1
|
Roelofs A. Wernicke's functional neuroanatomy model of language turns 150: what became of its psychological reflex arcs? Brain Struct Funct 2024; 229:2079-2096. [PMID: 38581582 PMCID: PMC11611947 DOI: 10.1007/s00429-024-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
Wernicke (Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis. Cohn und Weigert, Breslau. https://wellcomecollection.org/works/dwv5w9rw , 1874) proposed a model of the functional neuroanatomy of spoken word repetition, production, and comprehension. At the heart of this epoch-making model are psychological reflex arcs underpinned by fiber tracts connecting sensory to motor areas. Here, I evaluate the central assumption of psychological reflex arcs in light of what we have learned about language in the brain during the past 150 years. I first describe Wernicke's 1874 model and the evidence he presented for it. Next, I discuss his updates of the model published in 1886 and posthumously in 1906. Although the model had an enormous immediate impact, it lost influence after the First World War. Unresolved issues included the anatomical underpinnings of the psychological reflex arcs, the role of auditory images in word production, and the sufficiency of psychological reflex arcs, which was questioned by Wundt (Grundzüge der physiologischen Psychologie. Engelmann, Leipzig. http://vlp.mpiwg-berlin.mpg.de/references?id=lit46 , 1874; Grundzüge der physiologischen Psychologie (Vol. 1, 5th ed.). Engelmann, Leipzig. http://vlp.mpiwg-berlin.mpg.de/references?id=lit806 , 1902). After a long dormant period, Wernicke's model was revived by Geschwind (Science 170:940-944. https://doi.org/10.1126/science.170.3961.940 , 1970; Selected papers on language and the brain. Reidel, Dordrecht, 1974), who proposed a version of it that differed in several important respects from Wernicke's original. Finally, I describe how new evidence from modern research has led to a novel view on language in the brain, supplementing contemporary equivalents of psychological reflex arcs by other mechanisms such as attentional control and assuming different neuroanatomical underpinnings. In support of this novel view, I report new analyses of patient data and computer simulations using the WEAVER++/ARC model (Roelofs 2014, 2022) that incorporates attentional control and integrates the new evidence.
Collapse
Affiliation(s)
- Ardi Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Kurteff GL, Field AM, Asghar S, Tyler-Kabara EC, Clarke D, Weiner HL, Anderson AE, Watrous AJ, Buchanan RJ, Modur PN, Hamilton LS. Spatiotemporal Mapping of Auditory Onsets during Speech Production. J Neurosci 2024; 44:e1109242024. [PMID: 39455254 PMCID: PMC11580786 DOI: 10.1523/jneurosci.1109-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The human auditory cortex is organized according to the timing and spectral characteristics of speech sounds during speech perception. During listening, the posterior superior temporal gyrus is organized according to onset responses, which segment acoustic boundaries in speech, and sustained responses, which further process phonological content. When we speak, the auditory system is actively processing the sound of our own voice to detect and correct speech errors in real time. This manifests in neural recordings as suppression of auditory responses during speech production compared with perception, but whether this differentially affects the onset and sustained temporal profiles is not known. Here, we investigated this question using intracranial EEG recorded from seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy while they performed a reading/listening task. We identified onset and sustained responses to speech in the bilateral auditory cortex and observed a selective suppression of onset responses during speech production. We conclude that onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production and are therefore suppressed. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, auditory onset responses and phonological feature tuning were present in the posterior insula during both speech perception and production, suggesting an anatomically and functionally separate auditory processing zone that we believe to be involved in multisensory integration during speech perception and feedback control.
Collapse
Affiliation(s)
- Garret Lynn Kurteff
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, Texas 78712
| | - Alyssa M Field
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, Texas 78712
| | - Saman Asghar
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, Texas 78712
- Departments of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Elizabeth C Tyler-Kabara
- Departments of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
- Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
| | - Dave Clarke
- Departments of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
- Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
- Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
| | - Howard L Weiner
- Departments of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Anne E Anderson
- Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Andrew J Watrous
- Departments of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Robert J Buchanan
- Departments of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
| | - Pradeep N Modur
- Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
| | - Liberty S Hamilton
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, Texas 78712
- Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
3
|
Morgan AM, Devinsky O, Doyle WK, Dugan P, Friedman D, Flinker A. A low-activity cortical network selectively encodes syntax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599931. [PMID: 38948730 PMCID: PMC11212956 DOI: 10.1101/2024.06.20.599931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Syntax, the abstract structure of language, is a hallmark of human cognition. Despite its importance, its neural underpinnings remain obscured by inherent limitations of non-invasive brain measures and a near total focus on comprehension paradigms. Here, we address these limitations with high-resolution neurosurgical recordings (electrocorticography) and a controlled sentence production experiment. We uncover three syntactic networks that are broadly distributed across traditional language regions, but with focal concentrations in middle and inferior frontal gyri. In contrast to previous findings from comprehension studies, these networks process syntax mostly to the exclusion of words and meaning, supporting a cognitive architecture with a distinct syntactic system. Most strikingly, our data reveal an unexpected property of syntax: it is encoded independent of neural activity levels. We propose that this "low-activity coding" scheme represents a novel mechanism for encoding information, reserved for higher-order cognition more broadly.
