whole-body movements led to greater brain oxygenation over the motor regions when compared with upper-limb activities. The effect of motor pace was found in the walking task only, with more bilateral orbitofrontal and left dorsolateral activation at slow versus fast pace. Exploratory analyses revealed a positive correlation between the activation of the orbitofrontal and motor areas for the close-to-spontaneous pace in both tasks. Overall, results support the key role of prefrontal cognitive control in the production of slow whole-body movements. In addition, our findings confirm that upper-limb (laboratory-based) tasks might not be representative of those engaged during everyday-life motor behaviors. The fNIRS technique may be a valuable tool to decipher the neurocognitive mechanisms underlying naturalistic, adaptive motor behaviors.
Collapse
Affiliation(s)
- Ségolène M R Guérin
- Université de, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, France
| | - Marion A Vincent
- Université de, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, France
| | | |
Collapse
|
13
|
Social, affective, and non-motoric bodily cues to the Sense of Agency: A systematic review of the experience of control. Neurosci Biobehav Rev 2022; 142:104900. [DOI: 10.1016/j.neubiorev.2022.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
14
|
Zhang L, Ren H, Zhang R, Chen M, Li R, Shi L, Yao D, Gao J, Hu Y. Time-estimation process could cause the disappearence of readiness potential. Cogn Neurodyn 2022; 16:1003-1011. [PMID: 36237414 PMCID: PMC9508310 DOI: 10.1007/s11571-021-09766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Generally, the readiness potential (RP) is considered to be the scalp electroencephalography (EEG) activity preceding movement. In our previous study, we found early RP was absent among approximately half of the subjects during instructed action, but we did not identify the mechanism causing the disappearance of the RP. In this study, we investigated whether the time-estimation process could cause the disappearance of the RP. First, we designed experiments consisting of motor execution (ME), motor execution after time estimation (MEATE), and time estimation (TE) tasks, and we collected and preprocessed the EEG data of 16 subjects. Second, we compared the event related potential (ERP) waveform and scalp topography between ME and MEATE tasks. Then, to explore the influence of time-estimation, we analyzed the difference in ERP between MEATE and TE tasks. Finally, we used source imaging to probe the activation of brain regions during the three tasks, and we calculated the average activation amplitude of eight motor related brain regions. We found that the RP occurred in the ME task but not in the MEATE task. We also found that the waveform of the difference in ERP between the MEATE and TE tasks was similar to that of the ME task. The results of source imaging indicated that, compared to the ME task, the activation amplitude of the supplementary motor area (SMA) decreased significantly for the MEATE task. Our results suggested that the time estimation process could cause the disappearance of the RP. This phenomenon might be caused by the counteraction of neural electrical activity related to time estimation and motor preparation in the SMA.
Collapse
Affiliation(s)
- Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Haikun Ren
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Mingming Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Ruiqi Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Dezhong Yao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinfeng Gao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| |
Collapse
|
15
|
Kavroulakis E, van Kemenade BM, Arikan BE, Kircher T, Straube B. The effect of self-generated versus externally generated actions on timing, duration, and amplitude of blood oxygen level dependent response for visual feedback processing. Hum Brain Mapp 2022; 43:4954-4969. [PMID: 36056611 PMCID: PMC9582366 DOI: 10.1002/hbm.26053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
It has been widely assumed that internal forward models use efference copies to create predictions about the sensory consequences of our own actions. While these predictions have frequently been associated with a reduced blood oxygen level dependent (BOLD) response in sensory cortices, the timing and duration of the hemodynamic response for the processing of video feedback of self‐generated (active) versus externally generated (passive) movements is poorly understood. In the present study, we tested the hypothesis that predictive mechanisms for self‐generated actions lead to early and shorter neural processing compared with externally generated movements. We investigated active and passive movements using a custom‐made fMRI‐compatible movement device. Visual video feedback of the active and passive movements was presented in real time or with variable delays. Participants had to judge whether the feedback was delayed. Timing and duration of BOLD impulse response was calculated using a first (temporal derivative [TD]) and second‐order (dispersion derivative [DD]) Taylor approximation. Our reanalysis confirmed our previous finding of reduced BOLD response for active compared to passive movements. Moreover, we found positive effects of the TD and DD in the supplementary motor area, cerebellum, visual cortices, and subcortical structures, indicating earlier and shorter hemodynamic responses for active compared to passive movements. Furthermore, earlier activation in the putamen for active compared to passive conditions was associated with reduced delay detection performance. These findings indicate that efference copy‐based predictive mechanisms enable earlier processing of action feedback, which might have reduced the ability to detect short delays between action and feedback.
Collapse
Affiliation(s)
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Belkis Ezgi Arikan
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
16
|
Bagarinao E, Kawabata K, Watanabe H, Hara K, Ohdake R, Ogura A, Masuda M, Kato T, Maesawa S, Katsuno M, Sobue G. Connectivity impairment of cerebellar and sensorimotor connector hubs in Parkinson’s disease. Brain Commun 2022; 4:fcac214. [PMID: 36072644 PMCID: PMC9438962 DOI: 10.1093/braincomms/fcac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson’s disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients’ motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder’s two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson’s disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 461–8673 Japan
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
| | - Kazuya Kawabata
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Hirohisa Watanabe
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Aya Ogura
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Satoshi Maesawa
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Gen Sobue
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Aichi Medical University , Nagakute, Aichi, 480-1195 Japan
| |
Collapse
|
17
|
Fuentes-Claramonte P, Ramiro N, Torres L, Argila-Plaza I, Salgado-Pineda P, Soler-Vidal J, García-León MÁ, Albacete A, Bosque C, Panicalli F, Boix E, Munuera J, Tristany J, Sarró S, Bernardo M, Salvador R, McKenna PJ, Pomarol-Clotet E. Negative schizophrenic symptoms as prefrontal cortex dysfunction: Examination using a task measuring goal neglect. NEUROIMAGE: CLINICAL 2022; 35:103119. [PMID: 35870381 PMCID: PMC9421442 DOI: 10.1016/j.nicl.2022.103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Negative schizophrenic symptoms have been considered to reflect prefrontal cortex dysfunction. Functional imaging support for this theory is however weak, perhaps due to the tasks used. We examined negative symptom patients using a novel executive task measuring volitional behaviour. Comparison to patients without negative symptoms revealed prefrontal hypoactivation.
Background The negative symptoms of schizophrenia have been proposed to reflect prefrontal cortex dysfunction. However, this proposal has not been consistently supported in functional imaging studies, which have also used executive tasks that may not capture key aspects of negative symptoms such as lack of volition. Method Twenty-four DSM-5 schizophrenic patients with high negative symptoms (HNS), 25 with absent negative symptoms (ANS) and 30 healthy controls underwent fMRI during performance of the Computerized Multiple Elements Test (CMET), a task designed to measure poor organization of goal directed behaviour or ‘goal neglect’. Negative symptoms were rated using the PANSS and the Clinical Assessment Interview for Negative Symptoms (CAINS). Results On whole brain analysis, the ANS patients showed no significant clusters of reduced activation compared to the healthy controls. In contrast, the HNS patients showed hypoactivation compared to the healthy controls in the left anterior frontal cortex, the right dorsolateral prefrontal cortex (DLPFC), the anterior insula bilaterally and the bilateral inferior parietal cortex. When compared to the ANS patients, the HNS patients showed reduced activation in the left anterior frontal cortex, the left DLPFC and the left inferior parietal cortex. After controlling for disorganization scores, differences remained in clusters in the left anterior frontal cortex and the bilateral inferior parietal cortex. Conclusions This study provides evidence that reduced prefrontal activation, perhaps especially in the left anterior frontal cortex, is a brain functional correlate of negative symptoms in schizophrenia. The simultaneous finding of reduced inferior parietal cortex activation was unexpected, but could reflect this region’s involvement in cognitive control, particularly the ‘regulative’ component of this.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Núria Ramiro
- Psychiatry department, Hospital Sant Rafael, Barcelona, Spain
| | - Llanos Torres
- Hospital Mare de Dèu de la Mercé, Unitat Polivalent, Barcelona, Spain
| | | | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain; Benito Menni Complex Assistencial en Salut Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - María Ángeles García-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Auria Albacete
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Clara Bosque
- Benito Menni Complex Assistencial en Salut Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - Francesco Panicalli
- Benito Menni Complex Assistencial en Salut Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - Ester Boix
- Mental Health Department, Hospital de Mataró, Mataró, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Miquel Bernardo
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic of Barcelona, Institute of Neuroscience, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain; Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain.
