1
|
Roytman S, Paalanen R, Carli G, Marusic U, Kanel P, van Laar T, Bohnen NI. Multisensory mechanisms of gait and balance in Parkinson's disease: an integrative review. Neural Regen Res 2025; 20:82-92. [PMID: 38767478 PMCID: PMC11246153 DOI: 10.4103/nrr.nrr-d-23-01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/18/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population. Posture and gait control does not happen automatically, as previously believed, but rather requires continuous involvement of central nervous mechanisms. To effectively exert control over the body, the brain must integrate multiple streams of sensory information, including visual, vestibular, and somatosensory signals. The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work. Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults. Insufficient emphasis, however, has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance. In the present work, we review the contributions of somatosensory, visual, and vestibular modalities, along with their multisensory intersections to gait and balance in older adults and patients with Parkinson's disease. We also review evidence of vestibular contributions to multisensory temporal binding windows, previously shown to be highly pertinent to fall risk in older adults. Lastly, we relate multisensory vestibular mechanisms to potential neural substrates, both at the level of neurobiology (concerning positron emission tomography imaging) and at the level of electrophysiology (concerning electroencephalography). We hope that this integrative review, drawing influence across multiple subdisciplines of neuroscience, paves the way for novel research directions and therapeutic neuromodulatory approaches, to improve the lives of older adults and patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Paalanen
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Giulia Carli
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nico I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Kwon EH, Steininger J, Scherbaum R, Gold R, Pitarokoili K, Tönges L. Large-fiber neuropathy in Parkinson's disease: a narrative review. Neurol Res Pract 2024; 6:51. [PMID: 39465424 PMCID: PMC11514528 DOI: 10.1186/s42466-024-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Numerous studies reported a higher prevalence of polyneuropathy (PNP) in patients with Parkinson's disease (PD) compared to the general population. Importantly, PNP symptoms can aggravate both motor and sensory disturbances in PD patients and negatively impact the disease course. Recent analyses indicate distinct PNP patterns in PD. MAIN TEXT This review aims to provide an overview of the current insights into etiological factors, diagnostic methods, and management strategies of large fiber neuropathy in PD. Despite the higher prevalence, the causes of PNP in PD are still not fully understood. A genetic predisposition can underlie PNP onset in PD. Main research attention is focused on long-term levodopa exposure which is suggested to increase PNP risk by depletion of methylation cofactors such as vitamin B12 and accumulation of homocysteine that altogether can alter peripheral nerve homeostasis. Beyond a potential "iatrogenic" cause, alpha-synuclein deposition has been detected in sural nerve fibers that could contribute to peripheral neuronal degeneration as part of the systemic manifestation of PD. Whereas mild axonal sensory PNP predominates in PD, a considerable proportion of patients also show motor and upper limb nerve involvement. Intriguingly, a correlation between PNP severity and PD severity has been demonstrated. Therefore, PNP screening involving clinical and instrument-based assessments should be implemented in the clinical routine for early detection and monitoring. Given the etiological uncertainty, therapeutic or preventive options remain limited. Vitamin supplementation and use of catechol-O-methyltransferase-inhibitors can be taken into consideration. CONCLUSION PNP is increasingly recognized as a complicating comorbidity of PD patients. Long-term, large-scale prospective studies are required to elucidate the causative factors for the development and progression of PD-associated PNP to optimize treatment approaches. The overall systemic role of "idiopathic" PNP in PD and a putative association with the progression of neurodegeneration should also be investigated further.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - Julia Steininger
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Raphael Scherbaum
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr-University, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr-University, Bochum, Germany
| |
Collapse
|
3
|
Jordi L, Isacson O. Neuronal threshold functions: Determining symptom onset in neurological disorders. Prog Neurobiol 2024; 242:102673. [PMID: 39389338 DOI: 10.1016/j.pneurobio.2024.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Synaptic networks determine brain function. Highly complex interconnected brain synaptic networks provide output even under fluctuating or pathological conditions. Relevant to the treatment of brain disorders, understanding the limitations of such functional networks becomes paramount. Here we use the example of Parkinson's Disease (PD) as a system disorder, with PD symptomatology emerging only when the functional reserves of neurons, and their interconnected networks, are unable to facilitate effective compensatory mechanisms. We have denoted this the "threshold theory" to account for how PD symptoms develop in sequence. In this perspective, threshold functions are delineated in a quantitative, synaptic, and cellular network context. This provides a framework to discuss the development of specific symptoms. PD includes dysfunction and degeneration in many organ systems and both peripheral and central nervous system involvement. The threshold theory accounts for and explains the reasons why parallel gradually emerging pathologies in brain and peripheral systems generate specific symptoms only when functional thresholds are crossed, like tipping points. New and mounting evidence demonstrate that PD and related neurodegenerative diseases are multisystem disorders, which transcends the traditional brain-centric paradigm. We believe that representation of threshold functions will be helpful to develop new medicines and interventions that are specific for both pre- and post-symptomatic periods of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luc Jordi
