1
|
Monreal E, Fernández-Velasco JI, Álvarez-Lafuente R, Sainz de la Maza S, García-Sánchez MI, Llufriu S, Casanova B, Comabella M, Martínez-Yélamos S, Galimberti D, Ramió-Torrentà L, Martínez-Ginés ML, Aladro Y, Ayuso L, Martínez-Rodríguez JE, Brieva L, Villarrubia N, Eichau S, Zamora J, Rodero-Romero A, Espiño M, Blanco Y, Saiz A, Montalbán X, Tintoré M, Domínguez-Mozo MI, Cuello JP, Romero-Pinel L, Ghezzi L, Pilo de la Fuente B, Pérez-Miralles F, Quiroga-Varela A, Rubio L, Rodríguez-Jorge F, Chico-García JL, Sainz-Amo R, Masjuan J, Costa-Frossard L, Villar LM. Serum biomarkers at disease onset for personalized therapy in multiple sclerosis. Brain 2024; 147:4084-4093. [PMID: 39101570 DOI: 10.1093/brain/awae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 08/06/2024] Open
Abstract
The potential for combining serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels to predict worsening disability in multiple sclerosis remains underexplored. We aimed to investigate whether sNfL and sGFAP values identify distinct subgroups of patients according to the risk of disability worsening and their response to disease-modifying treatments (DMTs). This multicentre study, conducted across 13 European hospitals, spanned from 15 July 1994 to 18 August 2022, with follow-up until 26 September 2023. We enrolled patients with multiple sclerosis who had serum samples collected within 12 months from disease onset and before initiating DMTs. Multivariable regression models were used to estimate the risk of relapse-associated worsening (RAW), progression independent of relapse activity (PIRA) and Expanded Disability Status Scale (EDSS) score of 3. Of the 725 patients included, the median age was 34.2 (interquartile range, 27.6-42.4) years, and 509 patients (70.2%) were female. The median follow-up duration was 6.43 (interquartile range, 4.65-9.81) years. Higher sNfL values were associated with an elevated risk of RAW [hazard ratio (HR) of 1.45; 95% confidence interval (CI) 1.19-1.76; P < 0.001], PIRA (HR of 1.43; 95% CI 1.13-1.81; P = 0.003) and reaching an EDSS of 3 (HR of 1.55; 95% CI 1.29-1.85; P < 0.001). Moreover, higher sGFAP levels were linked to a higher risk of achieving an EDSS score of 3 (HR of 1.36; 95% CI 1.06-1.74; P = 0.02) and, in patients with low sNfL values, to PIRA (HR of 1.86; 95% CI 1.01-3.45; P = 0.04). We also examined the combined effect of sNfL and sGFAP levels. Patients with low sNfL and sGFAP values exhibited a low risk of all outcomes and served as a reference. Untreated patients with high sNfL levels showed a higher risk of RAW, PIRA and reaching an EDSS of 3. Injectable or oral DMTs reduced the risk of RAW in these patients but failed to mitigate the risk of PIRA and reaching an EDSS of 3. Conversely, high-efficacy DMTs counteracted the heightened risk of these outcomes, except for the risk of PIRA in patients with high sNfL and sGFAP levels. Patients with low sNfL and high sGFAP values showed an increased risk of PIRA and achieving an EDSS of 3, which remained unchanged with either high-efficacy or other DMTs. In conclusion, evaluating sNfL and sGFAP levels at disease onset in multiple sclerosis might identify distinct phenotypes associated with diverse immunological pathways of disability acquisition and therapeutic response.
Collapse
Affiliation(s)
- Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - José Ignacio Fernández-Velasco
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo Investigación de factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Susana Sainz de la Maza
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - María Isabel García-Sánchez
- Nodo Biobanco Hospital Virgen Macarena (Biobanco del Sistema Sanitario Público de Andalucía), Hospital Universitario Virgen Macarena, 41013 Seville, Spain
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Bonaventura Casanova
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, 46026 Valencia, Spain
| | - Manuel Comabella
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Department of Neurology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20126 Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, 17001, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, 17001, Catalonia, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17001 Girona, Spain
| | | | - Yolanda Aladro
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Lucía Ayuso
- Department of Neurology, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Spain
| | | | - Luis Brieva
- Hospital Arnau de Vilanova de Lleida, UdL Medicine Department, IRBLLEIDA, 25198 Lleida, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Sara Eichau
- Multiple Sclerosis Unit, Hospital Virgen Macarena, 41013 Sevilla, Spain
| | - Javier Zamora
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Unidad de Bioestadística Clínica, Hospital Ramón y Cajal, 28034 Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28034 Madrid, Spain
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexander Rodero-Romero
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Mercedes Espiño
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Yolanda Blanco
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Albert Saiz
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Xavier Montalbán
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - María Inmaculada Domínguez-Mozo
- Grupo Investigación de factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Juan Pablo Cuello
- Department of Neurology, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Lucía Romero-Pinel
- Department of Neurology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20126 Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Belén Pilo de la Fuente
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Francisco Pérez-Miralles
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, 46026 Valencia, Spain
| | - Ana Quiroga-Varela
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, 17001, Girona, Spain
| | - Lluïsa Rubio
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Fernando Rodríguez-Jorge
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Juan Luís Chico-García
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Raquel Sainz-Amo
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Luisa M Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| |
Collapse
|
2
|
Montalban X, Vermersch P, Arnold DL, Bar-Or A, Cree BAC, Cross AH, Kubala Havrdova E, Kappos L, Stuve O, Wiendl H, Wolinsky JS, Dahlke F, Le Bolay C, Shen Loo L, Gopalakrishnan S, Hyvert Y, Javor A, Guehring H, Tenenbaum N, Tomic D. Safety and efficacy of evobrutinib in relapsing multiple sclerosis (evolutionRMS1 and evolutionRMS2): two multicentre, randomised, double-blind, active-controlled, phase 3 trials. Lancet Neurol 2024; 23:1119-1132. [PMID: 39307151 DOI: 10.1016/s1474-4422(24)00328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Evobrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, has shown preliminary efficacy in people with relapsing multiple sclerosis in a phase 2 trial. Here, we aimed to compare the safety and efficacy of evobrutinib with the active comparator teriflunomide in people with relapsing multiple sclerosis. METHODS EvolutionRMS1 and evolutionRMS2 were two multicentre, randomised, double-blind, double-dummy, active-controlled, phase 3 trials conducted at 701 multiple sclerosis centres and neurology clinics in 52 countries. Adults aged 18-55 years with relapsing multiple sclerosis (Expanded Disability Status Scale [EDSS] score of 0·0-5·5) were included. Participants were randomly assigned (1:1) using a central interactive web response system to receive either evobrutinib (45 mg twice per day with placebo once per day) or teriflunomide (14 mg once per day with placebo twice per day), all taken orally and in an unfasted state, with randomisation stratified by geographical region and baseline EDSS. All study staff and participants were masked to the study interventions. The primary endpoint for each study was annualised relapse rate based on adjudicated qualified relapses up to 156 weeks, assessed in the full analysis set (defined as all randomly assigned participants) with a negative binomial model. These studies are registered with ClinicalTrials.gov (NCT04338022 for evolutionRMS1 and NCT04338061 for evolutionRMS2, both are terminated). FINDINGS The primary analysis was done using data for 2290 randomly assigned participants collected from June 12, 2020, to Oct 2, 2023. 1124 participants were included in the full analysis set in evolutionRMS1 (560 in the evobrutinib group and 564 in the teriflunomide group) and 1166 in evolutionRMS2 (583 in each group). 751 (66·8%) participants were female and 373 (33·1%) were male in evolutionRMS1, whereas 783 (67·2%) were female and 383 (32·8%) were male in evolutionRMS2. Annualised relapse rate was 0·15 (95% CI 0·12-0·18 with evobrutinib vs 0·14 [0·11-0·18] with teriflunomide (adjusted RR 1·02 [0·75-1·39]; p=0·55) in evolutionRMS1 and 0·11 (0·09-0·13 vs 0·11 [0·09-0·13]; adjusted RR 1·00 [0·74-1·35]; p=0·51) in evolutionRMS2. The pooled proportion of participants with any treatment-emergent adverse event (TEAE) was similar between treatment groups (976 [85·6%] of 1140 with evobrutinib vs 999 [87·2%] of 1146 with teriflunomide). The most frequently reported TEAEs were COVID-19 (223 [19·6%] with evobrutinib vs 223 [19·5%] with teriflunomide), alanine aminotransferase increased (173 [15·2%] vs 204 [17·8%]), aspartate aminotransferase increased (110 [9·6%] vs 131 [11·4%]), and headache (175 [15·4%] vs 176 [15·4%]). Serious TEAE incidence rates were higher with evobrutinib than teriflunomide (86 [7·5%] vs 64 [5·6%]). Liver enzyme elevations at least 5 × upper limit of normal were more common with evobrutinib than with teriflunomide, particularly in the first 12 weeks (55 [5·0%] vs nine [<1%]). Three people who received evobrutinib and one who received teriflunomide met the biochemical definition of Hy's law; all cases resolved after discontinuation of treatment. There were two deaths (one in each group), neither related to study treatment. INTERPRETATION The efficacy of evobrutinib was not superior to that of teriflunomide. Together, efficacy and liver-related safety findings do not support the use of evobrutinib in people with relapsing multiple sclerosis. FUNDING Merck.