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Barcelona, Spain
| |
Collapse
|
18
|
Brcina N, Hohenfeld C, Heidbreder A, Mirzazade S, Krahe J, Wojtala J, Binkofski F, Schulz JB, Schiefer J, Reetz K, Dogan I. Increased neural motor activation and functional reorganization in patients with idiopathic rapid eye movement sleep behavior disorder. Parkinsonism Relat Disord 2021; 92:76-82. [PMID: 34715608 DOI: 10.1016/j.parkreldis.2021.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Altered brain activity and functional reorganization patterns during self-initiated movements have been reported in early pre-motor and motor stages of Parkinson's disease. The aim of this study was to investigate whether similar alterations can be observed in patients with idiopathic REM-sleep behavior disorder (RBD). METHODS 13 polysomnography-confirmed male and right-handed RBD patients and 13 healthy controls underwent a bilateral hand-movement fMRI task including internally selected (INT) and externally-guided (EXT) movement conditions for each hand. We examined functional activity and connectivity differences between groups and task-conditions, structural differences using voxel-based morphometry, as well as associations between functional activity and clinical variables. RESULTS No group differences were observed in fMRI-task performance or in voxel-based morphometry. Both groups showed faster reaction times and exhibited greater neural activation when movements were internally selected compared to externally-guided tasks. Compared to controls, RBD patients displayed stronger activation in the dorsolateral prefrontal cortex and primary somatosensory cortex during INT-tasks, and in the right fronto-insular cortex during EXT-tasks performed with the non-dominant hand. Stronger activation in RBD patients was associated with cognitive and olfactory impairment. Connectivity analysis demonstrated overall less interregional coupling in patients compared to controls. In particular, patients showed reduced temporo-cerebellar, occipito-cerebellar and intra-cerebellar connectivity, but stronger connectivity in fronto-cerebellar and fronto-occipital pathways. CONCLUSION The observed stronger activation during hand-movement tasks and connectivity changes in RBD may reflect early compensatory and reorganization patterns in order to preserve motor functioning. Our findings may contribute to a better understanding and prognosis of prodromal stages of α-synucleinopathies.
Collapse
Affiliation(s)
- Nikolina Brcina
- RWTH Aachen University, Department of Neurology, Aachen, Germany
| | - Christian Hohenfeld
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Anna Heidbreder
- Department of Neurology with Institute of Sleep Medicine and Neuromuscular Disease, University Hospital Muenster, Muenster, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria
| | - Shahram Mirzazade
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Jennifer Wojtala
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH, Aachen, Germany; Institute for Neuroscience and Medicine (INM-4), Research Center Juelich GmbH, Germany
| | - Jörg B Schulz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | | | - Kathrin Reetz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany.
| | - Imis Dogan
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
The obedient mind and the volitional brain: A neural basis for preserved sense of agency and sense of responsibility under coercion. PLoS One 2021; 16:e0258884. [PMID: 34710149 PMCID: PMC8553174 DOI: 10.1371/journal.pone.0258884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
Milgram’s classical studies famously suggested a widespread willingness to obey authority, even to the point of inflicting harm. Important situational factors supporting obedience, such as proximity with the victim, have been established. Relatively little work has focused on how coercion affects individual cognition, or on identifying the cognitive factors that underlie inter-individual differences in the tendency to yield to coercion. Here, we used fMRI to investigate the neural systems associated with changes in volitional processes associated with sense of agency and sense of responsibility under coercion. Participants either freely chose, or were instructed by the experimenter, to give mildly painful electric shocks to another participant, or to refrain from doing so. We have previously shown that coercion reduces temporal binding, which has been proposed as an implicit proxy measure of sense of agency. We tested how reduced agency under coercion related to differences in neural activity between free choice and coercion. In contrast to previous studies and to participants performing the task outside the MRI scanner, on average there was no effect of coercion on agency for participants in the scanner. However, greater activity in the medial frontal gyrus was reliably associated with greater agency under coercion. A similar association was found using explicit responsibility ratings. Our findings suggest that medial frontal processes, perhaps related to volition during action planning and execution, may help to preserve a sense of accountability under coercion. Further, participants who administered more shocks under free choice showed reduced activity during free choice trials in brain areas associated with social cognition. Possibly, this might reflect participants cognitively distancing themselves from the recipient of the shocks under free choice, whereas this was not observed under coercion.
Collapse
|
20
|
Putortì A, Corrado M, Avenali M, Martinelli D, Allena M, Cristina S, Grillo V, Martinis L, Tamburin S, Serrao M, Pisani A, Tassorelli C, De Icco R. The Effects of Intensive Neurorehabilitation on Sequence Effect in Parkinson's Disease Patients With and Without Freezing of Gait. Front Neurol 2021; 12:723468. [PMID: 34557151 PMCID: PMC8453149 DOI: 10.3389/fneur.2021.723468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The sequence effect (SE), defined as a reduction in amplitude of repetitive movements, is a common clinical feature of Parkinson's disease (PD) and is supposed to be a major contributor to freezing of gait (FOG). During walking, SE manifests as a step-by-step reduction in step length when approaching a turning point or gait destination, resulting in the so-called destination sequence effect (dSE). Previous studies explored the therapeutic effects of several strategies on SE, but none of them evaluated the role of an intensive rehabilitative program. Objectives: Here we aim to study the effects of a 4-week rehabilitative program on dSE in patients with PD with and without FOG. Methods: Forty-three patients (30 males, 70.6 ± 7.5 years old) with idiopathic PD were enrolled. The subjects were divided into two groups: patients with (PD + FOG, n = 23) and without FOG (PD - FOG, n = 20). All patients underwent a standardized 4-week intensive rehabilitation in-hospital program. At hospital admission (T0) and discharge (T1), all subjects were evaluated with an inertial gait analysis for dSE recording. Results: At T0, the dSE was more negative in the PD + FOG group (-0.80 ± 0.6) when compared to the PD - FOG group (-0.39 ± 0.3) (p = 0.007), even when controlling for several clinical and demographic features. At T1, the dSE was reduced in the overall study population (p = 0.001), with a more pronounced improvement in the PD + FOG group (T0: -0.80 ± 0.6; T1: -0.23 ± 0.4) when compared to the PD - FOG group (T0: -0.39 ± 0.3; T1: -0.22 ± 0.5) (p = 0.012). At T1, we described in the overall study population an improvement in speed, cadence, stride duration, and stride length (p = 0.001 for all variables). Conclusions: dSE is a core feature of PD gait dysfunction, specifically in patients with FOG. A 4-week intensive rehabilitative program improved dSE in PD patients, exerting a more notable beneficial effect in the PD + FOG group.
