1
|
Kobel MJ, Wagner AR, Merfeld DM. Associations Between Vestibular Perception and Cognitive Performance in Healthy Adults. Ear Hear 2024:00003446-990000000-00365. [PMID: 39506197 DOI: 10.1097/aud.0000000000001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
OBJECTIVES A growing body of evidence has linked vestibular function to the higher-order cognitive ability in aging individuals. Past evidence has suggested unique links between vestibular function and cognition on the basis of end-organ involvement (i.e., otoliths versus canals). However, past studies have only assessed vestibular reflexes despite the diversity of vestibular pathways. Thus, this exploratory study aimed to assess associations between vestibular perception and cognition in aging adults to determine potential relationships. DESIGN Fifty adults (21 to 84 years; mean = 52.9, SD = 19.8) were included in this cross-sectional study. All participants completed a vestibular perceptual threshold test battery designed to target perception predominantly mediated by each end-organ pair and intra-vestibular integration: 1 Hz y-translation (utricle), 1 Hz z-translation (saccule), 2 Hz yaw rotation (horizontal canals), 2 Hz right anterior, left posterior (RALP), and left anterior, right posterior (LARP) tilts (vertical canals), and 0.5 Hz roll tilt (canal-otolith integration). Participants also completed standard assessments of cognition and path integration: Digit Symbol Substitution Test (DSST), Trail Making Test (TMT), and the Gait Disorientation Test (GDT). Associations were assessed using Spearman rank correlation, and multivariable regression analyses. RESULTS For correlation analyses, DSST correlated to RALP/LARP tilt, roll tilt, and z-translation. TMT-A only correlated to z-translation, and TMT-B correlated to roll tilt and z-translation after correcting for multiple comparisons. GDT correlated to RALP/LARP tilt and y-translation. In age-adjusted regression analyses, DSST and TMT-B were associated with z-translation thresholds and GDT was associated with y-translation thresholds. CONCLUSIONS In this cross-sectional study, we identified associations between vestibular perceptual thresholds with otolith contributions and standard measures of cognition. These results are in line with past results suggesting unique associations between otolith function and cognitive performance.
Collapse
Affiliation(s)
- Megan J Kobel
- Department of Speech, Language & Hearing Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew R Wagner
- Department of Physical Therapy, Creighton University, Omaha, Nebraska, USA
| | - Daniel M Merfeld
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
2
|
Han SY, Lee SY, Suh MW, Lee JH, Park MK. Quality of life, physical symptoms, and psychological symptoms according to the status of chronic vestibulopathy. PLoS One 2024; 19:e0312727. [PMID: 39495729 PMCID: PMC11534207 DOI: 10.1371/journal.pone.0312727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/13/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVES Symptomatic vestibulopathy impairs patients' lives. However, few studies have explored the lives of patients with compensated or asymptomatic vestibulopathy. This study investigated the quality of life (QOL), psychological health, and physical function of patients with vestibulopathy. MATERIALS AND METHODS Using the eighth Korea National Health and Nutrition Examination Survey database, we included individuals with data on demographic factors, diabetes, hypertension, dizziness experiences, pure-tone audiometry, video head impulse test (vHIT), Health-related Quality of Life Instrument with 8 Items, General Anxiety Disorder 7-item scale, stress, and walking and sitting times. Participants were classified into the following groups: an uncompensated group with abnormal vHIT result and chronic dizziness, a compensated group with abnormal vHIT result and a history of dizziness, an asymptomatic group with abnormal vHIT result and no history of dizziness, and a normal group without abnormal vHIT result or a history of dizziness. RESULTS Uncompensated vestibulopathy was more common in older individuals and women. The uncompensated group showed impairments in climbing stairs (P < 0.001), pain (P < 0.001), vitality (P = 0.001), working (P < 0.001), depression (P < 0.001), sleep (P = 0.001), happiness (P = 0.002), anxiety (P = 0.006), and stress (P = 0.003). The compensated group showed deficits in pain (P < 0.001), work (P = 0.006), sleep (P = 0.001), and happiness (P = 0.001). The asymptomatic group had no deficits in QOL, psychological health, or physical function. These tendencies were similar after controlling for age and gender. CONCLUSION Vestibulopathy with a history of dizziness has a long-lasting impact on QOL and emotional status, even after compensation. Uncompensated vestibulopathy has a significant effect on QOL and mental health. Notably, though, the compensated group also showed a reduction in QOL. Appropriate interventions for each category of patients should be provided based on their impaired functions.
Collapse
Affiliation(s)
- Sang-Yoon Han
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhou Z, Tian E, Wang J, Guo Z, Chen J, Guo J, Shi S, Xu W, Yu X, Qiao C, Zhang Y, Lu Y, Zhang S. Cognitive impairments and neurobiological changes induced by unilateral vestibular dysfunction in mice. Neurobiol Dis 2024; 202:106719. [PMID: 39481811 DOI: 10.1016/j.nbd.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
The vestibular system is essential for balance and spatial orientation, and its dysfunction can lead to cognitive deficits. This study investigates the effects of unilateral vestibular dysfunction (UVL) on cognitive function and the underlying neurobiological changes in mice. We established a unilateral labyrinthectomy (UL) model in mice and assessed cognitive function at 28 days post-surgery using a comprehensive battery of behavioral tests. We found significant impairments in spatial reference memory, working memory, and synaptic plasticity in UL mice, which persisted despite compensation for vestibular and postural motor deficits. Immunofluorescence staining revealed enhanced activation of c-Fos in the hippocampal dentate gyrus (DG) at various time points post-UL, suggesting a role of the hippocampus in cognitive deficits following UVL. RNA sequencing of the DG identified differentially expressed genes (DEGs) and altered pathways related to cognitive function, synaptic plasticity, and neuronal activation. Quantitative real-time PCR (qRT-PCR) validated the expression changes of selected genes. Our findings indicate that UVL leads to persistent cognitive impairments in mice, associated with altered neuronal activation and gene expression in the hippocampus. This study offers valuable insights into the neurobiological mechanisms underlying cognitive deficits associated with UVL. Moreover, it underscores the importance of early cognitive screening in patients with vestibular diseases, as this approach is instrumental in comprehensive condition assessment, precise diagnosis, targeted treatment, and effective rehabilitation.
Collapse
Affiliation(s)
- Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandi Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Gökçe E, Milot E, Langeard A, Quarck G. Impact of repetitive home-based galvanic vestibular stimulation on cognitive skills in healthy older adults. Exp Gerontol 2024; 194:112504. [PMID: 38936440 DOI: 10.1016/j.exger.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The human vestibular system is adversely affected by the aging process. Recent evidence indicates that vestibular information and cognitive functions are related, suggesting that age-related vestibular loss may contribute to cognitive impairment. In this study, we aimed to investigate the effects of repetitive, home-based galvanic vestibular stimulation (GVS) on cognitive functions in healthy older adults. Twenty-one participants (age = 64.66 ± 2.97 years, 12 females) were randomly allocated to either a home-based GVS or an active control group. The GVS intervention lasted 20 min per session, five times a week, for two weeks (10 sessions). Cognitive functions were assessed before and after the intervention using the Stroop Test, Trail Making Test A&B, and Dual-Task (digit recall and paper-pencil tracking test). Our findings revealed a significant group-by-time interaction effect for the tracking accuracy (F(1,18) = 7.713, p = 0.012, η p2 = 0.30), with only the home-based GVS group showing significant improvement (t = -2.544, p = 0.029). The proposed home-based GVS protocol offers a promising non-pharmacological avenue for enhancing visuospatial ability in healthy older adults. Further research is needed to investigate the effects of different GVS protocols on various cognitive functions, particularly in older individuals with different health conditions.
Collapse
Affiliation(s)
- Evrim Gökçe
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France.
| | - Emma Milot
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | - Antoine Langeard
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | - Gaëlle Quarck
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| |
Collapse
|
5
|
Gur-Hartman T, Tarrasch R, Zerem A, Sokol-Novinsky R, Elyoseph Z, Lerman-Sagie T, Mintz M. Consequences of vestibular hypofunction in children with ADHD/DCD. Eur J Paediatr Neurol 2024; 52:1-9. [PMID: 38968910 DOI: 10.1016/j.ejpn.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Children with Attention Deficit Hyperactivity Disorder (ADHD) demonstrate a heterogeneous sensorimotor, emotional, and cognitive profile. Comorbid sensorimotor imbalance, anxiety, and spatial disorientation are particularly prevalent among their non-core symptoms. Studies in other populations presented these three comorbid dysfunctions in the context of vestibular hypofunction. OBJECTIVE To test whether there is a subgroup of children with ADHD who have vestibular hypofunction presenting with concomitant imbalance, anxiety, and spatial disorientation. METHODS Children with ADHD-only (n = 28), ADHD + Developmental Coordination Disorder (ADHD + DCD; n = 38), and Typical Development (TD; n = 19) were evaluated for vestibular function by the Dynamic Visual Acuity test (DVA-t), balance by the Bruininks-Oseretsky Test of motor proficiency (BOT-2), panic anxiety by the Screen for Child Anxiety Related Emotional Disorders questionnaire-Child version (SCARED-C), and spatial navigation by the Triangular Completion test (TC-t). RESULTS Children with ADHD vs. TD presented with a high rate of vestibular hypofunction (65 vs. 0 %), imbalance (42 vs. 0 %), panic anxiety (27 vs. 11 %), and spatial disorientation (30 vs. 5 %). Children with ADHD + DCD contributed more frequent and severe vestibular hypofunction and imbalance than children with ADHD-only (74 vs. 54 %; 58 vs. 21 %, respectively). A concomitant presence of imbalance, anxiety, and spatial disorientation was observed in 33 % of children with ADHD, all sharing vestibular hypofunction. CONCLUSIONS Vestibular hypofunction may be the common pathophysiology of imbalance, anxiety, and spatial disorientation in children. These comorbidities are preferentially present in children with ADHD + DCD rather than ADHD-only, thus likely related to DCD rather than to ADHD disorder. Children with this profile may benefit from a vestibular rehabilitation intervention.