Collapse
Affiliation(s)
- Xavier Montalban
- Department of Neurology, Centre d'Esclerosi Múltiple de Catalunya, Hospital Universitario Vall d'Hebron, Barcelona, Spain.
| | - Patrick Vermersch
- University Lille, Inserm U1172 LilNCog, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada; Montreal Neurological Institute, Montreal, QC, Canada
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne H Cross
- Section of Multiple Sclerosis and Neuroimmunology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Ludwig Kappos
- Departments of Headorgans, Spine and Neuromedicine, Clinical Research, and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital, Münster, Germany
| | - Jerry S Wolinsky
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | | | | | - Li Shen Loo
- EMD Serono, an affiliate of Merck KGaA, Billerica, MA, USA
| | | | | | - Andrija Javor
- Ares Trading, an affiliate of Merck KGaA, Eysins, Switzerland
| | | | | | - Davorka Tomic
- Ares Trading, an affiliate of Merck KGaA, Eysins, Switzerland
| |
Collapse
|
3
|
Gadani SP, Singh S, Kim S, Hu J, Smith MD, Calabresi PA, Bhargava P. Spatial transcriptomics of meningeal inflammation reveals inflammatory gene signatures in adjacent brain parenchyma. eLife 2024; 12:RP88414. [PMID: 39475792 PMCID: PMC11524578 DOI: 10.7554/elife.88414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
While modern high efficacy disease modifying therapies have revolutionized the treatment of relapsing-remitting multiple sclerosis, they are less effective at controlling progressive forms of the disease. Meningeal inflammation is a recognized risk factor for cortical gray matter pathology which can result in disabling symptoms such as cognitive impairment and depression, but the mechanisms linking meningeal inflammation and gray matter pathology remain unclear. Here, we performed magnetic resonance imaging (MRI)-guided spatial transcriptomics in a mouse model of autoimmune meningeal inflammation to characterize the transcriptional signature in areas of meningeal inflammation and the underlying brain parenchyma. We found broadly increased activity of inflammatory signaling pathways at sites of meningeal inflammation, but only a subset of these pathways active in the adjacent brain parenchyma. Subclustering of regions adjacent to meningeal inflammation revealed the subset of immune programs induced in brain parenchyma, notably complement signaling and antigen processing/presentation. Trajectory gene and gene set modeling analysis confirmed variable penetration of immune signatures originating from meningeal inflammation into the adjacent brain tissue. This work contributes a valuable data resource to the field, provides the first detailed spatial transcriptomic characterization in a model of meningeal inflammation, and highlights several candidate pathways in the pathogenesis of gray matter pathology.
Collapse
Affiliation(s)
- Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, University of PittsburghPittsburghUnited States
| | - Saumitra Singh
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sophia Kim
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jingwen Hu
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew D Smith
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Solomon Snyder, Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pavan Bhargava
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Jiang Q, Peng Y, Herling CD, Herling M. The Immunomodulatory Mechanisms of BTK Inhibition in CLL and Beyond. Cancers (Basel) 2024; 16:3574. [PMID: 39518015 PMCID: PMC11545099 DOI: 10.3390/cancers16213574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a cytoplasmic tyrosine kinase, plays a pivotal role in B cell biology and function. As an essential component of the B cell receptor (BCR) signaling pathway, BTK is expressed not only in B cells but also in myeloid cells, including monocytes/macrophages, dendritic cells, neutrophils, and mast cells. BTK inhibitors (BTKis) have revolutionized the treatment of chronic lymphocytic leukemia (CLL) and other B cell malignancies. Besides their well-characterized role in inhibiting BCR signaling, BTKis also exert significant immunological influences outside the tumor cell that extend their therapeutic potential and impact on the immune system in different ways. This work elucidates the immunomodulatory mechanisms associated with BTK inhibition, focusing on CLL and other clinical contexts. We discuss how BTK inhibition affects various immune cells, including B cells, T cells, and macrophages. The effects of BTKis on the profiles of cytokines, also fundamental parts of the tumor microenvironment (TME), are summarized here as well. This review also appraises the implications of these immunomodulatory actions in the management of autoimmune diseases and infections. Summarizing the dual role of BTK inhibition in modulating malignant lymphocyte and immune cell functions, this paper highlights the broader potential clinical use of compounds targeting BTK.
Collapse
Affiliation(s)
- Qu Jiang
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| | - Yayi Peng
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| | - Carmen Diana Herling
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| | - Marco Herling
- Department for Hematology, Cell Therapy, Hemostaseology, and Infectious Diseases, University Hospital of Leipzig, 04103 Leipzig, Germany; (Y.P.); (C.D.H.); (M.H.)
- Cancer Center Central Germany (CCCG), Leipzig-Jena, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 PMCID: PMC11520187 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
6
|
Benoit RY, Zagrodnik JL, Carew SJ, Moore CS. Bruton Tyrosine Kinase Inhibition Decreases Inflammation and Differentially Impacts Phagocytosis and Cellular Metabolism in Mouse- and Human-derived Myeloid Cells. Immunohorizons 2024; 8:652-667. [PMID: 39259208 PMCID: PMC11447691 DOI: 10.4049/immunohorizons.2400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Bruton tyrosine kinase (BTK) is a kinase expressed by various immune cells and is often activated under proinflammatory states. Although the majority of BTK-related research has historically focused on B cells, understanding the role of BTK in non-B cell populations is critical given myeloid cells also express BTK at comparable levels. In this study, we investigated and compared how BTK inhibition in human and murine myeloid cells alters cell phenotype and function. All experiments were performed using two BTK inhibitors (evobrutinib and tolebrutinib) that are currently in late-stage clinical trials for the treatment of multiple sclerosis. Assays were performed to assess the impact of BTK inhibition on cytokine and microRNA expression, phagocytic capacity, and cellular metabolism. In all cells, both evobrutinib and tolebrutinib significantly decreased phosphorylated BTK and LPS-induced cytokine release. BTK inhibition also significantly decreased the oxygen consumption rate and extracellular acidification rate in myeloid cells, and significantly decreased phagocytosis in murine-derived cells, but not human macrophages. To further elucidate the mechanism, we also investigated the expression of microRNAs known to impact the function of myeloid cells. BTK inhibition resulted in an altered microRNA expression profile (i.e., decreased miR-155-5p and increased miR-223-3p), which is consistent with a decreased proinflammatory myeloid cell phenotype. In summary, these results provide further insights into the mechanism of action of BTK inhibitors in the context of immune-related diseases, while also highlighting important species-specific and cell-specific differences that should be considered when interpreting and comparing results between preclinical and human studies.
Collapse
Affiliation(s)
- Rochelle Y. Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jennifer L. Zagrodnik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Samantha J. Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Craig S. Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
7
|
Mahmoudi N, Wattjes MP. Treatment Monitoring in Multiple Sclerosis - Efficacy and Safety. Neuroimaging Clin N Am 2024; 34:439-452. [PMID: 38942526 DOI: 10.1016/j.nic.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Magnetic resonance imaging is the most sensitive method for detecting inflammatory activity in multiple sclerosis, particularly in the brain where it reveals subclinical inflammation. Established MRI markers include contrast-enhancing lesions and active T2 lesions. Recent promising markers like slowly expanding lesions and phase rim lesions are being explored for monitoring chronic inflammation, but require further validation for clinical use. Volumetric and quantitative MRI techniques are currently limited to clinical trials and are not yet recommended for routine clinical use. Additionally, MRI is crucial for detecting complications from disease-modifying treatments and for implementing MRI-based pharmacovigilance strategies, such as in patients treated with natalizumab.
Collapse
Affiliation(s)
- Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Mike P Wattjes
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Harrison DM, Allette YM, Zeng Y, Cohen A, Dahal S, Choi S, Zhuo J, Hua J. Meningeal contrast enhancement in multiple sclerosis: Assessment of field strength, acquisition delay, and clinical relevance. PLoS One 2024; 19:e0300298. [PMID: 38809920 PMCID: PMC11135724 DOI: 10.1371/journal.pone.0300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND/PURPOSE Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report an assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). METHODS This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). RESULTS LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). CONCLUSION 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.