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA; Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ge J, Qin X, Yu X, Li P, Yao Y, Zhang H, Song H, Liu Z. Amelioration of gait and balance disorders by rosuvastatin is associated with changes in cerebrovascular reactivity in older patients with hypertensive treatment. Hypertens Res 2024; 47:2250-2261. [PMID: 38769134 DOI: 10.1038/s41440-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
To investigate the effect of rosuvastatin on gait and balance disorder progression and elucidate the role of cerebrovascular reactivity (CVR) on this effect. From April 2008 to November 2010, 943 hypertensive patients aged ≥60 years were enrolled from the Shandong area of China. Patients were randomized into rosuvastatin and placebo groups. Gait, balance, CVR, fall and stroke were assessed. During an average 72 months of follow-up, the decreasing trends for step length, step speed, and Berg balance scale scores and the increasing trends for step width and chair rising test were slower in the rosuvastatin group when compared to the placebo group. The hazard ratio of incident balance impairment and falls was 0.542 [95% confidence interval (CI) 0.442-0.663] and 0.532 (95% CI 0.408-0.694), respectively, in the rosuvastatin group compared with placebo group. For CVR progression, the cerebrovascular reserve capacity and breath-holding index were increased and the pulsatility index decreased in the rosuvastatin group, while the cerebrovascular reserve capacity and breath-holding index were decreased, and pulsatility index increased in the placebo group. The changes in gait stability and balance function were independently associated with the changes in the CVR. The odds risks of balance impairment and falls were 2.178 (95% CI: 1.491-3.181) and 3.227 (95% CI: 1.634-6.373), respectively, in the patients with CVR impairment and patients without CVR impairment. Rosuvastatin ameliorated gait and balance disorder progression in older patients with hypertension. This effect might result from the improvement in the CVR. This double-blind clinical trial recruited 943 hypertensive patients aged ≥60 years who were randomly administered rosuvastatin and placebo interventions. The data indicates that rosuvastatin significantly ameliorated the progressions of gait and balance disorders in older hypertensive patients. The cerebrovascular reactivity might play an important mediating role in this amelioration.
Collapse
Affiliation(s)
- Junyi Ge
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaofei Qin
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xinyi Yu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Department of ECG Information, Shandong Engineering Research Center, Jinan, Shandong, 250117, China
| | - Peilin Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanli Yao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hua Zhang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of ECG Information, Shandong Engineering Research Center, Jinan, Shandong, 250117, China.
| | - Huajing Song
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of ECG Information, Shandong Engineering Research Center, Jinan, Shandong, 250117, China.
| | - Zhendong Liu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of ECG Information, Shandong Engineering Research Center, Jinan, Shandong, 250117, China.
| |
Collapse
|
5
|
Kwon EH, Bieber A, Schülken P, Müller K, Kühn E, Averdunk P, Kools S, Hilker L, Kirchgässler A, Ebner L, Ortmann L, Basner L, Steininger J, Kleinz T, Motte J, Fisse AL, Schneider-Gold C, Gold R, Scherbaum R, Muhlack S, Tönges L, Pitarokoili K. Longitudinal evaluation of polyneuropathy in Parkinson's disease. J Neurol 2024; 271:6136-6146. [PMID: 39060619 PMCID: PMC11377511 DOI: 10.1007/s00415-024-12579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Increasing evidence indicates a higher prevalence of polyneuropathy (PNP) in Parkinson's disease (PD). However, the involvement of large fiber neuropathy in PD still remains poorly understood. Given the lack of longitudinal data, we investigated the course of PNP associated with PD. METHODS In total, 41 PD patients underwent comprehensive clinical evaluation including motor and non-motor assessments as well as nerve conduction studies at baseline and at 2 years of follow-up. The definition of PNP was based on electrophysiological standard criteria. Common causes of PNP were excluded. RESULTS At baseline, PNP was diagnosed in 65.85% of PD patients via electroneurography. Patients with PNP presented with higher age (p = 0.019) and PD motor symptom severity (UPDRS III; p < 0.001). Over the course of 2 years, PNP deteriorated in 21.95% of cases, and 26.83% remained without PNP. Deterioration of nerve amplitude was most prevalent in the median sensory nerve affecting 57.58% of all PD cases with an overall reduction of median sensory nerve amplitude of 45.0%. With regard to PD phenotype, PNP progression was observed in 33.33% of the tremor dominant and 23.81% of the postural instability/gait difficulties subtype. Decrease of sural nerve amplitude correlated with lower quality of life (PDQ-39, p = 0.037) and worse cognitive status at baseline (MoCA, p = 0.042). CONCLUSION The study confirms the high PNP rate in PD, and demonstrates a significant electrophysiological progression also involving nerves of the upper extremities. Longitudinal studies with larger cohorts are urgently needed and should elucidate the link between PD and PNP with the underlying pathomechanisms.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Antonia Bieber