Collapse
Affiliation(s)
- Adam M. Morgan
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Orrin Devinsky
- Neurosurgery Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Werner K. Doyle
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Patricia Dugan
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Daniel Friedman
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Adeen Flinker
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
- Biomedical Engineering Department, NYU Tandon School of Engineering, 6 MetroTech Center Ave, Brooklyn, 11201, NY, USA
| |
Collapse
|
4
|
Patel AD. Beat-based dancing to music has evolutionary foundations in advanced vocal learning. BMC Neurosci 2024; 25:65. [PMID: 39506663 PMCID: PMC11539772 DOI: 10.1186/s12868-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/09/2024] [Indexed: 11/08/2024] Open
Abstract
Dancing to music is ancient and widespread in human cultures. While dance shows great cultural diversity, it often involves nonvocal rhythmic movements synchronized to musical beats in a predictive and tempo-flexible manner. To date, the only nonhuman animals known to spontaneously move to music in this way are parrots. This paper proposes that human-parrot similarities in movement to music and in the neurobiology of advanced vocal learning hold clues to the evolutionary foundations of human dance. The proposal draws on recent research on the neurobiology of parrot vocal learning by Jarvis and colleagues and on a recent cortical model for speech motor control by Hickock and colleagues. These two lines of work are synthesized to suggest that gene regulation changes associated with the evolution of a dorsal laryngeal pitch control pathway in ancestral humans fortuitously strengthened auditory-parietal cortical connections that support beat-based rhythmic processing. More generally, the proposal aims to explain how and why the evolution of strong forebrain auditory-motor integration in the service of learned vocal control led to a capacity and proclivity to synchronize nonvocal movements to the beat. The proposal specifies cortical brain pathways implicated in the origins of human beat-based dancing and leads to testable predictions and suggestions for future research.
Collapse
Affiliation(s)
- Aniruddh D Patel
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA, 02155, USA.
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
5
|
Curtis M, Bayat M, Garic D, Alfano AR, Hernandez M, Curzon M, Bejarano A, Tremblay P, Graziano P, Dick AS. Structural Development of Speech Networks in Young Children at Risk for Speech Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609470. [PMID: 39229017 PMCID: PMC11370569 DOI: 10.1101/2024.08.23.609470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Characterizing the structural development of the neural speech network in early childhood is important for understanding speech acquisition. To investigate speech in the developing brain, 94 children aged 4-7-years-old at risk for early speech disorder were scanned using diffusion weighted imaging (DWI) magnetic resonance imaging (MRI). Additionally, each child completed the Syllable Repetition Task (SRT), a validated measure of phoneme articulation. The DWI data were modeled using multi-compartment restriction spectrum imaging (RSI) to measure restricted and hindered diffusion properties in both grey and white matter. Consequently, we analyzed the diffusion data using both whole brain analysis, and automated fiber quantification (AFQ) analysis to establish tract profiles for each of six fiber pathways thought to be important for supporting speech development. In the whole brain analysis, we found that SRT performance was associated with restricted diffusion in bilateral inferior frontal gyrus ( pars opercularis ), right pre-supplementary/ supplementary motor area (pre-SMA/SMA), and bilateral cerebellar grey matter ( p < .005). Age moderated these associations in left pars opercularis and frontal aslant tract (FAT). However, in both cases only the cerebellar findings survived a cluster correction. We also found associations between SRT performance and restricted diffusion in cortical association fiber pathways, especially left FAT, and in the cerebellar peduncles. Analyses using automatic fiber quantification (AFQ) highlighted differences in high and low performing children along specific tract profiles, most notably in left but not right FAT. These findings suggest that individual differences in speech performance are reflected in structural gray and white matter differences as measured by restricted and hindered diffusion metrics, and offer important insights into developing brain networks supporting speech in very young children.