Collapse
Affiliation(s)
- Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, United States of America
| | - Yohance M. Allette
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, United States of America
- Department of Neurology, Penn State University–Hershey School of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuxin Zeng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amanda Cohen
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Oh J, Giacomini PS, Yong VW, Costello F, Blanchette F, Freedman MS. From progression to progress: The future of multiple sclerosis. J Cent Nerv Syst Dis 2024; 16:11795735241249693. [PMID: 38711957 PMCID: PMC11072059 DOI: 10.1177/11795735241249693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Significant advances have been made in the diagnosis and treatment of multiple sclerosis in recent years yet challenges remain. The current classification of MS phenotypes according to disease activity and progression, for example, does not adequately reflect the underlying pathophysiological mechanisms that may be acting in an individual with MS at different time points. Thus, there is a need for clinicians to transition to a management approach based on the underlying pathophysiological mechanisms that drive disability in MS. A Canadian expert panel convened in January 2023 to discuss priorities for clinical discovery and scientific exploration that would help advance the field. Five key areas of focus included: identifying a mechanism-based disease classification system; developing biomarkers (imaging, fluid, digital) to identify pathologic processes; implementing a data-driven approach to integrate genetic/environmental risk factors, clinical findings, imaging and biomarker data, and patient-reported outcomes to better characterize the many factors associated with disability progression; utilizing precision-based treatment strategies to target different disease processes; and potentially preventing disease through Epstein-Barr virus (EBV) vaccination, counselling about environmental risk factors (e.g. obesity, exercise, vitamin D/sun exposure, smoking) and other measures. Many of the tools needed to meet these needs are currently available. Further work is required to validate emerging biomarkers and tailor treatment strategies to the needs of individual patients. The hope is that a more complete view of the individual's pathobiology will enable clinicians to usher in an era of truly personalized medicine, in which more informed treatment decisions throughout the disease course achieve better long-term outcomes.
Collapse
Affiliation(s)
- Jiwon Oh
- St. Michael’s Hospital, Toronto, ON, Canada
| | | | - V. Wee Yong
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | - Fiona Costello
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | | | - Mark S. Freedman
- Department of Medicine¸ University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, Ottawa, QC, Canada
| |
Collapse
|
10
|
Airas L, Bermel RA, Chitnis T, Hartung HP, Nakahara J, Stuve O, Williams MJ, Kieseier BC, Wiendl H. A review of Bruton's tyrosine kinase inhibitors in multiple sclerosis. Ther Adv Neurol Disord 2024; 17:17562864241233041. [PMID: 38638671 PMCID: PMC11025433 DOI: 10.1177/17562864241233041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/29/2024] [Indexed: 04/20/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors are an emerging class of therapeutics in multiple sclerosis (MS). BTK is expressed in B-cells and myeloid cells, key progenitors of which include dendritic cells, microglia and macrophages, integral effectors of MS pathogenesis, along with mast cells, establishing the relevance of BTK inhibitors to diverse autoimmune conditions. First-generation BTK inhibitors are currently utilized in the treatment of B-cell malignancies and show efficacy in B-cell modulation. B-cell depleting therapies have shown success as disease-modifying treatments (DMTs) in MS, highlighting the potential of BTK inhibitors for this indication; however, first-generation BTK inhibitors exhibit a challenging safety profile that is unsuitable for chronic use, as required for MS DMTs. A second generation of highly selective BTK inhibitors has shown efficacy in modulating MS-relevant mechanisms of pathogenesis in preclinical as well as clinical studies. Six of these BTK inhibitors are undergoing clinical development for MS, three of which are also under investigation for chronic spontaneous urticaria (CSU), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Phase II trials of selected BTK inhibitors for MS showed reductions in new gadolinium-enhancing lesions on magnetic resonance imaging scans; however, the safety profile is yet to be ascertained in chronic use. Understanding of the safety profile is developing by combining safety insights from the ongoing phase II and III trials of second-generation BTK inhibitors for MS, CSU, RA and SLE. This narrative review investigates the potential of BTK inhibitors as an MS DMT, the improved selectivity of second-generation inhibitors, comparative safety insights established thus far through clinical development programmes and proposed implications in female reproductive health and in long-term administration.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Robert A. Bermel
- Mellen Center for MS, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Harvard Medical School, Boston, MA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Bernd C. Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Novartis Pharma AG, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A 1, Muenster 48149, Germany
| |
Collapse
|
11
|
Harrison DM, Allette YM, Zeng Y, Cohen A, Dahal S, Choi S, Zhuo J, Hua J. Meningeal contrast enhancement in multiple sclerosis: assessment of field strength, acquisition delay, and clinical relevance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303491. [PMID: 38496664 PMCID: PMC10942534 DOI: 10.1101/2024.03.04.24303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background/Purpose Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report a comprehensive assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). Methods This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). Results LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). Conclusion 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.
Collapse
Affiliation(s)
- Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
| | - Yohance M. Allette
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
- Department of Neurology, Penn State University – Hershey School of Medicine, Hershey, Pennsylvania, USA
| | - Yuxin Zeng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amanda Cohen
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wang AA, Luessi F, Neziraj T, Pössnecker E, Zuo M, Engel S, Hanuscheck N, Florescu A, Bugbee E, Ma XI, Rana F, Lee D, Ward LA, Kuhle J, Himbert J, Schraad M, van Puijenbroek E, Klein C, Urich E, Ramaglia V, Pröbstel AK, Zipp F, Gommerman JL. B cell depletion with anti-CD20 promotes neuroprotection in a BAFF-dependent manner in mice and humans. Sci Transl Med 2024; 16:eadi0295. [PMID: 38446903 DOI: 10.1126/scitranslmed.adi0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sinah Engel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Alexandra Florescu
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Eryn Bugbee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xianjie I Ma
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fatima Rana
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jens Kuhle
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Johannes Himbert
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, 8952 Schlieren, Switzerland
| | - Eduard Urich
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4052 Basel, Switzerland
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, 4031 Basel, Switzerland
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
13
|
Okar SV, Dieckhaus H, Beck ES, Gaitán MI, Norato G, Pham DL, Absinta M, Cortese IC, Fletcher A, Jacobson S, Nair G, Reich DS. Highly Sensitive 3-Tesla Real Inversion Recovery MRI Detects Leptomeningeal Contrast Enhancement in Chronic Active Multiple Sclerosis. Invest Radiol 2024; 59:243-251. [PMID: 37493285 PMCID: PMC10818009 DOI: 10.1097/rli.0000000000001011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Leptomeningeal contrast enhancement (LME) on T2-weighted Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI is a reported marker of leptomeningeal inflammation, which is known to be associated with progression of multiple sclerosis (MS). However, this MRI approach, as typically implemented on clinical 3-tesla (T) systems, detects only a few enhancing foci in ~25% of patients and has thus been criticized as poorly sensitive. PURPOSE To compare an optimized 3D real-reconstruction inversion recovery (Real-IR) MRI sequence on a clinical 3 T scanner to T2-FLAIR for prevalence, characteristics, and clinical/radiological correlations of LME. MATERIALS AND METHODS We obtained 3D T2-FLAIR and Real-IR scans before and after administration of standard-dose gadobutrol in 177 scans of 154 participants (98 women, 64%; mean ± SD age: 49 ± 12 years), including 124 with an MS-spectrum diagnosis, 21 with other neurological and/or inflammatory disorders, and 9 without neurological history. We calculated contrast-to-noise ratios (CNR) in 20 representative LME foci and determined association of LME with cortical lesions identified at 7 T (n = 19), paramagnetic rim lesions (PRL) at 3 T (n = 105), and clinical/demographic data. RESULTS We observed focal LME in 73% of participants on Real-IR (70% in established MS, 33% in healthy volunteers, P < 0.0001), compared to 33% on T2-FLAIR (34% vs. 11%, P = 0.0002). Real-IR showed 3.7-fold more LME foci than T2-FLAIR ( P = 0.001), including all T2-FLAIR foci. LME CNR was 2.5-fold higher by Real-IR ( P < 0.0001). The major determinant of LME status was age. Although LME was not associated with cortical lesions, the number of PRL was associated with the number of LME foci on both T2-FLAIR ( P = 0.003) and Real-IR ( P = 0.0003) after adjusting for age, sex, and white matter lesion volume. CONCLUSIONS Real-IR a promising tool to detect, characterize, and understand the significance of LME in MS. The association between PRL and LME highlights a possible role of the leptomeninges in sustaining chronic inflammation.
Collapse
Affiliation(s)
- Serhat Vahip Okar
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA (S.V.O., E.S.B., M.I.G., M.A., D.S.R.); qMRI Core facility, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA (H.D., G.N.); Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA (E.S.B.); Office of Biostatistics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA (G.N.); Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA (D.L.P.); Division of Neuroscience, Vita-Salute San Raffaele University and Hospital, Milan, Italy (M.A.); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA (M.A.); Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA (I.C.M.C.); Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA (A.F.); and Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD20814, USA (S.J.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hoffmann O, Gold R, Meuth SG, Linker RA, Skripuletz T, Wiendl H, Wattjes MP. Prognostic relevance of MRI in early relapsing multiple sclerosis: ready to guide treatment decision making? Ther Adv Neurol Disord 2024; 17:17562864241229325. [PMID: 38332854 PMCID: PMC10851744 DOI: 10.1177/17562864241229325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Magnetic resonance imaging (MRI) of the brain and spinal cord plays a crucial role in the diagnosis and monitoring of multiple sclerosis (MS). There is conclusive evidence that brain and spinal cord MRI findings in early disease stages also provide relevant insight into individual prognosis. This includes prediction of disease activity and disease progression, the accumulation of long-term disability and the conversion to secondary progressive MS. The extent to which these MRI findings should influence treatment decisions remains a subject of ongoing discussion. The aim of this review is to present and discuss the current knowledge and scientific evidence regarding the utility of MRI at early MS disease stages for prognostic classification of individual patients. In addition, we discuss the current evidence regarding the use of MRI in order to predict treatment response. Finally, we propose a potential approach as to how MRI data may be categorized and integrated into early clinical decision making.
