1
|
Rhudy JL, Kell PA, Brown TV, Ventresca HM, Vore CN, Trevino K, Jones BW, Lowe TS, Shadlow JO. Mechanisms of the Native American pain inequity: predicting chronic pain onset prospectively at 5 years in the Oklahoma Study of Native American Pain Risk. Pain 2025; 166:936-955. [PMID: 39514324 PMCID: PMC11919569 DOI: 10.1097/j.pain.0000000000003442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024]
Abstract
ABSTRACT A pain inequity exists for Native Americans (NAs), but the mechanisms are poorly understood. The Oklahoma Study of Native American Pain Risk (OK-SNAP) addressed this issue and recruited healthy, pain-free NAs and non-Hispanic Whites (NHWs) to attend 2 laboratory visits and assessed mechanisms consistent with the biopsychosocial model of pain: demographics, physical variables, psychosocial factors, and nociceptive/pain phenotypes. Then participants were surveyed every 6 months to assess for chronic pain onset. Results at the 2-year follow-up found that NAs were ∼3x more likely than NHWs to develop chronic pain. Moreover, psychosocial factors (discrimination, stress, pain-related anxiety), cardiometabolic load (higher body mass index and blood pressure, lower heart rate variability), and impaired inhibition of spinal nociception partly mediated the pain inequity. The present study examined mechanisms of chronic pain at the 5-year follow-up for OK-SNAP. Results found that the NA pain inequity worsened-NAs were 4x more likely to develop chronic pain (OR = 4.025; CI = 1.966, 8.239), even after controlling for baseline age, sex assigned at birth, income, and education. Moreover, serial mediation models replicated paths from the 2-year follow-up that linked psychosocial variables, cardiometabolic load, and impaired inhibition of spinal nociception to chronic pain onset. Further, 2 new significant paths were observed. One linked discrimination, stress, sleep problems, and facilitated pain perception to increased pain risk. The other linked discrimination with higher spinal nociceptive threshold and pain risk. These results provide further evidence for a NA pain inequity and identify multiple psychosocial, cardiometabolic, and pronociceptive targets for primary interventions.
Collapse
Affiliation(s)
- Jamie L Rhudy
- TSET Health Promotion Research Center, The University of Oklahoma Health Sciences, Tulsa, OK, United States
- Department of Health Promotion Sciences, The University of Oklahoma Health Sciences, Tulsa, OK, United States
- Departments of Psychology and
| | | | | | | | | | - Kayla Trevino
- TSET Health Promotion Research Center, The University of Oklahoma Health Sciences, Tulsa, OK, United States
| | | | - Travis S Lowe
- Anthropology and Sociology, The University of Tulsa, Tulsa, OK, United States
| | - Joanna O Shadlow
- Department of Psychology, Oklahoma State University, Tulsa, OK, United States
| |
Collapse
|
2
|
Lecce E, Bellini A, Greco G, Martire F, Scotto di Palumbo A, Sacchetti M, Bazzucchi I. Physiological mechanisms of neuromuscular impairment in diabetes-related complications: Can physical exercise help prevent it? J Physiol 2025. [PMID: 39898972 DOI: 10.1113/jp287589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Diabetes mellitus is a chronic disorder that progressively induces complications, compromising daily independence. Among these, diabetic neuropathy is particularly prevalent and contributes to substantial neuromuscular impairments in both types 1 and 2 diabetes. This condition leads to structural damage affecting both the central and peripheral nervous systems, resulting in a significant decline in sensorimotor functions. Alongside neuropathy, diabetic myopathy also contributes to muscle impairment and reduced motor performance, intensifying the neuromuscular decline. Diabetic neuropathy typically implicates neurogenic muscle atrophy, motoneuron loss and clustering of muscle fibres as a result of aberrant denervation-reinervation processes. These complications are associated with compromised neuromuscular junctions, where alterations occur in pre-synaptic vesicles, mitochondrial content and post-synaptic signalling. Neural damage is intensified by chronic hyperglycaemia and oxidative stress, exacerbating vascular dysfunction and reducing oxygen delivery. These complications imply a severe decline in neuromuscular performance, evidenced by reductions in maximal force and power output, rate of force development and muscle endurance. Furthermore, diabetes-related complications are compounded by age-related degenerative changes in long-term patients. Aerobic and resistance training offer promising approaches for managing blood glucose levels and neuromuscular function. Aerobic exercise promotes mitochondrial biogenesis and angiogenesis, supporting metabolic and cardiovascular health. Resistance training primarily enhances neural plasticity, muscle strength and hypertrophy, which are crucial factors for mitigating sarcopenia and preserving functional independence. This topical review examines current evidence on the physiological mechanisms underlying diabetic neuropathy and the potential impact of physical activity in counteracting this decline.
Collapse
Affiliation(s)
- Edoardo Lecce
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessio Bellini
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Giuseppe Greco
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Fiorella Martire
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessandro Scotto di Palumbo
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| |
Collapse
|
3
|
Saha P, Yarra SS, Arruri V, Mohan U, Kumar A. Exploring the role of miRNA in diabetic neuropathy: from diagnostics to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1129-1144. [PMID: 39249503 DOI: 10.1007/s00210-024-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Diabetic neuropathy (DN) is one of the major microvascular complications of diabetes mellitus affecting 50% of the diabetic population marred by various unmet clinical needs. There is a need to explore newer pathological mechanisms for designing futuristic regimens for the management of DN. There is a need for post-transcriptional regulation of gene expression by non-coding RNAs (ncRNAs) to finetune different cellular mechanisms with significant biological relevance. MicroRNAs (miRNAs) are a class of small ncRNAs (~ 20 to 24 nucleotide length) that are known to regulate the activity of ~ 50% protein-coding genes through repression of their target mRNAs. Differential expression of these miRNAs is associated with the pathophysiology of diabetic neuropathy via regulating various pathways such as neuronal hyperexcitability, inflammation, axonal growth, regeneration, and oxidative stress. Of note, the circulating and extracellular vesicular miRNAs serve as potential biomarkers underscoring their diagnostic potential. Recent pieces of evidence highlight the potential of miRNAs in modulating the initiation and progression of DN and the possibility of developing miRNAs as treatment options for DN. In this review, we have elaborated on the role of different miRNAs as potential biomarkers and emphasized their druggable aspects for promising future therapies for the clinical management of DN.
Collapse
Affiliation(s)
- Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India
| | - Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
4
|
Stavroula A, Panagiotis K, George P, Chrysanthi B, Georgia K, Spyridon K, Irine-Ikbale S, Kyriaki K. Assessment of small nerve fiber function as an early marker of peripheral neuropathy in children and adolescents with type 1 diabetes mellitus (T1DM). Endocrine 2025; 87:116-125. [PMID: 39127819 DOI: 10.1007/s12020-024-03991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE This study aimed to assess subclinical peripheral diabetic neuropathy (PDN) in adolescents with type 1 diabetes mellitus (T1DM). METHODS Subjects included 53 T1DM patients (age (mean ± SE): 15.8 ± 0.54 years, disease duration: 6.0 ± 0.51 years and HbA1c: 7.9 ± 0.19%), and 37 healthy gender matched controls (age: 15.6 ± 0.52 years). PDN was assessed by vibration perception threshold (VPT) and by quantitative sensory testing (QST). In controls, 95% confidence intervals were calculated. RESULTS Among patients, VPT prevalence of abnormality ranged from 60-73.4% on different sites. Higher VPT was found in patients on all examined sites (p < 0.01). In controls, VPT correlated with height (r = 0.48, p = 0.05). Regarding QST prevalence of abnormality, cold detection threshold (CDT) ranged 7.3-39.0%, cold pain threshold (CPT) ranged 22.22-29.63%, hot detection threshold (HDT) ranged 34.14-63.41%, and hot pain threshold (HPT) ranged 15.79-36.84%. In patients, CPT correlated with BMI (r = 0.42, p = 0.05) and diabetes duration, (r = 0.40, p = 0.05), HPT correlated with age (r = 0.36, p = 0.05) and height (r = 0.35, p = 0.05), while in controls with BMI (r = 0.51, p = 0.05). No correlation of VPT or QST with HbA1c was observed. CONCLUSION Adolescents with T1DM in this study, although asymptomatic, showed a high prevalence of impaired indices of PDN, highlighting potential clinical implications of early identification of PDN.
Collapse
Affiliation(s)
- Argyropoulou Stavroula
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Childrens Hospital, Athens, Greece
| | - Kokotis Panagiotis
- Laboratory of Clinical Neurophysiology, First Department of Neurology, National and Kapodistrian University of Athens, "Aeginitio" University Hospital, Athens, Greece
| | - Paltoglou George
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Childrens Hospital, Athens, Greece.
| | - Boutziouka Chrysanthi
- Laboratory of Clinical Neurophysiology, First Department of Neurology, National and Kapodistrian University of Athens, "Aeginitio" University Hospital, Athens, Greece
| | - Karamatzianni Georgia
- Laboratory of Clinical Neurophysiology, First Department of Neurology, National and Kapodistrian University of Athens, "Aeginitio" University Hospital, Athens, Greece
| | - Karanasios Spyridon
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Childrens Hospital, Athens, Greece
| | - Sakou Irine-Ikbale
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Childrens Hospital, Athens, Greece
| | - Karavanaki Kyriaki
- Diabetes and Metabolism Unit, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Childrens Hospital, Athens, Greece
| |
Collapse
|
5
|
Thimabut W, Thimabut N, Peng L, Hou ZG. Novel Vibrating Foot Orthoses for Improving Tactile Sensation in Type 2 Diabetes With Peripheral Neuropathy. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2993-3005. [PMID: 39074026 DOI: 10.1109/tnsre.2024.3435469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Improving tactile sensation by vibrating insoles was recommended to prevent foot ulcers in diabetic peripheral neuropathy (DPN). Lack of an insole design for diabetics was a challenge. Clinical trials on applying vibrating insoles with noise and stochastic resonance (SR) stimulating tactile were also required. In this study, vibrating foot orthoses (VFO) with a total contact design based on orthotics were proposed to provide proper insoles for diabetes. This study aimed to determine if VFO were beneficial at enhancing tactile in DPN. VFO were developed in combination with individual's custom-made foot orthoses and stimulation signals-integrating random 0-100 Hz square wave pulse signals with pseudorandom white noise by a SR approach. Sixty patients with mild-to-severe DPN were randomized to conduct crossover experiments: using and without VFO for 60 minutes stimulation at 90% of individuals' vibration perception threshold (VPT) level. VPT values when using VFO at the 1st and 5th metatarsophalangeal joints of the left foot decreased by 9.35% ( [Formula: see text].001); 9.04% ( [Formula: see text].001), and of the right foot decreased by 7.63% ( [Formula: see text].001); 7.24% ( [Formula: see text].001), respectively. Without VFO, there was no significant difference. Subgroups of mild and moderate DPN tended to benefit greatly from utilizing VFO. VFO can improve tactile in DPN. VFO may contribute to restoring/prolonging tactile and protective sensations, also decreasing peripheral nervous system deterioration. VFO might be useful for neurorehabilitation, and help prevent foot ulcers and disabilities.