Collapse
|
6
|
Zhang Y, Sarmukadam K, Wang Y, Behroozmand R. Effects of attentional instructions on the behavioral and neural mechanisms of speech auditory feedback control. Neuropsychologia 2024; 201:108944. [PMID: 38925511 DOI: 10.1016/j.neuropsychologia.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The present study investigated how instructions for paying attention to auditory feedback may affect speech error detection and sensorimotor control. Electroencephalography (EEG) and speech signals were recorded from 21 neurologically intact adult subjects while they produced the speech vowel sound /a/ and received randomized ±100 cents pitch-shift alterations in their real-time auditory feedback. Subjects were instructed to pay attention to their auditory feedback and press a button to indicate whether they detected a pitch-shift stimulus during trials. Data for this group was compared with 22 matched subjects who completed the same speech task under altered auditory feedback condition without attentional instructions. Results revealed a significantly smaller magnitude of speech compensations in the attentional-instruction vs. no-instruction group and a positive linear association between the magnitude of compensations and P2 event-related potential (ERP) amplitudes. In addition, we found that the amplitude of P2 ERP component was significantly larger in the attentional-instruction vs. no-instruction group. Source localization analysis showed that this effect was accounted for by significantly stronger neural activities in the right hemisphere insula, precentral gyrus, postcentral gyrus, transverse temporal gyrus, and superior temporal gyrus in the attentional-instruction group. These findings suggest that attentional instructions may enhance speech auditory feedback error detection, and subsequently improve sensorimotor control via generating more stable speech outputs (i.e., smaller compensations) in response to pitch-shift alterations. Our data are informative for advancing theoretical models and motivating targeted interventions with a focus on the role of attentional instructions for improving treatment outcomes in patients with motor speech disorders.
Collapse
Affiliation(s)
- Yilun Zhang
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 N. Floyd Rd, Richardson, TX 75080, USA
| | - Kimaya Sarmukadam
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 N. Floyd Rd, Richardson, TX 75080, USA.
| |
Collapse
|
7
|
Vissani M, Bush A, Lipski WJ, Bullock L, Fischer P, Neudorfer C, Holt LL, Fiez JA, Turner RS, Richardson RM. Spike-phase coupling of subthalamic neurons to posterior opercular cortex predicts speech sound accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562969. [PMID: 37905141 PMCID: PMC10614892 DOI: 10.1101/2023.10.18.562969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Speech provides a rich context for understanding how cortical interactions with the basal ganglia contribute to unique human behaviors, but opportunities for direct intracranial recordings across cortical-basal ganglia networks are rare. We recorded electrocorticographic signals in the cortex synchronously with single units in the basal ganglia during awake neurosurgeries where subjects spoke syllable repetitions. We discovered that individual STN neurons have transient (200ms) spike-phase coupling (SPC) events with multiple cortical regions. The spike timing of STN neurons was coordinated with the phase of theta-alpha oscillations in the posterior supramarginal and superior temporal gyrus during speech planning and production. Speech sound errors occurred when this STN-cortical interaction was delayed. Our results suggest that the STN supports mechanisms of speech planning and auditory-sensorimotor integration during speech production that are required to achieve high fidelity of the phonological and articulatory representation of the target phoneme. These findings establish a framework for understanding cortical-basal ganglia interaction in other human behaviors, and additionally indicate that firing-rate based models are insufficient for explaining basal ganglia circuit behavior.
Collapse
|
8
|
Teghipco A, Newman-Norlund R, Gibson M, Bonilha L, Absher J, Fridriksson J, Rorden C. Stable multivariate lesion symptom mapping. APERTURE NEURO 2024; 4:10.52294/001c.117311. [PMID: 39364269 PMCID: PMC11449259 DOI: 10.52294/001c.117311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Multivariate lesion-symptom mapping (MLSM) considers lesion information across the entire brain to predict impairments. The strength of this approach is also its weakness-considering many brain features together synergistically can uncover complex brain-behavior relationships but exposes a high-dimensional feature space that a model is expected to learn. Successfully distinguishing between features in this landscape can be difficult for models, particularly in the presence of irrelevant or redundant features. Here, we propose stable multivariate lesion-symptom mapping (sMLSM), which integrates the identification of reliable features with stability selection into conventional MLSM and describe our open-source MATLAB implementation. Usage is showcased with our publicly available dataset of chronic stroke survivors (N=167) and further validated in our independent public acute stroke dataset (N = 1106). We demonstrate that sMLSM eliminates inconsistent features highlighted by MLSM, reduces variation in feature weights, enables the model to learn more complex patterns of brain damage, and improves model accuracy for predicting aphasia severity in a way that tends to be robust regarding the choice of parameters for identifying reliable features. Critically, sMLSM more consistently outperforms predictions based on lesion size alone. This advantage is evident starting at modest sample sizes (N>75). Spatial distribution of feature importance is different in sMLSM, which highlights the features identified by univariate lesion symptom mapping while also implicating select regions emphasized by MLSM. Beyond improved prediction accuracy, sMLSM can offer deeper insight into reliable biomarkers of impairment, informing our understanding of neurobiology.