Collapse
Affiliation(s)
- Alessia Putortì
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Michele Corrado
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Micol Avenali
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Martinelli
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marta Allena
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvano Cristina
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Grillo
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Luca Martinis
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, Rome, Italy
| | - Antonio Pisani
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberto De Icco
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Rurak BK, Rodrigues JP, Power BD, Drummond PD, Vallence AM. Reduced SMA-M1 connectivity in older than younger adults measured using dual-site TMS. Eur J Neurosci 2021; 54:6533-6552. [PMID: 34470079 DOI: 10.1111/ejn.15438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
With advancing age comes a decline in voluntary movement control. Growing evidence suggests that an age-related decline in effective connectivity between the supplementary motor area and primary motor cortex (SMA-M1) might play a role in an age-related decline of bilateral motor control. Dual-site transcranial magnetic stimulation (TMS) can be used to measure SMA-M1 effective connectivity. In the current study, we aimed to (1) replicate previous dual-site TMS research showing reduced SMA-M1 connectivity in older than younger adults and (2) examine whether SMA-M1 connectivity is associated with bilateral motor control in independent samples of younger (n = 30) and older adults (n = 30). SMA-M1 connectivity was measured using dual-site TMS with interstimulus intervals of 6, 7 and 8 ms, and bilateral motor control was measured using the Purdue Pegboard, Four Square Step Test and the Timed Up and Go task. Findings from this study showed that SMA-M1 connectivity was reduced in older than in younger adults, suggesting that the direct excitatory connections between SMA and M1 had reduced efficacy in older than younger adults. Furthermore, greater SMA-M1 connectivity was associated with better bimanual motor control in older adults. Thus, SMA-M1 connectivity in older adults might underpin, in part, the age-related decline in bilateral motor control. These findings contribute to our understanding of age-related declines in motor control and provide a physiological basis for the development of interventions to improve bimanual and bilateral motor control.
Collapse
Affiliation(s)
- Brittany K Rurak
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Brian D Power
- Hollywood Private Hospital, Nedlands, Western Australia, Australia.,School of Medicine Fremantle, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Peter D Drummond
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch, Western Australia, Australia
| |
Collapse
|
22
|
Puledda F, Schankin CJ, O'Daly O, Ffytche D, Eren O, Karsan N, Williams SCR, Zelaya F, Goadsby PJ. Localised increase in regional cerebral perfusion in patients with visual snow syndrome: a pseudo-continuous arterial spin labelling study. J Neurol Neurosurg Psychiatry 2021; 92:918-926. [PMID: 34261750 PMCID: PMC8372400 DOI: 10.1136/jnnp-2020-325881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We aimed to investigate changes in regional cerebral blood flow (rCBF) using arterial spin labelling (ASL) in patients with visual snow syndrome (VSS), in order to understand more about the underlying neurobiology of the condition, which remains mostly unknown. METHODS We performed an MRI study in which whole-brain maps of rCBF were obtained using pseudo-continuous ASL. Twenty-four patients with VSS and an equal number of gender and age-matched healthy volunteers took part in the study. All subjects were examined with both a visual paradigm consisting of a visual-snow like stimulus, simulating key features of the snow, and a blank screen at rest, randomly presented. RESULTS Patients with VSS had higher rCBF than controls over an extensive brain network, including the bilateral cuneus, precuneus, supplementary motor cortex, premotor cortex and posterior cingulate cortex, as well as the left primary auditory cortex, fusiform gyrus and cerebellum. These areas were largely analogous comparing patients either at rest, or when looking at a 'snow-like' visual stimulus. This widespread, similar pattern of perfusion differences in either condition suggests a neurophysiological signature of visual snow. Furthermore, right insula rCBF was increased in VSS subjects compared with controls during visual stimulation, reflecting a greater task-related change and suggesting a difference in interoceptive processing with constant perception of altered visual input. CONCLUSION The data suggest VSS patients have marked differences in brain processing of visual stimuli, validating its neurobiological basis.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, King's College London, King's College London, London, UK .,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, UK
| | - Christoph J Schankin
- Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dominic Ffytche
- Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ozan Eren
- Department of Neurology, University Hospital Munich Campus Grosshadern, Munchen, Germany
| | - Nazia Karsan
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, King's College London, King's College London, London, UK
| | - Steve C R Williams
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, King's College London, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM NIHR Biomedical Research Centre, King's College Hospital, London, UK
| |
Collapse
|
23
|
Neural Correlates of Motor Recovery after Robot-Assisted Training in Chronic Stroke: A Multimodal Neuroimaging Study. Neural Plast 2021; 2021:8866613. [PMID: 34211549 PMCID: PMC8208881 DOI: 10.1155/2021/8866613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of motor disability worldwide, and robot-assisted therapies have been increasingly applied to facilitate the recovery process. However, the underlying mechanism and induced neuroplasticity change remain partially understood, and few studies have investigated this from a multimodality neuroimaging perspective. The current study adopted BCI-guided robot hand therapy as the training intervention and combined multiple neuroimaging modalities to comprehensively understand the potential association between motor function alteration and various neural correlates. We adopted EEG-informed fMRI technique to understand the functional regions sensitive to training intervention. Additionally, correlation analysis among training effects, nonlinear property change quantified by fractal dimension (FD), and integrity of M1-M1 (M1: primary motor cortex) anatomical connection were performed. EEG-informed fMRI analysis indicated that for iM1 (iM1: ipsilesional M1) regressors, regions with significantly increased partial correlation were mainly located in contralesional parietal, prefrontal, and sensorimotor areas and regions with significantly decreased partial correlation were mainly observed in the ipsilesional supramarginal gyrus and superior temporal gyrus. Pearson's correlations revealed that the interhemispheric asymmetry change significantly correlated with the training effect as well as the integrity of M1-M1 anatomical connection. In summary, our study suggested that multiple functional brain regions not limited to motor areas were involved during the recovery process from multimodality perspective. The correlation analyses suggested the essential role of interhemispheric interaction in motor rehabilitation. Besides, the underlying structural substrate of the bilateral M1-M1 connection might relate to the interhemispheric change. This study might give some insights in understanding the neuroplasticity induced by the integrated BCI-guided robot hand training intervention and further facilitate the design of therapies for chronic stroke patients.
Collapse
|
24
|
Murali S, Händel B. The latency of spontaneous eye blinks marks relevant visual and auditory information processing. J Vis 2021; 21:7. [PMID: 34115107 PMCID: PMC8196427 DOI: 10.1167/jov.21.6.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/25/2021] [Indexed: 11/24/2022] Open
Abstract
Eye blinks are influenced by external sensory and internal cognitive factors, as mainly shown in the visual domain. In previous studies, these factors corresponded to the time period of task-relevant sensory information and were often linked to a motor response. Our aim was to dissociate the influence of overall sensory input duration, task-relevant information duration, and the motor response to further understand how the temporal modulation of blinks compares among sensory modalities. Using a visual and an auditory temporal judgment task, we found that blinks were suppressed during stimulus presentation in both domains and that the overall input length had a significant positive relationship with the length of this suppression (i.e., with the latency of the first blink after stimulus onset). Importantly, excluding the influence of the overall sensory input duration we could show that the duration of task-relevant input had an additional influence on blink latency in the visual and the auditory domain. Our findings further suggest that this influence was not based on sensory input but on top-down processes. We could exclude task difficulty and the timing of the motor response as driving factors in the blink modulation. Our results suggest a sensory domain-independent modulation of blink latencies, introduced by changes in the length of the task-relevant, attended period. Therefore, not only do blinks mark the timing of sensory input or the preparation of the motor output, but they can also act as precise indicators of periods of cognitive processing.