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Paula Schülken
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Katharina Müller
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Eva Kühn
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Paulina Averdunk
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Saskia Kools
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Lovis Hilker
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - András Kirchgässler
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Lea Ebner
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Louisa Ortmann
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Louisa Basner
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Julia Steininger
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Teresa Kleinz
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | | | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44791, Bochum, Germany
| | - Raphael Scherbaum
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Siegfried Muhlack
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44791, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Salabasidou E, Binder T, Volkmann J, Kuzkina A, Üçeyler N. Pain in Parkinson disease: a deep phenotyping study. Pain 2024; 165:1642-1654. [PMID: 38314763 DOI: 10.1097/j.pain.0000000000003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT In our prospective cross-sectional study, we comprehensively characterized Parkinson disease (PD)-related pain in monocentrically recruited patients with PD using standardized tools of pain assessment and categorization. One hundred fifty patients were systematically interviewed and filled in questionnaires for pain, depression, motor, and nonmotor symptoms. Patients with PD-related pain (PD pain), patients without PD-related pain (no PD pain), and patients without pain (no pain) were compared. Pain was present in 108/150 (72%) patients with PD, and 90/150 (60%) patients were classified as having PD-related pain. Most of the patients with PD (67/90, 74%) reported nociceptive pain, which was episodic (64/90, 71%), primarily nocturnal (56/90, 62%), and manifested as cramps (32/90, 36%). Parkinson disease-related pain was most frequently located in the feet (51/90, 57%), mainly at the toe joints (22/51, 43%). 38/90 (42%) patients with PD-related pain received analgesic medication with nonsteroidal anti-inflammatory drugs being the most frequently used (31/42, 82%) and opioids most effective (70% pain reduction of individual maximum pain intensities, range 22%-100%, confidence interval 50%-90%). All patients received oral PD treatment; however, levodopa equivalent dose showed no correlation with mean pain intensities (Spearman ρ = 0.027, P > 0.05). Our data provide a comprehensive analysis of PD-related pain, giving evidence for mainly non-neuropathic podalgia, which bears the potential to rethink assessment and analgesic treatment of pain in PD in clinical practice.
Collapse
Affiliation(s)
- Elena Salabasidou
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Kuzkina is now with the Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
7
|
Xiang K, Liu M, Chen J, Bao Y, Wang Z, Xiao K, Teng C, Ushakov N, Kumar S, Li X, Min R. AI-Assisted Insole Sensing System for Multifunctional Plantar-Healthcare Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32662-32678. [PMID: 38863342 DOI: 10.1021/acsami.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The pervasive global issue of population aging has led to a growing demand for health monitoring, while the advent of electronic wearable devices has greatly alleviated the strain on the industry. However, these devices come with inherent limitations, such as electromagnetic radiation, complex structures, and high prices. Herein, a Solaris silicone rubber-integrated PMMA polymer optical fiber (S-POF) intelligent insole sensing system has been developed for remote, portable, cost-effective, and real-time gait monitoring. The system is capable of sensitively converting the pressure of key points on the sole into changes in light intensity with correlation coefficients of 0.995, 0.952, and 0.910. The S-POF sensing structure demonstrates excellent durability with a 4.8% variation in output after 10,000 cycles and provides stable feedback for bending angles. It also exhibits water resistance and temperature resistance within a certain range. Its multichannel multiplexing framework allows a smartphone to monitor multiple S-POF channels simultaneously, meeting the requirements of convenience for daily care. Also, the system can efficiently and accurately provide parameters such as pressure, step cadence, and pressure distribution, enabling the analysis of gait phases and patterns with errors of only 4.16% and 6.25% for the stance phase (STP) and the swing phase (SWP), respectively. Likewise, after comparing various AI models, an S-POF channel-based gait pattern recognition technique has been proposed with a high accuracy of up to 96.87%. Such experimental results demonstrate that the system is promising to further promote the development of rehabilitation and healthcare.