Collapse
Affiliation(s)
- Alex Teghipco
- Communication Sciences & Disorders, University of South Carolina
| | | | | | - Leonardo Bonilha
- Communication Sciences & Disorders, University of South Carolina
- Neurology, University of South Carolina School of Medicine
| | - John Absher
- Neurology, University of South Carolina School of Medicine
- School of Health Research, Clemson University
- Medicine, Neurosurgery and Radiology, Prisma Health
| | | | | |
Collapse
|
9
|
Yu L, Dugan P, Doyle W, Devinsky O, Friedman D, Flinker A. A left-lateralized dorsolateral prefrontal network for naming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594403. [PMID: 38798614 PMCID: PMC11118423 DOI: 10.1101/2024.05.15.594403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The ability to connect the form and meaning of a concept, known as word retrieval, is fundamental to human communication. While various input modalities could lead to identical word retrieval, the exact neural dynamics supporting this convergence relevant to daily auditory discourse remain poorly understood. Here, we leveraged neurosurgical electrocorticographic (ECoG) recordings from 48 patients and dissociated two key language networks that highly overlap in time and space integral to word retrieval. Using unsupervised temporal clustering techniques, we found a semantic processing network located in the middle and inferior frontal gyri. This network was distinct from an articulatory planning network in the inferior frontal and precentral gyri, which was agnostic to input modalities. Functionally, we confirmed that the semantic processing network encodes word surprisal during sentence perception. Our findings characterize how humans integrate ongoing auditory semantic information over time, a critical linguistic function from passive comprehension to daily discourse.
Collapse
Affiliation(s)
- Leyao Yu
- Department of Biomedical Engineering, New York University, New York, 10016, New York, the United States
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Patricia Dugan
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Werner Doyle
- Department of Neurosurgery, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Orrin Devinsky
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Daniel Friedman
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| | - Adeen Flinker
- Department of Biomedical Engineering, New York University, New York, 10016, New York, the United States
- Department of Neurology, School of Medicine, New York University, New York, 10016, New York, the United States
| |
Collapse
|
10
|
Kurteff GL, Field AM, Asghar S, Tyler-Kabara EC, Clarke D, Weiner HL, Anderson AE, Watrous AJ, Buchanan RJ, Modur PN, Hamilton LS. Processing of auditory feedback in perisylvian and insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593257. [PMID: 38798574 PMCID: PMC11118286 DOI: 10.1101/2024.05.14.593257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
When we speak, we not only make movements with our mouth, lips, and tongue, but we also hear the sound of our own voice. Thus, speech production in the brain involves not only controlling the movements we make, but also auditory and sensory feedback. Auditory responses are typically suppressed during speech production compared to perception, but how this manifests across space and time is unclear. Here we recorded intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy who performed a reading/listening task to investigate how other auditory responses are modulated during speech production. We identified onset and sustained responses to speech in bilateral auditory cortex, with a selective suppression of onset responses during speech production. Onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, the posterior insula responded at sentence onset for both perception and production, suggesting a role in multisensory integration during feedback control.
Collapse
Affiliation(s)
- Garret Lynn Kurteff
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, USA
| | - Alyssa M. Field
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, USA
| | - Saman Asghar
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth C. Tyler-Kabara
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dave Clarke
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Howard L. Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Anne E. Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Andrew J. Watrous
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Robert J. Buchanan
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Pradeep N. Modur
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Liberty S. Hamilton
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Lead contact
| |
Collapse
|
11
|
Sun C, Zhang J, Bu L, Lu J, Yao Y, Wu J. A speech fluency brain network derived from gliomas. Brain Commun 2024; 6:fcae153. [PMID: 38756538 PMCID: PMC11098038 DOI: 10.1093/braincomms/fcae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The brain network of speech fluency has not yet been investigated via a study with a large and homogenous sample. This study analysed multimodal imaging data from 115 patients with low-grade glioma to explore the brain network of speech fluency. We applied voxel-based lesion-symptom mapping to identify domain-specific regions and white matter pathways associated with speech fluency. Direct cortical stimulation validated the domain-specific regions intra-operatively. We then performed connectivity-behaviour analysis with the aim of identifying connections that significantly correlated with speech fluency. Voxel-based lesion-symptom mapping analysis showed that damage to domain-specific regions (the middle frontal gyrus, the precentral gyrus, the orbital part of inferior frontal gyrus and the insula) and white matter pathways (corticospinal fasciculus, internal capsule, arcuate fasciculus, uncinate fasciculus, frontal aslant tract) are associated with reduced speech fluency. Furthermore, we identified connections emanating from these domain-specific regions that exhibited significant correlations with speech fluency. These findings illuminate the interaction between domain-specific regions and 17 domain-general regions-encompassing the superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus and rolandic operculum, superior temporal gyrus, temporal pole, inferior temporal pole, middle cingulate gyrus, supramarginal gyrus, fusiform gyrus, inferior parietal lobe, as well as subcortical structures such as thalamus-implicating their collective role in supporting fluent speech. Our detailed mapping of the speech fluency network offers a strategic foundation for clinicians to safeguard language function during the surgical intervention for brain tumours.