Collapse
Affiliation(s)
- Tamar Gur-Hartman
- School of Psychological Sciences, Tel Aviv University, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel.
| | - Ricardo Tarrasch
- Sagol School of Neuroscience, Tel Aviv University, Israel; School of Education, Tel Aviv University, Israel
| | - Ayelet Zerem
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - Riki Sokol-Novinsky
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Matti Mintz
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
6
|
Gerb J, Brandt T, Dieterich M. Unreliable association between self-reported sense of direction and peripheral vestibular function. Brain Behav 2024; 14:e70000. [PMID: 39245964 PMCID: PMC11381552 DOI: 10.1002/brb3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Uni- or bilateral peripheralvestibular impairment causes objective spatial orientation deficits, which can be measured using pen-and-paper-tests or sensorimotor tasks (navigation or pointing). For patients' subjective orientation abilities, questionnaires are commonly used (e.g., Santa Barbara sense of direction scale [SBSODS]). However, the relationship between subjective assessment of spatial skills and objective vestibular function has only been scarcely investigated. METHODS A total of 177 patients (mean age 57.86 ± 17.53 years, 90 females) who presented in our tertiary Center for Vertigo and Balance Disorders underwent neuro-otological examinations, including bithermal water calorics, video head impulse test (vHIT), and testing of the subjective visual vertical (SVV), and filled out the SBSODS (German version). Correlation analyses and linear multiple regression model analyses were performed between vestibular test results and self-assessment scores. Additionally, groupwise vestibular function for patients with low, average, and high self-report scores was analyzed. RESULTS Forty-two patients fulfilled the diagnostic criteria for bilateral vestibulopathy, 93 for chronic unilateral vestibulopathy (68 unilateral caloric hypofunction and 25 isolated horizontal vestibulo-ocular reflex deficits), and 42 patients had normal vestibular test results. SBSODS scores showed clear sex differences with higher subjective skill levels in males (mean score males: 4.94 ± 0.99, females 4.40 ± 0.94; Student's t-test: t-3.78, p < .001***). No stable correlation between objective vestibular function and subjective sense of spatial orientation was found. A multiple linear regression model could not reliably explain the self-reported variance. The three patient groups with low, average, and high self-assessment-scores showed no significant differences of vestibular function. CONCLUSION Self-reported assessment of spatial orientation does not robustly correlate with objective peripheral vestibular function. Therefore, other methods of measuring spatial skills in real-world and virtual environments are required to disclose orientation deficits due to vestibular hypofunction.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
7
|
Kabiş B, Gürses E, Işıkay AÝÇ, Aksoy S. Spatial memory and learning: investigating the role of dynamic visual acuity. Front Behav Neurosci 2024; 18:1429069. [PMID: 39267984 PMCID: PMC11390580 DOI: 10.3389/fnbeh.2024.1429069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The vestibular system's contribution to spatial learning and memory abilities may be clarified using the virtual Morris Water Maze Task (vMWMT). This is important because of the connections between the vestibular system and the hippocampus area. However, there is ongoing debate over the role of the vestibular system in developing spatial abilities. This study aimed to evaluate the relationship between Dynamic Visual Acuity (DVA) across three planes and spatial abilities. Methods This cross-sectional study was conducted with 50 healthy adults aged 18 to 55 with normal stress levels and mental health and no neurological, audiological, or vestibular complaints. The Trail-Making Test (TMT) Forms A and B for the assessment of executive functions, the DVA test battery for the evaluation of visual motor functions, and the Virtual Morris Water Maze Test (vMWMT) for the assessment of spatial learning and spatial memory were performed. All participants also underwent the Benton Face Recognition Test (BFRT) and Digit Symbol Substitution Tests (DSST) to assess their relation with spatial memory. Results DVA values in horizontal (H-DVA), vertical (V-DVA), and sagittal (S-DVA) planes ranged from (-0.26) to 0.36 logMAR, (-0.20) to 0.36 logMAR, and (-0.28) to 0.33 logMAR, respectively. The latency of three planes of DVA was affected by vMWMT (Horizontal, Vertical, and Sagittal; Estimate: 22.733, 18.787, 13.341, respectively p < 0.001). Moreover, a moderately significant correlation was also found, with a value of 0.571 between the Virtual MWM test and BFRT and a value of 0.539 between the DSST (p < 0.001). Conclusion Spatial abilities in healthy adults were significantly influenced by dynamic visual functions across horizontal, vertical, and sagittal planes. These findings are expected to trigger essential discussions about the mechanisms that connect the vestibular-visual system to the hippocampus. The original vMWMT protocol is likely to serve as a model for future studies utilizing this technology.
Collapse
Affiliation(s)
- Burak Kabiş
- Department of Audiology, Faculty of Health Science, Gazi University, Ankara, Turkey
| | - Emre Gürses
- Department of Audiology, Faculty of Health Science, Hacettepe University, Ankara, Turkey
| | | | - Songül Aksoy
- Department of Audiology, Faculty of Health Science, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
8
|
Li J, Xu X, Deng X, Li S, Guo T, Xie H. Association of Vestibular Disorders and Cognitive Function: A Systematic Review. Laryngoscope 2024. [PMID: 39016124 DOI: 10.1002/lary.31646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES The purpose of this study is to consolidate and condense the available evidence about the potential association between vestibular diseases and cognitive impairment. DATA SOURCES AND METHODS A systematic search was conducted on four English databases (PubMed, Embase, Web of Science, Cochrane Library) from the time of library construction to March 2024. The study incorporated various keywords such as "vestibular disorders," "vertigo," "dizziness," "Meniere's disease," "benign paroxysmal positional vertigo," "vestibular migraine," "vestibular neuritis," "labyrinthitis," "bilateral vestibular disease," as well as "cognitive function" and "cognitive dysfunction." A qualitative review was conducted to look for and assess pertinent studies. RESULTS A total of 45 publications were incorporated, encompassing prevalent vestibular disorders, mostly targeting individuals in the middle-aged and older demographic. The findings indicate that individuals with vestibular disorders experience varying levels of cognitive impairment, which is evident in different aspects, with visuospatial cognitive deficits being more prominent. Furthermore, patients with chronic vestibular syndromes are more prone to cognitive dysfunction. Lastly, the hippocampus plays a crucial role in the intricate vestibular neural network. CONCLUSION The findings of this comprehensive review indicate that vestibular disorders can result in impairments across various aspects of cognitive functioning, particularly in visuospatial cognition. The underlying mechanism may be associated with a decrease in the size of the hippocampus. Individuals suffering from chronic vestibular dysfunction exhibit a higher likelihood of experiencing cognitive deficits. LEVEL OF EVIDENCE NA Laryngoscope, 2024.
Collapse
Affiliation(s)
- Jiongke Li
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianpeng Xu
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinxing Deng
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Guo
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Xie
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Brandt T, Dieterich M, Huppert D. Human senses and sensors from Aristotle to the present. Front Neurol 2024; 15:1404720. [PMID: 39022724 PMCID: PMC11252028 DOI: 10.3389/fneur.2024.1404720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
This historical review on the semantic evolution of human senses and sensors revealed that Aristotle's list of the five senses sight, hearing, touch, taste, and smell is still in use among non-scientific lay persons. It is no surprise that his classification in the work "De Anima" (On the Soul) from 350 BC confuses the sensor "touch" with the now more comprehensively defined somatosensory system and that senses are missing such as the later discovered vestibular system and the musculotendinous proprioception of the position of parts of the body in space. However, it is surprising that in the three most influential ancient cultures, Egypt, Greece, and China-which shaped the history of civilization-the concept prevailed that the heart rather than the brain processes perception, cognition, and emotions. This "cardiocentric view" can be traced back to the "Doctrine of Aristotle," the "Book of the Dead" in ancient Egypt, and the traditional Chinese medicine of correspondence documented in the book "Huang di Neijing." In Greek antiquity the philosophers Empedocles, Democritus and Aristotle were proponents of the allocation of the spirit and the soul to the heart connected to the body via the blood vessels. Opponents were the pre-Socratic mathematician Pythagoras, the philosopher Plato, and especially the Greek physician Hippocrates who regarded the brain as the most powerful organ in humans in his work "De Morbo Sacro." The Greek physician Galen of Pergamon further elaborated on the concept of the brain ("cephalocentric hypothesis") connected to the body by a network of nerves. The fundamental concepts for understanding functions and disorders of the vestibular system, the perception of self-motion, verticality and balance control were laid by a remarkable group of 19th century scientists including Purkynӗ, Mach, Breuer, Helmholtz, and Crum-Brown. It was also in the 19th century that Bell described a new sense of a reciprocal sensorimotor loop between the brain and the muscles which he called "muscular sense," later termed "kinaesthesia" by Bastian and defined in 1906 as "proprioception" by Sherrington as "the perception of joint and body movements as well as position of the body or body segments, in space." Both, the vestibular system and proprioception could be acknowledged as senses six or seven. However, we hesitate to recommend "pain"-which is variously assigned to the somatosensory system or extero-, intero-, visceroception-as a separate sensory system. Pain sensors are often not specific but have multisensory functions. Because of this inconsistent, partly contradictory classification even by experts in the current literature on senses and sensors we consider it justified to recommend a comprehensive reorganization of classification features according to the present state of knowledge with an expansion of the number of senses. Such a project has also to include the frequent task-dependent multisensory interactions for perceptual and sensorimotor achievements, and higher functions or disorders of the visual and vestibular systems as soon as cognition or emotions come into play. This requires a cooperation of sensory physiologists, neuroscientists and experienced physicians involved in the management of patients with sensory and multisensory disorders.
Collapse
Affiliation(s)
- Thomas Brandt
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Doreen Huppert
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
10
|
Trudel M, Stapleton EJ, Wadeson AM, Spiller W, North HJ, Heal C, Sebastian J, Freeman SR, Rutherford SA, Entwistle H, Hammerbeck-Ward CL, Pathmanaban O, King AT, Lloyd SKW. Improved Recovery after Vestibular Schwannoma Excision with Intratympanic Gentamicin Prehabilitation. Laryngoscope 2024; 134:3316-3322. [PMID: 38332515 DOI: 10.1002/lary.31298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
OBJECTIVE Translabyrinthine excision of a vestibular schwannoma is associated with acute vestibular failure. Preoperative intratympanic gentamicin (ITG) injections can improve objective balance function after surgery but its clinical benefits remain to be established. METHODS Adult patients undergoing translabyrinthine removal of a vestibular schwannoma between January 2014 and February 2018 underwent preoperative vestibular function testing. Patients were divided in to 3 groups, those with vestibular function (VF) who received ITG injections, those with VF but did not receive ITG and those with no VF. Groups were compared according to degree of vertigo, length of stay, time to unassisted mobilization, and postoperative anti-emetic consumption. RESULTS Forty six patients had ITG injections (Group 1), 7 had residual VF but refused treatment (Group 2), 21 had no VF (Group 3). Group 1 had a significant improvement in vertigo over time whereas groups 2 and 3 did not. There was a statistically significant 70% decrease in time to independent mobilization between Group 1 and other groups and a 19% decrease in length of stay in Group 1 compared to other groups although this did not reach statistical significance. Two patients had injection-related complications. Group 1 used less anti-emetics than other groups but this was not statistically significant. CONCLUSION Preoperative intratympanic gentamicin injection with vestibular rehabilitation exercises is associated with less postoperative vertigo and earlier postoperative mobilization. There was reduced duration of hospitalization and decreased consumption of anti-emetic but not significantly so possibly because of low numbers of patients in the no treatment group. LEVEL OF EVIDENCE 2 Laryngoscope, 134:3316-3322, 2024.