Collapse
Affiliation(s)
- Kaiyuan Xiang
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Department of Physics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Mengjie Liu
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Jun Chen
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yingshuo Bao
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Zhuo Wang
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Department of Physics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Kun Xiao
- Department of Physics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Nikolai Ushakov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India,
| | - Xiaoli Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Rui Min
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Mao Q, Zheng W, Shi M, Yang F. Scientometric Research and Critical Analysis of Gait and Balance in Older Adults. SENSORS (BASEL, SWITZERLAND) 2024; 24:3199. [PMID: 38794055 PMCID: PMC11125350 DOI: 10.3390/s24103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Gait and balance have emerged as a critical area of research in health technology. Gait and balance studies have been affected by the researchers' slow follow-up of research advances due to the absence of visual inspection of the study literature across decades. This study uses advanced search methods to analyse the literature on gait and balance in older adults from 1993 to 2022 in the Web of Science (WoS) database to gain a better understanding of the current status and trends in the field for the first time. The study analysed 4484 academic publications including journal articles and conference proceedings on gait and balance in older adults. Bibliometric analysis methods were applied to examine the publication year, number of publications, discipline distribution, journal distribution, research institutions, application fields, test methods, analysis theories, and influencing factors in the field of gait and balance. The results indicate that the publication of relevant research documents has been steadily increasing from 1993 to 2022. The United States (US) exhibits the highest number of publications with 1742 articles. The keyword "elderly person" exhibits a strong citation burst strength of 18.04, indicating a significant focus on research related to the health of older adults. With a burst factor of 20.46, Harvard University has made impressive strides in the subject. The University of Pittsburgh displayed high research skills in the area of gait and balance with a burst factor of 7.7 and a publication count of 103. The research on gait and balance mainly focuses on physical performance evaluation approaches, and the primary study methods include experimental investigations, computational modelling, and observational studies. The field of gait and balance research is increasingly intertwined with computer science and artificial intelligence (AI), paving the way for intelligent monitoring of gait and balance in the elderly. Moving forward, the future of gait and balance research is anticipated to highlight the importance of multidisciplinary collaboration, intelligence-driven approaches, and advanced visualization techniques.
Collapse
Affiliation(s)
- Qian Mao
- School of Design, The Hong Kong Polytechnic University, Hong Kong
| | - Wei Zheng
- Department of Computer Science and Technology, Tsinghua University, Beijing 100190, China
| | - Menghan Shi
- Lancaster Imagination Lab, Lancashire, Lancaster LA1 4YD, UK
| | - Fan Yang
- Electrical and Electronic Engineering Department, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
9
|
Faisal M, Rusetskaya A, Väli L, Taba P, Minajeva A, Hickey MA. No Evidence of Sensory Neuropathy in a Traditional Mouse Model of Idiopathic Parkinson's Disease. Cells 2024; 13:799. [PMID: 38786023 PMCID: PMC11120514 DOI: 10.3390/cells13100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disorder worldwide and is diagnosed based on motor impairments. Non-motor symptoms are also well-recognised in this disorder, and peripheral neuropathy is a frequent but poorly appreciated non-motor sign. Studying how central and peripheral sensory systems are affected can contribute to the development of targeted therapies and deepen our understanding of the pathophysiology of PD. Although the cause of sporadic PD is unknown, chronic exposure to the pesticide rotenone in humans increases the risk of developing the disease. Here, we aimed to investigate whether peripheral neuropathy is present in a traditional model of PD. Mice receiving intrastriatal rotenone showed greatly reduced dopamine terminals in the striatum and a reduction in tyrosine hydroxylase-positive neurons in the Substantia nigra pars compacta and developed progressive motor impairments in hindlimb stepping and rotarod but no change in spontaneous activity. Interestingly, repeated testing using gold-standard protocols showed no change in gut motility, a well-known non-motor symptom of PD. Importantly, we did not observe any change in heat, cold, or touch sensitivity, again based upon repeated testing with well-validated protocols that were statistically well powered. Therefore, this traditional model fails to replicate PD, and our data again reiterate the importance of the periphery to the disorder.
Collapse
Affiliation(s)
- Mahvish Faisal
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia;
| | - Anna Rusetskaya
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Liis Väli
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (L.V.); (P.T.)
- Estonia and Clinic of Neurology, Tartu University Hospital, 50406 Tartu, Estonia
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (L.V.); (P.T.)