Collapse
Affiliation(s)
- Supriya Murali
- Department of Psychology III, University of Würzburg, Würzburg, Germany
| | - Barbara Händel
- Department of Psychology III, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Pneumatic artificial muscle-based stimulator for passive functional magnetic resonance imaging sensorimotor mapping in patients with brain tumours. J Neurosci Methods 2021; 359:109227. [PMID: 34052287 DOI: 10.1016/j.jneumeth.2021.109227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Two concerns with respect to pre-operative task-based motor functional magnetic resonance imaging (fMRI) in patients with brain tumours are inadequate performance due to patients' impaired motor function and head motion artefacts. NEW METHOD In the present study we validate the use of a stimulator based on a pneumatic artificial muscle (PAM) for fMRI mapping of the primary sensorimotor (SM1) cortex in twenty patients with rolandic or perirolandic brain tumours. All patients underwent both active and passive motor block-design fMRI paradigms, performing comparable active and passive PAM-induced flexion-extensions of the icontralesional index finger. RESULTS PAM-induced movements resulted in a significant BOLD signal increase in contralateral primary motor (M1) and somatosensory (S1) cortices in 18/20 and 19/20 (p<.05 FWE corrected in 16/18 and 18/19) patients, versus 18/20 and 16/20 (p<.05 FWE corrected) during active movements. The two patients in whom the PAM-based stimulator failed to induce any significant BOLD signal change in the contralateral M1 cortex differed from the two in whom active motion was conversely ineffective. At the group level, no significant difference in contrast magnitude was observed within the contralateral SM1 cortex when comparing active with passive movements. During passive movements, head motion was significantly reduced. Comparison with existing method(s) As compared to the several robotic devices for passive motion that were introduced in the past decades, our PAM-based stimulator appears smaller, handier, and easier to use. CONCLUSION The use of PAM-based stimulators should be included in routine pre-operative fMRI protocols along with active paradigms in such patients' population.
Collapse
|
26
|
Janssen S, Heijs J, Bittner M, Droog E, Bloem BR, Van Wezel R, Heida T. Visual cues added to a virtual environment paradigm do not improve motor arrests in Parkinson's disease. J Neural Eng 2021; 18. [PMID: 33540389 DOI: 10.1088/1741-2552/abe356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
Objective. Elucidating how cueing alleviates freezing of gait (FOG) in Parkinson's disease (PD) would enable the development of more effective, personalized cueing strategies. Here, we aimed to validate a visual cueing virtual environment (VE) paradigm for future use in e.g. neuroimaging studies and behavioral studies on motor timing and scaling in PD patients with FOG.Approach. We included 20 PD patients with FOG and 16 age-matched healthy control subjects. Supine participants were confronted with a VE displaying either no cues, bars or staircases. They navigated forward using alternate suppression of foot pedals. Motor arrests (as proxy for FOG), and measures of motor timing and scaling were compared across the three VE conditions for both groups.Main results. VE cues (bars and staircases) did not reduce motor arrests in PD patients and healthy control subjects. The VE cues did reduce pedal amplitude in healthy control subjects, without effects on other motor parameters.Conclusion. We could not validate a visual cueing VE paradigm to study FOG. The VE cues possibly failed to convey the necessary spatial and temporal information to support motor timing and scaling. We discuss avenues for future research.
Collapse
Affiliation(s)
- S Janssen
- Biomedical Signals and Systems Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, EWI-BSS, Enschede 7500 VB, The Netherlands.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Nijmegen, The Netherlands
| | - Jja Heijs
- Biomedical Signals and Systems Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, EWI-BSS, Enschede 7500 VB, The Netherlands
| | - M Bittner
- Biomedical Signals and Systems Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, EWI-BSS, Enschede 7500 VB, The Netherlands.,Current Address: VicarVision, Amsterdam, The Netherlands
| | - E Droog
- Biomedical Signals and Systems Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, EWI-BSS, Enschede 7500 VB, The Netherlands
| | - B R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Nijmegen, The Netherlands
| | - Rja Van Wezel
- Biomedical Signals and Systems Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, EWI-BSS, Enschede 7500 VB, The Netherlands.,Department of Biophysics, Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - T Heida
- Biomedical Signals and Systems Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, EWI-BSS, Enschede 7500 VB, The Netherlands
| |
Collapse
|
27
|
Cannon JJ, Patel AD. How Beat Perception Co-opts Motor Neurophysiology. Trends Cogn Sci 2020; 25:137-150. [PMID: 33353800 DOI: 10.1016/j.tics.2020.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Beat perception offers cognitive scientists an exciting opportunity to explore how cognition and action are intertwined in the brain even in the absence of movement. Many believe the motor system predicts the timing of beats, yet current models of beat perception do not specify how this is neurally implemented. Drawing on recent insights into the neurocomputational properties of the motor system, we propose that beat anticipation relies on action-like processes consisting of precisely patterned neural time-keeping activity in the supplementary motor area (SMA), orchestrated and sequenced by activity in the dorsal striatum. In addition to synthesizing recent advances in cognitive science and motor neuroscience, our framework provides testable predictions to guide future work.
Collapse
Affiliation(s)
- Jonathan J Cannon
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, MA, USA; Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, CA.
| |
Collapse
|
28
|
Marche K, Apicella P. Activity of fast-spiking interneurons in the monkey striatum during reaching movements guided by external cues or by a free choice. Eur J Neurosci 2020; 53:1752-1768. [PMID: 33314343 DOI: 10.1111/ejn.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/14/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Parvalbumin-containing GABAergic interneurons in the striatum, electrophysiologically identified as fast-spiking interneurons (FSIs), exert inhibitory control over striatal output to drive appropriate behavior. While a number of studies have emphasized their importance in motor control, it is unknown how these putative interneurons adapt their functional properties to different modes of movement selection. Here, we tested whether FSIs are sensitive to externally versus internally selected movements by recording their activity while two male rhesus monkeys performed reaching movements to visual targets. Two variants were used: an external condition, in which movements were instructed via external cues, and an internal condition, in which movements were guided by an internal representation of the target location. These conditions allowed to contrast the FSI activity associated with either externally cued or internally driven movement selection. After extensive training, reaching performance was only marginally affected by the type of movement, albeit with some differences between the monkeys. Over two-thirds of the FSIs were modulated around movement onset, regardless of the condition, and consisting mostly of increased activity. We found that a subset of FSIs showed stronger activation related to the initiation of movements in the external condition than in the internal condition, suggesting a dependence on movement selection mode. Moreover, this difference in the strength of FSI activation was predominant in the motor striatum. These data indicate that changes in FSI activity carry information that is scaled by constraints on action selection reflecting the involvement of local striatal inhibitory circuits in adaptation of behavior according to task demands.
Collapse
Affiliation(s)
- Kévin Marche
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
29
|
Hirano D, Goto Y, Jinnai D, Taniguchi T. Effects of a dual task and different levels of divided attention on motor-related cortical potential. J Phys Ther Sci 2020; 32:710-716. [PMID: 33281285 PMCID: PMC7708013 DOI: 10.1589/jpts.32.710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate the effect of divided attention on motor-related cortical potential (MRCP) during dual task performance while the difficulty of the secondary task was altered. [Participants and Methods] Twenty-two right-handed healthy volunteers participated in the study. MRCPs were recorded during two tasks, a single task (ST) and a simple (S-DT) or complex dual task (C-DT). The ST involved a self-paced tapping task in which the participants extended their right index finger. In the dual task, the participants performed the ST and a visual number counting task simultaneously. [Results] The amplitude and integral value of MRCP from electroencephalography electrode C3 was significantly higher in the S-DT than in the ST, whereas they were similar between the C-DT and the ST. Medium-load divided attention (i.e., S-DT) led to significantly more changes in the MRCP magnitude than did low-load divided attention (i.e., ST). However, the MRCP of high-load divided attention (i.e., C-DT) was similar to that of low-load divided attention. [Conclusion] These results suggest that MRCP reflects the function of or network between the supplementary motor area and the dorsolateral prefrontal cortex, and may serve as a marker for screening the capacity of individuals to perform dual tasks.