Collapse
Affiliation(s)
- Mathieu Trudel
- Department of Otolaryngology Head and Neck Surgery, Northern Care Alliance NHS Foundation Trust, Salford Royal Hospital, Manchester Academic Health Science Centre, Manchester, UK
- Department of Otolaryngology-Head and Neck Surgery, CHU de Québec-Université Laval, Hôpital de l'Enfant-Jésus, Quebec City, Quebec, Canada
| | - Emma J Stapleton
- Department of Otolaryngology Head and Neck Surgery, Manchester Royal Infirmary, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Andrea M Wadeson
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - William Spiller
- Department of Otolaryngology Head and Neck Surgery, Northern Care Alliance NHS Foundation Trust, Salford Royal Hospital, Manchester Academic Health Science Centre, Manchester, UK
| | - Hannah J North
- Department of Otolaryngology Head and Neck Surgery, Westmead Hospital, Sydney, New South Wales, Australia
| | - Calvin Heal
- Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Joseph Sebastian
- Department of Anaesthesia, Salford Royal Hospital, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Simon R Freeman
- Department of Otolaryngology Head and Neck Surgery, Northern Care Alliance NHS Foundation Trust, Salford Royal Hospital, Manchester Academic Health Science Centre, Manchester, UK
- Department of Otolaryngology Head and Neck Surgery, Manchester Royal Infirmary, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Scott A Rutherford
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Helen Entwistle
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Charlotte L Hammerbeck-Ward
- Department of Neurosurgery, Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Omar Pathmanaban
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew T King
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Simon K W Lloyd
- Department of Otolaryngology Head and Neck Surgery, Northern Care Alliance NHS Foundation Trust, Salford Royal Hospital, Manchester Academic Health Science Centre, Manchester, UK
- Department of Otolaryngology Head and Neck Surgery, Manchester Royal Infirmary, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Schöne CG, Vibert D, Mast FW. Executive functions in patients with bilateral and unilateral peripheral vestibular dysfunction. J Neurol 2024; 271:3291-3308. [PMID: 38466421 PMCID: PMC11136862 DOI: 10.1007/s00415-024-12267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/13/2024]
Abstract
Previous research suggests that patients with peripheral vestibular dysfunction (PVD) suffer from nonspatial cognitive problems, including executive impairments. However, previous studies that assessed executive functions are conflicting, limited to single executive components, and assessments are confounded by other cognitive functions. We compared performance in a comprehensive executive test battery in a large sample of 83 patients with several conditions of PVD (34 bilateral, 29 chronic unilateral, 20 acute unilateral) to healthy controls who were pairwise matched to patients regarding age, sex, and education. We assessed basic and complex executive functions with validated neuropsychological tests. Patients with bilateral PVD performed worse than controls in verbal initiation and working memory span, while other executive functions were preserved. Patients with chronic unilateral PVD had equal executive performance as controls. Patients with acute unilateral PVD performed worse than controls in the exact same tests as patients with bilateral PVD (verbal initiation, working memory span); however, this effect in patients with acute PVD diminished after correcting for multiple comparisons. Hearing loss and affective disorders did not influence our results. Vestibular related variables (disease duration, symptoms, dizziness handicap, deafferentation degree, and compensation) did not predict verbal initiation or working memory span in patients with bilateral PVD. The results suggest that bilateral PVD not only manifests in difficulties when solving spatial tasks but leads to more general neurocognitive deficits. This understanding is important for multidisciplinary workgroups (e.g., neurotologists, neurologists, audiologists) that are involved in diagnosing and treating patients with PVD. We recommend screening patients with PVD for executive impairments and if indicated providing them with cognitive training or psychoeducational support.
Collapse
Affiliation(s)
- Corina G Schöne
- Department of Psychology, University of Bern, Bern, Switzerland.
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Dominique Vibert
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Jiang Y, Zhou M, Sheng H, Xu S, Chen Y, Wu L, He Q, Zhao L, Liu J, Chen W. Vestibular-evoked myogenic potential abnormalities in Parkinson's disease with freezing of gait. J Neurol 2024; 271:3527-3536. [PMID: 38538775 DOI: 10.1007/s00415-024-12311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vestibular dysfunction is closely associated with the pathophysiology of Parkinson's disease (PD) accompanied by freezing of gait (FOG); however, evidence supporting this clinical association is lacking. Vestibular-evoked myogenic potentials (VEMPs) have been widely acknowledged as a crucial electrophysiological parameter in the clinical evaluation of vestibular function. OBJECTIVE The present study investigated the possible correlation of FOG occurrence with VEMP observations in patients diagnosed with PD. METHODS Altogether, 95 idiopathic PD patients were recruited into the present cross-sectional study. All patients underwent motor and non-motor assessments using serial scales. In addition, the electrophysiological vestibular evaluation was conducted, which included cervical (cVEMP) and ocular VEMP (oVEMP) assessments. Furthermore, the correlations of bilateral c/oVEMP absence with clinical phenotypes, especially FOG, among the PD patients were analyzed. RESULTS Among the 95 patients with PD, 44 (46.3%) had bilateral oVEMP absence and 23 (24.2%) had bilateral cVEMP absence, respectively. The proportions of patients with bilateral oVEMP absence (77.8% vs 30.9%, p = 0.004) and bilateral cVEMP absence (44.4% vs 19.5%, p = 0.035) were higher in the patient group exhibiting FOG than in the group without FOG. Following the adjustment of confounding variables, bilateral oVEMP absence (OR = 8.544, p = 0.007), rather than bilateral cVEMP absence, was shown to independently predict FOG occurrence in patients with PD. CONCLUSION The close correlation between bilateral oVEMP absence and FOG in PD patients sheds new light on the possible role of central vestibular/upper brainstem dysfunction in FOG development in patients with PD.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Zhou
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibin Sheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuai Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Gui M, Lv L, Qin L, Wang C. Vestibular dysfunction in Parkinson's disease: a neglected topic. Front Neurol 2024; 15:1398764. [PMID: 38846039 PMCID: PMC11153727 DOI: 10.3389/fneur.2024.1398764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Dizziness and postural instability are frequently observed symptoms in patient with Parkinson's disease (PD), potentially linked to vestibular dysfunction. Despite their significant impact on quality of life, these symptoms are often overlooked and undertreated in clinical practice. This review aims to summarize symptoms associated with vestibular dysfunction in patients with PD and discusses vestibular-targeted therapies for managing non-specific dizziness and related symptoms. We conducted searches in PubMed and Web of Science using keywords related to vestibular dysfunction, Parkinson's disease, dizziness, and postural instability, alongside the reference lists of relevant articles. The available evidence suggests the prevalence of vestibular dysfunction-related symptoms in patients with PD and supports the idea that vestibular-targeted therapies may be effective in improving PD symptoms.
Collapse
Affiliation(s)
- Meilin Gui
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center on Mental Disorders, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
14
|
Kannan L, Pitts J, Szturm T, Purohit R, Bhatt T. Perturbation-based dual task assessment in older adults with mild cognitive impairment. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1384582. [PMID: 38813371 PMCID: PMC11133526 DOI: 10.3389/fresc.2024.1384582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Background Dual tasking (i.e., concurrent performance of motor and cognitive task) is significantly impaired in older adults with mild cognitive impairment (OAwMCI) compared to cognitively intact older adults (CIOA) and has been associated with increased fall risk. Dual task studies have primarily examined volitionally driven events, and the effects of mild cognitive impairment on reactive balance control (i.e., the ability to recover from unexpected balance threats) are unexplored. We examined the effect of cognitive tasks on reactive balance control in OAwMCI compared to CIOA. Methods Adults >55 years were included and completed the Montreal Cognitive Assessment (MoCA) to categorize them as OAwMCI (MoCA: 18-24, n = 15) or CIOA (MoCA: ≥25, n = 15). Both OAwMCI [MoCA: 22.4 (2.2), 65.4 (6.1) years, 3 females] and CIOA [MoCA: 28.4 (1.3), 68.2 (5.5) years, 10 females] responded to large magnitude stance slip-like perturbations alone (single task) and while performing perceptual cognitive tasks targeting the visuomotor domain (target and tracking game). In these tasks, participants rotated their head horizontally to control a motion mouse and catch a falling target (target game) or track a moving object (track). Margin of stability (MOS) and fall outcome (harness load cell >30% body weight) were used to quantify reactive balance control. Cognitive performance was determined using performance error (target) and sum of errors (tracking). A 3 × 2 repeated measures ANOVA examined the effect of group and task on MOS, and generalized estimating equations (GEE) model was used to determine changes in fall outcome between groups and tasks. 2 × 2 repeated measures ANOVAs examined the effect of group and task on cognitive performance. Results Compared to CIOA, OAwMCI exhibited significantly deteriorated MOS and greater number of falls during both single task and dual task (p < 0.05), and lower dual task tracking performance (p < 0.01). Compared to single task, both OAwMCI and CIOA exhibited significantly deteriorated perceptual cognitive performance during dual task (p < 0.05); however, no change in MOS or fall outcome between single task and dual task was observed. Conclusion Cognitive impairment may diminish the ability to compensate and provide attentional resources demanded by sensory systems to integrate perturbation specific information, resulting in deteriorated ability to recover balance control among OAwMCI.