- Estonia and Clinic of Neurology, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ave Minajeva
- Department of Pathological Anatomy and Forensic Medicine, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia;
| | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia;
| |
Collapse
|
10
|
Rekik A, Santoro C, Poplawska-Domaszewicz K, Qamar MA, Batzu L, Landolfo S, Rota S, Falup-Pecurariu C, Murasan I, Chaudhuri KR. Parkinson's disease and vitamins: a focus on vitamin B12. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02769-z. [PMID: 38602571 DOI: 10.1007/s00702-024-02769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Parkinson's disease (PD) has been linked to a vast array of vitamins among which vitamin B12 (Vit B12) is the most relevant and often investigated specially in the context of intrajejunal levodopa infusion therapy. Vit B12 deficiency, itself, has been reported to cause acute parkinsonism. Nevertheless, concrete mechanisms through which B12 deficiency interacts with PD in terms of pathophysiology, clinical manifestation and progression remains unclear. Recent studies have suggested that Vit B12 deficiency along with the induced hyperhomocysteinemia are correlated with specific PD phenotypes characterized with early postural instability and falls and more rapid motor progression, cognitive impairment, visual hallucinations and autonomic dysfunction. Specific clinical features such as polyneuropathy have also been linked to Vit B12 deficiency specifically in context of intrajejunal levodopa therapy. In this review, we explore the link between Vit B12 and PD in terms of physiopathology regarding dysfunctional neural pathways, neuropathological processes as well as reviewing the major clinical traits of Vit B12 deficiency in PD and Levodopa-mediated neuropathy. Finally, we provide an overview of the therapeutic effect of Vit B12 supplementation in PD and posit a practical guideline for Vit B12 testing and supplementation.
Collapse
Affiliation(s)
- Arwa Rekik
- Department of Neurology of Sahloul Hospital, Sousse, Tunisia.
- Faculty of Medicine of Sousse, Sousse, Tunisia.
| | - Carlo Santoro
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Karolina Poplawska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, 60-355, Poznan, Poland
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
| | - Mubasher Ahmad Qamar
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| | - Lucia Batzu
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| | - Salvatore Landolfo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Silvia Rota
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Brasov, 500036, Brasov, Romania
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Iulia Murasan
- Faculty of Medicine, Transilvania University of Brasov, 500036, Brasov, Romania
| | - Kallol Ray Chaudhuri
- Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, UK
- Division of Neuroscience, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RT, UK
| |
Collapse
|
11
|
Camargo CHF, Ferreira-Peruzzo SA, Ribas DIR, Franklin GL, Teive HAG. Imbalance and gait impairment in Parkinson's disease: discussing postural instability and ataxia. Neurol Sci 2024; 45:1377-1388. [PMID: 37985635 DOI: 10.1007/s10072-023-07205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Gait and balance difficulties pose significant clinical challenges in Parkinson's disease (PD). The impairment of physiological mechanisms responsible for maintaining natural orthostatism plays a central role in the pathophysiology of postural instability observed in PD. In addition to the well-known rigidity and abnormalities in muscles and joints, various brain regions involved in the regulation of posture, balance, and gait, such as the basal ganglia, cerebellum, and brainstem regions like the pontine peduncle nucleus, are affected in individuals with PD. The recognition of the cerebellum's role in PD has been increasingly acknowledged. Cortical areas and their connections are associated with freezing of gait, a type of frontal lobe ataxia commonly observed in PD. Furthermore, impairments in the peripheral nervous system, including those caused by levodopatherapy, can contribute to gait impairment and imbalance in PD patients. Consequently, individuals with PD may exhibit frontal ataxia, sensory ataxia, and even cerebellar ataxia as underlying causes of gait disturbances and imbalance, starting from the early stages of the disease. The complex interplay between dysfunctional brain regions, impaired cortical connections, and peripheral nervous system abnormalities contributes to the multifaceted nature of gait and balance difficulties in PD. Understanding the intricate mechanisms is crucial for the development of effective therapeutic approaches targeting these specific deficits in PD.