Collapse
Affiliation(s)
- Cechen Sun
- Department of Biostatistics, School of Public Health & National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health & National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201107, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| |
Collapse
|
12
|
Clarke A, Tyler LK, Marslen-Wilson W. Hearing what is being said: the distributed neural substrate for early speech interpretation. LANGUAGE, COGNITION AND NEUROSCIENCE 2024; 39:1097-1116. [PMID: 39439863 PMCID: PMC11493057 DOI: 10.1080/23273798.2024.2345308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/26/2024] [Indexed: 10/25/2024]
Abstract
Speech comprehension is remarkable for the immediacy with which the listener hears what is being said. Here, we focus on the neural underpinnings of this process in isolated spoken words. We analysed source-localised MEG data for nouns using Representational Similarity Analysis to probe the spatiotemporal coordinates of phonology, lexical form, and the semantics of emerging word candidates. Phonological model fit was detectable within 40-50 ms, engaging a bilateral network including superior and middle temporal cortex and extending into anterior temporal and inferior parietal regions. Lexical form emerged within 60-70 ms, and model fit to semantics from 100-110 ms. Strikingly, the majority of vertices in a central core showed model fit to all three dimensions, consistent with a distributed neural substrate for early speech analysis. The early interpretation of speech seems to be conducted in a unified integrative representational space, in conflict with conventional views of a linguistically stratified representational hierarchy.
Collapse
Affiliation(s)
- Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
13
|
Anastasopoulou I, Cheyne DO, van Lieshout P, Johnson BW. Decoding kinematic information from beta-band motor rhythms of speech motor cortex: a methodological/analytic approach using concurrent speech movement tracking and magnetoencephalography. Front Hum Neurosci 2024; 18:1305058. [PMID: 38646159 PMCID: PMC11027130 DOI: 10.3389/fnhum.2024.1305058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Articulography and functional neuroimaging are two major tools for studying the neurobiology of speech production. Until now, however, it has generally not been feasible to use both in the same experimental setup because of technical incompatibilities between the two methodologies. Methods Here we describe results from a novel articulography system dubbed Magneto-articulography for the Assessment of Speech Kinematics (MASK), which is technically compatible with magnetoencephalography (MEG) brain scanning systems. In the present paper we describe our methodological and analytic approach for extracting brain motor activities related to key kinematic and coordination event parameters derived from time-registered MASK tracking measurements. Data were collected from 10 healthy adults with tracking coils on the tongue, lips, and jaw. Analyses targeted the gestural landmarks of reiterated utterances/ipa/ and /api/, produced at normal and faster rates. Results The results show that (1) Speech sensorimotor cortex can be reliably located in peri-rolandic regions of the left hemisphere; (2) mu (8-12 Hz) and beta band (13-30 Hz) neuromotor oscillations are present in the speech signals and contain information structures that are independent of those present in higher-frequency bands; and (3) hypotheses concerning the information content of speech motor rhythms can be systematically evaluated with multivariate pattern analytic techniques. Discussion These results show that MASK provides the capability, for deriving subject-specific articulatory parameters, based on well-established and robust motor control parameters, in the same experimental setup as the MEG brain recordings and in temporal and spatial co-register with the brain data. The analytic approach described here provides new capabilities for testing hypotheses concerning the types of kinematic information that are encoded and processed within specific components of the speech neuromotor system.