Collapse
Affiliation(s)
- Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare: 4-1-26 Akasaka, Minato, Tokyo, Japan.,Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| | - Yoshinobu Goto
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare: 4-1-26 Akasaka, Minato, Tokyo, Japan.,Faculty of Medicine, School of Medicine, International University of Health and Welfare, Japan.,Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Japan
| | - Daisuke Jinnai
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare: 4-1-26 Akasaka, Minato, Tokyo, Japan.,Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare: 4-1-26 Akasaka, Minato, Tokyo, Japan.,Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
30
|
Mussini E, Berchicci M, Bianco V, Perri RL, Quinzi F, Di Russo F. Effect of task complexity on motor and cognitive preparatory brain activities. Int J Psychophysiol 2020; 159:11-16. [PMID: 33227366 DOI: 10.1016/j.ijpsycho.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
In the present study, we investigated scalp-recorded activities of motor and cognitive preparation preceding stimulus presentation in relatively simple and complex visual motor discriminative response tasks (DRTs). Targets and non-targets were presented (with equal probability) in both tasks, and the complexity of the task depended on the discrimination and categorization processing load, which was based on the number of stimuli used (two stimuli in the simple- and four in the complex-DRT, respectively). We recorded event-related potentials (ERPs) in 16 participants in simple-DRT and 16 participants in complex-DRT. At the behavioral level, the performance was faster and more accurate in simple-DRT. Two pre-stimulus ERPs were considered: the central Bereitschaftspotential (BP) and the prefrontal negativity (pN). Both components showed earlier onset and larger amplitude in the complex-DRT. Overall, the simple-DRT required less motor and cognitive preparation in premotor and prefrontal areas compared to the complex-DRT. Present findings also suggest that the pN component was not reported in previous studies, likely because most ERP literature focusing on pre-stimulus ERP used simple-DRTs, and with such a task the pN amplitude is small and can easily go undetected.
Collapse
Affiliation(s)
- E Mussini
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - M Berchicci
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - V Bianco
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - R L Perri
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; University "Niccolò Cusano", Rome, Italy
| | - F Quinzi
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - F Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
31
|
Travers E, Friedemann M, Haggard P. The Readiness Potential reflects planning-based expectation, not uncertainty, in the timing of action. Cogn Neurosci 2020; 12:14-27. [PMID: 33153362 DOI: 10.1080/17588928.2020.1824176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Actions are guided by a combination of external cues, internal intentions, and stored knowledge. Self-initiated voluntary actions, produced without immediate external cues, may be preceded by a slow EEG Readiness Potential (RP) that progressively increases prior to action. The cognitive significance of this neural event is controversial. Some accounts link the RP to the fact that timing of voluntary actions is generated endogenously, without external constraints. Others link it to the unique role of a planning process, and therefore of temporal expectation, in voluntary actions. In many previous experiments, actions are unconstrained by external cues, but also potentially involve preplanning and anticipation. To separate these factors, we developed a reinforcement learning paradigm where participants learned, through trial and error, the optimal time to act. If the RP reflects freedom from external constraint, its amplitude should be greater early in learning, when participants do not yet know when to act. Conversely, if the RP reflects planning, it should be greater later on, when participants have learned, and plan in advance, the time of action. We found that RP amplitudes grew with learning, suggesting that this neural activity reflects planning and anticipation for the forthcoming action, rather than freedom from external constraint.
Collapse
Affiliation(s)
- Eoin Travers
- Institute of Cognitive Neuroscience, University College London , London, UK
| | - Maja Friedemann
- Institute of Cognitive Neuroscience, University College London , London, UK.,Department of Experimental Psychology, University of Oxford , Oxford, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London , London, UK
| |
Collapse
|
32
|
Wakatsuki T, Yamada N. Difference Between Intentional and Reactive Movement in Side-Steps: Patterns of Temporal Structure and Force Exertion. Front Psychol 2020; 11:2186. [PMID: 33013564 PMCID: PMC7495094 DOI: 10.3389/fpsyg.2020.02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/04/2020] [Indexed: 12/05/2022] Open
Abstract
Intentional and reactive movements are dissimilar in terms of execution time. Previous studies reported that reactive movements are faster than intentional movements (“Bohr’s law” or “Gunslinger effect”), however, these studies focused only on hand-reaching tasks, such as pressing buttons. No studies assessed whole-body movements involving movement of the center of mass (CoM). This movement is characterized by many degrees of freedom because it involves many joints and requires more force than the hand-reaching movement. In this study, we determined the differences in the patterns of temporal structure and force exertion to elucidate the mechanism of “Bohr’s law” in whole-body movement involving movement of the CoM. Ten participants performed a sidestepping task, which requires at least two steps: (1) an intentional movement, in which the movement started with the participants’ own timing; and (2) a reactive movement, in which the movement started the moment a light-emitting diode bulb in front of the participants lit up. We collected data on the ground reaction forces and coordinates of 20 body points. The time of movement onset was calculated and defined based on the ground reaction force, which has the earliest onset compared with velocity and position. The execution time was significantly shorter in the reactive movement condition than in the intentional movement condition (772 vs. 715 ms, p = 2.9 × 10–4). We confirmed that Bohr’s law was applicable not only in hand-reaching tasks but also in whole-body movement. Moreover, we identified three phases, including the velocity reversal phenomenon associated with the produced mechanism of Bohr’s law, and provided the temporal structure. The difference in the pattern of force exertion accompanying the two styles of motor planning with different accuracies was strongly associated with this motor characteristic. These findings may serve as important basic data to scientifically clarify the mechanism of complex physical tactics implemented in one-on-one dueling in various sports.
Collapse
Affiliation(s)
- Tsubasa Wakatsuki
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Norimasa Yamada
- School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| |
Collapse
|
33
|
Zhang L, Zhang R, Yao D, Shi L, Gao J, Hu Y. Differences in Intersubject Early Readiness Potentials Between Voluntary and Instructed Actions. Front Psychol 2020; 11:529821. [PMID: 33117215 PMCID: PMC7549661 DOI: 10.3389/fpsyg.2020.529821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/26/2020] [Indexed: 12/05/2022] Open
Abstract
Readiness potential (RP) is a slow negative electroencephalogram (EEG) potential prior to voluntary action and was first described by Kornhuber and Deecke (1965). Recent studies have demonstrated that a few subjects do not exhibit standard RP before voluntary action. In our previous study, we also found that some subjects did not show an early RP preceding instructed action. Although this phenomenon may be meaningful, no studies have yet investigated its origins. In the present study, we designed and implemented an experimental paradigm involving voluntary and instructed actions in the form of hand movements from 29 subjects with concurrent acquisition of EEGs. According to whether the subjects showed a standard RP waveform during instructed action, they were divided into the SHOW and NOSHOW group. Then, the RPs and voltage topographies were plotted for each group. Finally, the slope of each epoch at the early RP phase was estimated. We showed that early RPs were absent in 14 of 29 subjects during instructed actions. Besides, based on the slow cortical potential (SCP) sampling hypothesis, we also showed a decreased proportion in the negative potential for the NOSHOW group. Our results suggested that early RP is absent among approximately half of subjects during instructed action and that the decreased proportion of negative potential shifts may account for the absence of early RP in the NOSHOW group.