Collapse
Affiliation(s)
- Carlos Henrique F Camargo
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, 80060-900, Brazil.
| | - Silvia Aparecida Ferreira-Peruzzo
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, 80060-900, Brazil
- School of Health Sciences, Autonomous University of Brazil, Curitiba, Paraná, Brazil
| | - Danieli Isabel Romanovitch Ribas
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, 80060-900, Brazil
- School of Health Sciences, Autonomous University of Brazil, Curitiba, Paraná, Brazil
| | - Gustavo L Franklin
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Hélio A G Teive
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, 80060-900, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Danielyan M, Nebogova K, Simonyan R, Hovsepyan A, Avetisyan Z, Simonyan K, Simonyan G, Khachatryan V, Karapetyan K. Regulatory effect of bacterial melanin on the isoforms of new superoxide-producing associates from rat tissues in rotenone-induced Parkinson's disease. BMC Neurosci 2023; 24:69. [PMID: 38124101 PMCID: PMC10734125 DOI: 10.1186/s12868-023-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
According to recent research, selective neuronal vulnerability in Parkinson's disease (PD) results from several phenotypic traits, including calcium-dependent, feed-forward control of mitochondrial respiration leading to elevated reactive oxygen species and cytosolic calcium concentration, an extensive axonal arbor, and a reactive neurotransmitter. Therefore, antioxidant therapy is a promising direction in the treatment of PD. In vitro studies have indicated the survival-promoting activity of bacterial melanin (BM) on midbrain dopaminergic neuron cultures. It has been established that BM has a number of protective and anti-inflammatory properties, so there is a high probability of a protective effect of BM in the early stages of PD. In this study, PD was induced through the unilateral intracerebral administration of rotenone followed by bacterial melanin. Tissues (brain, lungs, and small intestine) from the observed groups underwent isolation and purification to extract isoforms of new thermostable superoxide (О2-)-producing associates between NADPH-containing lipoprotein (NLP) and NADPH oxidase-Nox (NLP-Nox). The optical absorption spectral characteristics, specific amounts, stationary concentration of the produced О2-, and the content of NADPH in the observed associates were determined. The optical absorption spectra of the NLP-Nox isoforms in the visible and UV regions in the experimental groups did not differ from those of the control group. However, compared with the control group, the specific content of the total fractions of NLP-Nox isoforms associated with PD groups was higher, especially in the small intestine. These findings suggest that the described changes may represent a novel mechanism for rotenone-induced PD. Furthermore, bacterial melanin demonstrated antioxidant properties and regulated membrane formation in the brain, lung, and small intestine. This regulation occurred by inhibiting the release of new membrane-bound formations (NLP-Nox associates) from these membranes while simultaneously regulating the steady-state concentration of the formed О2-.
Collapse
Affiliation(s)
| | | | | | - Anichka Hovsepyan
- Scientific and Production Center "Armbiotechnology" NAS RA, Yerevan, Armenia
| | | | | | | | | | | |
Collapse
|
13
|
Li J, Chongpison Y, Amornvit J, Chaikittisilpa S, Santibenchakul S, Jaisamrarn U. Association of reproductive factors and exogenous hormone use with distal sensory polyneuropathy among postmenopausal women in the United States: results from 1999 to 2004 NHANES. Sci Rep 2023; 13:9274. [PMID: 37286578 DOI: 10.1038/s41598-023-35934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Postmenopausal status is a risk factor for distal sensory polyneuropathy-the most common type of peripheral neuropathy. We aimed to investigate associations between reproductive factors and history of exogenous hormone use with distal sensory polyneuropathy among postmenopausal women in the United States using data from the National Health and Nutrition Examination Survey 1999-2004, and to explore the modifying effects of ethnicity on these associations. We conducted a cross-sectional study among postmenopausal women aged ≥ 40 years. Women with a history of diabetes, stroke, cancer, cardiovascular disease, thyroid disease, liver disease, weak or failing kidneys, or amputation were excluded. Distal sensory polyneuropathy was measured using a 10-g monofilament test, and a questionnaire was used to collect data on reproductive history. Multivariable survey logistic regression was used to test the association between reproductive history variables and distal sensory polyneuropathy. In total, 1144 postmenopausal women aged ≥ 40 years were included. The adjusted odds ratios were 8.13 [95% confidence interval (CI) 1.24-53.28] and 3.18 (95% CI 1.32-7.68) for age at menarche < 11 years and time since menopause > 20 years, respectively, which were positively associated with distal sensory polyneuropathy; adjusted odds ratios were 0.45 for the history of breastfeeding (95% CI 0.21-0.99) and 0.41 for exogenous hormone use (95% CI 0.19-0.87) were negatively associated. Subgroup analysis revealed ethnicity-based heterogeneity in these associations. Age at menarche, time since menopause, breastfeeding, and exogenous hormone use were associated with distal sensory polyneuropathy. Ethnicity significantly modified these associations.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuda Chongpison
- Center of Excellence in Biostatistics, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- The Skin and Allergy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Jakkrit Amornvit
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sukanya Chaikittisilpa
- Menopause Research Group, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somsook Santibenchakul
- Family Planning and Reproductive Health Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Bangkok, 10330, Thailand.