Collapse
Affiliation(s)
| | - Douglas Owen Cheyne
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Pascal van Lieshout
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
14
|
Lorca-Puls DL, Gajardo-Vidal A, Mandelli ML, Illán-Gala I, Ezzes Z, Wauters LD, Battistella G, Bogley R, Ratnasiri B, Licata AE, Battista P, García AM, Tee BL, Lukic S, Boxer AL, Rosen HJ, Seeley WW, Grinberg LT, Spina S, Miller BL, Miller ZA, Henry ML, Dronkers NF, Gorno-Tempini ML. Neural basis of speech and grammar symptoms in non-fluent variant primary progressive aphasia spectrum. Brain 2024; 147:607-626. [PMID: 37769652 PMCID: PMC10834255 DOI: 10.1093/brain/awad327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Sección de Neurología, Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Concepción, 4070105, Chile
| | - Andrea Gajardo-Vidal
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, 7590943, Chile
- Dirección de Investigación y Doctorados, Vicerrectoría de Investigación y Doctorados, Universidad del Desarrollo, Concepción, 4070001, Chile
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28029, Spain
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Zoe Ezzes
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Lisa D Wauters
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78712-0114, USA
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Buddhika Ratnasiri
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Abigail E Licata
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Laboratory of Neuropsychology, Istituti Clinici Scientifici Maugeri IRCCS, Bari, 70124, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Buenos Aires, B1644BID, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, 9160000, Chile
| | - Boon Lead Tee
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Sladjana Lukic
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Communication Sciences and Disorders, Ruth S. Ammon College of Education and Health Sciences, Adelphi University, Garden City, NY 11530-0701, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Maya L Henry
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78712-0114, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, TX 78712, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Department of Neurology, University of California, Davis, CA 95817, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| |
Collapse
|
15
|
Levy DF, Entrup JL, Schneck SM, Onuscheck CF, Rahman M, Kasdan A, Casilio M, Willey E, Davis LT, de Riesthal M, Kirshner HS, Wilson SM. Multivariate lesion symptom mapping for predicting trajectories of recovery from aphasia. Brain Commun 2024; 6:fcae024. [PMID: 38370445 PMCID: PMC10873140 DOI: 10.1093/braincomms/fcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three timepoints post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial aphasia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.
Collapse
Affiliation(s)
- Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin F Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maysaa Rahman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna Kasdan
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma Willey
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Howard S Kirshner
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Neef NE, Chang SE. Knowns and unknowns about the neurobiology of stuttering. PLoS Biol 2024; 22:e3002492. [PMID: 38386639 PMCID: PMC10883586 DOI: 10.1371/journal.pbio.3002492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Stuttering occurs in early childhood during a dynamic phase of brain and behavioral development. The latest studies examining children at ages close to this critical developmental period have identified early brain alterations that are most likely linked to stuttering, while spontaneous recovery appears related to increased inter-area connectivity. By contrast, therapy-driven improvement in adults is associated with a functional reorganization within and beyond the speech network. The etiology of stuttering, however, remains enigmatic. This Unsolved Mystery highlights critical questions and points to neuroimaging findings that could inspire future research to uncover how genetics, interacting neural hierarchies, social context, and reward circuitry contribute to the many facets of stuttering.
Collapse
Affiliation(s)
- Nicole E. Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Communication Disorders, Ewha Womans University, Seoul, Korea
| |
Collapse
|
17
|
Arjmandi MK, Behroozmand R. On the interplay between speech perception and production: insights from research and theories. Front Neurosci 2024; 18:1347614. [PMID: 38332858 PMCID: PMC10850291 DOI: 10.3389/fnins.2024.1347614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
The study of spoken communication has long been entrenched in a debate surrounding the interdependence of speech production and perception. This mini review summarizes findings from prior studies to elucidate the reciprocal relationships between speech production and perception. We also discuss key theoretical perspectives relevant to speech perception-production loop, including hyper-articulation and hypo-articulation (H&H) theory, speech motor theory, direct realism theory, articulatory phonology, the Directions into Velocities of Articulators (DIVA) and Gradient Order DIVA (GODIVA) models, and predictive coding. Building on prior findings, we propose a revised auditory-motor integration model of speech and provide insights for future research in speech perception and production, focusing on the effects of impaired peripheral auditory systems.