Collapse
Affiliation(s)
- Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
- Key Laboratory for Neuroinformation, University of Electronic Science and Technology, Chengdu, China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Jinfeng Gao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| |
Collapse
|
34
|
Bianco V, Berchicci M, Livio Perri R, Quinzi F, Mussini E, Spinelli D, Di Russo F. Preparatory ERPs in visual, auditory, and somatosensory discriminative motor tasks. Psychophysiology 2020; 57:e13687. [PMID: 32970337 DOI: 10.1111/psyp.13687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022]
Abstract
Previous event-related potential (ERP) studies mainly from the present research group showed a novel component, that is, the prefrontal negativity (pN), recorded in visual-motor discriminative tasks during the pre-stimulus phase. This component is concomitant to activity related to motor preparation, that is, the Bereitschaftspotential (BP). The pN component has been reported in experiments based on the visual modality only; for other modalities (acoustic and/or somatosensory) the presence of the pN warrants further investigation. This study represents a first step toward this direction; indeed, we aimed at describing the pN and the BP components in discriminative response tasks (DRTs) for three sensory modalities. In experiment 1 ERPs were recorded in 29 adults in visual and auditory DRT; an additional group of 15 adults participated to a somatosensory DRT (experiment 2). In line with previous results both the pN and the BP were clearly detectable in the visual modality. In the auditory modality the prefrontal pN was not detectable directly; however, the pN could be derived by subtraction of separate EEG traces recorded in a "passive" version of the same auditory task, in which motor responses were not required. In the somatosensory modality both the pN and the BP were detectable, although with lower amplitudes with respect to other two sensory modalities. Overall, regardless of the sensory modality, anticipatory task-related pN and BP components could be detected (or derived by subtraction) over both the prefrontal and motor cortices. These results support the view that anticipatory processes share common components among sensory modalities.
Collapse
Affiliation(s)
- Valentina Bianco
- Laboratory of Electrophysiology Processes, IRCCS Santa Lucia Foundation, Rome, Italy.,Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Federico Quinzi
- Laboratory of Electrophysiology Processes, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elena Mussini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Donatella Spinelli
- Laboratory of Electrophysiology Processes, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Francesco Di Russo
- Laboratory of Electrophysiology Processes, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
35
|
Toiviainen P, Burunat I, Brattico E, Vuust P, Alluri V. The chronnectome of musical beat. Neuroimage 2020; 216:116191. [DOI: 10.1016/j.neuroimage.2019.116191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/03/2023] Open
|
36
|
Altered functional connectivity during evaluation of self-relevance in women with borderline personality disorder. NEUROIMAGE-CLINICAL 2020; 27:102324. [PMID: 32702624 PMCID: PMC7374241 DOI: 10.1016/j.nicl.2020.102324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Appraisal of self-relevance is disturbed in borderline personality disorder (BPD). We introduce the first neuroimaging study about self-relevance processing in BPD. Besides the CMS, the MNS and the SMA are involved in self-relevance processing. Functional connectivity of CMS is altered in BPD during self-relevance evaluations. In BPD, valence affects the functional connectivity during self-relevance ratings.
Self-relevant functional abnormalities and identity disorders constitute the core psychopathological components in borderline personality disorder (BPD). Evidence suggests that appraising the relevance of environmental information to the self may be altered in BPD. However, only a few studies have examined self-relevance (SR) in BPD, and the neural correlates of SR processing has not yet been investigated in this patient group. The current study sought to evaluate brain activation differences between female patients with BPD and healthy controls during SR processing. A task-based fMRI paradigm was applied to evaluate SR processing in 23 female patients with BPD and 23 matched healthy controls. Participants were presented with a set of short sentences and were instructed to rate the stimuli. The differences in fMRI signals between SR rating (task of interest) and valence rating (control task) were examined. During SR rating, participants showed elevated activations of the cortical midline structures (CMS), known to be involved in the processing of self-related stimuli. Furthermore, we observed an elevated activation of the supplementary motor area (SMA) and the regions belonging to the mirror neuron system (MNS). Using whole-brain, seed-based connectivity analysis on the task-based fMRI data, we studied connectivity of networks anchored to the main CMS regions. We found a discrepancy in the connectivity pattern between patients and controls regarding connectivity of the CMS regions with the basal ganglia-thalamus complex. These observations have two main implications: First, they confirm the involvement of the CMS in SR evaluations of our stimuli and add evidence about the involvement of an extended network including the MNS and the SMA in this task. Second, the functional connectivity profile observed in BPD provides evidence for an altered functional interplay between the CMS and the brain regions involved in salience detection and reward evaluation, including the basal ganglia and the thalamus.
Collapse
|
37
|
Florio TM. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas? AIMS Neurosci 2020; 7:136-152. [PMID: 32607417 PMCID: PMC7321770 DOI: 10.3934/neuroscience.2020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
38
|
Guo T, Guan X, Zhou C, Gao T, Wu J, Song Z, Xuan M, Gu Q, Huang P, Pu J, Zhang B, Cui F, Xia S, Xu X, Zhang M. Clinically relevant connectivity features define three subtypes of Parkinson's disease patients. Hum Brain Mapp 2020; 41:4077-4092. [PMID: 32588952 PMCID: PMC7469787 DOI: 10.1002/hbm.25110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is characterized by complex clinical symptoms, including classic motor and nonmotor disturbances. Patients with PD vary in clinical manifestations and prognosis, which point to the existence of subtypes. This study aimed to find the fiber connectivity correlations with several crucial clinical symptoms and identify PD subtypes using unsupervised clustering analysis. One hundred and thirty-four PD patients and 77 normal controls were enrolled. Canonical correlation analysis (CCA) was performed to define the clinically relevant connectivity features, which were then used in the hierarchical clustering analysis to identify the distinct subtypes of PD patients. Multimodal neuroimaging analyses were further used to explore the neurophysiological basis of these subtypes. The methodology was validated in an independent data set. CCA revealed two significant clinically relevant patterns (motor-related pattern and depression-related pattern; r = .94, p < .001 and r = .926, p = .001, respectively) among PD patients, and hierarchical clustering analysis identified three neurophysiological subtypes ("mild" subtype, "severe depression-dominant" subtype and "severe motor-dominant" subtype). Multimodal neuroimaging analyses suggested that the patients in the "severe depression-dominant" subtype exhibited widespread disruptions both in function and structure, while the other two subtypes exhibited relatively mild abnormalities in brain function. In the independent validation, three similar subtypes were identified. In conclusion, we revealed heterogeneous subtypes of PD patients according to their distinct clinically relevant connectivity features. Importantly, depression symptoms have a considerable impact on brain damage in patients with PD.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Song
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Cui
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Berchicci M, Sulpizio V, Mento G, Lucci G, Civale N, Galati G, Pitzalis S, Spinelli D, Di Russo F. Prompting future events: Effects of temporal cueing and time on task on brain preparation to action. Brain Cogn 2020; 141:105565. [DOI: 10.1016/j.bandc.2020.105565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
|
40
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
41
|
Hensel L, Hoffstaedter F, Caspers J, Michely J, Mathys C, Heller J, Eickhoff CR, Reetz K, Südmeyer M, Fink GR, Schnitzler A, Grefkes C, Eickhoff SB. Functional Connectivity Changes of Key Regions for Motor Initiation in Parkinson's Disease. Cereb Cortex 2020; 29:383-396. [PMID: 30418548 PMCID: PMC6294405 DOI: 10.1093/cercor/bhy259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 11/13/2022] Open
Abstract
Akinesia, a cardinal symptom of Parkinson's disease, has been linked to abnormal activation in putamen and posterior medial frontal cortex (pMFC). However, little is known whether clinical severity of akinesia is linked to dysfunctional connectivity of these regions. Using a seed-based approach, we here investigated resting-state functional connectivity (RSFC) of putamen, pMFC and primary motor cortex (M1) in 60 patients with Parkinson's disease on regular medication and 72 healthy controls. We found that in patients putamen featured decreases of connectivity for a number of cortical and subcortical areas engaged in sensorimotor and cognitive processing. In contrast, the pMFC showed reduced connectivity with a more focal cortical network involved in higher-level motor-cognition. Finally, M1 featured a selective disruption of connectivity in a network specifically connected with M1. Correlating clinical impairment with connectivity changes revealed a relationship between akinesia and reduced RSFC between pMFC and left intraparietal lobule (IPL). Together, the present study demonstrated RSFC decreases in networks for motor initiation and execution in Parkinson's disease. Moreover, results suggest a relationship between pMFC-IPL decoupling and the manifestation of akinetic symptoms.