Collapse
|
6
|
Trocmet L, Dufour A, Pebayle T, Després O, Lithfous S. Early detection of altered cold perception in elderly with type 2 diabetes using a novel Quantitative Sensory Testing method. Diabetes Metab Syndr 2024; 18:103097. [PMID: 39128379 DOI: 10.1016/j.dsx.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
AIM To compare the effectiveness of two methods for measuring cold detection thresholds in screening for temperature-perception deficits in elderly individuals with type 2 diabetes (T2 diabetes). METHODS Cold threshold measurements were performed on seven body regions of participants with diabetes without neuropathy (n = 30; mean age, 70.9 ± 6.5 years) and healthy participants (n = 73; mean age, 68 ± 5 years). Two protocols applying the Levels Method were used: the first used skin temperature as the starting point; the second used 40 °C. RESULTS Cold detection thresholds were significantly higher in subjects with diabetes, particularly on the foot. For CDT TSk, values were -2.22 ± 1.91 °C in non-diabetic and -3.27 ± 3.33 °C in diabetic groups (p = 0.023); for CDT 40, values were -9.82 ± 3.5 °C and -12.18 ± 4.5 °C (p = 0.003). However, after adjusting for age, the group effect on cold threshold with skin temperature as baseline disappeared. Sensory screens showed that the Area Under Curve of the method using a 40 °C baseline was 0.69 (p = 0.002). CONCLUSION Measuring the cold detection threshold on the foot with a 40 °C baseline is more effective than using skin temperature as a baseline for screening sensory alterations in elderly subjects with type 2 diabetes before neuropathy onset. SIGNIFICANCE These findings highlight the importance of selecting the appropriate cold detection threshold method for elderly individuals with type 2 diabetes. The optimal method can facilitate early identification of sensory changes, minimizing complications and improving overall well-being.
Collapse
Affiliation(s)
- Louise Trocmet
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000, Strasbourg, France.
| | - André Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000, Strasbourg, France; Centre d'Investigations Neurocognitives et Neurophysiologiques, Université de Strasbourg, CNRS, UMS 3489, CI2N, 21 rue Becquerel, 67087, Strasbourg, France
| | - Thierry Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques, Université de Strasbourg, CNRS, UMS 3489, CI2N, 21 rue Becquerel, 67087, Strasbourg, France
| | - Olivier Després
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000, Strasbourg, France
| | - Ségolène Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, CNRS, UMR 7364, LNCA, 12 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
7
|
Cruvinel-Júnior RH, Ferreira JSSP, Veríssimo JL, Monteiro RL, Silva ÉQ, Suda EY, Sacco ICN. Affordable web-based foot-ankle exercise program proves effective for diabetic foot care in a randomized controlled trial with economic evaluation. Sci Rep 2024; 14:16094. [PMID: 38997439 PMCID: PMC11245594 DOI: 10.1038/s41598-024-67176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to shed light on a crucial issue through a comprehensive evaluation of the cost-effectiveness and cost-utility of a cutting-edge web-based foot-ankle therapeutic exercise program (SOPeD) designed for treating modifiable risk factors for ulcer prevention in individuals with diabetes-related peripheral neuropathy (DPN). In this randomized controlled trial, 62 participants diagnosed with DPN were assigned to the SOPeD software or received usual care for diabetic foot. Primary outcomes were DPN symptoms and severity, foot pain and function, and quality-adjusted life years (QALYs). Between-group comparisons provided 95% confidence intervals. The study also calculated incremental cost-effectiveness and cost-utility ratios (ICERs), analyzed direct costs from a healthcare perspective, and performed a sensitivity analysis to assess uncertainty. The web-based intervention effectively reduced foot pain, improved foot function and showed favorable cost-effectiveness, with ICERs ranging from (USD) $5.37-$148.71 per improvement in different outcomes. There is a high likelihood of cost-effectiveness for improving DPN symptoms and severity, foot pain, and function, even when the minimum willingness-to-pay threshold was set at $1000.00 USD. However, the intervention did not prove to be cost-effective in terms of QALYs. This study reveals SOPeD's effectiveness in reducing foot pain, improving foot function, and demonstrating cost-effectiveness in enhancing functional and clinical outcomes. SOPeD stands as a potential game-changer for modifiable risk factors for ulcers, with our findings indicating a feasible and balanced integration into public health systems. Further studies and considerations are vital for informed decisions to stakeholders and the successful implementation of this preventive program on a larger scale.Trial Registration: ClinicalTrials.gov, NCT04011267. Registered on 8 July 2019.
Collapse
Affiliation(s)
- Ronaldo H Cruvinel-Júnior
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil
| | - Jane S S P Ferreira
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil
| | - Jady L Veríssimo
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil
| | - Renan L Monteiro
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil
- Department of Biological and Health Science, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Érica Q Silva
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil
| | - Eneida Y Suda
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Isabel C N Sacco
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, São Paulo, 05360-160, Brazil.
| |
Collapse
|
8
|
Chantelau EA, Schröer O. Trial of a Trivial Quantitative Heat-Pain Stimulus for Detecting Severe Loss of Nociception. J Diabetes Sci Technol 2024; 18:930-936. [PMID: 36546575 PMCID: PMC11307220 DOI: 10.1177/19322968221144328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Loss of nociception (LON) at the feet of persons with diabetes mellitus develops gradually over years and remains asymptomatic until the first painless diabetic foot ulceration (DFU). Severe LON with pain insensitivity can be diagnosed with a mechanical (pinprick) pain stimulus of 512-mN force. A comparable "suprathreshold" heat-pain stimulus may have the same potential. OBJECTIVE A six-second, 51°C heat-pain stimulus delivered on a 38.5-mm² spot by a commercial medical device (bite away®, to treat insect bites) was explored in a prospective cross-sectional diagnostic accuracy study to detect DFU-related LON. METHODS Seventy-two participants were studied: 12 with and 30 without diabetic neuropathy according to the conventional criteria, and 30 patients with a history of painless DFU (indicative of end-stage LON, reference standard). The feet were stimulated at the plantar and dorsal sides. A palmar surface was stimulated for control purposes. Participants scored stimulated pain intensity 0 to 10 on a numerical rating scale. RESULTS At hands, pain intensity was rated six on average by all participants. Persons without neuropathy scored 7 (0-10), median (range), at the plantar side and 8.5 (2-10) at the dorsal side of the foot, while those with DFU scored 0 (0-8) and 0 (0-10), respectively. A pain response of 0 at the foot dorsum detected DFU-related LON with a sensitivity of 65% (specificity, 100%; positive and negative predictive values, 100% and 96%, respectively). CONCLUSIONS Due to its high specificity, the test seems advantageous for diagnostic purposes, complementary to current screening tests.
Collapse
Affiliation(s)
| | - Oliver Schröer
- Outpatient Diabetic Foot Clinic, St. Martinus-Krankenhaus Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
George DS, Jayaraj ND, Pacifico P, Ren D, Sriram N, Miller RE, Malfait AM, Miller RJ, Menichella DM. The Mas-related G protein-coupled receptor d (Mrgprd) mediates pain hypersensitivity in painful diabetic neuropathy. Pain 2024; 165:1154-1168. [PMID: 38147415 PMCID: PMC11017747 DOI: 10.1097/j.pain.0000000000003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACT Painful diabetic neuropathy (PDN) is one of the most common and intractable complications of diabetes. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, axonal degeneration, and changes in cutaneous innervation. However, the complete molecular profile underlying the hyperexcitable cellular phenotype of DRG nociceptors in PDN has not been elucidated. This gap in our knowledge is a critical barrier to developing effective, mechanism-based, and disease-modifying therapeutic approaches that are urgently needed to relieve the symptoms of PDN. Using single-cell RNA sequencing of DRGs, we demonstrated an increased expression of the Mas-related G protein-coupled receptor d (Mrgprd) in a subpopulation of DRG neurons in the well-established high-fat diet (HFD) mouse model of PDN. Importantly, limiting Mrgprd signaling reversed mechanical allodynia in the HFD mouse model of PDN. Furthermore, in vivo calcium imaging allowed us to demonstrate that activation of Mrgprd-positive cutaneous afferents that persist in diabetic mice skin resulted in an increased intracellular calcium influx into DRG nociceptors that we assess in vivo as a readout of nociceptors hyperexcitability. Taken together, our data highlight a key role of Mrgprd-mediated DRG neuron excitability in the generation and maintenance of neuropathic pain in a mouse model of PDN. Hence, we propose Mrgprd as a promising and accessible target for developing effective therapeutics currently unavailable for treating neuropathic pain in PDN.
Collapse
Affiliation(s)
| | | | | | - Dongjun Ren
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Rachel E. Miller
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Richard J. Miller
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela Maria Menichella
- Departments of Neurology and
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Wu PJ, Tseng HC, Chao CC, Liao YH, Yen CT, Lin WY, Hsieh ST, Sun WZ, Sun CK. Discontinuity third harmonic generation microscopy for label-free imaging and quantification of intraepidermal nerve fibers. CELL REPORTS METHODS 2024; 4:100735. [PMID: 38503290 PMCID: PMC10985268 DOI: 10.1016/j.crmeth.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Chieh Tseng
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital, and National Taiwan University College of Medicine Taipei 100225, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Ying Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Department of Anesthesiology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
11
|
Chen CC, Tseng PH, Hsueh HW, Chiang MC, Tzeng SR, Chiang TH, Wu MS, Hsieh ST, Chao CC. Altered gut microbiota in Taiwanese A97S predominant transthyretin amyloidosis with polyneuropathy. Sci Rep 2024; 14:6195. [PMID: 38486098 PMCID: PMC10940600 DOI: 10.1038/s41598-024-56984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Increasing evidence suggests that gut microbiota alterations are related to development and phenotypes of many neuropsychiatric diseases. Here, we evaluated the fecal microbiota and its clinical correlates in patients with hereditary transthyretin amyloidosis (ATTRv) and polyneuropathy. Fecal microbiota from 38 ATTRv patients and 39 age-matched controls was analyzed by sequencing 16S V3-V4 ribosomal RNA, and its relationships with clinical characteristics of polyneuropathy and cardiomyopathy were explored. The familial amyloidotic polyneuropathy stage was stage I, II, and III in 13, 18, and 7 patients. 99mTc-PYP SPECT showed a visual score of 2 in 15 and 3 in 21 patients. The gut microbiota of ATTRv patients showed higher alpha diversity (ASV richness and Shannon effective numbers) and dissimilar beta diversity compared to controls. Relative abundance of microbiota was dominated by Firmicutes and decreased in Bacteroidetes in ATTRv patients than in controls. Patients with more myocardial amyloid deposition were associated with increased alpha diversity, and the abundance of Clostridia was significantly correlated with pathophysiology of polyneuropathy in ATTRv patients. These findings demonstrated alterations in the gut microbiota, especially Firmicutes, in ATTRv. The association between altered microbiota and phenotypes of cardiomyopathy and polyneuropathy might suggest potential contributions of gut microbiota to ATTRv pathogenesis.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Huei Tseng
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung Hsien Chiang
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Departments of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Spallone V. Diabetic neuropathy: Current issues in diagnosis and prevention. CHRONIC COMPLICATIONS OF DIABETES MELLITUS 2024:117-163. [DOI: 10.1016/b978-0-323-88426-6.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Yao Y, Lei X, Wang Y, Zhang G, Huang H, Zhao Y, Shi S, Gao Y, Cai X, Gao S, Lin Y. A Mitochondrial Nanoguard Modulates Redox Homeostasis and Bioenergy Metabolism in Diabetic Peripheral Neuropathy. ACS NANO 2023; 17:22334-22354. [PMID: 37782570 DOI: 10.1021/acsnano.3c04462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.