| | - Unnop Jaisamrarn
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Modica JS, Déry C, Canissario R, Logigian E, Bonno D, Stanton M, Dupré N, McDermott MP, Bouchard M, Lang AE, Lizarraga KJ. A systematic review of the potential consequences of abnormal serum levels of vitamin B6 in people living with Parkinson's disease. J Neurol Sci 2023; 450:120690. [PMID: 37210937 DOI: 10.1016/j.jns.2023.120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The prevalences of polyneuropathy and epilepsy are higher in people living with Parkinson's disease (PwPD) when compared to older adults. Vitamin B6 is widely available and affordable. PwPD are at higher risk of having abnormal serum levels of vitamin B6, which are associated with polyneuropathy and epilepsy that are potentially preventable and treatable. Potential contributors to abnormal B6 levels in PwPD include age, dietary habits, vitamin supplement misuse, gastrointestinal dysfunction and complex interactions with levodopa. The literature on the potential consequences of abnormal B6 levels in PwPD is limited by a small number of observational studies focused on polyneuropathy and epilepsy. Abnormal B6 levels have been reported in 60 of 145 PwPD (41.4% relative frequency). Low B6 levels were reported in 52 PwPD and high B6 levels were reported in 8 PwPD. There were 14 PwPD, polyneuropathy and low B6. There were 4 PwPD, polyneuropathy and high B6. There were 4 PwPD, epilepsy and low B6. Vitamin B6 level was low in 44.6% of PwPD receiving levodopa-carbidopa intestinal gel and in 30.1% of PwPD receiving oral levodopa-carbidopa. In almost all studies reporting low B6 in PwPD receiving oral levodopa-carbidopa, the dose of levodopa was ≥1000 mg/day. Rigorous epidemiological studies will clarify the prevalence, natural history and clinical relevance of abnormal serum levels of vitamin B6 in PwPD. These studies should account for diet, vitamin supplement use, gastrointestinal dysfunction, concurrent levels of vitamin B12, folate, homocysteine and methylmalonic acid, formulations and dosages of levodopa and other medications commonly used in PwPD.
Collapse
Affiliation(s)
| | - Catherine Déry
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | | | - Eric Logigian
- Department of Neurology, University of Rochester, NY, USA
| | - Deana Bonno
- Department of Neurology, University of Rochester, NY, USA
| | | | - Nicolas Dupré
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, NY, USA
| | - Manon Bouchard
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Hoeijmakers JGJ, Merkies ISJ, Faber CG. Small fiber neuropathies: expanding their etiologies. Curr Opin Neurol 2022; 35:545-552. [PMID: 35950732 DOI: 10.1097/wco.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Several conditions have been associated with the development of small fiber neuropathy (SFN). The list of metabolic, immune-mediated, infectious, toxic, drugs-related, and hereditary conditions is still growing and various hypotheses are made about the underlying pathophysiological mechanisms. Understanding these processes is important to provide new targets for treatment. In addition, the specific SFN phenotype can provide direction for the underlying etiology. This review discusses the latest developments concerning the expanding etiologies in SFN. RECENT FINDINGS In the past 18 months, special attention has been paid to immunological etiologies, partly due to the coronavirus disease 2019 pandemic, but also new auto-antibodies in SFN have been demonstrated. Identifying patients with immune-mediated SFN can be challenging, since contrary to the classical distal sensory phenotype, a nonlength-dependent pattern is more common.Besides the etiologies of classical SFN, small fiber pathology is increasingly described in diseases without the typical neuropathic pain features of SFN, sometimes called syndromic SFN. However, the clinical relevance is not yet fully understood. SUMMARY The expansion of the etiologies of SFN continues and brings more insight in possible targets for treatment. The clinical presentation may vary as a result of the underlying condition.