Collapse
Affiliation(s)
- Olaf Hoffmann
- Department of Neurology, Alexianer St. Josefs-Krankenhaus Potsdam, Allee nach Sanssouci 7, 14471 Potsdam, Germany; Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Ralf A. Linker
- Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Mike P. Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Jakimovski D, Bittner S, Zivadinov R, Morrow SA, Benedict RH, Zipp F, Weinstock-Guttman B. Multiple sclerosis. Lancet 2024; 403:183-202. [PMID: 37949093 DOI: 10.1016/s0140-6736(23)01473-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis remains one of the most common causes of neurological disability in the young adult population (aged 18-40 years). Novel pathophysiological findings underline the importance of the interaction between genetics and environment. Improvements in diagnostic criteria, harmonised guidelines for MRI, and globalised treatment recommendations have led to more accurate diagnosis and an earlier start of effective immunomodulatory treatment than previously. Understanding and capturing the long prodromal multiple sclerosis period would further improve diagnostic abilities and thus treatment initiation, eventually improving long-term disease outcomes. The large portfolio of currently available medications paved the way for personalised therapeutic strategies that will balance safety and effectiveness. Incorporation of cognitive interventions, lifestyle recommendations, and management of non-neurological comorbidities could further improve quality of life and outcomes. Future challenges include the development of medications that successfully target the neurodegenerative aspect of the disease and creation of sensitive imaging and fluid biomarkers that can effectively predict and monitor disease changes.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Hb Benedict
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
16
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, Bertalan G, Meyer T, Tzschätzsch H, Kühl AA, Boehm-Sturm P, Braun J, Scheel M, Paul F, Infante-Duarte C, Sack I. Cortical matrix remodeling as a hallmark of relapsing-remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathol 2024; 147:8. [PMID: 38175305 PMCID: PMC10766667 DOI: 10.1007/s00401-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.
Collapse
Affiliation(s)
- Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Clara S Batzdorf
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gergely Bertalan
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin Corporate, Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Dahal S, Allette YM, Naunton K, Harrison DM. A pilot trial of ocrelizumab for modulation of meningeal enhancement in multiple sclerosis. Mult Scler Relat Disord 2024; 81:105344. [PMID: 38035495 PMCID: PMC10843730 DOI: 10.1016/j.msard.2023.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autopsy data suggests that meningeal inflammation in multiple sclerosis (MS) is driven by CD20+ B-cells. Ocrelizumab is an anti-CD20 monoclonal antibody, and thus could potentially ameliorate meningeal inflammation in MS. Leptomeningeal enhancement (LME) on MRI is suggested as a surrogate biomarker of meningeal inflammation in MS, and thus may be a way of monitoring for this treatment effect. OBJECTIVES To determine if ocrelizumab impacts meningeal enhancement (ME) on 7T MRI in MS. METHODS Twenty-two patients with MS started on ocrelizumab by their treating physician were enrolled into this single-center, open-label, prospective trial. Participants underwent 7T MRI of the brain prior to first infusion, with screening for the presence of LME. Fourteen patients (48 ± 11 years; 11 women) had LME on the baseline scan and were invited to return for an additional 7T MRI after 1 year of treatment. Fourteen MS patients (49 ± 10 years; 11 women) on non-CD20 treatment from a separate observational cohort of annual 7T MRIs were used for comparison - matched for LME at baseline, age, and sex. Post-contrast FLAIR and subtraction images were reviewed for LME and paravascular and dural enhancement (PDE). RESULTS All subjects in the ocrelizumab and comparison groups had LME and PDE on their baseline scan. At the beginning of the study the mean number of foci of LME and PDE in the study group were 2.3 ± 1.7 and 6.6 ± 3.9 respectively. Mean LME and PDE count for the comparison group were 1.7 ± 1.5 and 7.8 ± 5.5. Mean volume of LME in the study group was 50.5 mm3 ± 65.0 mm3 and that of the PDE was 866 mm3 ± 937.9. Mean volume of LME and PDE for comparison group were 28.4 mm3 ± 36.0 and 885 mm3 ± 947.7 respectively. At follow-up, the number of patients with LME decreased to 8 (57 %) in both groups, whereas the proportion of patients with PDE was unchanged. Minimal mean change in the number of LME after 1 year were seen in both the study group (0.07 ± 2.9, p = 0.97) and comparison group (-0.71 ± 1.5, p = 0.08). Minimal mean change was seen in the volume of LME in both the study group (-21.91 mm3 ± 77.66, p = 0.27) and comparison group (3.4 mm3 ± 32.11, p = 0.77). There was minimal change in the mean number of foci of PDE after 1 year in both the study group (-0.71 ± 2.36, p = 0.32) and in the comparison group (-0.17 ± 3.89, p = 0.15). Mean change in volume of PDE was measurable, but not significant in both the study group (-397.1 mm3 ±959.6, p = 0.80) and in the comparison group (-417.0 mm3 ± 922.7) (p = 0.80). Comparisons between the changes in foci count and volume for both LME and PDE in the study versus comparison groups showed no significant differences. CONCLUSION In this small pilot trial, ocrelizumab did not significantly reduce the number or volume of foci of LME or PDE in MS patients.
Collapse
Affiliation(s)
- Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Yohance M Allette
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States
| | - Kerry Naunton
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States.
| |
Collapse
|
19
|
Vercellino M, Costantini G, Cogoni M, Lequio L, Sciortino P, De Negri F, Marasciulo S, Valentini C, Bosa C, Garelli P, Rolando A, Calvo A, Morana G, Cavalla P. Association of MRI leptomeningeal enhancement with disability worsening in progressive multiple sclerosis: A clinical and post-mortem study. Mult Scler 2023; 29:1526-1539. [PMID: 37740714 DOI: 10.1177/13524585231199031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
BACKGROUND Leptomeningeal enhancement (LME) has been described as a biomarker of meningeal inflammation in multiple sclerosis (MS). OBJECTIVE The aim of this study was to (1) assess if LME is predictive of disability worsening in progressive MS (pMS) patients and (2) investigate the pathological substrates of LME in an independent post-mortem MS series. METHODS In total, 115 pMS patients were imaged yearly with 1.5T MRI, using post-contrast CUBE 3D FLAIR for LME detection. Endpoint: to identify the baseline variables predictive of confirmed disability worsening (CDW) at 24 months follow-up. Post-mortem, inflammation, and structural changes of the leptomeninges were assessed in 12 MS/8 control brains. RESULTS LME (27% of patients at baseline) was associated with higher EDSS and lower brain volume (nBV). LME was unchanged in most patients over follow-up. LME at baseline MRI was independently associated with higher risk of 24 months CDW (HR 3.05, 95% CI 1.36-6.84, p = 0.007) in a Cox regression, including age, nBV, T2 lesion volume, high-efficacy treatments, and MRI disease activity. Post-mortem, focal structural changes (fibrosis) of the leptomeninges were observed in MS, usually associated with inflammation (Kendall's Tau 0.315, p < 0.0001). CONCLUSIONS LME is frequently detected in pMS patients using 1.5T MRI and is independently predictive of disability progression. LME could result from both focal leptomeningeal post-inflammatory fibrosis and inflammation.
Collapse
Affiliation(s)
- Marco Vercellino
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino 10126, Italy
| | | | - Maurizio Cogoni
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Laura Lequio
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paola Sciortino
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica De Negri
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Stella Marasciulo
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Consuelo Valentini
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Bosa
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Paola Garelli
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Anna Rolando
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Andrea Calvo
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Giovanni Morana
- Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Paola Cavalla
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
20
|
Mokhtarzadeh Khanghahi A, Rayatpour A, Baharvand H, Javan M. Neuroglial components of brain lesions may provide new therapeutic strategies for multiple sclerosis. Neurol Sci 2023; 44:3795-3807. [PMID: 37410268 DOI: 10.1007/s10072-023-06915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune and demyelinating disease of the central nervous system (CNS) which leads to focal demyelinated lesions in the brain and spinal cord. Failure of remyelination contributes to chronic disability in young adults. Characterization of events occurring during the demyelination and remyelination processes and those of which subsequently limit remyelination or contribute to demyelination can provide the possibility of new therapies development for MS. Most of the currently available therapies and investigations modulate immune responses and mediators. Since most therapeutic strategies have unsatisfied outcomes, developing new therapies that enhance brain lesion repair is a priority. A close look at cellular and chemical components of MS lesions will pave the way to a better understanding of lesions pathology and will provide possible opportunities for repair strategies and targeted pharmacotherapy. This review summarizes the lesion components and features, particularly the detrimental elements, and discusses the possibility of suggesting new potential targets as therapies for demyelinating diseases like MS.