Collapse
Affiliation(s)
- Yangxue Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Hongxiao Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Lucarini E, Micheli L, Rajagopalan R, Ciampi C, Branca JJ, Pacini A, Leandri M, Rajagopalan P, Ghelardini C, Di Cesare Mannelli L. Broad-spectrum neuroprotection exerted by DDD-028 in a mouse model of chemotherapy-induced neuropathy. Pain 2023; 164:2581-2595. [PMID: 37556385 PMCID: PMC10578426 DOI: 10.1097/j.pain.0000000000002963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 08/11/2023]
Abstract
ABSTRACT Neurotoxicity of chemotherapeutics involves peculiar alterations in the structure and function, including abnormal nerve signal transmission, of both the peripheral and central nervous system. The lack of effective pharmacological approaches to prevent chemotherapy-induced neurotoxicity necessitates the identification of innovative therapies. Recent evidence suggests that repeated treatment with the pentacyclic pyridoindole derivative DDD-028 can exert both pain-relieving and glial modulatory effects in mice with paclitaxel-induced neuropathy. This work is aimed at assessing whether DDD-028 is a disease-modifying agent by protecting the peripheral nervous tissues from chemotherapy-induced damage. Neuropathy was induced in animals by paclitaxel injection (2.0 mg kg -1 i.p). DDD-028 (10 mg kg -1 ) and the reference drug, pregabalin (30 mg kg -1 ), were administered per os daily starting concomitantly with the first injection of paclitaxel and continuing 10 days after the end of paclitaxel treatment. The behavioural tests confirmed the antihyperalgesic efficacy of DDD-028 on paclitaxel-induced neuropathic pain. Furthermore, the electrophysiological analysis revealed the capacity of DDD-028 to restore near-normal sensory nerve conduction in paclitaxel-treated animals. Histopathology evidence indicated that DDD-028 was able to counteract effectively paclitaxel-induced peripheral neurotoxicity by protecting against the loss of intraepidermal nerve fibers, restoring physiological levels of neurofilament in nerve tissue and plasma, and preventing morphological alterations occurring in the sciatic nerves and dorsal root ganglia. Overall, DDD-028 is more effective than pregabalin in preventing chemotherapy-induced neurotoxicity. Thus, based on its potent antihyperalgesic and neuroprotective efficacy, DDD-028 seems to be a viable prophylactic medication to limit the development of neuropathies consequent to chemotherapy.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | | | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Jacopo J.V. Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Massimo Leandri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Monteiro RL, Drechsel TJ, Ferreira JSSP, Zippenfennig C, Sacco ICN. Potential predictive effect of mechanical properties of the plantar skin and superficial soft tissue, and vibration perception on plantar loading during gait in individuals with diabetes. BMC Musculoskelet Disord 2023; 24:712. [PMID: 37674163 PMCID: PMC10483699 DOI: 10.1186/s12891-023-06851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND This exploratory study aimed to investigate the extent to which mechanical properties of the plantar skin and superficial soft tissue (hardness, stiffness, and thickness) and vibration perception thresholds (VPTs) predict plantar pressure loading during gait in people with diabetes compared to healthy controls. METHODS Mechanical properties, VPTs, and plantar loadings during gait at the heel and first metatarsal head (MTH) of 20 subjects with diabetes, 13 with DPN, and 33 healthy controls were acquired. Multiple regression analyses were used to predict plantar pressure peaks and pressure-time integrals at both locations based on the mechanical properties of the skin and superficial soft tissues and VPTs. RESULTS In the diabetes group at the MTH, skin hardness associated with 30-Hz (R2 = 0.343) and 200-Hz (R2 = 0.314) VPTs predicted peak pressure at the forefoot. In the controls at the heel, peak pressure was predicted by the skin thickness, hardness, and stiffness associated with 30-Hz (R2 = 0.269, 0.268, and 0.267, respectively) and 200-Hz (R2 = 0.214, 0.247, and 0.265, respectively) VPTs. CONCLUSION The forefoot loading of people with diabetes can be predicted by the hardness of the skin when combined with loss of vibration perception at low (30-Hz) and high (200-Hz) frequencies. Further data from larger sample sizes are needed to confirm the current findings.
Collapse
Affiliation(s)
- Renan L Monteiro
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Health and Biological Science, Federal University of Amapá, Macapá, Brazil
| | - Tina J Drechsel
- Department of Human Locomotion, Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Jane Suelen S P Ferreira
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudio Zippenfennig
- Department of Human Locomotion, Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Isabel C N Sacco
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil.
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional da Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 - Cidade Universitária, São Paulo, 05360-160, Brazil.
| |
Collapse
|
16
|
Banerjee M, Mukhopadhyay P, Ghosh S, Basu M, Pandit A, Malik R, Ghosh S. Corneal Confocal Microscopy Abnormalities in Children and Adolescents With Type 1 Diabetes. Endocr Pract 2023; 29:692-698. [PMID: 37343765 DOI: 10.1016/j.eprac.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Utility of corneal confocal microscopy (CCM) in children and adolescents with type 1 diabetes mellitus (T1DM) without neuropathic symptoms or signs and minimal abnormality in large and small nerve fiber function tests remains largely undetermined. This study aimed to evaluate the performance of CCM in comparison to thermal detection thresholds (TDT) testing and nerve conduction studies (NCS) for detecting neuropathy in children with T1DM. METHODS A cohort of children and adolescents with T1DM (n = 51) and healthy controls (n = 50) underwent evaluation for symptoms and signs of neurological deficits, including warm detection threshold, cold detection threshold, vibration perception threshold, NCS, and CCM. RESULTS Children with T1DM had no or very minimal neuropathic symptoms and deficits based on the Toronto Clinical Neuropathy Score, yet NCS abnormalities were present in 18 (35%), small fiber dysfunction defined by an abnormal TDT was found in 13 (25.5%) and CCM abnormalities were present in 25 (49%). CCM was abnormal in a majority of T1DM children with abnormal TDT (12/13, 92%) and abnormal NCS (16/18, 88%). CCM additionally was able to detect small fiber abnormalities in 13/38 (34%) in T1DM with a normal TDT and in 9/33 (27%) with normal NCS. CONCLUSION CCM was able to detect corneal nerve loss in children with and without abnormalities in TDT and NCS.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Endocrinology, Senior Resident, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Pradip Mukhopadhyay
- Department of Endocrinology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Shatabdi Ghosh
- Department of Endocrinology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Madhurima Basu
- Department of Endocrinology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Alak Pandit
- Department of Neurology, Bangur Institute of Neurology, Kolkata, India
| | - Rayaz Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar; Division of Cardiovascular Sciences, Cardiac Centre, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Sujoy Ghosh
- Department of Endocrinology, Institute of Post Graduate Medical Education & Research, Kolkata, India.
| |
Collapse
|
17
|
Jones E, McLaughlin KA. A Novel Perspective on Neuronal Control of Anatomical Patterning, Remodeling, and Maintenance. Int J Mol Sci 2023; 24:13358. [PMID: 37686164 PMCID: PMC10488252 DOI: 10.3390/ijms241713358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
While the nervous system may be best known as the sensory communication center of an organism, recent research has revealed a myriad of multifaceted roles for both the CNS and PNS from early development to adult regeneration and remodeling. These systems work to orchestrate tissue pattern formation during embryonic development and continue shaping pattering through transitional periods such as metamorphosis and growth. During periods of injury or wounding, the nervous system has also been shown to influence remodeling and wound healing. The neuronal mechanisms responsible for these events are largely conserved across species, suggesting this evidence may be important in understanding and resolving many human defects and diseases. By unraveling these diverse roles, this paper highlights the necessity of broadening our perspective on the nervous system beyond its conventional functions. A comprehensive understanding of the complex interactions and contributions of the nervous system throughout development and adulthood has the potential to revolutionize therapeutic strategies and open new avenues for regenerative medicine and tissue engineering. This review highlights an important role for the nervous system during the patterning and maintenance of complex tissues and provides a potential avenue for advancing biomedical applications.
Collapse
Affiliation(s)
| | - Kelly A. McLaughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA;
| |
Collapse
|
18
|
Sonawane K, Dixit H, Thota N, Mistry T, Balavenkatasubramanian J. "Knowing It Before Blocking It," the ABCD of the Peripheral Nerves: Part B (Nerve Injury Types, Mechanisms, and Pathogenesis). Cureus 2023; 15:e43143. [PMID: 37692583 PMCID: PMC10484240 DOI: 10.7759/cureus.43143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Selander emphatically said, "Handle these nerves with care," and those words still echo, conveying a loud and clear message that, however rare, peripheral nerve injury (PNI) remains a perturbing possibility that cannot be ignored. The unprecedented nerve injuries associated with peripheral nerve blocks (PNBs) can be most tormenting for the unfortunate patient and a nightmare for the anesthetist. Possible justifications for the seemingly infrequent occurrences of PNB-related PNIs include a lack of documentation/reporting, improper aftercare, or associated legal implications. Although they make up only a small portion of medicolegal claims, they are sometimes difficult to defend. The most common allegations are attributed to insufficient informed consent; preventable damage to a nerve(s); delay in diagnosis, referral, or treatment; misdiagnosis, and inappropriate treatment and follow-up care. Also, sufficient prospective studies or randomized trials have not been conducted, as exploring such nerve injuries (PNB-related) in living patients or volunteers may be impractical or unethical. Understanding the pathophysiology of various types of nerve injury is vital to dealing with them further. Processes like degeneration, regeneration, remyelination, and reinnervation can influence the findings of electrophysiological studies. Events occurring in such a process and their impact during the assessment determine the prognosis and the need for further interventions. This educational review describes various types of PNB-related nerve injuries and their associated pathophysiology.