Collapse
Affiliation(s)
- Lukas Hensel
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine, (INM-3: Cognitive Neuroscience), Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine, (INM1: Structural and Functional Organization of the Brain), Research Centre Jülich, Jülich, Germany.,Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jochen Michely
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, University Du¨sseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Heller
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich, Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine, (INM1: Structural and Functional Organization of the Brain), Research Centre Jülich, Jülich, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Jülich, Jülich, Germany
| | - Martin Südmeyer
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Medical Faculty, Department of Neurology, Center for Movement Disorders and Neuromodulation, Heinrich Heine University, Düsseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine, (INM-3: Cognitive Neuroscience), Research Centre Jülich, Jülich, Germany
| | - Alfons Schnitzler
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany.,Medical Faculty, Department of Neurology, Center for Movement Disorders and Neuromodulation, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine, (INM-3: Cognitive Neuroscience), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
42
|
Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol 2020; 19:462-470. [PMID: 32059811 DOI: 10.1016/s1474-4422(19)30397-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical assessments, as they capture fluctuating and rare events. These data could support clinical decision making and could also serve as outcomes in clinical trials. However, studies that directly compared assessments made in unsupervised and supervised (eg, in the laboratory or hospital) settings point to large disparities, even in the same parameters of mobility. These differences appear to be affected by psychological, physiological, cognitive, environmental, and technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider these disparities and the multiple factors that contribute to them.
Collapse
|
43
|
Greuel A, Pauls KAM, Koy A, Südmeyer M, Schnitzler A, Timmermann L, Fink GR, Eggers C. Pallidal Deep Brain Stimulation Reduces Sensorimotor Cortex Activation in Focal/Segmental Dystonia. Mov Disord 2020; 35:629-639. [DOI: 10.1002/mds.27970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrea Greuel
- Department of Neurology University Hospital of Giessen and Marburg Marburg Germany
| | - K. Amande M. Pauls
- Department of Neurology Helsinki University Central Hospital Helsinki Finland
- Department of Clinical Neurosciences (Neurology) University of Helsinki Helsinki Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anne Koy
- Department of Pediatrics Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
| | - Martin Südmeyer
- Department of Neurology Ernst‐von‐Bergmann Klinikum Potsdam Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Lars Timmermann
- Department of Neurology University Hospital of Giessen and Marburg Marburg Germany
- Center for Mind, Brain and Behavior Universities Marburg and Giessen Marburg Germany
| | - Gereon R. Fink
- Department of Neurology Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM‐3) Research Center Jülich Jülich Germany
| | - Carsten Eggers
- Department of Neurology University Hospital of Giessen and Marburg Marburg Germany
- Center for Mind, Brain and Behavior Universities Marburg and Giessen Marburg Germany
| |
Collapse
|
44
|
Briggs RG, Khan AB, Chakraborty AR, Abraham CJ, Anderson CD, Karas PJ, Bonney PA, Palejwala AH, Conner AK, O'Donoghue DL, Sughrue ME. Anatomy and White Matter Connections of the Superior Frontal Gyrus. Clin Anat 2019; 33:823-832. [DOI: 10.1002/ca.23523] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Robert G. Briggs
- Department of NeurosurgeryUniversity of Southern California California Los Angeles
| | - Abdul Basit Khan
- Department of NeurosurgeryBaylor College of Medicine Houston Texas
| | - Arpan R. Chakraborty
- Department of NeurosurgeryUniversity of Oklahoma Health Science Center Oklahoma City Oklahoma
| | - Carol J. Abraham
- Department of NeurosurgeryUniversity of Oklahoma Health Science Center Oklahoma City Oklahoma
| | - Christopher D. Anderson
- Department of NeurosurgeryUniversity of Oklahoma Health Science Center Oklahoma City Oklahoma
| | - Patrick J. Karas
- Department of NeurosurgeryBaylor College of Medicine Houston Texas
| | - Phillip A. Bonney
- Department of NeurosurgeryUniversity of Southern California California Los Angeles
| | - Ali H. Palejwala
- Department of NeurosurgeryUniversity of Oklahoma Health Science Center Oklahoma City Oklahoma
| | - Andrew K. Conner
- Department of NeurosurgeryUniversity of Oklahoma Health Science Center Oklahoma City Oklahoma
| | - Daniel L. O'Donoghue
- Department of Cell BiologyUniversity of Oklahoma Health Science Center Oklahoma City Oklahoma
| | - Michael E. Sughrue
- Center for Minimally Invasive NeurosurgeryPrince of Wales Private Hospital Sydney Australia
| |
Collapse
|
45
|
Brain activity during time to contact estimation: an EEG study. Cogn Neurodyn 2019; 14:155-168. [PMID: 32226559 DOI: 10.1007/s11571-019-09563-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/22/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Understanding the neural mechanisms associated with time to contact (TTC) estimation is an intriguing but challenging task. Despite the importance of TTC estimation in our everyday life, few studies have been conducted on it, and there are still a lot of unanswered questions and unknown aspects of this issue. In this study, we intended to address one of these unknown aspects. We used independent component analysis to systematically assess EEG substrates associated with TTC estimation using two experiments: (1) transversal motion experiment (when a moving object passes transversally in the frontoparallel plane from side to side in front of the observer), and (2) head-on motion experiment (when the observer is on the motion path of the moving object). We also studied the energy of all EEG sources in these two experiments. The results showed that brain regions involved in the transversal and head-on motion experiments were the same. However, the energy used by some brain regions in the head-on motion experiment, including some regions in left parietotemporal and left frontal lobes, was significantly higher than the energy used by those regions in the transversal motion experiment. These brain regions are dominantly associated with different kinds of visual attention, integration of visual information, and responding to visual motion.
Collapse
|
46
|
Hao L, Sheng Z, Ruijun W, Kun HZ, Peng Z, Yu H. Altered Granger causality connectivity within motor-related regions of patients with Parkinson's disease: a resting-state fMRI study. Neuroradiology 2019; 62:63-69. [PMID: 31773188 DOI: 10.1007/s00234-019-02311-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Although numerous clinical neuroimaging studies have demonstrated that there are functional abnormalities of motor-related regions in patients with Parkinson's disease (PD) by resting-state functional magnetic resonance imaging (fMRI), little studies have explored the causal interactions within these motor-related regions. The present study aimed to examine Granger causality connectivity patterns within motor-related regions in PD patients. METHODS Resting-state fMRI was conducted to investigate the causal connectivity differences within motor-related regions between 17 PD patients and 17 matched healthy controls. Subsequently, the relationship between the Unified Parkinson's Disease Rating Scale scores and causal connectivity values within motor-related regions was examined in PD patients. RESULTS An increased causal connectivity from the left premotor cortex (PMC) to right primary motor cortex (M1) was found in PD patients compared with that of healthy controls. Also, increased causal flow from the PMC to M1 was negatively correlated with motor scores. CONCLUSION PD patients have abnormal causal connectivity in specific motor-related regions, which may reflect a compensatory role of motor deficits in PD patients.