Collapse
Affiliation(s)
- Lakshmi Kannan
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, United States
| | - Jessica Pitts
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tony Szturm
- Department of Physical Therapy, University of Manitoba, Winnipeg, MB, Canada
| | - Rudri Purohit
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Hagbi Z, Segev E, Eilam D. Tactile cues compensate for unbalanced vestibular cues during progression on inclined surfaces. Behav Processes 2024; 218:105041. [PMID: 38692460 DOI: 10.1016/j.beproc.2024.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
A previous study demonstrated that rodents on an inclined square platform traveled straight vertically or horizontally and avoided diagonal travel. Through behavior they aligned their head with the horizontal plane, acquiring similar bilateral vestibular cues - a basic requirement for spatial orientation and a salient feature of animals in motion. This behavior had previously been shown to be conspicuous in Tristram's jirds. Here, therefore jirds were challenged by testing their travel behavior on a circular arena inclined at 0°-75°. Our hypothesis was that if, as typical to rodents, the jirds would follow the curved arena wall, they would need to display a compensating mechanism to enable traveling in such a path shape, which involves a tilted frontal head axis and unbalanced bilateral vestibular cues. We found that with the increase in inclination, the jirds remained more in the lower section of the arena (geotaxis). When tested on the steep inclinations, however, their travel away from the arena wall was strictly straight up or down, in contrast to the curved paths that followed the circular arena wall. We suggest that traveling along a circular path while maintaining contact with the wall (thigmotaxis), provided tactile information that compensated for the unbalanced bilateral vestibular cues present when traveling along such curved inclined paths. In the latter case, the frontal plane of the head was in a diagonal posture in relation to gravity, a posture that was avoided when traveling away from the wall.
Collapse
Affiliation(s)
- Zohar Hagbi
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA; School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel.
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - David Eilam
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|
16
|
Geisinger D, Elyoseph Z, Zaltzman R, Mintz M, Gordon CR. Functional impact of bilateral vestibular loss and the unexplained complaint of oscillopsia. Front Neurol 2024; 15:1365369. [PMID: 38711564 PMCID: PMC11070540 DOI: 10.3389/fneur.2024.1365369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The vestibulo-ocular reflex (VOR) stabilizes vision during head movements. VOR disorders lead to symptoms such as imbalance, dizziness, and oscillopsia. Despite similar VOR dysfunction, patients display diverse complaints. This study analyses saccades, balance, and spatial orientation in chronic peripheral and central VOR disorders, specifically examining the impact of oscillopsia. Methods Participants involved 15 patients with peripheral bilateral vestibular loss (pBVL), 21 patients with clinically and genetically confirmed Machado-Joseph disease (MJD) who also have bilateral vestibular deficit, and 22 healthy controls. All pBVL and MJD participants were tested at least 9 months after the onset of symptoms and underwent a detailed clinical neuro-otological evaluation at the Dizziness and Eye Movements Clinic of the Meir Medical Center. Results Among the 15 patients with pBVL and 21 patients with MJD, only 5 patients with pBVL complained of chronic oscillopsia while none of the patients with MJD reported this complaint. Comparison between groups exhibited significant differences in vestibular, eye movements, balance, and spatial orientation. When comparing oscillopsia with no-oscillopsia subjects, significant differences were found in the dynamic visual acuity test, the saccade latency of eye movements, and the triangle completion test. Discussion Even though there is a significant VOR gain impairment in MJD with some subjects having less VOR gain than pBVL with reported oscillopsia, no individuals with MJD reported experiencing oscillopsia. This study further supports that subjects experiencing oscillopsia present a real impairment to stabilize the image on the retina, whereas those without oscillopsia may utilize saccade strategies to cope with it and may also rely on visual information for spatial orientation. Finding objective differences will help to understand the causes of the oscillopsia experience and develop coping strategies to overcome it.
Collapse
Affiliation(s)
- Dario Geisinger
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Psychology and Educational Counseling, The Center for Psychobiological Research, Max Stern Yezreel Valley College, Yezreel Valley, Israel
| | - Zohar Elyoseph
- Department of Psychology and Educational Counseling, The Center for Psychobiological Research, Max Stern Yezreel Valley College, Yezreel Valley, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Roy Zaltzman
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| | - Matti Mintz
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Carlos R. Gordon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Meir Medical Center, Kfar Saba, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Jáuregui-Renaud K, García-Jacuinde DM, Bárcenas-Olvera SP, Gresty MA, Gutiérrez-Márquez A. Spatial anxiety contributes to the dizziness-related handicap of adults with peripheral vestibular disease. Front Neurol 2024; 15:1365745. [PMID: 38633539 PMCID: PMC11022853 DOI: 10.3389/fneur.2024.1365745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
In subjects with peripheral vestibular disease and controls, we assessed: 1. The relationship between spatial anxiety and perceived stress, and 2. The combined contribution of spatial anxiety, spatial perspective-taking, and individual cofactors to dizziness-related handicap. 309 adults participated in the study (153 with and 156 without peripheral vestibular disease), including patients with bilateral vestibular deficiency, unilateral deficiency (evolution <3 or ≥3 months), Meniere's disease, and Benign Paroxysmal Positional Vertigo. Assessments included: general health, personal habits, spatial anxiety (3-domains), perceived stress, spatial perspective-taking, dizziness-related handicap (3-domains), unsteadiness, sleep quality, motion sickness susceptibility, trait anxiety/depression, state anxiety, depersonalization/derealization. After bivariate analyses, analysis of covariance was performed (p ≤ 0.05). Spatial anxiety was related to unsteadiness and perceived stress, with an inverse relationship with trait anxiety (ANCoVA, adjusted R2 = 0.27-0.30, F = 17.945-20.086, p < 0.00001). Variability on perspective-taking was related to vestibular disease, trait and state anxiety, motion sickness susceptibility, and age (ANCoVA, adjusted R2 = 0.18, F = 5.834, p < 0.00001). All domains of spatial anxiety contributed to the Physical domain of dizziness-related handicap, while the Navigation domain contributed to the Functional domain of handicap. Handicap variability was also related to unsteadiness, spatial perspective-taking, quality of sleep, and trait anxiety/depression (ANCoVA, adjusted R2 = 0.66, F = 39.07, p < 0.00001). Spatial anxiety is related to perceived stress in adults both with and without vestibular disease, subjects with trait anxiety rated lower on spatial anxiety. State anxiety and acute stress could be helpful for recovery after peripheral vestibular lesion. Spatial anxiety and perspective-taking contribute to the Physical and Functional domains of dizziness-related handicap, possibly because it discourages behavior beneficial to adaptation.
Collapse
Affiliation(s)
- Kathrine Jáuregui-Renaud
- Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Dulce Maria García-Jacuinde
- Departamento de Audiología y Otoneurología, Hospital General del Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Simón Pedro Bárcenas-Olvera
- Departamento de Audiología y Otoneurología, Hospital General del Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Michael A. Gresty
- Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Aralia Gutiérrez-Márquez
- Departamento de Audiología y Otoneurología, Hospital General del Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
18
|
Aedo-Sanchez C, Riquelme-Contreras P, Henríquez F, Aguilar-Vidal E. Vestibular dysfunction and its association with cognitive impairment and dementia. Front Neurosci 2024; 18:1304810. [PMID: 38601091 PMCID: PMC11004345 DOI: 10.3389/fnins.2024.1304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The vestibular system plays an important role in maintaining balance and posture. It also contributes to vertical perception, body awareness and spatial navigation. In addition to its sensory function, the vestibular system has direct connections to key areas responsible for higher cognitive functions, such as the prefrontal cortex, insula and hippocampus. Several studies have reported that vestibular dysfunction, in particular bilateral vestibulopathy, is associated with an increased risk of cognitive impairment and the development of dementias such as Alzheimer's disease. However, it is still controversial whether there is a causal relationship between vestibular damage and cognitive dysfunction. In this mini-review, we will explore the relationship between the vestibular system, cognitive dysfunction and dementia, hypotheses about the hypothesis and causes that may explain this phenomenon and also some potential confounders that may also lead to cognitive impairment. We will also review multimodal neuroimaging approaches that have investigated structural and functional effects on the cortico-vestibular network and finally, describe some approaches to the management of patients with vestibular damage who have shown some cognitive impairment.
Collapse
Affiliation(s)
- Cristian Aedo-Sanchez
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricio Riquelme-Contreras
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Memory and Neuropsychiatric Center (CMYN), Department of Neurology, Hospital del Salvador and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Fernando Henríquez
- Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Aguilar-Vidal
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Stewart C, King WM, Altschuler R, McCaslin D. Editorial: Bilateral vestibulopathy. Front Integr Neurosci 2024; 18:1387066. [PMID: 38571768 PMCID: PMC10989270 DOI: 10.3389/fnint.2024.1387066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Courtney Stewart
- LTC Charles S. Kettles VA Medical Center, Research Service, Ann Arbor, MI, United States
| | - William Michael King
- Department of Otolaryngology/Head-Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard Altschuler
- LTC Charles S. Kettles VA Medical Center, Research Service, Ann Arbor, MI, United States
- Department of Otolaryngology/Head-Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Devin McCaslin
- Department of Otolaryngology/Head-Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Benjamin RS, Cushing SL, Blakeman AW, Campos JL, Papsin BC, Gordon KA. Effects of the BalanCI on Working Memory and Balance in Children and Young Adults With Cochleovestibular Dysfunction. Ear Hear 2024; 45:378-389. [PMID: 37759357 DOI: 10.1097/aud.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVES This study aimed to: (1) determine the interaction between cognitive load and balance in children and young adults with bilateral cochleovestibular dysfunction who use bilateral cochlear implants (CIs) and (2) determine the effect of an auditory balance prosthesis (the BalanCI) on this interaction. Many (20 to 70%) children with sensorineural hearing loss experience some degree of vestibular loss, leading to poorer balance. Poor balance could have effects on cognitive resource allocation which might be alleviated by the BalanCI as it translates head-referenced cues into electrical pulses delivered through the CI. It is hypothesized that children and young adults with cochleovestibular dysfunction will demonstrate greater dual-task costs than typically-developing children during dual balance-cognition tasks, and that BalanCI use will improve performance on these tasks. DESIGN Study participants were 15 typically-developing children (control group: mean age ± SD = 13.6 ± 2.75 years, 6 females) and 10 children and young adults who use bilateral CIs and have vestibular dysfunction (CI-V group: mean age ± SD=20.6 ± 5.36 years, 7 females). Participants completed two working memory tasks (backward auditory verbal digit span task and backward visuospatial dot matrix task) during three balance conditions: seated, standing in tandem stance with the BalanCI off, and standing in tandem stance with the BalanCI on. Working memory performance was quantified as total number of correct trials achieved. Postural stability was quantified as translational and rotational path length of motion capture markers worn on the head, upper body, pelvis, and feet, normalized by trial time. RESULTS Relative to the control group, children and young adults in the CI-V group exhibited poorer overall working memory across all balance conditions ( p = 0.03), poorer translational postural stability (larger translational path length) during both verbal and visuospatial working memory tasks ( p < 0.001), and poorer rotational stability (larger rotational path length) during the verbal working memory task ( p = 0.026). The CI-V group also exhibited poorer translational ( p = 0.004) and rotational ( p < 0.001) postural stability during the backward verbal digit span task than backward visuospatial dot matrix task; BalanCI use reduced this stability difference between verbal and visuospatial working memory tasks for translational stability overall ( p > 0.9), as well as for rotational stability during the maximum working memory span (highest load) participants achieved in each task ( p = 0.91). CONCLUSIONS Balance and working memory were impaired in the CI-V group compared with the control group. The BalanCI offered subtle improvements in stability in the CI-V group during a backward verbal working memory task, without producing a negative effect on working memory outcomes. This study supports the feasibility of the BalanCI as a balance prosthesis for individuals with cochleovestibular impairments.