Collapse
Affiliation(s)
- Kartik Sonawane
- Anesthesiology, Ganga Medical Centre and Hospitals, Coimbatore, IND
| | - Hrudini Dixit
- Anesthesiology, Sir H. N. Reliance Foundation Hospital and Research Centre, Mumbai, IND
| | - Navya Thota
- Anesthesiology, Ganga Medical Centre and Hospitals, Coimbatore, IND
| | - Tuhin Mistry
- Anesthesiology, Ganga Medical Centre and Hospitals, Coimbatore, IND
| | | |
Collapse
|
19
|
Mesa-Lombardo A, García-Magro N, Nuñez A, Martin YB. Locus coeruleus inhibition of vibrissal responses in the trigeminal subnucleus caudalis are reduced in a diabetic mouse model. Front Cell Neurosci 2023; 17:1208121. [PMID: 37475984 PMCID: PMC10354250 DOI: 10.3389/fncel.2023.1208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetic neuropathy is the loss of sensory function beginning distally in the lower extremities, which is also characterized by pain and substantial morbidity. Furthermore, the locus coeruleus (LC) nucleus has been proposed to play an important role in descending pain control through the activation of α2-noradrenergic (NA) receptors in the spinal dorsal horn. We studied, on control and diabetic mice, the effect of electrical stimulation of the LC nucleus on the tactile responses in the caudalis division of the spinal trigeminal nucleus (Sp5C), which is involved in the relay of orofacial nociceptive information. Diabetes was induced in young adult C57BL/6J mice with one intraperitoneal injection of streptozotocin (50 mg/kg) daily for 5 days. The diabetic animals showed pain in the orofacial area because they had a decrease in the withdrawal threshold to the mechanical stimulation in the vibrissal pad. LC electrical stimulation induced the inhibition of vibrissal responses in the Sp5C neurons when applied at 50 and 100 ms before vibrissal stimulation in the control mice; however, the inhibition was reduced in the diabetic mice. These effects may be due to a reduction in the tyrosine hydroxylase positive (TH+) fibers in the Sp5C, as was observed in diabetic mice. LC-evoked inhibition was decreased by an intraperitoneal injection of the antagonist of the α2-NA receptors, yohimbine, indicating that it was due to the activation of α2-NA receptors. The decrease in the LC-evoked inhibition in the diabetic mice was partially recovered when clonidine, a non-selective α2-agonist, was injected intraperitoneally. These findings suggest that in diabetes, there is a reduction in the NA inputs from the LC in the Sp5C that may favor the development of chronic pain.
Collapse
Affiliation(s)
- Alberto Mesa-Lombardo
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yasmina B. Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
20
|
Peterson T, Mann S, Sun BL, Peng L, Cai H, Liang R. Motionless volumetric structured light sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:2209-2224. [PMID: 37206125 PMCID: PMC10191636 DOI: 10.1364/boe.489280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
To meet the increasing need for low-cost, compact imaging technology with cellular resolution, we have developed a microLED-based structured light sheet microscope for three-dimensional ex vivo and in vivo imaging of biological tissue in multiple modalities. All the illumination structure is generated directly at the microLED panel-which serves as the source-so light sheet scanning and modulation is completely digital, yielding a system that is simpler and less prone to error than previously reported methods. Volumetric images with optical sectioning are thus achieved in an inexpensive, compact form factor without any moving parts. We demonstrate the unique properties and general applicability of our technique by ex vivo imaging of porcine and murine tissue from the gastrointestinal tract, kidney, and brain.
Collapse
Affiliation(s)
- Tyler Peterson
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| | - Shivani Mann
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA
| | - Belinda L. Sun
- Department of Pathology, College of Medicine, The University of Arizona, Tucson, Arizona 85721, USA
| | - Leilei Peng
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, The University of Arizona, Tucson, Arizona 85721, USA
| | - Rongguang Liang
- Wyant College of Optical Sciences,
The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
21
|
Sacco ICN, Trombini-Souza F, Suda EY. Impact of biomechanics on therapeutic interventions and rehabilitation for major chronic musculoskeletal conditions: A 50-year perspective. J Biomech 2023; 154:111604. [PMID: 37159980 DOI: 10.1016/j.jbiomech.2023.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
The pivotal role of biomechanics in the past 50 years in consolidating the basic knowledge that underpins prevention and rehabilitation measures has made this area a great spotlight for health practitioners. In clinical practice, biomechanics analysis of spatiotemporal, kinematic, kinetic, and electromyographic data in various chronic conditions serves to directly enhance deeper understanding of locomotion and the consequences of musculoskeletal dysfunctions in terms of motion and motor control. It also serves to propose straightforward and tailored interventions. The importance of this approach is supported by myriad biomechanical outcomes in clinical trials and by the development of new interventions clearly grounded on biomechanical principles. Over the past five decades, therapeutic interventions have been transformed from fundamentally passive in essence, such as orthoses and footwear, to emphasizing active prevention, including exercise approaches, such as bottom-up and top-down strengthening programs for runners and people with osteoarthritis. These approaches may be far more effective inreducing pain, dysfunction, and, ideally, incidence if they are based on the biomechanical status of the affected person. In this review, we demonstrate evidence of the impact of biomechanics and motion analysis as a foundation for physical therapy/rehabilitation and preventive strategies for three chronic conditions of high worldwide prevalence: diabetes and peripheral neuropathy, knee osteoarthritis, and running-related injuries. We conclude with a summary of recommendations for future studies needed to address current research gaps.
Collapse
Affiliation(s)
- Isabel C N Sacco
- Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Francis Trombini-Souza
- Department of Physical Therapy, University of Pernambuco, Petrolina, Pernambuco, Brazil; Master's and Doctoral Programs in Rehabilitation and Functional Performance, University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Eneida Yuri Suda
- Postgraduate Program in Physiotherapy, Universidade Ibirapuera, São Paulo, Brazil
| |
Collapse
|
22
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
23
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
24
|
Cruvinel-Júnior RH, Ferreira JSSP, Veríssimo JL, Monteiro RL, Suda EY, Silva ÉQ, Sacco ICN. Could an Internet-Based Foot-Ankle Therapeutic Exercise Program Modify Clinical Outcomes and Gait Biomechanics in People with Diabetic Neuropathy? A Clinical Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:9582. [PMID: 36559949 PMCID: PMC9781221 DOI: 10.3390/s22249582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown the efficacy of foot-ankle exercises in people with diabetic peripheral neuropathy (DPN), but the quality of evidence is still low. This proof-of-concept study pursues preliminary evidence for potential clinical and gait biomechanical benefits from an internet-based foot-ankle therapeutic exercise program for people with DPN. We randomized 30 individuals with DPN (IWGDF risk category 1 or 2) into either the control group (CG) receiving the usual care or the intervention group (IG) receiving the usual care plus an internet-based foot-ankle exercise program, fully guided by the Sistema de Orientação ao Pé Diabético (SOPeD; translation: Diabetic Foot Guidance System) three times per week for 12 weeks. We assessed face-to-face clinical and biomechanical outcomes at baseline, 12 weeks, and 24 weeks (follow up). Participants had good adherence to the proposed intervention and it led to only mild adverse events. The IG showed improvements in the ankle and first metatarsophalangeal joint motion after 12 and 24 weeks, changed forefoot load absorption during foot rollover during gait after 24 weeks, reduced foot pain after 12 weeks, and improved foot function after 24 weeks. A 12-week internet-based foot-ankle exercise program using the SOPeD software (version 1.0) has the potential to reduce foot pain, improve foot function, and modify some important foot-ankle kinematic outcomes in people with DPN.
Collapse
Affiliation(s)
- Ronaldo H. Cruvinel-Júnior
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
| | - Jane S. S. P. Ferreira
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
| | - Jady L. Veríssimo
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
| | - Renan L. Monteiro
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
- . Department of Biological and Health Science, Federal University of Amapá, Rod. Juscelino Kubitschek, km 02—Jardim Marco Zero, Macapá 68903-419, AP, Brazil
| | - Eneida Y. Suda
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
- Postgraduate Program in Physical Therapy, Ibirapuera University, Av. Interlagos, 1329—Chácara Flora, São Paulo 04661-100, SP, Brazil
| | - Érica Q. Silva
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
| | - Isabel C. N. Sacco
- Department of Physical Therapy, Speech, and Occupational Therapy, School of Medicine, University of São Paulo, Rua Cipotânea, 51—Butantã, São Paulo 05360-160, SP, Brazil
| |
Collapse
|
25
|
Lauria G, Faber CG, Cornblath DR. Skin biopsy and small fibre neuropathies: facts and thoughts 30 years later. J Neurol Neurosurg Psychiatry 2022; 93:915-918. [PMID: 35246491 PMCID: PMC9380509 DOI: 10.1136/jnnp-2021-327742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, Netherlands
| | - David R Cornblath
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Cheng YW, Chao CC, Chen CH, Yeh TY, Jeng JS, Tang SC, Hsieh ST. Small Fiber Pathology in CADASIL: Clinical Correlation With Cognitive Impairment. Neurology 2022; 99:e583-e593. [PMID: 35584924 PMCID: PMC9442619 DOI: 10.1212/wnl.0000000000200672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study investigated the cutaneous small fiber pathology of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and its clinical significance, that is, the NOTCH3 deposition in cutaneous vasculatures and CNS neurodegeneration focusing on cognitive impairment. METHODS Thirty-seven patients with CADASIL and 59 age-matched healthy controls were enrolled to evaluate cutaneous small fiber pathology by quantitative measures of intraepidermal nerve fiber density (IENFD), sweat gland innervation, and vascular innervation. Cognitive performance of patients with CADASIL was evaluated by a comprehensive neuropsychological assessment, and its association with small fiber pathology was tested using multivariable linear regression analysis adjusted for age and diabetes mellitus. We further assessed the relationships of IENFD with cutaneous vascular NOTCH3 ectodomain (NOTCH3ECD) deposition and biomarkers of neurodegeneration including structural brain MRI measures, serum neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), tau, and ubiquitin carboxy-terminal hydrolase L1. RESULTS Patients with CADASIL showed reduced IENFD (5.22 ± 2.42 vs 7.88 ± 2.89 fibers/mm, p = 0.0001) and reduced sweat gland (p < 0.0001) and vascular (p < 0.0001) innervations compared with age-matched controls. Reduced IENFD was associated with impaired global cognition measured by Mini-Mental State Examination (B = 1.062, 95% CI = 0.370-1.753, p = 0.004), and this association remained after adjustment for age and diabetes mellitus (p = 0.043). In addition, IENFD in patients with CADASIL was associated with mean cortical thickness (Pearson r = 0.565, p = 0.0023) but not white matter hyperintensity volume, total lacune count, or total microbleed count. Reduced IENFD was associated with cutaneous vascular NOTCH3ECD deposition amount among patients harboring pathogenic variants in exon 11 (mainly p.R544C) (B = -0.092, 95% CI = -0.175 to -0.009, p = 0.031). Compared with those with normal cognition, patients with CADASIL with cognitive impairment had an elevated plasma NfL level regardless of concurrent small fiber denervation, whereas only patients with both cognitive impairment and small fiber denervation showed an elevated plasma GFAP level. DISCUSSION Cutaneous small fiber pathology correlates with cognitive impairment and CNS neurodegeneration in patients with CADASIL, indicating a peripheral neurodegenerative process related to NOTCH3ECD aggregation.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Chi-Chao Chao
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Chih-Hao Chen
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Ti-Yen Yeh
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Jiann-Shing Jeng
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Sung-Chun Tang
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Sung-Tsang Hsieh
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei.
| |
Collapse
|
27
|
Drechsel TJ, Zippenfennig C, Schmidt D, Milani TL. The Effect of Subliminal Electrical Noise Stimulation on Plantar Vibration Sensitivity in Persons with Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10081880. [PMID: 36009427 PMCID: PMC9405277 DOI: 10.3390/biomedicines10081880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Subliminal electrical noise (SEN) enhances sensitivity in healthy individuals of various ages. Diabetes and its neurodegenerative profile, such as marked decreases in foot sensitivity, highlights the potential benefits of SEN in such populations. Accordingly, this study aimed to investigate the effect of SEN on vibration sensitivity in diabetes. Vibration perception thresholds (VPT) and corresponding VPT variations (coefficient of variation, CoV) of two experimental groups with diabetes mellitus were determined using a customized vibration exciter (30 and 200 Hz). Plantar measurements were taken at the metatarsal area with and without SEN stimulation. Wilcoxon signed-rank and t tests were used to test for differences in VPT and CoV within frequencies, between the conditions with and without SEN. We found no statistically significant effects of SEN on VPT and CoV (p > 0.05). CoV showed descriptively lower mean variations of 4 and 7% for VPT in experiment 1. SEN did not demonstrate improvements in VPT in diabetic individuals. Interestingly, taking into account the most severely affected (neuropathy severity) individuals, SEN seems to positively influence vibratory perception. However, the descriptively reduced variations in experiment 1 indicate that participants felt more consistently. It is possible that the effect of SEN on thick, myelinated Aβ-fibers is only marginally present.