Collapse
Affiliation(s)
- Akram Mokhtarzadeh Khanghahi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Baharvand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- International Collaboration on Repair Discoveries (ICORD), the University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Gupta K, Kesharwani A, Rua S, Singh SS, Siu C, Jank L, Smith MD, Calabresi PA, Bhargava P. BAFF blockade in experimental autoimmune encephalomyelitis reduces inflammation in the meninges and synaptic and neuronal loss in adjacent brain regions. J Neuroinflammation 2023; 20:229. [PMID: 37805549 PMCID: PMC10559498 DOI: 10.1186/s12974-023-02922-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Multiple sclerosis (MS) has traditionally been viewed as a chronic inflammatory disease affecting the white matter of the central nervous system. However, over the past two decades, increasing evidence has highlighted the role of gray matter pathology in MS-related disability. Numerous studies have linked the presence of leptomeningeal inflammation to a more severe disease course, underscoring its potential importance as a driver of gray matter pathology in MS. The major components of leptomeningeal inflammation include T cells, B cells, macrophages, follicular dendritic cells, and plasma cells. Since BAFF [B cell-activating factor of the tumor necrosis factor (TNF) family] promotes B cell survival and maturation and is a co-stimulator of T cells, we used anti-BAFF antibody 10F4 as a BAFF antagonist to study its effect on meningeal inflammation and adjacent brain regions in a relapsing-remitting PLP-EAE (rr-EAE) model of multiple sclerosis in SJL/J mice. rr-EAE mice were treated either with anti-BAFF antibody 10F4 or with IgG control antibody. We performed ultra-high field (11.7 T) MRI to identify areas of meningeal inflammation and track them over time in both treatment groups. We also performed histopathological analysis in brain sections of these mice to study the effects of the BAFF antagonist on leptomeningeal inflammation, and hippocampal and cortical neurons and synapses. We observed that BAFF antagonist treatment reduced B cells, T cells, and myeloid cells in regions of meningeal inflammation. Additionally, we noted that BAFF treatment protected against EAE-induced synaptic and neuronal loss in the adjacent cortex and in the CA1, CA3, and dentate gyrus regions of the hippocampus likely due to its effects on meningeal inflammation.
Collapse
Affiliation(s)
- Kanak Gupta
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Ajay Kesharwani
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Steven Rua
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Saumitra Sen Singh
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Catherine Siu
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Larissa Jank
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Pathology Building, 600 N. Wolfe St., Pathology 627, Baltimore, MD, 21287, USA.
| |
Collapse
|
22
|
Al-Kharashi LA, Al-Harbi NO, Ahmad SF, Attia SM, Algahtani MM, Ibrahim KE, Bakheet SA, Alanazi MM, Alqarni SA, Alsanea S, Nadeem A. Auranofin Modulates Thioredoxin Reductase/Nrf2 Signaling in Peripheral Immune Cells and the CNS in a Mouse Model of Relapsing-Remitting EAE. Biomedicines 2023; 11:2502. [PMID: 37760943 PMCID: PMC10526216 DOI: 10.3390/biomedicines11092502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory autoimmune diseases. It causes the demyelination of neurons and the subsequent degeneration of the central nervous system (CNS). The infiltration of leukocytes of both myeloid and lymphoid origins from the systemic circulation into the CNS triggers autoimmune reactions through the release of multiple mediators. These mediators include oxidants, pro-inflammatory cytokines, and chemokines which ultimately cause the characteristic plaques observed in MS. Thioredoxin reductase (TrxR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a crucial role in the regulation of inflammation by modulating the transcription of antioxidants and the suppression of inflammatory cytokines. The gold compound auranofin (AFN) is known to activate Nrf2 through the inhibition of TrxR; however, the effects of this compound have not been explored in a mouse model of relapsing-remitting MS (RRMS). Therefore, this study explored the influence of AFN on clinical features, TrxR/Nrf2 signaling [heme oxygenase 1 (HO-1), superoxide dismutase 1 (SOD-1)] and oxidative/inflammatory mediators [IL-6, IL-17A, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO), nitrotyrosine] in peripheral immune cells and the CNS of mice with the RR type of EAE. Our results showed an increase in TrxR activity and a decrease in Nrf2 signaling in SJL/J mice with RR-EAE. The treatment with AFN caused the amelioration of the clinical features of RR-EAE through the elevation of Nrf2 signaling and the subsequent upregulation of the levels of antioxidants as well as the downregulation of oxidative/pro-inflammatory mediators in peripheral immune cells and the CNS. These data suggest that AFN may be beneficial in the treatment of RRMS.
Collapse
Affiliation(s)
- Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Evonuk KS, Wang S, Mattie J, Cracchiolo CJ, Mager R, Ferenčić Ž, Sprague E, Carrier B, Schofield K, Martinez E, Stewart Z, Petrosino T, Johnson GA, Yusuf I, Plaisted W, Naiman Z, Delp T, Carter L, Marušić S. Bruton's tyrosine kinase inhibition reduces disease severity in a model of secondary progressive autoimmune demyelination. Acta Neuropathol Commun 2023; 11:115. [PMID: 37438842 PMCID: PMC10337138 DOI: 10.1186/s40478-023-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is an emerging target in multiple sclerosis (MS). Alongside its role in B cell receptor signaling and B cell development, BTK regulates myeloid cell activation and inflammatory responses. Here we demonstrate efficacy of BTK inhibition in a model of secondary progressive autoimmune demyelination in Biozzi mice with experimental autoimmune encephalomyelitis (EAE). We show that late in the course of disease, EAE severity could not be reduced with a potent relapse inhibitor, FTY720 (fingolimod), indicating that disease was relapse-independent. During this same phase of disease, treatment with a BTK inhibitor reduced both EAE severity and demyelination compared to vehicle treatment. Compared to vehicle treatment, late therapeutic BTK inhibition resulted in fewer spinal cord-infiltrating myeloid cells, with lower expression of CD86, pro-IL-1β, CD206, and Iba1, and higher expression of Arg1, in both tissue-resident and infiltrating myeloid cells, suggesting a less inflammatory myeloid cell milieu. These changes were accompanied by decreased spinal cord axonal damage. We show similar efficacy with two small molecule inhibitors, including a novel, highly selective, central nervous system-penetrant BTK inhibitor, GB7208. These results suggest that through lymphoid and myeloid cell regulation, BTK inhibition reduced neurodegeneration and disease progression during secondary progressive EAE.
Collapse
Affiliation(s)
| | - Sen Wang
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Josh Mattie
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - C. J. Cracchiolo
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Reine Mager
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Željko Ferenčić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Ethan Sprague
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Brandon Carrier
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Kai Schofield
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Evelyn Martinez
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Zachary Stewart
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Tara Petrosino
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | | | - Isharat Yusuf
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Warren Plaisted
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Zachary Naiman
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Timothy Delp
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Laura Carter
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Suzana Marušić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| |
Collapse
|
24
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
25
|
Dixit A, Savage HS, Greer JM. An appraisal of emerging therapeutic targets for multiple sclerosis derived from current preclinical models. Expert Opin Ther Targets 2023; 27:553-574. [PMID: 37438986 DOI: 10.1080/14728222.2023.2236301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative condition affecting the central nervous system (CNS). Although therapeutic approaches have become available over the last 20 years that markedly slow the progression of disease, there is no cure for MS. Furthermore, the capacity to repair existing CNS damage caused by MS remains very limited. AREAS COVERED Several animal models are widely used in MS research to identify potential druggable targets for new treatment of MS. In this review, we look at targets identified since 2019 in studies using these models, and their potential for effecting a cure for MS. EXPERT OPINION Refinement of therapeutic strategies targeting key molecules involved in the activation of immune cells, cytokine, and chemokine signaling, and the polarization of the immune response have dominated recent publications. While some progress has been made in identifying effective targets to combat chronic demyelination and neurodegeneration, much more work is required. Progress is largely limited by the gaps in knowledge of how the immune system and the nervous system interact in MS and its animal models, and whether the numerous targets present in both systems respond in the same way in each system to the same therapeutic manipulation.