Collapse
Affiliation(s)
- Janneke G J Hoeijmakers
- Department of Neurology, Maastricht University Medical Center+, Maastricht
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Ingemar S J Merkies
- Department of Neurology, Maastricht University Medical Center+, Maastricht
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
- Curaçao Medical Center, Willemstad, Curaçao
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center+, Maastricht
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
16
|
Sozzi S, Ghai S, Schieppati M. Incongruity of Geometric and Spectral Markers in the Assessment of Body Sway. Front Neurol 2022; 13:929132. [PMID: 35923830 PMCID: PMC9339954 DOI: 10.3389/fneur.2022.929132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 01/15/2023] Open
Abstract
Different measurements of body oscillations in the time or frequency domain are being employed as markers of gait and balance abnormalities. This study investigates basic relationships within and between geometric and spectral measures in a population of young adult subjects. Twenty healthy subjects stood with parallel feet on a force platform with and without a foam pad. Adaptation effects to prolonged stance were assessed by comparing the first and last of a series of eight successive trials. Centre of Foot Pressure (CoP) excursions were recorded with Eyes Closed (EC) and Open (EO) for 90s. Geometric measures (Sway Area, Path Length), standard deviation (SD) of the excursions, and spectral measure (mean power Spectrum Level and Median Frequency), along the medio-lateral (ML) and antero-posterior (AP) direction were computed. Sway Area was more strongly associated than Path Length with CoP SD and, consequently, with mean Spectrum Level for both ML and AP, and both visual and surface conditions. The squared-SD directly specified the mean power Spectrum Level of CoP excursions (ML and AP) in all conditions. Median Frequency was hardly related to Spectrum Level. Adaptation had a confounding effect, whereby equal values of Sway Area, Path Length, and Spectrum Level corresponded to different Median Frequency values. Mean Spectrum Level and SDs of the time series of CoP ML and AP excursions convey the same meaning and bear an acceptable correspondence with Sway Area values. Shifts in Median Frequency values represent important indications of neuromuscular control of stance and of the effects of vision, support conditions, and adaptation. The Romberg Quotient EC/EO for a given variable is contingent on the compliance of the base of support and adaptation, and different between Sway Area and Path Length, but similar between Sway Area and Spectrum Level (AP and ML). These measures must be taken with caution in clinical studies, and considered together in order to get a reliable indication of overall body sway, of modifications by sensory and standing condition, and of changes with ageing, medical conditions and rehabilitation treatment. However, distinct measures shed light on the discrete mechanisms and complex processes underpinning the maintenance of stance.
Collapse
Affiliation(s)
- Stefania Sozzi
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
| | - Shashank Ghai
- Department of Physical Therapy, Rsgbiogen, New Delhi, India
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
- *Correspondence: Marco Schieppati
| |
Collapse
|
17
|
Sardoeira A, Vila-Chã N, Corrá M, Sousa AP, Maetzler W, Maia LF. Reply: Vitamins B6 and B12, levodopa, and their complex interactions in patients with Parkinson's disease. Brain 2022; 145:e79-e80. [PMID: 35802498 DOI: 10.1093/brain/awac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ana Sardoeira
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Nuno Vila-Chã
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Marta Corrá
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.,Institute for Research and Innovation in Health (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Ana Paula Sousa
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Walter Maetzler
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Luís F Maia
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.,Institute for Research and Innovation in Health (i3s), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Lizárraga KJ, Lang AE. Vitamins B6 and B12, levodopa, and their complex interactions in patients with Parkinson's disease. Brain 2022; 145:e77-e78. [PMID: 35802009 DOI: 10.1093/brain/awac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karlo J Lizárraga
- Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, New York 14618, USA
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, Ontario M5T 2S6, Canada
| |
Collapse
|
19
|
Otomi Y, Irahara S, Inoue H, Shinya T, Otsuka H, Harada M. Increased 18F-FDG Uptake in the Axillary Lymph Nodes of the Vaccinated Side Associated with COVID-19 Vaccination. Mol Imaging Radionucl Ther 2022; 31:169-171. [PMID: 35771098 PMCID: PMC9246311 DOI: 10.4274/mirt.galenos.2021.22590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A 50-year-old female patient underwent (18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) following modified radical mastectomy for cancer of the left breast. Ten days before the PET/CT, the coronavirus disease-2019 (COVID-19) vaccine was injected intramuscularly into the right deltoid muscle. Increased (18F-FDG uptake of maximum standardized uptake value (11.0) was observed in the lymph nodes of the right axilla, which had not been observed in the previous PET/CT. The size of the oval-shaped lymph nodes was up to approximately 11×9 mm; however, it was larger than that observed on the previous PET/CT. We contemplate that the increased (18F-FDG uptake was a reactive change in the lymph nodes associated with the COVID-19 vaccine.
Collapse
Affiliation(s)
- Yoichi Otomi
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Saho Irahara
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Hiroaki Inoue
- Tokushima University, Department of Thoracic and Endocrine Surgery and Oncology, Tokushima, Japan
| | | | - Hideki Otsuka
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Masafumi Harada
- Tokushima University, Department of Radiology, Tokushima, Japan
| |
Collapse
|
20
|
Movement disorders and neuropathies: overlaps and mimics in clinical practice. J Neurol 2022; 269:4646-4662. [PMID: 35657406 DOI: 10.1007/s00415-022-11200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.
Collapse
|