Collapse
Affiliation(s)
- Rebecca S Benjamin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon L Cushing
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Alan W Blakeman
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Campos
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Blake C Papsin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karen A Gordon
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology, Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Gerb J, Brandt T, Dieterich M. A clinical 3D pointing test differentiates spatial memory deficits in dementia and bilateral vestibular failure. BMC Neurol 2024; 24:75. [PMID: 38395847 PMCID: PMC10885646 DOI: 10.1186/s12883-024-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Deficits in spatial memory, orientation, and navigation are often neglected early signs of cognitive impairment or loss of vestibular function. Real-world navigation tests require complex setups. In contrast, simple pointing at targets in a three-dimensional environment is a basic sensorimotor ability which provides an alternative measure of spatial orientation and memory at bedside. The aim of this study was to test the reliability of a previously established 3D-Real-World Pointing Test (3D-RWPT) in patients with cognitive impairment due to different neurodegenerative disorders, bilateral vestibulopathy, or a combination of both compared to healthy participants. METHODS The 3D-RWPT was performed using a static array of targets in front of the seated participant before and, as a transformation task, after a 90-degree body rotation around the yaw-axis. Three groups of patients were enrolled: (1) chronic bilateral vestibulopathy (BVP) with normal cognition (n = 32), (2) cognitive impairment with normal vestibular function (n = 28), and (3) combined BVP and cognitive impairment (n = 9). The control group consisted of age-matched participants (HP) without cognitive and vestibular deficits (n = 67). Analyses focused on paradigm-specific mean angular deviation of pointing in the azimuth (horizontal) and polar (vertical) spatial planes, of the preferred pointing strategy (egocentric or allocentric), and the resulting shape configuration of the pointing array relative to the stimulus array. Statistical analysis was performed using age-corrected ANCOVA-testing with Bonferroni correction and correlation analysis using Spearman's rho. RESULTS Patients with cognitive impairment employed more egocentric pointing strategies while patients with BVP but normal cognition and HP used more world-based solutions (pBonf 5.78 × 10-3**). Differences in pointing accuracy were only found in the azimuth plane, unveiling unique patterns where patients with cognitive impairment showed decreased accuracy in the transformation tasks of the 3D-RWPT (pBonf < 0.001***) while patients with BVP struggled in the post-rotation tasks (pBonf < 0.001***). Overall azimuth pointing performance was still adequate in some patients with BVP but significantly decreased when combined with a cognitive deficit. CONCLUSION The 3D-RWPT provides a simple and fast measure of spatial orientation and memory. Cognitive impairment often led to a shift from world-based allocentric pointing strategy to an egocentric performance with less azimuth accuracy compared to age-matched controls. This supports the view that cognitive deficits hinder the mental buildup of the stimulus pattern represented as a geometrical form. Vestibular hypofunction negatively affected spatial memory and pointing performance in the azimuth plane. The most severe spatial impairments (angular deviation, figure frame configuration) were found in patients with combined cognitive and vestibular deficits.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
22
|
Zwergal A, Grabova D, Schöberl F. Vestibular contribution to spatial orientation and navigation. Curr Opin Neurol 2024; 37:52-58. [PMID: 38010039 PMCID: PMC10779452 DOI: 10.1097/wco.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW The vestibular system provides three-dimensional idiothetic cues for updating of one's position in space during head and body movement. Ascending vestibular signals reach entorhinal and hippocampal networks via head-direction pathways, where they converge with multisensory information to tune the place and grid cell code. RECENT FINDINGS Animal models have provided insight to neurobiological consequences of vestibular lesions for cerebral networks controlling spatial cognition. Multimodal cerebral imaging combined with behavioural testing of spatial orientation and navigation performance as well as strategy in the last years helped to decipher vestibular-cognitive interactions also in humans. SUMMARY This review will update the current knowledge on the anatomical and cellular basis of vestibular contributions to spatial orientation and navigation from a translational perspective (animal and human studies), delineate the behavioural and functional consequences of different vestibular pathologies on these cognitive domains, and will lastly speculate on a potential role of vestibular dysfunction for cognitive aging and impeding cognitive impairment in analogy to the well known effects of hearing loss.
Collapse
Affiliation(s)
- Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Denis Grabova
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
| | - Florian Schöberl
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
23
|
Smith LJ, Wilkinson D, Bodani M, Surenthiran SS. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future. Front Neurol 2024; 15:1159174. [PMID: 38304077 PMCID: PMC10830645 DOI: 10.3389/fneur.2024.1159174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Vestibular disorders are prevalent and debilitating conditions of the inner ear and brain which affect balance, coordination, and the integration of multisensory inputs. A growing body of research has linked vestibular disorders to cognitive problems, most notably attention, visuospatial perception, spatial memory, and executive function. However, the mechanistic bases of these cognitive sequelae remain poorly defined, and there is a gap between our theoretical understanding of vestibular cognitive dysfunction, and how best to identify and manage this within clinical practice. This article takes stock of these shortcomings and provides recommendations and priorities for healthcare professionals who assess and treat vestibular disorders, and for researchers developing cognitive models and rehabilitation interventions. We highlight the importance of multidisciplinary collaboration for developing and evaluating clinically relevant theoretical models of vestibular cognition, to advance research and treatment.
Collapse
Affiliation(s)
- Laura J. Smith
- Centre for Preventative Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - David Wilkinson
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - Mayur Bodani
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
24
|
Bhattacharyya R, Barman A, Antony F. Influence of BPPV and Meniere's Disease on Cognitive Abilities: A Questionnaire-Based Study. J Otol 2024; 19:10-18. [PMID: 38313758 PMCID: PMC10837562 DOI: 10.1016/j.joto.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 02/06/2024] Open
Abstract
The vestibular system connects the inner ear to the midbrain and subcortical structures and can affect cognition. Patients with vertigo often experience cognitive symptoms such as attention deficits, memory problems, and spatial perception difficulties. This study aimed to explore the cognitive impairments associated with Benign paroxysmal positional vertigo (BPPV) and Meniere's Disease (MD). A non-experimental group comparison design was used with 107 participants divided into three groups: Group I (clinically normal), Group II (BPPV), and Group III (MD). Participants completed a questionnaire with 10 cognition-related questions, and their responses were scored. The data were found to be non-normally distributed. The analysis revealed a significant difference in scores between Group I and both Group II and Group III. Chi-square tests showed that the responses to cognition-related questions varied among the groups, with Group II exhibiting more cognitive problems. Associated conditions like hypertension, diabetes, and hearing loss did not significantly influence the responses within each group. This study suggests a significant relationship between cognitive problems and patients with BPPV and MD. However, there was no association found between the cognitive problems experienced in BPPV and MD patients. These findings align with previous research indicating that vestibular disorders can lead to deficits in spatial memory, attention, and other cognitive functions. By understanding the link between cognition and vestibular disorders, we can improve diagnosis and rehabilitation services to enhance the quality of life for these patients.
Collapse
Affiliation(s)
| | - Animesh Barman
- All India Institute of Speech and Hearing, Mysore, Mysuru, India
| | - Freddy Antony
- All India Institute of Speech and Hearing, Mysore, Mysuru, India
| |
Collapse
|
25
|
Jian H, Wang S, Li X, Zhao H, Liu S, Lyu Y, Fan Z, Wang H, Zhang D. Effect of Late-Stage Meniere's Disease and Vestibular Functional Impairment on Hippocampal Atrophy. Laryngoscope 2024; 134:410-418. [PMID: 37314111 DOI: 10.1002/lary.30816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE We investigated correlations among clinical features, degree of inner ear endolymphatic hydrops (EH), and hippocampal volume (HV) in different stages of Meniere's disease (MD). METHODS From February 2021 to April 2022, clinical data were collected from 99 patients (39 males, 60 females, mean age: 50.4 ± 10.0 [range: 26-69] years) with unilateral MD admitted to the Department of Vertigo Disease of Shandong ENT Hospital. The left and right ears were affected in 64 and 35 patients, respectively. There were 50 and 49 cases in early (Stages 1, 2) and late stages (Stages 3, 4), respectively. Fifty healthy participants were included as controls. Audiovestibular function test results, EH grading using gadolinium-enhanced magnetic resonance imaging (MRI), and HV determined on MRI were analyzed for patients at different stages of MD. RESULTS Between-group comparisons of early and late MD revealed significant differences in the disease course, vestibular function (VF), degree of EH, and HV. There were no significant between-group differences based on age, sex, affected side, subjective degree of dizziness, hospital anxiety, or depression. Mean HV in patients with early-stage MD was correlated with the canal paresis value of the caloric test and pure tone hearing threshold, HV in late-stage patients was correlated with vestibular EH. CONCLUSION Patients with late-stage MD exhibited severe auditory and VF impairments, increased EH, and atrophy of the HV. More advanced disease was associated with greater vestibular damage and degree of EH. LEVEL OF EVIDENCE 3 Laryngoscope, 134:410-418, 2024.