Collapse
Affiliation(s)
- Tina J. Drechsel
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Correspondence: ; Tel.: +49-371-531-30022
| | - Claudio Zippenfennig
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Daniel Schmidt
- Motor Control, Cognition and Neurophysiology, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Thomas L. Milani
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
28
|
Sierra-Silvestre E, Andrade RJ, Schroeter AC, Bisset L, Coppieters MW. Diabetic Neuropathy in Hands: An Endemic Complication Waiting to Unfold? Diabetes 2022; 71:1785-1794. [PMID: 35622081 DOI: 10.2337/db21-1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
In this cross-sectional study we aimed to quantify the somatosensory dysfunction in the hand in people with diabetes with distal symmetrical polyneuropathy (DSPN) in hands and explore early signs of nerve dysfunction in people with diabetes without DSPN in hands. The clinical diagnosis of DSPN was confirmed with electrodiagnosis and corneal confocal microscopy. Thermal and mechanical nerve function in the hand was assessed with quantitative sensory tests. Measurements were compared between healthy participants (n = 31), individuals with diabetes without DSPN (n = 35), individuals with DSPN in feet but not hands (DSPNFEET ONLY) (n = 31), and individuals with DSPN in hands and feet (DSPNHANDS & FEET) (n = 28) with one-way between-group ANOVA. The somatosensory profile of the hand in people with DSPNHANDS & FEET showed widespread loss of thermal and mechanical detection. This profile in hands is comparable with the profile in the feet of people with DSPN in feet. Remarkably, individuals with DSPNFEET ONLY already showed a similar profile of widespread loss of nerve function in their hands. People with diabetes without DSPN in feet already had some nerve dysfunction in their hands. These findings suggest that nerve function assessment in hands should become more routine in people with diabetes.
Collapse
Affiliation(s)
- Eva Sierra-Silvestre
- School of Health Sciences, Griffith University, Brisbane and Gold Coast, Australia
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ricardo J Andrade
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- Movement, Interactions, Performance Laboratory, Nantes Université, Nantes, France
| | - Andrea C Schroeter
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
| | - Leanne Bisset
- School of Health Sciences, Griffith University, Brisbane and Gold Coast, Australia
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
| | - Michel W Coppieters
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Raicher I, Ravagnani LHC, Correa SG, Dobo C, Mangueira CLP, Macarenco RSES. Investigation of nerve fibers in the skin by biopsy: technical aspects, indications, and contribution to diagnosis of small-fiber neuropathy. EINSTEIN-SAO PAULO 2022; 20:eMD8044. [PMID: 35830153 PMCID: PMC9262281 DOI: 10.31744/einstein_journal/2022md8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/05/2022] Open
Abstract
Skin biopsy with investigation of small-diameter nerve fibers in human epidermis and dermis has been proven to be a useful method for confirming small-fiber neuropathy. In medical practice, small-fiber neuropathy is increasingly recognized as a leading cause of neuropathic pain. It is a prevalent complaint in medical offices, brought by patients often as a “painful burning sensation”. The prevalence of neuropathic pain is high in small-fiber neuropathies of different etiologies, especially in the elderly; 7% of population in this age group present peripheral neuropathy. Pain and paresthesia are symptoms which might cause disability and impair quality of life of patients. The early detection of small-fiber neuropathy can contribute to reducing unhealthy lifestyles, associated to higher incidence of the disease.
Collapse
|
30
|
Jain SM, Balamurugan R, Tandon M, Mozaffarian N, Gudi G, Salhi Y, Holland R, Freeman R, Baron R. Randomized, double-blind, placebo-controlled trial of ISC 17536, an oral inhibitor of transient receptor potential ankyrin 1, in patients with painful diabetic peripheral neuropathy: impact of preserved small nerve fiber function. Pain 2022; 163:e738-e747. [PMID: 34490850 PMCID: PMC9100440 DOI: 10.1097/j.pain.0000000000002470] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Patients with chronic pain syndromes, such as those with painful peripheral neuropathy due to diabetes mellitus, have limited treatment options and suffer ongoing attrition of their quality of life. Safer and more effective treatment options are needed. One therapeutic approach encompasses phenotypic characterization of the neuropathic pain subtype, combined with the selection of agents that act on relevant mechanisms. ISC 17536 is a novel, orally available inhibitor of the widely expressed pain receptor, transient receptor potential ankyrin 1, which mediates nociceptive signaling in peripheral small nerve fibers. In this randomized, placebo-controlled, proof-of-concept trial, we assessed the safety and efficacy of 28-day administration of ISC 17536 in 138 patients with chronic, painful diabetic peripheral neuropathy and used quantitative sensory testing to characterize the baseline phenotype of patients. The primary end point was the change from baseline to end of treatment in the mean 24-hour average pain intensity score based on an 11-point pain intensity numeric rating scale. The study did not meet the primary end point in the overall patient population. However, statistically significant and clinically meaningful improvement in pain were seen with ISC 17536 in an exploratory hypothesis-generating subpopulation of patients with preserved small nerve fiber function defined by quantitative sensory testing. These results may provide a mechanistic basis for targeted therapy in specific pain phenotypes in line with current approaches of "precision medicine" or personalized pain therapeutics. The hypothesis is planned to be tested in a larger phase 2 study.
Collapse
Affiliation(s)
| | | | - Monika Tandon
- Clinical Sciences, Glenmark Pharmaceuticals Limited, Mumbai, India
| | | | - Girish Gudi
- Ichnos Sciences, Inc, New York, NY, United States
| | - Yacine Salhi
- Ichnos Sciences, Inc, New York, NY, United States
| | - Robert Holland
- Early Clinical Development Consulting Ltd, Macclesfield, United Kingdom
| | - Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Universitätsklinikum Schleswig-Holstein, Campus-Kiel, Germany
| |
Collapse
|
31
|
Rhudy JL, Huber FA, Toledo TA, Kell PA, Street EN, Shadlow JO. Psychosocial and cardiometabolic predictors of chronic pain onset in Native Americans: serial mediation analyses of 2-year prospective data from the Oklahoma Study of Native American Pain Risk. Pain 2022; 163:e654-e674. [PMID: 34433767 PMCID: PMC8866534 DOI: 10.1097/j.pain.0000000000002458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain results in considerable suffering, as well as significant economic and societal costs. Previous evidence suggests that Native Americans (NAs) have higher rates of chronic pain than other U.S. racial or ethnic groups, but the mechanisms contributing to this pain disparity are poorly understood. The Oklahoma Study of Native American Pain Risk was developed to address this issue and recruited healthy, pain-free NAs and non-Hispanic Whites. Cross-sectional analyses identified several measures of adversity (eg, trauma and discrimination), cognitive-affective factors (perceived stress and pain-related anxiety/catastrophizing), and cardiometabolic factors (eg, body mass index, blood pressure, and heart rate variability) that were associated with pronociceptive processes (eg, central sensitization, descending inhibition, and hyperalgesia). Every 6-months after enrollment, eligible participants (N = 277) were recontacted and assessed for the onset of chronic pain. This study examines predictors of chronic pain onset in the 222 participants (80%) who responded over the first 2 years. The results show that NAs developed chronic pain at a higher rate than non-Hispanic Whites (OR = 2.902, P < 0.05), even after controlling for age, sex, income, and education. Moreover, serial mediation models identified several potential pathways to chronic pain onset within the NA group. These paths included perceived discrimination, psychological stress, pain-related anxiety, a composite measure of cardiometabolic risk, and impaired descending inhibition of spinal nociception (assessed from conditioned pain modulation of the nociceptive flexion reflex). These results provide the first prospective evidence for a pain disparity in NAs that seems to be promoted by psychosocial, cardiometabolic, and pronociceptive mechanisms.
Collapse
Affiliation(s)
- Jamie L. Rhudy
- The University of Tulsa, Department of Psychology, Tulsa, OK
| | | | - Tyler A. Toledo
- The University of Tulsa, Department of Psychology, Tulsa, OK
| | - Parker A. Kell
- The University of Tulsa, Department of Psychology, Tulsa, OK
| | - Erin N. Street
- The University of Tulsa, Department of Psychology, Tulsa, OK
| | | |
Collapse
|
32
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
33
|
Shillo P, Yiangou Y, Donatien P, Greig M, Selvarajah D, Wilkinson ID, Anand P, Tesfaye S. Nerve and Vascular Biomarkers in Skin Biopsies Differentiate Painful From Painless Peripheral Neuropathy in Type 2 Diabetes. FRONTIERS IN PAIN RESEARCH 2022; 2:731658. [PMID: 35295465 PMCID: PMC8915761 DOI: 10.3389/fpain.2021.731658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
Painful diabetic peripheral neuropathy can be intractable with a major impact, yet the underlying pain mechanisms remain uncertain. A range of neuronal and vascular biomarkers was investigated in painful diabetic peripheral neuropathy (painful-DPN) and painless-DPN and used to differentiate painful-DPN from painless-DPN. Skin biopsies were collected from 61 patients with type 2 diabetes (T2D), and 19 healthy volunteers (HV). All subjects underwent detailed clinical and neurophysiological assessments. Based on the neuropathy composite score of the lower limbs [NIS(LL)] plus seven tests, the T2D subjects were subsequently divided into three groups: painful-DPN (n = 23), painless-DPN (n = 19), and No-DPN (n = 19). All subjects underwent punch skin biopsy, and immunohistochemistry used to quantify total intraepidermal nerve fibers (IENF) with protein gene product 9.5 (PGP9.5), regenerating nerve fibers with growth-associated protein 43 (GAP43), peptidergic nerve fibers with calcitonin gene-related peptide (CGRP), and blood vessels with von Willebrand Factor (vWF). The results showed that IENF density was severely decreased (p < 0.001) in both DPN groups, with no differences for PGP9.5, GAP43, CGRP, or GAP43/PGP9.5 ratios. There was a significant increase in blood vessel (vWF) density in painless-DPN and No-DPN groups compared to the HV group, but this was markedly greater in the painful-DPN group, and significantly higher than in the painless-DPN group (p < 0.0001). The ratio of sub-epidermal nerve fiber (SENF) density of CGRP:vWF showed a significant decrease in painful-DPN vs. painless-DPN (p = 0.014). In patients with T2D with advanced DPN, increased dermal vasculature and its ratio to nociceptors may differentiate painful-DPN from painless-DPN. We hypothesized that hypoxia-induced increase of blood vessels, which secrete algogenic substances including nerve growth factor (NGF), may expose their associated nociceptor fibers to a relative excess of algogens, thus leading to painful-DPN.