Collapse
Affiliation(s)
- Aakanksha Dixit
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| | - Hannah S Savage
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| | - Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
27
|
Dybowski S, Torke S, Weber MS. Targeting B Cells and Microglia in Multiple Sclerosis With Bruton Tyrosine Kinase Inhibitors: A Review. JAMA Neurol 2023; 80:404-414. [PMID: 36780171 DOI: 10.1001/jamaneurol.2022.5332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Importance Currently, disease-modifying therapies for multiple sclerosis (MS) use 4 mechanisms of action: immune modulation, suppressing immune cell proliferation, inhibiting immune cell migration, or cellular depletion. Over the last decades, the repertoire substantially increased because of the conceptual progress that not only T cells but also B cells play an important pathogenic role in MS, fostered by the empirical success of B cell-depleting antibodies against the surface molecule CD20. Notwithstanding this advance, a continuous absence of B cells may harbor safety risks, such as a decline in the endogenous production of immunoglobulins. Accordingly, novel B cell-directed MS therapies are in development, such as inhibitors targeting Bruton tyrosine kinase (BTK). Observations BTK is centrally involved in the B cell receptor-mediated activation of B cells, one key requirement in the development of autoreactive B cells, but also in the activation of myeloid cells, such as macrophages and microglia. Various compounds in development differ in their binding mode, selectivity and specificity, relative inhibitory concentration, and potential to enter the central nervous system. The latter may be important in assessing whether BTK inhibition is a promising strategy to control inflammatory circuits within the brain, the key process that is assumed to drive MS progression. Accordingly, clinical trials using BTK inhibitors are currently conducted in patients with relapsing-remitting MS as well as progressive MS, so far generating encouraging data regarding efficacy and safety. Conclusions and Relevance While the novel approach of targeting BTK is highly promising, several questions remain unanswered, such as the long-term effects of using BTK inhibitors in the treatment of inflammatory CNS disease. Potential changes in circulating antibody levels should be evaluated and compared with B cell depletion. Also important is the potential of BTK inhibitors to enter the CNS, which depends on the given compound. Remaining questions involve where BTK inhibitors fit in the landscape of MS therapeutics. A comparative analysis of their distinct properties is necessary to identify which inhibitors may be used in relapsing vs progressive forms of MS as well as to clarify which agent may be most suitable for sequential use after anti-CD20 treatment.
Collapse
Affiliation(s)
- Sarah Dybowski
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| |
Collapse
|
28
|
Friedli C, Wagner F, Hammer HN, Kamber N, Wiest R, Diem L, Chan A, Salmen A, Hoepner R. Leptomeningeal enhancement under different MS immunotherapies: A monocentric retrospective cohort study of 214 patients. Mult Scler 2023; 29:63-73. [PMID: 36113094 DOI: 10.1177/13524585221122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leptomeningeal inflammation in patients with multiple sclerosis (MS) mainly affects meningeal B-cell follicle-like structures linked to cortical and subpial lesions and can be visualized as leptomeningeal enhancement (LME). OBJECTIVE To evaluate the evolution of LME under different MS immunotherapies. METHODS A total of 214 MS patients treated with anti-CD20 therapies or fingolimod at the university hospital Bern were screened for LME. Magnetic resonance imaging (MRI) and medical records were retrospectively evaluated, and comparative statistics were applied. RESULTS We compared MS patients treated with anti-CD20 therapies (128 patients (59.8%)) or fingolimod (86 patients (40.2%)). Of 128 anti-CD20-treated patients, 108 (84.4%) had no LME, 11 (8.6%) had persistent LME, and 9 (7.0%) showed resolution of LME. Of 86 fingolimod-treated MS patients, 81 (94.2%) had no LME and 5 (5.8%) persistent LME. Patients with LME persistence were older than those without or resolution of LME (p = 0.039). Resolution of LME was more frequent during anti-CD20 compared with fingolimod treatment (p = 0.019). CONCLUSION We observed LME resolution under treatment with anti-CD20 therapies. As LME might play an important role in cerebral gray matter pathology in MS, further investigations including extensions to higher field strengths, correlation with clinical phenotypes, and comparison with other immunotherapies are needed.
Collapse
Affiliation(s)
- Christoph Friedli
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Helly Noemi Hammer
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Nicole Kamber
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Lara Diem
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Liang QQ, Yao M, Cui XJ, Li ZY, Zhou AF, Li G, Zhou LY, Pu PM, Zhu K, Zheng Z, Wang YJ. Chronic spinal cord compression associated with intervertebral disc degeneration in SPARC-null mice. Neural Regen Res 2023; 18:634-642. [DOI: 10.4103/1673-5374.350210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Guo R, Yan Z, Liao H, Guo D, Tao R, Yu X, Zhu Z, Guo W. Ibrutinib suppresses the activation of neutrophils and macrophages and exerts therapeutic effect on acute peritonitis induced by zymosan. Int Immunopharmacol 2022; 113:109469. [DOI: 10.1016/j.intimp.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
|
31
|
Liu K, Xi B, Sun H, Wang J, Chen C, Wen X, Zhang Y, Zeng M. The clinical feasibility of artificial intelligence-assisted compressed sensing single-shot fluid-attenuated inversion recovery (ACS-SS-FLAIR) for evaluation of uncooperative patients with brain diseases: comparison with the conventional T2-FLAIR with parallel imaging. Acta Radiol 2022; 64:1943-1949. [PMID: 36423247 DOI: 10.1177/02841851221139125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Satisfactory magnetic resonance imaging (MRI) of those patients with involuntary head motion due to brain diseases is essential in avoiding missed diagnosis and guiding treatment. Purpose To investigate the clinical feasibility of artificial intelligence-assisted compressed sensing single-shot fluid-attenuated inversion recovery (ACS-SS-FLAIR) in evaluating patients with involuntary head motion due to brain diseases, compared with the conventional T2-FLAIR with parallel imaging (PI-FLAIR). Material and Methods A total of 33 uncooperative patients with brain disease were prospectively enrolled. Two readers independently reviewed images acquired with ACS-SS-FLAIR and PI-FLAIR at a 3.0-T MR scanner. In the aspects of qualitative evaluation of image quality, overall image quality and lesion conspicuity of ACS-SS-FLAIR and PI-FLAIR were assessed and then statistically compared by paired Wilcoxon rank-sum test. For quantitative evaluation, the relative contrast of lesion-to-cerebral parenchyma were calculated and compared. Results Overall image quality scores of ACS-SS-FLAIR evaluated by two readers were 2.94 ± 0.24 and 2.91 ± 0.29, respectively, both of which were significantly higher than that of PI-FLAIR, respectively ( P < 0.001 and <0.001). Lesion conspicuity scores of were 2.74 ± 0.47 and 2.79 ± 0.44, both of which were significantly higher than that of PI-FLAIR, respectively ( P < 0.001 and <0.001). In the quantitative evaluation for image quality, the relative contrast of lesion-to-cerebral parenchyma was 0.34 ± 0.09 in the ACS-SS-FLAIR sequence, significantly larger than that in the PI-FLAIR sequence ( P = 0.001). Conclusion The ACS-SS-FLAIR sequence is clinically feasible in the MRI workup of those patients with involuntary head motion due to brain diseases, showing shorter image acquisition time and better image quality compared with conventional PI-FLAIR.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Bin Xi
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, PR China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Jian Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, PR China
| | - Xixi Wen
- Shanghai United Imaging Intelligence Co., Ltd, Shanghai, PR China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, PR China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, PR China
| |
Collapse
|
32
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
33
|
Arsenault S, Benoit RY, Clift F, Moore CS. Does the use of the Bruton Tyrosine Kinase inhibitors and the c-kit inhibitor masitinib result in clinically significant outcomes among patients with various forms of multiple sclerosis? Mult Scler Relat Disord 2022; 67:104164. [PMID: 36126539 DOI: 10.1016/j.msard.2022.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system accompanied by chronic inflammation, axonal loss, and neurodegeneration. Traditionally, MS has been thought of as a T-cell mediated disease, but research over the past decade has demonstrated the importance of B cells in both acute demyelination and disease progression. The highly selective irreversible Bruton Tyrosine Kinase (BTK) inhibitors evobrutinib, tolebrutinib, and orelabrutinib, and the reversible BTK inhibitor fenebrutinib, all target B-cell activation and aspects of innate immunity, including macrophage and microglia biology. The c-KIT inhibitor masitinib mitigates neuroinflammation by controlling the survival, migration, and degranulation of mast cells, leading to the inhibition of proinflammatory and vasoactive molecular cascades that result from mast cell activation. This article will review and critically appraise the ongoing clinical trials of two classes of receptor tyrosine kinase inhibitors that are emerging as potential medical treatments for the varying subtypes of MS: BTK inhibitors and c-KIT inhibitors. Specifically, this review will attempt to answer whether BTK inhibitors have measurable positive clinical effects on patients with RRMS, SPMS with relapses, relapse-free SPMS, and PPMS through their effect on MRI T1 lesions; annualized relapse rate; EDSS scale; MSFC score; and time to onset of composite 12-week confirmed disability progression. Additionally, this review will examine the literature to determine if masitinib has positive clinical effects on patients with PPMS or relapse-free SPMS through its effect on EDSS or MSFC scores.