Collapse
Affiliation(s)
- Meisam K. Arjmandi
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
18
|
Khoshhal Mollasaraei Z, Behroozmand R. Impairment of the internal forward model and feedback mechanisms for vocal sensorimotor control in post-stroke aphasia: evidence from directional responses to altered auditory feedback. Exp Brain Res 2024; 242:225-239. [PMID: 37999725 PMCID: PMC10849397 DOI: 10.1007/s00221-023-06743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
The present study examined opposing and following vocal responses to altered auditory feedback (AAF) to determine how damage to left-hemisphere brain networks impairs the internal forward model and feedback mechanisms in post-stroke aphasia. Forty-nine subjects with aphasia and sixty age-matched controls performed speech vowel production tasks while their auditory feedback was altered using randomized ± 100 cents upward and downward pitch-shift stimuli. Data analysis revealed that when vocal responses were averaged across all trials (i.e., opposing and following), the overall magnitude of vocal compensation was significantly reduced in the aphasia group compared with controls. In addition, when vocal responses were analyzed separately for opposing and following trials, subjects in the aphasia group showed a significantly lower percentage of opposing and higher percentage of following vocal response trials compared with controls, particularly for the upward pitch-shift stimuli. However, there was no significant difference in the magnitude of opposing and following vocal responses between the two groups. These findings further support previous evidence on the impairment of vocal sensorimotor control in aphasia and provide new insights into the distinctive impact of left-hemisphere stroke on the internal forward model and feedback mechanisms. In this context, we propose that the lower percentage of opposing responses in aphasia may be accounted for by deficits in feedback-dependent mechanisms of audio-vocal integration and motor control. In addition, the higher percentage of following responses may reflect aberrantly increased reliance of the speech system on the internal forward model for generating sensory predictions during vocal error detection and motor control.
Collapse
Affiliation(s)
- Zeinab Khoshhal Mollasaraei
- NeuroSyntax Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC, 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 N. Floyd Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
19
|
Lu J, Li Y, Zhao Z, Liu Y, Zhu Y, Mao Y, Wu J, Chang EF. Neural control of lexical tone production in human laryngeal motor cortex. Nat Commun 2023; 14:6917. [PMID: 37903780 PMCID: PMC10616086 DOI: 10.1038/s41467-023-42175-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
In tonal languages, which are spoken by nearly one-third of the world's population, speakers precisely control the tension of vocal folds in the larynx to modulate pitch in order to distinguish words with completely different meanings. The specific pitch trajectories for a given tonal language are called lexical tones. Here, we used high-density direct cortical recordings to determine the neural basis of lexical tone production in native Mandarin-speaking participants. We found that instead of a tone category-selective coding, local populations in the bilateral laryngeal motor cortex (LMC) encode articulatory kinematic information to generate the pitch dynamics of lexical tones. Using a computational model of tone production, we discovered two distinct patterns of population activity in LMC commanding pitch rising and lowering. Finally, we showed that direct electrocortical stimulation of different local populations in LMC evoked pitch rising and lowering during tone production, respectively. Together, these results reveal the neural basis of vocal pitch control of lexical tones in tonal languages.
Collapse
Affiliation(s)
- Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yuanning Li
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Zehao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yan Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yanming Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard University, Boston, MA, 02215, USA
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, 94143, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
20
|
Murphy E, Forseth KJ, Donos C, Snyder KM, Rollo PS, Tandon N. The spatiotemporal dynamics of semantic integration in the human brain. Nat Commun 2023; 14:6336. [PMID: 37875526 PMCID: PMC10598228 DOI: 10.1038/s41467-023-42087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Language depends critically on the integration of lexical information across multiple words to derive semantic concepts. Limitations of spatiotemporal resolution have previously rendered it difficult to isolate processes involved in semantic integration. We utilized intracranial recordings in epilepsy patients (n = 58) who read written word definitions. Descriptions were either referential or non-referential to a common object. Semantically referential sentences enabled high frequency broadband gamma activation (70-150 Hz) of the inferior frontal sulcus (IFS), medial parietal cortex, orbitofrontal cortex (OFC) and medial temporal lobe in the left, language-dominant hemisphere. IFS, OFC and posterior middle temporal gyrus activity was modulated by the semantic coherence of non-referential sentences, exposing semantic effects that were independent of task-based referential status. Components of this network, alongside posterior superior temporal sulcus, were engaged for referential sentences that did not clearly reduce the lexical search space by the final word. These results indicate the existence of complementary cortical mosaics for semantic integration in posterior temporal and inferior frontal cortex.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cristian Donos
- Faculty of Physics, University of Bucharest, Măgurele, 077125, Bucharest, Romania
| | - Kathryn M Snyder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Manes JL, Kurani AS, Herschel E, Roberts AC, Tjaden K, Parrish T, Corcos DM. Premotor cortex is hypoactive during sustained vowel production in individuals with Parkinson's disease and hypophonia. Front Hum Neurosci 2023; 17:1250114. [PMID: 37941570 PMCID: PMC10629592 DOI: 10.3389/fnhum.2023.1250114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Hypophonia is a common feature of Parkinson's disease (PD); however, the contribution of motor cortical activity to reduced phonatory scaling in PD is still not clear. Methods In this study, we employed a sustained vowel production task during functional magnetic resonance imaging to compare brain activity between individuals with PD and hypophonia and an older healthy control (OHC) group. Results When comparing vowel production versus rest, the PD group showed fewer regions with significant BOLD activity compared to OHCs. Within the motor cortices, both OHC and PD groups showed bilateral activation of the laryngeal/phonatory area (LPA) of the primary motor cortex as well as activation of the supplementary motor area. The OHC group also recruited additional activity in the bilateral trunk motor area and right dorsal premotor cortex (PMd). A voxel-wise comparison of PD and HC groups showed that activity in right PMd was significantly lower in the PD group compared to OHC (p < 0.001, uncorrected). Right PMd activity was positively correlated with maximum phonation time in the PD group and negatively correlated with perceptual severity ratings of loudness and pitch. Discussion Our findings suggest that hypoactivation of PMd may be associated with abnormal phonatory control in PD.