Collapse
Affiliation(s)
- Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Philippe Donatien
- Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Marni Greig
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
34
|
George DS, Hackelberg S, Jayaraj ND, Ren D, Edassery SL, Rathwell CA, Miller RE, Malfait AM, Savas JN, Miller RJ, Menichella DM. Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain 2022; 163:560-578. [PMID: 34232927 PMCID: PMC8720329 DOI: 10.1097/j.pain.0000000000002391] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023]
Abstract
ABSTRACT Painful diabetic neuropathy (PDN) is an intractable complication affecting 25% of diabetic patients. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, resulting in calcium overload, axonal degeneration, and loss of cutaneous innervation. The molecular pathways underlying these effects are unknown. Using high-throughput and deep-proteome profiling, we found that mitochondrial fission proteins were elevated in DRG neurons from mice with PDN induced by a high-fat diet (HFD). In vivo calcium imaging revealed increased calcium signaling in DRG nociceptors from mice with PDN. Furthermore, using electron microscopy, we showed that mitochondria in DRG nociceptors had fragmented morphology as early as 2 weeks after starting HFD, preceding the onset of mechanical allodynia and small-fiber degeneration. Moreover, preventing calcium entry into the mitochondria, by selectively deleting the mitochondrial calcium uniporter from these neurons, restored normal mitochondrial morphology, prevented axonal degeneration, and reversed mechanical allodynia in the HFD mouse model of PDN. These studies suggest a molecular cascade linking neuropathic pain to axonal degeneration in PDN. In particular, nociceptor hyperexcitability and the associated increased intracellular calcium concentrations could lead to excessive calcium entry into mitochondria mediated by the mitochondrial calcium uniporter, resulting in increased calcium-dependent mitochondrial fission and ultimately contributing to small-fiber degeneration and neuropathic pain in PDN. Hence, we propose that targeting calcium entry into nociceptor mitochondria may represent a promising effective and disease-modifying therapeutic approach for this currently intractable and widespread affliction. Moreover, these results are likely to inform studies of other neurodegenerative disease involving similar underlying events.
Collapse
Affiliation(s)
| | | | | | - Dongjun Ren
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Craig A. Rathwell
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rachel E. Miller
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Richard J. Miller
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
35
|
Chiang MC, Hsueh HW, Yeh TY, Cheng YY, Kao YH, Chang KC, Feng FP, Chao CC, Hsieh ST. Maladaptive motor cortical excitability and connectivity in polyneuropathy with neuropathic pain. Eur J Neurol 2022; 29:1465-1476. [PMID: 35020255 DOI: 10.1111/ene.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sensory symptoms, especially neuropathic pain, are common in polyneuropathy. Conventional diagnostic tools can evaluate structural or functional impairment of nerves but cannot reveal mechanisms of neuropathic pain. Changes in the brain after polyneuropathy may play roles in the genesis of neuropathic pain. METHODS This cross-sectional study investigated changes of cortical excitability within left primary motor cortex (M1) by measuring resting motor thresholds, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and afferent inhibition between polyneuropathy patients and controls, and investigated the correlates of these parameters with neuropathic pain and the M1 structural and functional connectivity assessed by diffusion tractography imaging and functional MRI. RESULTS Thirty-three painful and 15 non-painful neuropathic patients and 21 controls were enrolled. There were no differences in intraepidermal nerve fiber density, nerve conduction study, thermal thresholds, or autonomic functional tests between patients with and without neuropathic pain. Compared to controls, neuropathic patients exhibited similar resting motor thresholds or afferent inhibition, but attenuated SICI and augmented ICF, especially in painful patients. Changes of intracortical excitability in neuropathic patients were correlated with intensities of neuropathic pain, and different presentations of SICI and ICF were noted between patients with and without thermal paresthesia. Additionally, short latency afferent inhibition at interstimulus intervals of 20 ms was associated with structural connectivity of left M1 with brain areas associated with pain perception. CONCLUSIONS Maladaptive cortical excitability with altered structural connectivity in left M1 developed after peripheral nerve degeneration and was associated with neuropathic pain and sensory symptoms in polyneuropathy.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Yin Cheng
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hui Kao
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Fang-Ping Feng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences.,Graduate Institute of Clinical Medicine.,Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
36
|
Lamotte G, Sandroni P. Updates on the Diagnosis and Treatment of Peripheral Autonomic Neuropathies. Curr Neurol Neurosci Rep 2022; 22:823-837. [PMID: 36376534 PMCID: PMC9663281 DOI: 10.1007/s11910-022-01240-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE OF REVIEW Autonomic neuropathies are a complex group of disorders and result in diverse clinical manifestations that affect the cardiovascular, gastrointestinal, urogenital, and sudomotor systems. We focus this review on the diagnosis and treatment of peripheral autonomic neuropathies. We summarize the diagnostic tools and current treatment options that will help the clinician care for individuals with peripheral autonomic neuropathies. RECENT FINDINGS Autonomic neuropathies occur often in conjunction with somatic neuropathies but they can also occur in isolation. The autonomic reflex screen is a validated tool to assess sympathetic postganglionic sudomotor, cardiovascular sympathetic noradrenergic, and cardiac parasympathetic (i.e., cardiovagal) function. Initial laboratory evaluation for autonomic neuropathies includes fasting glucose or oral glucose tolerance test, thyroid function tests, kidney function tests, vitamin-B12, serum, and urine protein electrophoresis with immunofixation. Other laboratory tests should be guided by the clinical context. Reduced intraepidermal nerve density on skin biopsy is a finding, not a diagnosis. Skin biopsy can be helpful in selected individuals for the diagnosis of disorders affecting small nerve fibers; however, we strongly discourage the use of skin biopsy without clinical-physiological correlation. Ambulatory blood pressure monitoring may lead to early identification of patients with cardiovascular autonomic neuropathy in the primary care setting. Disease-modifying therapies should be used when available in combination with nonpharmacological management and symptomatic pharmacologic therapies. Autonomic function testing can guide the therapeutic decisions and document improvement with treatment. A systematic approach guided by the autonomic history and standardized autonomic function testing may help clinicians when identifying and/or counseling patients with autonomic neuropathies. Treatment should be individualized and disease-modifying therapies should be used when available.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Paola Sandroni
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Albrecht PJ, Houk G, Ruggiero E, Dockum M, Czerwinski M, Betts J, Wymer JP, Argoff CE, Rice FL. Keratinocyte Biomarkers Distinguish Painful Diabetic Peripheral Neuropathy Patients and Correlate With Topical Lidocaine Responsiveness. FRONTIERS IN PAIN RESEARCH 2021; 2:790524. [PMID: 35295428 PMCID: PMC8915676 DOI: 10.3389/fpain.2021.790524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
This study investigated quantifiable measures of cutaneous innervation and algesic keratinocyte biomarkers to determine correlations with clinical measures of patient pain perception, with the intent to better discriminate between diabetic patients with painful diabetic peripheral neuropathy (PDPN) compared to patients with low-pain diabetic peripheral neuropathy (lpDPN) or healthy control subjects. A secondary objective was to determine if topical treatment with a 5% lidocaine patch resulted in correlative changes among the quantifiable biomarkers and clinical measures of pain perception, indicative of potential PDPN pain relief. This open-label proof-of-principle clinical research study consisted of a pre-treatment skin biopsy, a 4-week topical 5% lidocaine patch treatment regimen for all patients and controls, and a post-treatment skin biopsy. Clinical measures of pain and functional interference were used to monitor patient symptoms and response for correlation with quantitative skin biopsy biomarkers of innervation (PGP9.5 and CGRP), and epidermal keratinocyte biomarkers (Nav1.6, Nav1.7, CGRP). Importantly, comparable significant losses of epidermal neural innervation (intraepidermal nerve fibers; IENF) and dermal innervation were observed among PDPN and lpDPN patients compared with control subjects, indicating that innervation loss alone may not be the driver of pain in diabetic neuropathy. In pre-treatment biopsies, keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling were all significantly increased among PDPN patients compared with control subjects. Importantly, no keratinocyte biomarkers were significantly increased among the lpDPN group compared with control. In post-treatment biopsies, the keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling intensities were no longer different between control, lpDPN, or PDPN cohorts, indicating that lidocaine treatment modified the PDPN-related keratinocyte increases. Analysis of the PDPN responder population demonstrated that increased pretreatment keratinocyte biomarker immunolabeling for Nav1.6, Nav1.7, and CGRP correlated with positive outcomes to topical lidocaine treatment. Epidermal keratinocytes modulate the signaling of IENF, and several analgesic and algesic signaling systems have been identified. These results further implicate epidermal signaling mechanisms as modulators of neuropathic pain conditions, highlight a novel potential mode of action for topical treatments, and demonstrate the utility of comprehensive skin biopsy evaluation to identify novel biomarkers in clinical pain studies.
Collapse
Affiliation(s)
- Phillip J. Albrecht
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
- Division of Health Sciences, University at Albany, Albany, NY, United States
- *Correspondence: Phillip J. Albrecht
| | - George Houk
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | - Elizabeth Ruggiero
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | - Marilyn Dockum
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | | | - Joseph Betts
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | - James P. Wymer
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Charles E. Argoff
- Department of Neurology, Albany Medical Center, Albany, NY, United States
| | - Frank L. Rice
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
- Division of Health Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
38
|
The Application of Exercise Training for Diabetic Peripheral Neuropathy. J Clin Med 2021; 10:jcm10215042. [PMID: 34768562 PMCID: PMC8584831 DOI: 10.3390/jcm10215042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the presence of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes after the exclusion of other causes. It is associated with pain, paresthesia, sensory loss, muscle atrophy with fat infiltration, and muscular dysfunction typically starting distally in the feet and progressing proximally. Muscle deterioration within the leg and foot can lead to muscle dysfunction, reduced mobility, and increases the risk of disability, ulceration, and amputation. Exercise training is an established method for increasing the different components of physical fitness, including enhancing body composition and improving neuromuscular strength. A number of experimental studies have utilized exercise training to treat various impairments associated with DPN, such as nerve conduction velocity, pain tolerance, and balance. However, the broad spectrum of exercise training modalities implemented and differences in target outcome measurements have made it difficult to understand the efficacy of exercise training interventions or provide appropriate exercise prescription recommendations. Therefore, the aims of this review were to (1) briefly describe the pathophysiology of DPN and (2) discuss the effects of exercise training interventions on sensorimotor, metabolic, and physical functions in people with DPN.