Collapse
Affiliation(s)
- Shane Arsenault
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Fraser Clift
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Craig S Moore
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|
34
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | | | - Katelijn M. Blok
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Ursula Boschert
- Ares Trading SA, Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Joost Smolders
- Department of Immunology and
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
35
|
Bhargava P, Hartung HP, Calabresi PA. Contribution of B cells to cortical damage in multiple sclerosis. Brain 2022; 145:3363-3373. [PMID: 35775595 DOI: 10.1093/brain/awac233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis is associated with lesions not just in the white matter, but also involving the cortex. Cortical involvement has been linked to greater disease severity and hence understanding the factor underlying cortical pathology could help identify new therapeutic strategies for multiple sclerosis. The critical role of B cells in multiple sclerosis has been clarified by multiple pivotal trials of B cell depletion in people with multiple sclerosis. The presence of B cell rich areas of meningeal inflammation in multiple sclerosis has been identified at all stages of multiple sclerosis. Leptomeningeal inflammation is associated with greater extent of cortical demyelination and neuronal loss and with greater disease severity. Recent studies have identified several potential mechanisms by which B cells may mediate cortical injury including antibody production, extracellular vesicles containing neurotoxic substances and production of pro-inflammatory cytokines. Additionally, B cells may indirectly mediate cortical damage through effects on T cells, macrophages or microglia. Several animal models replicate the meningeal inflammation and cortical injury noted in people with multiple sclerosis. Studies in these models have identified BTK inhibition and type II anti-CD20 antibodies as potential agents that can impact meningeal inflammation. Trials of anti-CD20 monoclonal antibodies in people with multiple sclerosis have unsuccessfully attempted to eliminate B cells in the leptomeninges. New strategies to target B cells in multiple sclerosis include BTK inhibition and cell-based therapies aimed at B cells infected with Epstein Barr virus. Future studies will clarify the mechanisms by which B cells mediate cortical injury and treatment strategies that can target B cells in the leptomeninges and CNS parenchyma.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Peter Hartung
- Department of Neurology, Heinrich-Heine University, Dusseldorf, Germany.,Brain and Mind Center, University of Sydney, Sydney, Australia.,Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
James Bates RE, Browne E, Schalks R, Jacobs H, Tan L, Parekh P, Magliozzi R, Calabrese M, Mazarakis ND, Reynolds R. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 2022; 145:4287-4307. [PMID: 35776111 DOI: 10.1093/brain/awac232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Organised meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the cerebrospinal fluid of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior sub-clinical immunisation with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localised over-expression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin+ fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on prior myelin oligodendrocyte glycoprotein immunisation, the neuronal loss was present irrespective of immunisation. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.
Collapse
Affiliation(s)
- Rachel E James Bates
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Eleanor Browne
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Renee Schalks
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Heather Jacobs
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Li Tan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Puja Parekh
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Roberta Magliozzi
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Massimiliano Calabrese
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, Hammersmith, Hospital Campus, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
37
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
38
|
Vakrakou A, Chatzistamatiou T, Koros C, Karathanasis D, Tentolouris-Piperas V, Tzanetakos D, Stathopoulos P, Koutsis G, Spyropoulou-Vlachou M, Evangelopoulos ME, Stefanis L, Stavropoulos-Giokas C, Anagnostouli M. HLA-genotyping by Next-Generation-Sequencing reveals shared and unique HLA alleles in two patients with coexisting neuromyelitis optica spectrum disorder and thymectomized myasthenia gravis: immunological implications for mutual aetiopathogenesis? Mult Scler Relat Disord 2022; 63:103858. [DOI: 10.1016/j.msard.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
39
|
Andica C, Hagiwara A, Yokoyama K, Kato S, Uchida W, Nishimura Y, Fujita S, Kamagata K, Hori M, Tomizawa Y, Hattori N, Aoki S. Multimodal magnetic resonance imaging quantification of gray matter alterations in relapsing-remitting multiple sclerosis and neuromyelitis optica spectrum disorder. J Neurosci Res 2022; 100:1395-1412. [PMID: 35316545 DOI: 10.1002/jnr.25035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022]
Abstract
Herein, we combined neurite orientation dispersion and density imaging (NODDI) and synthetic magnetic resonance imaging (SyMRI) to evaluate the spatial distribution and extent of gray matter (GM) microstructural alterations in patients with relapsing-remitting multiple sclerosis (RRMS) and neuromyelitis optica spectrum disorder (NMOSD). The NODDI (neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISOVF]) and SyMRI (myelin volume fraction [MVF]) measures were compared between age- and sex-matched groups of 30 patients with RRMS (6 males and 24 females; mean age, 51.43 ± 8.02 years), 18 patients with anti-aquaporin-4 antibody-positive NMOSD (2 males and 16 females; mean age, 52.67 ± 16.07 years), and 19 healthy controls (6 males and 13 females; mean age, 51.47 ± 9.25 years) using GM-based spatial statistical analysis. Patients with RRMS showed reduced NDI and MVF and increased ODI and ISOVF, predominantly in the limbic and paralimbic regions, when compared with healthy controls, while only increases in ODI and ISOVF were observed when compared with NMOSD. Compared to NDI and MVF, the changes in ODI and ISOVF were observed more widely, including in the cerebellar cortex. These abnormalities were associated with disease progression and disability. In contrast, patients with NMOSD only showed reduced NDI mainly in the cerebellar, limbic, and paralimbic cortices when compared with healthy controls and patients with RRMS. Taken together, our study supports the notion that GM pathologies in RRMS are distinct from those of NMOSD. However, owing to the limitations of the study, the results should be cautiously interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shimpei Kato
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuma Nishimura
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Cooze BJ, Dickerson M, Loganathan R, Watkins LM, Grounds E, Pearson BR, Bevan RJ, Morgan BP, Magliozzi R, Reynolds R, Neal JW, Howell OW. The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathol 2022; 32:e13054. [PMID: 35132719 PMCID: PMC9425007 DOI: 10.1111/bpa.13054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023] Open
Abstract
The extent of grey matter demyelination and neurodegeneration in the progressive multiple sclerosis (PMS) brains at post‐mortem associates with more severe disease. Regional tissue atrophy, especially affecting the cortical and deep grey matter, including the thalamus, is prognostic for poor outcomes. Microglial and complement activation are important in the pathogenesis and contribute to damaging processes that underlie tissue atrophy in PMS. We investigated the extent of pathology and innate immune activation in the thalamus in comparison to cortical grey and white matter in blocks from 21 cases of PMS and 10 matched controls. Using a digital pathology workflow, we show that the thalamus is invariably affected by demyelination and had a far higher proportion of active inflammatory lesions than forebrain cortical tissue blocks from the same cases. Lesions were larger and more frequent in the medial nuclei near the ventricular margin, whilst neuronal loss was greatest in the lateral thalamic nuclei. The extent of thalamic neuron loss was not associated with thalamic demyelination but correlated with the burden of white matter pathology in other forebrain areas (Spearman r = 0.79, p < 0.0001). Only thalamic neuronal loss, and not that seen in other forebrain cortical areas, correlated with disease duration (Spearman r = −0.58, p = 0.009) and age of death (Spearman r = −0.47, p = 0.045). Immunoreactivity for the complement pattern recognition molecule C1q, and products of complement activation (C4d, Bb and C3b) were elevated in thalamic lesions with an active inflammatory pathology. Complement regulatory protein, C1 inhibitor, was unchanged in expression. We conclude that active inflammatory demyelination, neuronal loss and local complement synthesis and activation in the thalamus, are important to the pathological and clinical disease outcomes of PMS.
Collapse
Affiliation(s)
- Benjamin J Cooze
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Matthew Dickerson
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | | | - Lewis M Watkins
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ethan Grounds
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ben R Pearson
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ryan Jack Bevan
- UK Dementia Research Institute at Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute at Cardiff University, Cardiff, UK
| | - Roberta Magliozzi
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | | | - James W Neal
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Owain W Howell
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| |
Collapse
|
41
|
Ineichen BV, Tsagkas C, Absinta M, Reich DS. Leptomeningeal enhancement in multiple sclerosis and other neurological diseases: A systematic review and Meta-Analysis. Neuroimage Clin 2022; 33:102939. [PMID: 35026625 PMCID: PMC8760523 DOI: 10.1016/j.nicl.2022.102939] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lack of systematic evidence on leptomeningeal enhancement (LME) on MRI in neurological diseases, including multiple sclerosis (MS), hampers its interpretation in clinical routine and research settings. PURPOSE To perform a systematic review and meta-analysis of MRI LME in MS and other neurological diseases. MATERIALS AND METHODS In a comprehensive literature search in Medline, Scopus, and Embase, out of 2292 publications, 459 records assessing LME in neurological diseases were eligible for qualitative synthesis. Of these, 135 were included in a random-effects model meta-analysis with subgroup analyses for MS. RESULTS Of eligible publications, 161 investigated LME in neoplastic neurological (n = 2392), 91 in neuroinfectious (n = 1890), and 75 in primary neuroinflammatory diseases (n = 4038). The LME-proportions for these disease classes were 0.47 [95%-CI: 0.37-0.57], 0.59 [95%-CI: 0.47-0.69], and 0.26 [95%-CI: 0.20-0.35], respectively. In a subgroup analysis comprising 1605 MS cases, LME proportion was 0.30 [95%-CI 0.21-0.42] with lower proportions in relapsing-remitting (0.19 [95%-CI 0.13-0.27]) compared to progressive MS (0.39 [95%-CI 0.30-0.49], p = 0.002) and higher proportions in studies imaging at 7 T (0.79 [95%-CI 0.64-0.89]) compared to lower field strengths (0.21 [95%-CI 0.15-0.29], p < 0.001). LME in MS was associated with longer disease duration (mean difference 2.2 years [95%-CI 0.2-4.2], p = 0.03), higher Expanded Disability Status Scale (mean difference 0.6 points [95%-CI 0.2-1.0], p = 0.006), higher T1 (mean difference 1.6 ml [95%-CI 0.1-3.0], p = 0.04) and T2 lesion load (mean difference 5.9 ml [95%-CI 3.2-8.6], p < 0.001), and lower cortical volume (mean difference -21.3 ml [95%-CI -34.7--7.9], p = 0.002). CONCLUSIONS Our study provides high-grade evidence for the substantial presence of LME in MS and a comprehensive panel of other neurological diseases. Our data could facilitate differential diagnosis of LME in clinical settings. Additionally, our meta-analysis corroborates that LME is associated with key clinical and imaging features of MS. PROSPERO No: CRD42021235026.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.