Collapse
Affiliation(s)
- Huirong Jian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Siyue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Hui Zhao
- Medical Imaging Center, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shanfeng Liu
- Medical Imaging Center, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Yafeng Lyu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Provincial Vertigo & Dizziness Medical Center, Jinan, China
- Laboratory of Vertigo Disease, Shandong Institute of Otorhinolaryngology, Jinan, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, China
| |
Collapse
|
26
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
27
|
Bosmans J, Gommeren H, Zu Eulenburg P, Gilles A, Mertens G, Van Ombergen A, Cras P, Engelborghs S, Van Rompaey V. Is vestibular function related to human hippocampal volume? J Vestib Res 2024; 34:3-13. [PMID: 37927291 DOI: 10.3233/ves-230076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND Recent studies implicate the effect of vestibular loss on cognitive decline, including hippocampal volume loss. As hippocampal atrophy is an important biomarker of Alzheimer's disease, exploring vestibular dysfunction as a risk factor for dementia and its role in hippocampal atrophy is of interest. OBJECTIVE To replicate previous literature on whole-brain and hippocampal volume in semicircular canal dysfunction (bilateral vestibulopathy; BV) and explore the association between otolith function and hippocampal volume. METHODS Hippocampal and whole-brain MRI volumes were compared in adults aged between 55 and 83 years. Participants with BV (n = 16) were compared to controls individually matched on age, sex, and hearing status (n = 16). Otolith influence on hippocampal volume in preserved semicircular canal function was evaluated (n = 34). RESULTS Whole-brain and targeted hippocampal approaches using volumetric and surface-based measures yielded no significant differences when comparing BV to controls. Binary support vector machines were unable to classify inner ear health status above chance level. Otolith parameters were not associated with hippocampal volume in preserved semicircular canal function. CONCLUSIONS No significant differences in whole-brain or hippocampal volume were found when comparing BV participants with healthy controls. Saccular parameters in subjects with preserved semicircular canal function were not associated with hippocampal volume changes.
Collapse
Affiliation(s)
- Joyce Bosmans
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
| | - Hanne Gommeren
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Institute for Neuroradiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annick Gilles
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Griet Mertens
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Angelique Van Ombergen
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- Discipline Lead for Life Sciences, SciSpacE Team, Directorate for Human Spaceflight and Robotic Exploration Programmes, European Space Agency
| | - Patrick Cras
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital and Born-Bunge Institute, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Belgium
- University Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
28
|
van Stiphout L, Szmulewicz DJ, Guinand N, Fornos AP, Van Rompaey V, van de Berg R. Bilateral vestibulopathy: a clinical update and proposed diagnostic algorithm. Front Neurol 2023; 14:1308485. [PMID: 38178884 PMCID: PMC10766383 DOI: 10.3389/fneur.2023.1308485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Bilateral vestibulopathy (BVP) is characterized by its heterogeneous and chronic nature with various clinical presentations and multiple etiologies. This current narrative review reflects on the main insights and developments regarding clinical presentation. In addition, it proposes a new diagnostic algorithm, and describes available and potential future therapeutic modalities.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - David J. Szmulewicz
- Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC, Australia
- Bionics Institute, Melbourne, VIC, Australia
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
29
|
Zhao Y, Wei Y, Wang Y, So RHY, Chan CCH, Cheung RTF, Wilkins A. Identification of the human cerebral cortical hemodynamic response to passive whole-body movements using near-infrared spectroscopy. Front Neurol 2023; 14:1280015. [PMID: 38152645 PMCID: PMC10751349 DOI: 10.3389/fneur.2023.1280015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/08/2023] [Indexed: 12/29/2023] Open
Abstract
The human vestibular system is crucial for motion perception, balance control, and various higher cognitive functions. Exploring how the cerebral cortex responds to vestibular signals is not only valuable for a better understanding of how the vestibular system participates in cognitive and motor functions but also clinically significant in diagnosing central vestibular disorders. Near-infrared spectroscopy (NIRS) provides a portable and non-invasive brain imaging technology to monitor cortical hemodynamics under physical motion. Objective This study aimed to investigate the cerebral cortical response to naturalistic vestibular stimulation induced by real physical motion and to validate the vestibular cerebral cortex previously identified using alternative vestibular stimulation. Approach Functional NIRS data were collected from 12 right-handed subjects when they were sitting in a motion platform that generated three types of whole-body passive translational motion (circular, lateral, and fore-and-aft). Main results The study found that different cortical regions were activated by the three types of motion. The cortical response was more widespread under circular motion in two dimensions compared to lateral and fore-and-aft motions in one dimensions. Overall, the identified regions were consistent with the cortical areas found to be activated in previous brain imaging studies. Significance The results provide new evidence of brain selectivity to different types of motion and validate previous findings on the vestibular cerebral cortex.
Collapse
Affiliation(s)
- Yue Zhao
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yue Wei
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Department of Basic Psychology, School of Psychology, Shenzhen University, Shenzhen, China
| | - Yixuan Wang
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Bio-Engineering Graduate Program, School of Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Richard H. Y. So
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Raymond T. F. Cheung
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Arnold Wilkins
- Centre for Brain Studies, University of Essex, Colchester, United Kingdom
| |
Collapse
|
30
|
Helmchen C, Fellbrich A, Sprenger A. Normal visuospatial function in unilateral vestibulopathy: on the challenge of group differences within normal reference data. Front Neurol 2023; 14:1334277. [PMID: 38156088 PMCID: PMC10753768 DOI: 10.3389/fneur.2023.1334277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Christoph Helmchen
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Anja Fellbrich
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Chari DA, Ahmad M, King S, Boutabla A, Fattahi C, Panic AS, Karmali F, Lewis RF. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment. Brain Commun 2023; 5:fcad345. [PMID: 38116141 PMCID: PMC10729862 DOI: 10.1093/braincomms/fcad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Vestibular information is available to the brain during navigation, as are the other self-generated (idiothetic) and external (allothetic) sensorimotor cues that contribute to central estimates of position and motion. Rodent studies provide strong evidence that vestibular information contributes to navigation but human studies have been less conclusive. Furthermore, sex-based differences have been described in human navigation studies performed with the head stationary, a situation where dynamic vestibular (and other idiothetic) information is absent, but sex differences in the utilization of vestibular information have not been described. Here, we studied men and women with severe bilateral vestibular damage as they navigated through a visually barren virtual reality environment and compared their performance to normal men and women. Two navigation protocols were employed, which either activated dynamic idiothetic cues ('dynamic task', navigate by turning, walking in place) or eliminated them ('static task', navigate with key presses, head stationary). For both protocols, we employed a standard 'triangle completion task' in which subjects moved to two visual targets in series and then were required to return to their perceived starting position without localizing visual information. The angular and linear 'accuracy' (derived from response error) and 'precision' (derived from response variability) were calculated. Comparing performance 'within tasks', navigation on the dynamic paradigm was worse in male vestibular-deficient patients than in normal men but vestibular-deficient and normal women were equivalent; on the static paradigm, vestibular-deficient men (but not women) performed better than normal subjects. Comparing performance 'between tasks', normal men performed better on the dynamic than the static paradigm while vestibular-deficient men and both normal and vestibular-deficient women were equivalent on both tasks. Statistical analysis demonstrated that for the angular precision metric, sex had a significant effect on the interaction between vestibular status and the test paradigm. These results provide evidence that humans use vestibular information when they navigate in a virtual visual environment and that men and women may utilize vestibular (and visual) information differently. On our navigation paradigm, men used vestibular information to improve navigation performance, and in the presence of severe vestibular damage, they utilized visual information more effectively. In contrast, we did not find evidence that women used vestibular information while navigating on our virtual task, nor did we find evidence that they improved their utilization of visual information in the presence of severe vestibular damage.
Collapse
Affiliation(s)
- Divya A Chari
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Massachusetts Medical School, Worcester MA 01655, USA
| | - Maimuna Ahmad
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Massachusetts Medical School, Worcester MA 01655, USA
| | - Susan King
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
| | - Anissa Boutabla
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva 1205, Switzerland
| | - Cameron Fattahi
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Massachusetts Medical School, Worcester MA 01655, USA
| | - Alexander S Panic
- Ashton Graybiel Spatial Orientation Lab, Brandeis University, Waltham, MA 02454, USA
| | - Faisal Karmali
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Richard F Lewis
- Department of Otolaryngolgy-Head and Neck Surgery, Massachusetts Eye and Ear, Boston MA 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Gerb J, Brandt T, Dieterich M. Shape configuration of mental targets representation as a holistic measure in a 3D real world pointing test for spatial orientation. Sci Rep 2023; 13:20449. [PMID: 37993521 PMCID: PMC10665407 DOI: 10.1038/s41598-023-47821-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Deficits in spatial memory are often early signs of neurological disorders. Here, we analyzed the geometrical shape configuration of 2D-projections of pointing performances to a memorized array of spatially distributed targets in order to assess the feasibility of this new holistic analysis method. The influence of gender differences and cognitive impairment was taken into account in this methodological study. 56 right-handed healthy participants (28 female, mean age 48.89 ± 19.35 years) and 22 right-handed patients with heterogeneous cognitive impairment (12 female, mean age 71.73 ± 7.41 years) underwent a previously validated 3D-real-world pointing test (3D-RWPT). Participants were shown a 9-dot target matrix and afterwards asked to point towards each target in randomized order with closed eyes in different body positions relative to the matrix. Two-dimensional projections of these pointing vectors (i.e., the shapes resulting from the individual dots) were then quantified using morphological analyses. Shape configurations in healthy volunteers largely reflected the real-world target pattern with gender-dependent differences (ANCOVA area males vs. females F(1,73) = 9.00, p 3.69 × 10-3, partial η2 = 0.10, post-hoc difference = 38,350.43, pbonf=3.69 × 10-3**, Cohen's d 0.76, t 3.00). Patients with cognitive impairment showed distorted rectangularity with more large-scale errors, resulting in decreased overall average diameters and solidity (ANCOVA diameter normal cognition/cognitive impairment F(1,71) = 9.30, p 3.22 × 10-3, partial η2 = 0.09, post-hoc difference = 31.22, pbonf=3.19 × 10-3**, Cohen's d 0.92, t 3.05; solidity normal cognition/cognitive impairment F(1,71) = 7.79, p 6.75 × 10-3, partial η2 = 0.08, post-hoc difference = 0.07, pbonf=6.76 × 10-3** Cohen's d 0.84, t 2.79). Shape configuration analysis of the 3D-RWPT target array appears to be a suitable holistic measure of spatial performance in a pointing task. The results of this methodological investigation support further testing in a clinical study for differential diagnosis of disorders with spatial memory deficits.