Collapse
|
39
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
40
|
Drechsel TJ, Monteiro RL, Zippenfennig C, Ferreira JSSP, Milani TL, Sacco ICN. Low and High Frequency Vibration Perception Thresholds Can Improve the Diagnosis of Diabetic Neuropathy. J Clin Med 2021; 10:3073. [PMID: 34300239 PMCID: PMC8304943 DOI: 10.3390/jcm10143073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies demonstrate neuropathic changes with respect to vibration sensitivity for different measurement frequencies. This study investigates the relationship between vibration perception thresholds (VPTs) at low and high frequencies at two plantar locations and diabetic peripheral neuropathy (DPN) severity in diabetes mellitus (DM) subjects with DPN. We examine differences of VPTs between participants with DM, with DPN, as well as healthy controls. The influence of anthropometric, demographic parameters, and DM duration on VPTs is studied. Thirty-three healthy control group subjects (CG: 56.3 ± 9.9 years) and 33 with DM are studied. DM participants are subdivided into DM group (DM without DPN, n = 20, 53.3 ± 15.1 years), and DPN group (DM with DPN, n = 13, 61.0 ± 14.5 years). VPTs are measured at the first metatarsal head (MTH1) and heel (30 Hz, 200 Hz), using a customized vibration exciter. Spearman and Pearson correlations are used to identify relationships between VPTs and clinical parameters. ANOVAs are calculated to compare VPTs among groups. Significant correlations are observed between DPN severity (by fuzzy scores) and VPTs at both locations and frequencies (MTH1_30 Hz vs. fuzzy: r = 0.68, p = 0.011; Heel_30 Hz vs. fuzzy: r = 0.66, p = 0.014; MTH1_200 Hz vs. fuzzy: r = 0.73, p = 0.005; Heel_200 Hz vs. fuzzy: r = 0.60, p = 0.032). VPTs in CG and DM groups are significantly smaller than the DPN group, showing higher contrasts for the 30 Hz compared to the 200 Hz measurement. The correlations between fuzzy scores and VPTs confirm the relevance of using low and high frequencies to assess a comprehensive foot sensitivity status in people with DM.
Collapse
Affiliation(s)
- Tina J. Drechsel
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany; (C.Z.); (T.L.M.)
| | - Renan L. Monteiro
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universdade de São Paulo, São Paulo 05360-160, Brazil; (R.L.M.); (J.S.S.P.F.); (I.C.N.S.)
| | - Claudio Zippenfennig
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany; (C.Z.); (T.L.M.)
| | - Jane S. S. P. Ferreira
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universdade de São Paulo, São Paulo 05360-160, Brazil; (R.L.M.); (J.S.S.P.F.); (I.C.N.S.)
| | - Thomas L. Milani
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany; (C.Z.); (T.L.M.)
| | - Isabel C. N. Sacco
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universdade de São Paulo, São Paulo 05360-160, Brazil; (R.L.M.); (J.S.S.P.F.); (I.C.N.S.)
| |
Collapse
|
41
|
Casula M, Gazzotti M, Bonaiti F, OImastroni E, Arca M, Averna M, Zambon A, Catapano AL. Reported muscle symptoms during statin treatment amongst Italian dyslipidaemic patients in the real-life setting: the PROSISA Study. J Intern Med 2021; 290:116-128. [PMID: 33259671 PMCID: PMC8359216 DOI: 10.1111/joim.13219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022]
Abstract
AIM Statin-associated muscle symptoms (SAMS) are a major determinant of poor treatment adherence and/or discontinuation, but a definitive diagnosis of SAMS is challenging. The PROSISA study was an observational retrospective study aimed to assess the prevalence of reported SAMS in a cohort of dyslipidaemic patients. METHODS Demographic/anamnestic data, biochemical values and occurrence of SAMS were collected by 23 Italian Lipid Clinics. Adjusted logistic regression was performed to estimate odds ratio (OR) and 95% confidence intervals for association between probability of reporting SAMS and several factors. RESULTS Analyses were carried out on 16 717 statin-treated patients (mean ± SD, age 60.5 ± 12.0 years; 52.1% men). During statin therapy, 9.6% (N = 1599) of patients reported SAMS. Women and physically active subjects were more likely to report SAMS (OR 1.23 [1.10-1.37] and OR 1.35 [1.14-1.60], respectively), whist age ≥ 65 (OR 0.79 [0.70-0.89]), presence of type 2 diabetes mellitus (OR 0.62 [0.51-0.74]), use of concomitant nonstatin lipid-lowering drugs (OR 0.87 [0.76-0.99]), use of high-intensity statins (OR 0.79 [0.69-0.90]) and use of potential interacting drugs (OR 0.63 [0.48-0.84]) were associated with lower probability of reporting SAMS. Amongst patients reporting SAMS, 82.2% underwent dechallenge (treatment interruption) and/or rechallenge (change or restart of statin therapy), with reappearance of muscular symptoms in 38.4% (3.01% of the whole cohort). CONCLUSIONS The reported prevalence of SAMS was 9.6% of the whole PROSISA cohort, but only a third of patients still reported SAMS after dechallenge/rechallenge. These results emphasize the need for a better management of SAMS to implement a more accurate diagnosis and treatment re-evaluation.
Collapse
Affiliation(s)
- M Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,IRCCS MultiMedica, Milan, Italy
| | - M Gazzotti
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - F Bonaiti
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - E OImastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - M Arca
- Department of Translational and Precision Medicine, Unit of Internal Medicine and Metabolic Diseases, Sapienza University, Rome, Italy
| | - M Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - A Zambon
- IRCCS MultiMedica, Milan, Italy.,Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - A L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,IRCCS MultiMedica, Milan, Italy
| | | |
Collapse
|
42
|
Silva ÉQ, Santos DP, Beteli RI, Monteiro RL, Ferreira JSSP, Cruvinel-Junior RH, Donini A, Verissímo JL, Suda EY, Sacco ICN. Feasibility of a home-based foot-ankle exercise programme for musculoskeletal dysfunctions in people with diabetes: randomised controlled FOotCAre (FOCA) Trial II. Sci Rep 2021; 11:12404. [PMID: 34117342 PMCID: PMC8196027 DOI: 10.1038/s41598-021-91901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022] Open
Abstract
This study sought to assess the feasibility of design, adherence, satisfaction, safety and changes in outcomes followed by a home-based foot–ankle exercise guided by a booklet in individuals with diabetic peripheral neuropathy (DPN). 20 participants were allocated usual care [control group (CG)] or usual care plus home-based foot–ankle exercises [intervention group (IG)] for 8 weeks. For feasibility, we assessed contact, preliminary screening and recruitment rates, adherence, and using a 5-point Likert scale to satisfaction and safety of the booklet. In the IG, we assessed preliminary changes in DPN symptoms, DPN severity (classified by a fuzzy model) and foot–ankle range of motion between baseline and Week 8. In the first 20 weeks, 1310 individuals were screened for eligibility by phone contact. Contact rate was 89% (contacted participants/20w), preliminary screening success 28% (participants underwent screening/20w), and recruitment rate 1.0 participants/week (eligible participants/20w). The recruitment rate was less than the ideal rate of 5 participants/week. The adherence to the exercises programme was 77%, and the dropout was 11% and 9% for the IG and CG, respectively. In the IG, participants’ median level of satisfaction was 4 (IQR: 4–5) and perceived safety was 3 (IQR: 3–5). IG significantly decreased the DPN severity (p = 0.020), increased hallux relative to forefoot (first metatarsal) range of motion (ROM) (p < 0.001) and decreased maximum forefoot relative to hindfoot (midfoot motion) dorsiflexion during gait (p = 0.029). The home-based programme was feasible, satisfactory, safe and showed preliminary positive changes in DPN severity and foot motion during gait. Trial Registration ClinicalTrials.gov, NCT04008745. Registered 02/07/2019. https://clinicaltrials.gov/ct2/show/NCT04008745.
Collapse
Affiliation(s)
- Érica Q Silva
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Danilo P Santos
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Raquel I Beteli
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Renan L Monteiro
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil.,Department of Physical Therapy, Universidade Federal do Amapá, Amapá, Brazil
| | - Jane S S P Ferreira
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Ronaldo H Cruvinel-Junior
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Asha Donini
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Jady L Verissímo
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil
| | - Eneida Y Suda
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil.,Department of Physical Therapy, Universidade Ibirapuera, São Paulo, SP, Brazil
| | - Isabel C N Sacco
- Department of Physical Therapy, Speech, and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP, 05360-160, Brazil.
| |
Collapse
|
43
|
Zippenfennig C, Drechsel TJ, Monteiro RL, Sacco ICN, Milani TL. The Mechanoreceptor's Role in Plantar Skin Changes in Individuals with Diabetes Mellitus. J Clin Med 2021; 10:2537. [PMID: 34201094 PMCID: PMC8227313 DOI: 10.3390/jcm10122537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanical skin properties (MSPs) and vibration perception thresholds (VPTs) show no relationship in healthy subjects. Similar results were expected when comparing MSP and VPT in individuals with diabetes mellitus (DM) and with diabetic (peripheral-)neuropathy (DPN). A healthy control group (33 CG), 20 DM and 13 DPN participated in this cross-sectional study. DM and DPN were classified by using a fuzzy decision support system. VPTs (in µm) were measured with a modified vibration exciter at two different frequencies (30 and 200 Hz) and locations (heel, first metatarsal head). Skin hardness (durometer readings) and thickness (ultrasound) were measured at the same locations. DPN showed the highest VPTs compared to DM and CG at both frequencies and locations. Skin was harder in DPN compared to CG (heel). No differences were observed in skin thickness. VPTs at 30 and 200 Hz correlated negatively with skin hardness for DPN and with skin thickness for DM, respectively. This means, the harder or thicker the skin, the better the perception of 30 or 200 Hz vibrations. Changes in MSP may compensate the loss of sensitivity up to a certain progression of the disease. However, the influence seems rather small when considering other parameters, such as age.
Collapse
Affiliation(s)
- Claudio Zippenfennig
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany; (T.J.D.); (T.L.M.)
| | - Tina J. Drechsel
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany; (T.J.D.); (T.L.M.)
| | - Renan L. Monteiro
- Department of Physical Therapy, Speech and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05360-160, Brazil; (R.L.M.); (I.C.N.S.)
| | - Isabel C. N. Sacco
- Department of Physical Therapy, Speech and Occupational Therapy, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05360-160, Brazil; (R.L.M.); (I.C.N.S.)
| | - Thomas L. Milani
- Department of Human Locomotion, Faculty of Behavioral and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107 Chemnitz, Germany; (T.J.D.); (T.L.M.)
| |
Collapse
|
44
|
Chen WY, Lin PY, Lai CH, Chen YL. Evaluation of Clinical Neuropathy After Living Donor Liver Transplant. EXP CLIN TRANSPLANT 2021; 19:664-670. [PMID: 34085916 DOI: 10.6002/ect.2020.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Neurologic complications are more common in liver transplants than in other solid-organ transplants. One such neurologic complication, peripheral neuropathy, may cause functional limitations for recipients and have a negative effect on posttransplant quality of life. We aimed to examine the risk factors associated with the occurrence of clinical neuropathy after liver transplant and to investigate the frequency of sensory deficits. MATERIALS AND METHODS In this case-control study, we analyzed factors from medical records of 63 recipients who underwent living donor liver transplant during the period from January 2010 to December 2016. A neuropathy symptom score was assigned to identify the patients who had clinical neuropathy (case group) and the patients without clinical neuropathy (control group). Quantitative sensory testing was performed to measure the warm and cold detection thresholds, and the difference between the 2 groups was examined. RESULTS Compared with controls, patients with clinical neuropathy were older (61.0 vs 55.4 years; P = .028), had higher rates of diabetes (46.2% vs 16.0%; P = .03), and were taking antiviral agents against hepatitis B (100% vs 62%; P = .006). Patients with neuropathic symptoms had significantly increased frequencies of impairment of warm and cold detection thresholds. In addition, the greater severity of symptoms showed higher detection thresholds of warm (control, 40.7℃; mild-to-moderate, 43.8 ℃; severe, 46.0 ℃; P = .007) and cold (control, 28.8℃ ; mild-to-moderate, 27.0 ℃; severe, 21.8 ℃ ; P = .008). CONCLUSIONS Our findings show that older age, diabetes, and treatment with oral antiviral agents against hepatitis B virus were more likely to be associated with the occurrence of clinical neuropathy after liver transplant. Early awareness and careful monitoring are warranted.