| | - Charidimos Tsagkas
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Vita-Salute San Raffaele University, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Brand RM, Diddens J, Friedrich V, Pfaller M, Radbruch H, Hemmer B, Steiger K, Lehmann-Horn K. Siponimod Inhibits the Formation of Meningeal Ectopic Lymphoid Tissue in Experimental Autoimmune Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/1/e1117. [PMID: 34911793 PMCID: PMC8674936 DOI: 10.1212/nxi.0000000000001117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES To investigate whether the formation or retention of meningeal ectopic lymphoid tissue (mELT) can be inhibited by the sphingosine 1-phosphate receptor 1,5 modulator siponimod (BAF312) in a murine model of multiple sclerosis (MS). METHODS A murine spontaneous chronic experimental autoimmune encephalomyelitis (EAE) model, featuring meningeal inflammatory infiltrates resembling those in MS, was used. To prevent or treat EAE, siponimod was administered daily starting either before EAE onset or at peak of disease. The extent and cellular composition of mELT, the spinal cord parenchyma, and the spleen was assessed by histology and immunohistochemistry. RESULTS Siponimod, when applied before disease onset, ameliorated EAE. This effect was also present, although less prominent, when treatment started at peak of disease. Treatment with siponimod resulted in a strong reduction of the extent of mELT in both treatment paradigms. Both B and T cells were diminished in the meningeal compartment. DISCUSSION Beneficial effects on the disease course correlated with a reduction in mELT, suggesting that inhibition of mELT may be an additional mechanism of action of siponimod in the treatment of EAE. Further studies are needed to establish causality and confirm this observation in MS.
Collapse
Affiliation(s)
- Rosa Margareta Brand
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Jolien Diddens
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Verena Friedrich
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Monika Pfaller
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Helena Radbruch
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Bernhard Hemmer
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Katja Steiger
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany
| | - Klaus Lehmann-Horn
- From the Department of Neurology (R.M.B., J.D., V.F., M.P., H.R., B.H., K.L.H.), School of Medicine, Technical University of Munich; Department of Neuropathology (H.R.), Charité-Universitätsmedizin Berlin; Munich Cluster of Systems Neurology (SyNergy) (B.H.); Comparative Experimental Pathology (CEP), Department of Pathology (K.S.), School of Medicine, Technical University of Munich, Germany.
| |
Collapse
|
43
|
BTK inhibition limits B-cell-T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol 2022; 143:505-521. [PMID: 35303161 PMCID: PMC8960592 DOI: 10.1007/s00401-022-02411-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Inhibition of Bruton's Tyrosine Kinase (BTKi) is now viewed as a promising next-generation B-cell-targeting therapy for autoimmune diseases including multiple sclerosis (MS). Surprisingly little is known; however, about how BTKi influences MS disease-implicated functions of B cells. Here, we demonstrate that in addition to its expected impact on B-cell activation, BTKi attenuates B-cell:T-cell interactions via a novel mechanism involving modulation of B-cell metabolic pathways which, in turn, mediates an anti-inflammatory modulation of the B cells. In vitro, BTKi, as well as direct inhibition of B-cell mitochondrial respiration (but not glycolysis), limit the B-cell capacity to serve as APC to T cells. The role of metabolism in the regulation of human B-cell responses is confirmed when examining B cells of rare patients with mitochondrial respiratory chain mutations. We further demonstrate that both BTKi and metabolic modulation ex vivo can abrogate the aberrant activation and costimulatory molecule expression of B cells of untreated MS patients. Finally, as proof-of-principle in a Phase 1 study of healthy volunteers, we confirm that in vivo BTKi treatment reduces circulating B-cell mitochondrial respiration, diminishes their activation-induced expression of costimulatory molecules, and mediates an anti-inflammatory shift in the B-cell responses which is associated with an attenuation of T-cell pro-inflammatory responses. These data collectively elucidate a novel non-depleting mechanism by which BTKi mediates its effects on disease-implicated B-cell responses and reveals that modulating B-cell metabolism may be a viable therapeutic approach to target pro-inflammatory B cells.
Collapse
|
44
|
Routine Gadolinium Use for MRI Follow-up of Multiple Sclerosis: Point-The Role of Leptomeningeal Enhancement. AJR Am J Roentgenol 2021; 219:24-25. [PMID: 34786959 DOI: 10.2214/ajr.21.26999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
46
|
Neys SFH, Rip J, Hendriks RW, Corneth OBJ. Bruton's Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021; 81:1605-1626. [PMID: 34609725 PMCID: PMC8491186 DOI: 10.1007/s40265-021-01592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
48
|
Steinmaurer A, Wimmer I, Berger T, Rommer PS, Sellner J. Bruton's tyrosine kinase inhibition in the treatment of preclinical models and multiple sclerosis. Curr Pharm Des 2021; 28:437-444. [PMID: 34218776 DOI: 10.2174/1381612827666210701152934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Significant progress has been made in understanding the immunopathogenesis of multiple sclerosis (MS) over recent years. Successful clinical trials with CD20-depleting monoclonal antibodies have corroborated the fundamental role of B cells in the pathogenesis of MS and reinforced the notion that cells of the B cell lineage are an attractive treatment target. Therapeutic inhibition of Bruton's tyrosine kinase (BTK), an enzyme involved in B cell and myeloid cell activation and function, is regarded as a next-generation approach that aims to attenuate both errant innate and adaptive immune functions. Moreover, brain-penetrant BTK inhibitors may impact compartmentalized inflammation and neurodegeneration within the central nervous system by targeting brain-resident B cells and microglia, respectively. Preclinical studies in animal models of MS corroborated an impact of BTK inhibition on meningeal inflammation and cortical demyelination. Notably, BTK inhibition attenuated the antigen-presenting capacity of B cells and the generation of encephalitogenic T cells. Evobrutinib, a selective oral BTK inhibitor, has been tested recently in a phase 2 study of patients with relapsing-remitting MS. The study met the primary endpoint of a significantly reduced cumulative number of Gadolinium-enhancing lesions under treatment with evobrutinib compared to placebo treatment. Thus, the results of ongoing phase 2 and 3 studies with evobrutinib, fenobrutinib, and tolebrutinib in relapsing-remitting and progressive MS are eagerly awaited. This review article introduces the physiological role of BTK, summarizes the pre-clinical and trial evidence, and addresses the potential beneficial effects of BTK inhibition in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | | | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach. Austria
| |
Collapse
|
49
|
Qiu J, Fu Y, Chen Z, Zhang L, Li L, Liang D, Wei F, Wen Z, Wang Y, Liang S. BTK Promotes Atherosclerosis by Regulating Oxidative Stress, Mitochondrial Injury, and ER Stress of Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9972413. [PMID: 34136067 PMCID: PMC8175170 DOI: 10.1155/2021/9972413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic metabolic disease in arterial walls, characterized by lipid deposition and persistent aseptic inflammation. AS is regarded as the basis of a variety of cardiovascular and cerebrovascular diseases. It is widely acknowledged that macrophages would become foam cells after internalizing lipoprotein particles, which is an initial factor in atherogenesis. Here, we showed the influences of Bruton's tyrosine kinase (BTK) in macrophage-mediated AS and how BTK regulates the inflammatory responses of macrophages in AS. Our bioinformatic results suggested that BTK was a potential hub gene, which is closely related to oxidative stress, ER stress, and inflammation in macrophage-induced AS. Moreover, we found that BTK knockdown could restrain ox-LDL-induced NK-κB signaling activation in macrophages and repressed M1 polarization. The mechanistic studies revealed that oxidative stress, mitochondrial injury, and ER stress in macrophages were also suppressed by BTK knockdown. Furthermore, we found that sh-BTK adenovirus injection could alleviate the severity of AS in ApoE-/- mice induced by a high-fat diet in vivo. Our study suggested that BTK promoted ox-LDL-induced ER stress, oxidative stress, and inflammatory responses in macrophages, and it may be a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Lisui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Ling Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhuzhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yajing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| |
Collapse
|
50
|
Irani SR, Nath A, Zipp F. The neuroinflammation collection: a vision for expanding neuro-immune crosstalk in Brain. Brain 2021; 144:e59. [PMID: 33983376 PMCID: PMC8370408 DOI: 10.1093/brain/awab187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Department of Neurology, Oxford University Hospital, NHS Foundation Trust, Oxford, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, Johannes Gutenberg University Medical Center Mainz, Germany
| |
Collapse
|