Collapse
Affiliation(s)
- Li Hao
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Zhao Sheng
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Wang Ruijun
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - He Zhi Kun
- CT Room, People's Hospital of Wu La Te Qian Qi, Bayan Nuo'er, 014400, Inner Mongolia, China
| | - Zhang Peng
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Hong Yu
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
47
|
Wilkins KB, Yao J. Coordination of multiple joints increases bilateral connectivity with ipsilateral sensorimotor cortices. Neuroimage 2019; 207:116344. [PMID: 31730924 PMCID: PMC7192312 DOI: 10.1016/j.neuroimage.2019.116344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Although most activities of daily life require simultaneous coordination of both proximal and distal joints, motor preparation during such movements has not been well studied. Previous results for motor preparation have focused on hand/finger movements. For simple hand/finger movements, results have found that such movements typically evoke activity primarily in the contralateral motor cortices. However, increasing the complexity of the finger movements, such as during a distal sequential finger-pressing task, leads to additional recruitment of ipsilateral resources. It has been suggested that this involvement of the ipsilateral hemisphere is critical for temporal coordination of distal joints. The goal of the current study was to examine whether increasing simultaneous coordination of multiple joints (both proximal and distal) leads to a similar increase in coupling with ipsilateral sensorimotor cortices during motor preparation compared to a simple distal movement such as hand opening. To test this possibility, 12 healthy individuals participated in a high-density EEG experiment in which they performed either hand opening or simultaneous hand opening while lifting at the shoulder on a robotic device. We quantified within- and cross-frequency cortical coupling across the sensorimotor cortex for the two tasks using dynamic causal modeling. Both hand opening and simultaneous hand opening while lifting at the shoulder elicited coupling from secondary motor areas to primary motor cortex within the contralateral hemisphere exclusively in the beta band, as well as from ipsilateral primary motor cortex. However, increasing the task complexity by combining hand opening while lifting at the shoulder also led to an increase in cross-frequency coupling within the ipsilateral hemisphere including theta, beta, and gamma frequencies, as well as a change in the coupling frequency of the interhemispheric coupling between the primary motor and premotor cortices. These findings demonstrate that increasing the demand of joint coordination between proximal and distal joints leads to increases in communication with the ipsilateral hemisphere as previously observed in distal sequential finger tasks.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA; Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA.
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA; Northwestern University Interdepartmental Neuroscience, Northwestern University, 320 E. Superior St, Chicago, IL, 60611, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
48
|
Wang S, Mamelak AN, Adolphs R, Rutishauser U. Abstract goal representation in visual search by neurons in the human pre-supplementary motor area. Brain 2019; 142:3530-3549. [PMID: 31549164 PMCID: PMC6821249 DOI: 10.1093/brain/awz279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023] Open
Abstract
The medial frontal cortex is important for goal-directed behaviours such as visual search. The pre-supplementary motor area (pre-SMA) plays a critical role in linking higher-level goals to actions, but little is known about the responses of individual cells in this area in humans. Pre-SMA dysfunction is thought to be a critical factor in the cognitive deficits that are observed in diseases such as Parkinson's disease and schizophrenia, making it important to develop a better mechanistic understanding of the pre-SMA's role in cognition. We simultaneously recorded single neurons in the human pre-SMA and eye movements while subjects performed goal-directed visual search tasks. We characterized two groups of neurons in the pre-SMA. First, 40% of neurons changed their firing rate whenever a fixation landed on the search target. These neurons responded to targets in an abstract manner across several conditions and tasks. Responses were invariant to motor output (i.e. button press or not), and to different ways of defining the search target (by instruction or pop-out). Second, ∼50% of neurons changed their response as a function of fixation order. Together, our results show that human pre-SMA neurons carry abstract signals during visual search that indicate whether a goal was reached in an action- and cue-independent manner. This suggests that the pre-SMA contributes to goal-directed behaviour by flexibly signalling goal detection and time elapsed since start of the search, and this process occurs regardless of task. These observations provide insights into how pre-SMA dysfunction might impact cognitive function.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemical and Biomedical Engineering, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ralph Adolphs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ueli Rutishauser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
49
|
Véron-Delor L, Pinto S, Eusebio A, Azulay JP, Witjas T, Velay JL, Danna J. Musical sonification improves motor control in Parkinson's disease: a proof of concept with handwriting. Ann N Y Acad Sci 2019; 1465:132-145. [PMID: 31599463 DOI: 10.1111/nyas.14252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
A growing number of studies postulate the use of music to improve motor control in patients with Parkinson's disease (PD). The effects of music are greatly variable from one individual to the other and do not always reach the expected benefits. This study aimed to optimize the use of music in the management of movement disorders inherent to PD in a handwriting task. We developed and tested musical sonification (MS), a method that transforms in real-time kinematic variables into music. Twelve patients with PD, on medication, and 12 healthy controls were recruited in a pretest/training/posttest design experiment. Three training sessions were compared, for which participants were asked to produce graphomotor exercises: one session with music (unrelated to handwriting), one with MS (controlled by handwriting), and one in silence. Results showed that the performance in training was better under MS than under silence or background music, for both groups. After training, the benefits of MS were still present for both groups, with a higher effect for PD patients than for control group. Our results provide a proof of concept to consider MS as a relevant auditory guidance strategy for movement rehabilitation in patients with PD.
Collapse
Affiliation(s)
- Lauriane Véron-Delor
- CNRS, LNC, Aix-Marseille Université, Marseille, France.,CNRS, LPL, Aix-Marseille Université, Aix-en-Provence, France
| | - Serge Pinto
- CNRS, LPL, Aix-Marseille Université, Aix-en-Provence, France
| | - Alexandre Eusebio
- CNRS, Institut de Neurosciences de La Timone, Aix-Marseille Université, Marseille, France.,Hôpital La Timone, Service de Neurologie et pathologie du mouvement, APHM, Marseille, France
| | - Jean-Philippe Azulay
- CNRS, LNC, Aix-Marseille Université, Marseille, France.,Hôpital La Timone, Service de Neurologie et pathologie du mouvement, APHM, Marseille, France
| | - Tatiana Witjas
- CNRS, Institut de Neurosciences de La Timone, Aix-Marseille Université, Marseille, France.,Hôpital La Timone, Service de Neurologie et pathologie du mouvement, APHM, Marseille, France
| | | | - Jérémy Danna
- CNRS, LNC, Aix-Marseille Université, Marseille, France
| |
Collapse
|
50
|
Zapparoli L, Macerollo A, Joyce EM, Martino D, Kilner JM. Voluntary tic suppression and the normalization of motor cortical beta power in Gilles de la Tourette syndrome: an
EEG
study. Eur J Neurosci 2019; 50:3944-3957. [DOI: 10.1111/ejn.14548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Antonella Macerollo
- School of Psychology Faculty of Health and Life Sciences University of Liverpool Liverpool UK
- The Walton Centre NHS Foundation Trust Fazakerley UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neurosciences UCL Institute of Neurology London UK
| | - Davide Martino
- Department of Clinical Neurosciences University of Calgary Calgary Canada
- Hotchkiss Brain Institute University of Calgary Calgary Canada
| | - James M. Kilner
- Department of Clinical and Movement Neurosciences UCL Institute of Neurology London UK
| |
Collapse
|