Collapse
Affiliation(s)
- J Gerb
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.
| | - T Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M Dieterich
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
33
|
Burles F, Iaria G. Neurocognitive Adaptations for Spatial Orientation and Navigation in Astronauts. Brain Sci 2023; 13:1592. [PMID: 38002551 PMCID: PMC10669796 DOI: 10.3390/brainsci13111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Astronauts often face orientation challenges while on orbit, which can lead to operator errors in demanding spatial tasks. In this study, we investigated the impact of long-duration spaceflight on the neural processes supporting astronauts' spatial orientation skills. Using functional magnetic resonance imaging (fMRI), we collected data from 16 astronauts six months before and two weeks after their International Space Station (ISS) missions while performing a spatial orientation task that requires generating a mental representation of one's surroundings. During this task, astronauts exhibited a general reduction in neural activity evoked from spatial-processing brain regions after spaceflight. The neural activity evoked in the precuneus was most saliently reduced following spaceflight, along with less powerful effects observed in the angular gyrus and retrosplenial regions of the brain. Importantly, the reduction in precuneus activity we identified was not accounted for by changes in behavioral performance or changes in grey matter concentration. These findings overall show less engagement of explicitly spatial neurological processes at postflight, suggesting astronauts make use of complementary strategies to perform some spatial tasks as an adaptation to spaceflight. These preliminary findings highlight the need for developing countermeasures or procedures that minimize the detrimental effects of spaceflight on spatial cognition, especially in light of planned long-distance future missions.
Collapse
Affiliation(s)
- Ford Burles
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giuseppe Iaria
- Canadian Space Health Research Network, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
34
|
Iggena D, Jeung S, Maier PM, Ploner CJ, Gramann K, Finke C. Multisensory input modulates memory-guided spatial navigation in humans. Commun Biol 2023; 6:1167. [PMID: 37963986 PMCID: PMC10646091 DOI: 10.1038/s42003-023-05522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Efficient navigation is supported by a cognitive map of space. The hippocampus plays a key role for this map by linking multimodal sensory information with spatial memory representations. However, in human navigation studies, the full range of sensory information is often unavailable due to the stationarity of experimental setups. We investigated the contribution of multisensory information to memory-guided spatial navigation by presenting a virtual version of the Morris water maze on a screen and in an immersive mobile virtual reality setup. Patients with hippocampal lesions and matched controls navigated to memorized object locations in relation to surrounding landmarks. Our results show that availability of multisensory input improves memory-guided spatial navigation in both groups. It has distinct effects on navigational behaviour, with greater improvement in spatial memory performance in patients. We conclude that congruent multisensory information shifts computations to extrahippocampal areas that support spatial navigation and compensates for spatial navigation deficits.
Collapse
Affiliation(s)
- Deetje Iggena
- Charité - Universitätsmedizin Berlin, Department of Neurology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099, Berlin, Germany.
| | - Sein Jeung
- Technische Universität Berlin, Department of Biological Psychology and Neuroergonomics, Fasanenstraße 1, 10623, Berlin, Germany
- Norwegian University of Science and Technology, Kavli Institute for Systems Neuroscience, Olav Kyrres gate 9,7030, Trondheim, Norway
- Max-Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Patrizia M Maier
- Charité - Universitätsmedizin Berlin, Department of Neurology, Augustenburger Platz 1, 13353, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099, Berlin, Germany
| | - Christoph J Ploner
- Charité - Universitätsmedizin Berlin, Department of Neurology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus Gramann
- Technische Universität Berlin, Department of Biological Psychology and Neuroergonomics, Fasanenstraße 1, 10623, Berlin, Germany
- University of California, San Diego, Center for Advanced Neurological Engineering, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Carsten Finke
- Charité - Universitätsmedizin Berlin, Department of Neurology, Augustenburger Platz 1, 13353, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
35
|
Janky K, Steyger PS. Mechanisms and Impact of Aminoglycoside-Induced Vestibular Deficits. Am J Audiol 2023; 32:746-760. [PMID: 37319406 PMCID: PMC10721243 DOI: 10.1044/2023_aja-22-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Acquired vestibulotoxicity from hospital-prescribed medications such as aminoglycoside antibiotics affects as many as 40,000 people each year in North America. However, there are no current federally approved drugs to prevent or treat the debilitating and permanent loss of vestibular function caused by bactericidal aminoglycoside antibiotics. This review will cover our current understanding of the impact of, and mechanisms underlying, aminoglycoside-induced vestibulotoxicity and highlight the gaps in our knowledge that remain. CONCLUSIONS Aminoglycoside-induced vestibular deficits have long-term impacts on patients across the lifespan. Additionally, the prevalence of aminoglycoside-induced vestibulotoxicity appears to be greater than cochleotoxicity. Thus, monitoring for vestibulotoxicity should be independent of auditory monitoring and encompass patients of all ages from young children to older adults before, during, and after aminoglycoside therapy.
Collapse
Affiliation(s)
- Kristen Janky
- Department of Audiology, Boys Town National Research Hospital, Omaha, NE
| | - Peter S. Steyger
- Bellucci Translational Hearing Center, Creighton University, Omaha, NE
| |
Collapse
|
36
|
van Stiphout L, Rolfes J, Waardenburg S, Kimman M, Guinand N, Pérez Fornos A, Van Rompaey V, van de Berg R. Construct validity and reliability of the Bilateral Vestibulopathy Questionnaire (BVQ). Front Neurol 2023; 14:1221037. [PMID: 38020641 PMCID: PMC10646559 DOI: 10.3389/fneur.2023.1221037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background The Bilateral Vestibulopathy Questionnaire (BVQ) is a recently developed 54-item Patient Reported Outcome Measure (PROM) that evaluates the clinically important symptoms of bilateral vestibulopathy (BVP) and its impact on daily life. This study aimed to assess the construct validity and reliability of the BVQ in a large BVP cohort. Methods Patients diagnosed with BVP were asked to complete a set of questionnaires, including the BVQ, the EuroQol-5D-5L, the Health Utilities Index, the Dizziness Handicap Inventory, the Hospital Anxiety and Depression Scale, and the Oscillopsia Severity Questionnaire. The construct validity of the BVQ was evaluated by confirmatory and exploratory factor analyses (CFA and EFA), followed by hypotheses testing and known groups validity. Structural properties were explored for each individual item. Reliability was assessed by testing the internal consistency of the BVQ constructs (Cronbach's alpha) and test-retest reliability [intraclass correlation coefficients (ICCs)]. Results A total of 148 patients with BVP (50% women, mean age 66 years) completed the set of questionnaires. The CFA did not show a satisfactory model in the original BVQ. However, the EFA showed a four-factor solution with 20 Likert-scale items related to oscillopsia, imbalance, emotion, and cognition. The succeeding CFA provided evidence for construct validity and an acceptable model of fit. Hypothesis testing confirmed that this shortened version validly measures the constructs to be measured. Statistically significant differences in scores between known groups were found, providing further support for good construct validity. The structural properties were acceptable. Cronbach's alpha confirmed good internal consistency for the four constructs, ranging from 0.80 to 0.89. The ICCs of the 20 Likert-scale items and four visual analog scale (VAS) items were interpreted as good (range 0.76-0.93). Conclusion This study showed evidence of good construct validity of the new shortened version of the BVQ, consisting of four constructs with a total of 20 Likert-scale items and four VAS items. The final 24-item BVQ proved to be a reliable and valid multi-item PROM that captures the clinically important symptoms of BVP and evaluates its impact on daily life. Consequently, the BVQ enables the gathering of high-level evidence of treatment effectiveness in a systematic and quantitative manner.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jeremy Rolfes
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sophie Waardenburg
- Department of Clinical Epidemiology and Medical Technology (KEMTA), Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Merel Kimman
- Department of Clinical Epidemiology and Medical Technology (KEMTA), Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
37
|
Li J, Wang W, Cheng J, Li H, Feng L, Ren Y, Liu L, Qian Q, Wang Y. Relationships between sensory integration and the core symptoms of attention-deficit/hyperactivity disorder: the mediating effect of executive function. Eur Child Adolesc Psychiatry 2023; 32:2235-2246. [PMID: 35999304 DOI: 10.1007/s00787-022-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by executive function deficits and functional alterations in sensory integration. The present study aimed to investigate the relationship between ADHD core symptoms, executive function, and sensory integration in children with ADHD. A total of 228 children with ADHD were recruited for our study. The Sensory Organization Test (SOT) and Child Sensory Integration Scale (CSIS) evaluated the sensory integration ability from lab-based and scaled-based perspectives, respectively. Three core components of executive functions (inhibition, working memory, and set-shifting) were assessed using both lab-based tests and the relevant factors from the behavior rating inventory of executive function (BRIEF). Partial correlation analysis was performed to explore the correlation of sensory integration with EF and ADHD core symptoms. Based on the observed significant correlation, bootstrap analyses were further conducted to explore the potential mediating effect of EF on the relationship between sensory integration and ADHD core symptoms. ADHD symptoms and EF were significantly correlated with CSIS scores; no factors were significantly correlated with SOT performance. In detail, the vestibular-balance score was negatively correlated with both inattention and hyperactivity/impulsivity symptoms, while the hyper-sensory and proprioception scores were negatively correlated with only inattention symptoms. For the scaled-based EF, vestibular-balance was negatively correlated with inhibition and working memory, and the hyper-sensory score was negatively correlated with shift factor. No correlation was found for the lab-based EF tests. The subsequent mediation analysis found that inhibition partially mediated the relationship between vestibular balance and hyperactivity/impulsivity symptoms. Working memory completely mediated the relationship between vestibular-balance, hyper-sensory, proprioception, and inattention symptoms. These results were well validated in an independent sample. Our present findings demonstrated that the functional alteration in basic sensory integration might be associated with impairments of executive functions and then lead to the behavioral expression of ADHD. The present findings might provide a new perspective to understand the occurrence of ADHD symptoms and potential precise intervention methods.
Collapse
Affiliation(s)
- Jing Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenchen Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jia Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lei Feng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuanchun Ren
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
38
|
Clément G, Kuldavletova O, Macaulay TR, Wood SJ, Navarro Morales DC, Toupet M, Hautefort C, Van Nechel C, Quarck G, Denise P. Cognitive and balance functions of astronauts after spaceflight are comparable to those of individuals with bilateral vestibulopathy. Front Neurol 2023; 14:1284029. [PMID: 37965165 PMCID: PMC10641777 DOI: 10.3389/fneur.2023.1284029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction This study compares the balance control and cognitive responses of subjects with bilateral vestibulopathy (BVP) to those of astronauts immediately after they return from long-duration spaceflight on board the International Space Station. Methods Twenty-eight astronauts and thirty subjects with BVP performed five tests using the same procedures: sit-to-stand, walk-and-turn, tandem walk, duration judgment, and reaction time. Results Compared to the astronauts' preflight responses, the BVP subjects' responses were impaired in all five tests. However, the BVP subjects' performance during the walk-and-turn and the tandem walk tests were comparable to the astronauts' performance on the day they returned from space. Moreover, the BVP subjects' time perception and reaction time were comparable to those of the astronauts during spaceflight. The BVP subjects performed the sit-to-stand test at a level that fell between the astronauts' performance on the day of landing and 1 day later. Discussion These results indicate that the alterations in dynamic balance control, time perception, and reaction time that astronauts experience after spaceflight are likely driven by central vestibular adaptations. Vestibular and somatosensory training in orbit and vestibular rehabilitation after spaceflight could be effective countermeasures for mitigating these post-flight performance decrements.