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Ajay S. Kurani
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Ellen Herschel
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Angela C. Roberts
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Canadian Centre for Activity and Aging, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kris Tjaden
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Todd Parrish
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
22
|
Barbeau EB, Kousaie S, Brass K, Descoteaux M, Petrides M, Klein D. The importance of the dorsal branch of the arcuate fasciculus in phonological working memory. Cereb Cortex 2023; 33:9554-9565. [PMID: 37386707 DOI: 10.1093/cercor/bhad226] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Phonological working memory (PWM) is important for language learning and processing. The most studied language brain regions are the classical Broca's area on the inferior frontal gyrus and Wernicke's area on the posterior temporal region and their anatomical connection via the classic arcuate fasciculus (AF) referred to here as the ventral AF (AFv). However, areas on the middle frontal gyrus (MFG) are essential for PWM processes. There is also a dorsal branch of the AF (AFd) that specifically links the posterior temporal region with the MFG. Furthermore, there is the temporo-frontal extreme capsule fasciculus (TFexcF) that courses ventrally and links intermediate temporal areas with the lateral prefrontal cortex. The AFv, AFd and TFexcF were dissected virtually in the same participants who performed a PWM task in a functional magnetic resonance imaging study. The results showed that good performance on the PWM task was exclusively related to the properties of the left AFd, which specifically links area 8A (known to be involved in attentional aspects of executive control) with the posterior temporal region. The TFexcF, consistent with its known anatomical connection, was related to brain activation in area 9/46v of the MFG that is critical for monitoring the information in memory.
Collapse
Affiliation(s)
- Elise B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University, Montreal, QC, H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, QC, H3G 2A8, Canada
| | - Shanna Kousaie
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University, Montreal, QC, H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, QC, H3G 2A8, Canada
- Faculty of Social Sciences, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada
| | - Kanontienentha Brass
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Canada
| | - Maxime Descoteaux
- Department of Computer Science, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 0A5, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University, Montreal, QC, H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, QC, H3G 2A8, Canada
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC, H3A 1G1, Canada
| | - Denise Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University, Montreal, QC, H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, QC, H3G 2A8, Canada
| |
Collapse
|
23
|
Xu Y, Vignali L, Sigismondi F, Crepaldi D, Bottini R, Collignon O. Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLoS Biol 2023; 21:e3001930. [PMID: 37490508 PMCID: PMC10368275 DOI: 10.1371/journal.pbio.3001930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We can sense an object's shape by vision or touch. Previous studies suggested that the inferolateral occipitotemporal cortex (ILOTC) implements supramodal shape representations as it responds more to seeing or touching objects than shapeless textures. However, such activation in the anterior portion of the ventral visual pathway could be due to the conceptual representation of an object or visual imagery triggered by touching an object. We addressed these possibilities by directly comparing shape and conceptual representations of objects in early blind (who lack visual experience/imagery) and sighted participants. We found that bilateral ILOTC in both groups showed stronger activation during a shape verification task than during a conceptual verification task made on the names of the same manmade objects. Moreover, the distributed activity in the ILOTC encoded shape similarity but not conceptual association among objects. Besides the ILOTC, we also found shape representation in both groups' bilateral ventral premotor cortices and intraparietal sulcus (IPS), a frontoparietal circuit relating to object grasping and haptic processing. In contrast, the conceptual verification task activated both groups' left perisylvian brain network relating to language processing and, interestingly, the cuneus in early blind participants only. The ILOTC had stronger functional connectivity to the frontoparietal circuit than to the left perisylvian network, forming a modular structure specialized in shape representation. Our results conclusively support that the ILOTC selectively implements shape representation independently of visual experience, and this unique functionality likely comes from its privileged connection to the frontoparietal haptic circuit.
Collapse
Affiliation(s)
- Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Davide Crepaldi
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), University of Louvain, Louvain-la-Neuve, Belgium
- School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| |
Collapse
|