Collapse
Affiliation(s)
- Wen-Yuan Chen
- From the Department of Pharmacy, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | |
Collapse
|
45
|
Leone CM, Celletti C, Gaudiano G, Puglisi PA, Fasolino A, Cruccu G, Camerota F, Truini A. Pain due to Ehlers-Danlos Syndrome Is Associated with Deficit of the Endogenous Pain Inhibitory Control. PAIN MEDICINE 2021; 21:1929-1935. [PMID: 32176287 DOI: 10.1093/pm/pnaa038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Although pain is a common complication of the hypermobile type of Ehlers-Danlos syndrome, its underlying mechanisms are still an issue of controversy. In this psychophysical study, we aimed at testing small-fiber function and the endogenous pain inhibitory control in patients with pain due to Ehlers-Danlos syndrome. METHODS In 22 patients with pain due to Ehlers-Danlos syndrome and 22 healthy participants, matched for age and sex, we tested small-fiber function using quantitative sensory testing and the endogenous pain inhibitory control using the conditioned pain modulation (CPM) protocol. As quantitative sensory testing methods, we included thermal pain and mechanical pain thresholds and the wind-up ratio. The CPM protocol consisted of two heat painful stimuli, that is, a test stimulus and a conditioning stimulus. RESULTS All patients complained of widespread pain. Quantitative sensory testing revealed no small-fiber deficit; in the area of maximum pain, we found an increased wind-up ratio. Whereas in the healthy participants the CPM protocol showed that the test stimulus rating was significantly reduced during conditioning, in patients with pain due to hEDS, the test stimulus rating increased during conditioning. CONCLUSIONS Our psychophysical study showing that patients with pain due to hEDS have an increased wind-up ratio in the area of maximum pain and abnormal CPM protocol suggests that in this condition, pain is associated with central sensitization, possibly due to deficit of the endogenous pain inhibitory control. These data might be relevant to pharmacological treatment.
Collapse
Affiliation(s)
| | - Claudia Celletti
- Department of Physical medicine and Rehabilitation, Sapienza University, Rome, Italy
| | | | - Paola Anna Puglisi
- Faculty of Information Engineering, Informatics, and Statistics, Sapienza University, Rome, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Filippo Camerota
- Department of Physical medicine and Rehabilitation, Sapienza University, Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
46
|
Chantelau EA. A Novel Diagnostic Test for End-Stage Sensory Failure Associated With Diabetic Foot Ulceration: Proof-of-Principle Study. J Diabetes Sci Technol 2021; 15:622-629. [PMID: 31948277 PMCID: PMC8111226 DOI: 10.1177/1932296819900256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Diabetic foot ulceration (DFU) affects only a subgroup of patients with diabetic neuropathy, that is, those with pain-insensitivity due to end-stage sensory failure. Pain perception failure develops insidiously and remains asymptomatic until first DFU. As loss of pain perception is clinically significant, timely detection is mandatory. OBJECTIVES A novel suprathreshold pinprick pain stimulus of 512 mN force made from optical glass-fiber was explored in a prospective cross-sectional diagnostic accuracy study to detect DFU-related end-stage sensory failure. METHODS A total of 116 participants were studied (25 healthy people, 22 patients with diabetes without relevant complications, 19 patients with previous painful foot or leg injuries, and 50 patients with previous or active painless DFU [reference standard]). Palmar and plantar surfaces were stimulated in a standardized fashion. At the feet, the second and third toe skinfolds and the middle of the plantar arch were stimulated. Participants scored stimulated pricking discomfort or pain intensity 0 to 10 on a numerical rating scale. RESULTS At hands, intensity was rated on average 5 (1-10) [median (range)] by 114/116 participants. Per foot, participants without DFU scored 5 (1-10), while those with DFU scored 0 (0-3) (P < .0001). At plantar toe skinfolds, the absence of pinprick pain perception detected DFU-associated sensory failure with an accuracy of 99.5% (sensitivity 99.5%, specificity 99.4%, positive likelihood ratio 248, and negative likelihood ratio 0.005). CONCLUSION In this pilot study, nociceptive stimulation of a plantar toe skinfold with a 512 mN optical glass-fiber pinprick accurately identified DFU-associated end-stage sensory failure.
Collapse
Affiliation(s)
- Ernst-Adolf Chantelau
- Heinrich-Heine-University, Düsseldorf,
Germany
- Practice of Endocrinology and
Diabetology PD Dr.Kimmerle, Aachener, Düsseldorf, Germany
- Ernst-Adolf Chantelau, MD, PhD, Holthorster
Weg 16, Bremen 28717, Germany.
| |
Collapse
|
47
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|
48
|
Chiang MC, Yeh TY, Sung JY, Hsueh HW, Kao YH, Hsueh SJ, Chang KC, Feng FP, Lin YH, Chao CC, Hsieh ST. Early changes of nerve integrity in preclinical carriers of hereditary transthyretin Ala117Ser amyloidosis with polyneuropathy. Eur J Neurol 2021; 28:982-991. [PMID: 33369810 DOI: 10.1111/ene.14698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Disease-modifying therapies provide new horizons for hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) to slow neuropathic progression. Initiating treatment at the earliest time requires biomarkers reflecting both small- and large-fiber degeneration in carriers. METHODS This study included examinations of pathology (intraepidermal nerve fiber [IENF] density), physiology (nerve conduction studies, autonomic function test, and nerve excitability), and psychophysics (thermal thresholds) in carriers to compare to healthy controls and asymptomatic diabetic patients. RESULTS There were 43 carriers (44.2 ± 11.4 years, p.Ala117Ser in 42 carriers), 43 controls (43.4 ± 12.7 years) including 26 noncarrier families, and 50 asymptomatic diabetic patients (58.1 ± 9.5 years). Carriers had lower IENF densities than controls and similar densities as diabetic patients. Median nerve conduction parameters, especially distal motor latency, were the most frequent neurophysiological abnormality in carriers, could differentiate carriers from controls and diabetic patients, were correlated with IENF densities in carriers but not in controls and diabetic patients, and were correlated with nerve excitability parameters in carriers but not in controls. Fifteen carriers (34.9%) with electrophysiological evidence of median nerve entrapment at the wrist had lower IENF densities and more abnormal conduction parameters than carriers without. We defined nerve dysfunction index-the ratio of median distal motor latency to IENF density-which differentiated carriers from controls. CONCLUSIONS In late-onset ATTRv-PN carriers with predominant p.Ala117Ser, median conduction parameters were the most common neurophysiological abnormalities and served as surrogate signatures of small- and large-fiber impairment. Combination of median distal motor latency and IENF density can reflect early neuropathy in carriers.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Ying Sung
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hui Kao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Ju Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Ping Feng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yea-Huey Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
49
|
Carmichael J, Fadavi H, Ishibashi F, Shore AC, Tavakoli M. Advances in Screening, Early Diagnosis and Accurate Staging of Diabetic Neuropathy. Front Endocrinol (Lausanne) 2021; 12:671257. [PMID: 34122344 PMCID: PMC8188984 DOI: 10.3389/fendo.2021.671257] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of both type 1 and type 2 diabetes is increasing worldwide. Diabetic peripheral neuropathy (DPN) is among the most distressing and costly of all the chronic complications of diabetes and is a cause of significant disability and poor quality of life. This incurs a significant burden on health care costs and society, especially as these young people enter their peak working and earning capacity at the time when diabetes-related complications most often first occur. DPN is often asymptomatic during the early stages; however, once symptoms and overt deficits have developed, it cannot be reversed. Therefore, early diagnosis and timely intervention are essential to prevent the development and progression of diabetic neuropathy. The diagnosis of DPN, the determination of the global prevalence, and incidence rates of DPN remain challenging. The opinions vary about the effectiveness of the expansion of screenings to enable early diagnosis and treatment initiation before disease onset and progression. Although research has evolved over the years, DPN still represents an enormous burden for clinicians and health systems worldwide due to its difficult diagnosis, high costs related to treatment, and the multidisciplinary approach required for effective management. Therefore, there is an unmet need for reliable surrogate biomarkers to monitor the onset and progression of early neuropathic changes in DPN and facilitate drug discovery. In this review paper, the aim was to assess the currently available tests for DPN's sensitivity and performance.
Collapse
Affiliation(s)
- Josie Carmichael
- Diabetes and Vascular Research Centre, National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Hassan Fadavi
- Peripheral Neuropathy Group, Imperial College, London, United Kingdom
| | - Fukashi Ishibashi
- Internal Medicine, Ishibashi Medical and Diabetes Centre, Hiroshima, Japan
| | - Angela C Shore
- Diabetes and Vascular Research Centre, National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Mitra Tavakoli
- Diabetes and Vascular Research Centre, National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
50
|
Contribution of Skin Biopsy in Peripheral Neuropathies. Brain Sci 2020; 10:brainsci10120989. [PMID: 33333929 PMCID: PMC7765344 DOI: 10.3390/brainsci10120989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
In the last three decades the study of cutaneous innervation through 3 mm-punch-biopsy has provided an important contribution to the knowledge of small fiber somatic and autonomic neuropathies but also of large fiber neuropathies. Skin biopsy is a minimally invasive technique with the advantage, compared to sural nerve biopsy, of being suitable to be applied to any site in our body, of being repeatable over time, of allowing the identification of each population of nerve fiber through its target. In patients with symptoms and signs of small fiber neuropathy the assessment of IntraEpidermal Nerve Fiber density is the gold standard to confirm the diagnosis while the quantification of sudomotor, pilomotor, and vasomotor nerve fibers allows to evaluate and characterize the autonomic involvement. All these parameters can be re-evaluated over time to monitor the disease process and to evaluate the effectiveness of the treatments. Myelinated fibers and their receptors can also be evaluated to detect a “dying back” neuropathy early when nerve conduction study is still normal. Furthermore, the morphometry of dermal myelinated fibers has provided new insight into pathophysiological mechanisms of different types of inherited and acquired large fibers neuropathies. In genetic neuropathies skin biopsy has become a surrogate for sural nerve biopsy, no longer necessary in the diagnostic process, to study genotype–phenotype correlations.
Collapse
|