Collapse
Affiliation(s)
- Gilles Clément
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
- KBR, Houston, TX, United States
| | - Olga Kuldavletova
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| | - Deborah C. Navarro Morales
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | - Michel Toupet
- Centre d'Explorations Fonctionnelles Oto-Neurologiques, Paris, France
| | - Charlotte Hautefort
- Université de Paris Cité, INSERM U1141, Paris, France
- Department of Otorhinolaryngology, Assistance Publique, Hôpitaux de Paris, Lariboisière Hospital, Paris, France
| | | | - Gaëlle Quarck
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | - Pierre Denise
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| |
Collapse
|
39
|
Kumar K, S K, Ebenezer A, Kalaiah MK, D D. Cortical auditory potentials and cognitive potentials in individuals with and without vestibular dysfunction. F1000Res 2023; 11:1013. [PMID: 37638135 PMCID: PMC10457561 DOI: 10.12688/f1000research.122677.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Among individuals with vestibular dysfunction, the loss of vestibular sensory information is found to alter cognitive abilities that coordinate spatial and non-spatial information. P300 is an event-related potential commonly used to assess cognitive processing. The aim of the present study was to compare the latency and amplitude of cortical auditory evoked potential and P300 between individuals with vestibular dysfunction and individuals with no vestibular dysfunction. Methods: Forty adults with a mean age of 40.5 ± 13.07 participated in the study. Group I included 20 adults diagnosed with vestibular dysfunction and group II included 20 age-matched adults with no vestibular dysfunction. The P300 was recorded from the electrode site Cz and Pz. It was elicited using pure-tones in odd-ball paradigm. The latency and amplitude of peaks P1, N1, P2, and N2 of the cortical auditory evoked potential and the P300 were measured. Results: Significant amplitude difference was observed in cortical potentials at Cz and Pz. The P300 was present only in 70% of individuals with vestibular dysfunction compared to 100% among individuals with no vestibular dysfunction. The mean amplitude of the P300 was slightly larger in group 1 compared to group 2 and the mean latency of the P300 was similar in both groups. However, the difference in amplitude of the P300 between groups was not statistically significant. Conclusions: Knowing the cognitive function of individuals with vestibular dysfunction enables planning vestibular rehabilitation therapy, which enhances the quality of life in these individuals by improving their vestibular and cognitive functions.
Collapse
Affiliation(s)
- Kaushlendra Kumar
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Krishnapriya S
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Ebenezer
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Mohan Kumar Kalaiah
- Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Deviprasad D
- Department of Otorhinolaryngology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
40
|
Lim SJ, Son S, Chung Y, Kim SY, Choi H, Choi J. Relationship between vestibular loss and the risk of dementia using the 2002-2019 national insurance service survey in South Korea. Sci Rep 2023; 13:16746. [PMID: 37798321 PMCID: PMC10556082 DOI: 10.1038/s41598-023-42598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
This retrospective cross-sectional study assessed older adults aged between 40 and 80 years, registered in the Korean National Health Insurance Service database from 2002 to 2019 to investigate the association between vestibular loss and the risk of dementia. The population was divided into three groups (general, vestibular loss, and hearing loss). The hazard ratios (HRs) of dementia in the vestibular and hearing loss groups were calculated using national population data. In total, 2,347,610 individuals were identified (general: 2,145,609, vestibular loss: 60,525, hearing loss: 141,476). Mean ages were 53.29 years, 58.26 years, and 58.52 years, respectively. Dementia occurred in 127,081 (IR = 4.91 per 1000 person-years), 7705 (IR = 10.79 per 1000 person-years), and 16,116 (IR = 9.63 per 1000 person-years) patients. The vestibular and hearing loss groups had hazard ratios for dementia of 1.084 (95% CI, 1.059-1.110) and 1.074 (95% CI, 1.056-1.092), respectively, compared with the general group. The results of the current study suggest that vestibular loss increases the risk of developing dementia. Therefore, similar to hearing loss, vestibular loss should be considered a risk factor for dementia, and treatments such as adequate vestibular rehabilitation may reduce this risk.
Collapse
Affiliation(s)
- Sung Jin Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| | - Serhim Son
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Younghan Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| | - Sang Yeop Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| | - Hangseok Choi
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea.
- Medical Science Research Center, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.
- Department of Medical Informatics, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Grove CR, Klatt BN, Wagner AR, Anson ER. Vestibular perceptual testing from lab to clinic: a review. Front Neurol 2023; 14:1265889. [PMID: 37859653 PMCID: PMC10583719 DOI: 10.3389/fneur.2023.1265889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Not all dizziness presents as vertigo, suggesting other perceptual symptoms for individuals with vestibular disease. These non-specific perceptual complaints of dizziness have led to a recent resurgence in literature examining vestibular perceptual testing with the aim to enhance clinical diagnostics and therapeutics. Recent evidence supports incorporating rehabilitation methods to retrain vestibular perception. This review describes the current field of vestibular perceptual testing from scientific laboratory techniques that may not be clinic friendly to some low-tech options that may be more clinic friendly. Limitations are highlighted suggesting directions for additional research.
Collapse
Affiliation(s)
- Colin R. Grove
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation School of Medicine, Emory University, Atlanta, GA, United States
| | - Brooke N. Klatt
- Physical Therapy Department, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew R. Wagner
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| | - Eric R. Anson
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Physical Therapy Department, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
42
|
Schäffer E, Piel J. [The exposome in the context of preventive measures for Alzheimer's and Parkinson's diseases]. DER NERVENARZT 2023; 94:892-903. [PMID: 37639074 DOI: 10.1007/s00115-023-01538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Preventive measures addressing the exposome can counteract neurodegenerative diseases. OBJECTIVE This article gives an overview on the influence of general and individual exogenous factors (environmental influences and lifestyle changes) as well as endogenous factors (e.g. metabolic alterations) on the development and progression of Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS Summary and evaluation of current scientific studies and evidence regarding the exposome and prevention of AD and PD. RESULTS Numerous studies could demonstrate a potential influence of environmental influences associated with industrialization (general exogenous factors), such as pesticides, solvents or air pollution on the development of AD and PD. Additionally, individually addressable changes of lifestyle (individual exogenous factors, e.g. physical activity, cognitive stimulation, nutrition and sleep) contribute to disease protection and modification and are becoming increasingly more important in light of still limited therapeutic interventions. Moreover, other exogenous factors (medication, noise pollution, head trauma and heavy metals) are discussed as risk factors for AD and/or PD. Endogenous factors (e.g., changes of the enteral microbiome, systemic inflammation and neuroinflammation, metabolic changes) can contribute to disease development by a higher potential for interacting with exogenous factors. CONCLUSION Despite the comprehensive scientific evidence confirming the significance of the exposome for the pathogenesis of AD and PD, the great potential of preventive measures has not yet been exploited. A clarification of the high potential of lifestyle changes should be a therapeutic standard not only for individuals with manifest PD/AD but also for individuals with a risk profile or with suspected prodromal disease. Further investigations on the influence of environmental factors and the implementation of preventive strategies to avoid exposure should be the focus of international efforts.
Collapse
Affiliation(s)
- Eva Schäffer
- Klinik für Neurologie, Universität Kiel, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland.
| | - Johannes Piel
- Klinik für Neurologie, Universität Kiel, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland
| |
Collapse
|
43
|
Oh SY, Nguyen TT, Kang JJ, Kirsch V, Boegle R, Kim JS, Dieterich M. Visuospatial cognition in acute unilateral peripheral vestibulopathy. Front Neurol 2023; 14:1230495. [PMID: 37789890 PMCID: PMC10542894 DOI: 10.3389/fneur.2023.1230495] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background This study aims to investigate the presence of spatial cognitive impairments in patients with acute unilateral peripheral vestibulopathy (vestibular neuritis, AUPV) during both the acute phase and the recovery phase. Methods A total of 72 AUPV patients (37 with right-sided AUPV and 35 with left-sided AUPV; aged 34-80 years, median 60.5; 39 males, 54.2%) and 35 healthy controls (HCs; aged 43-75 years, median 59; 20 males, 57.1%) participated in the study. Patients underwent comprehensive neurotological assessments, including video-oculography, video head impulse and caloric tests, ocular and cervical vestibular-evoked myogenic potentials, and pure-tone audiometry. Additionally, the Visual Object and Space Perception (VOSP) battery was used to evaluate visuospatial perception, while the Block design test and Corsi block-tapping test assessed visuospatial memory within the first 2 days (acute phase) and 4 weeks after symptom onset (recovery phase). Results Although AUPV patients were able to successfully perform visuospatial perception tasks within normal parameters, they demonstrated statistically worse performance on the visuospatial memory tests compared to HCs during the acute phase. When comparing right versus left AUPV groups, significant decreased scores in visuospatial perception and memory were observed in the right AUPV group relative to the left AUPV group. In the recovery phase, patients showed substantial improvements even in these previously diminished visuospatial cognitive performances. Conclusion AUPV patients showed different spatial cognition responses, like spatial memory, depending on the affected ear, improving with vestibular compensation over time. We advocate both objective and subjective visuospatial assessments and the development of tests to detect potential cognitive deficits after unilateral vestibular impairments.
Collapse
Affiliation(s)
- Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, Republic of Korea
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, Republic of Korea
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, Republic of Korea
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, Republic of Korea
| | - Valerie Kirsch
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Boegle
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University Bundang Hospital & School of Medicine, Seoul, Republic of Korea
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
44
|
Liu B, Shan J, Gu Y. Temporal and spatial properties of vestibular signals for perception of self-motion. Front Neurol 2023; 14:1266513. [PMID: 37780704 PMCID: PMC10534010 DOI: 10.3389/fneur.2023.1266513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.
Collapse
Affiliation(s)
- Bingyu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Schöne CG, Mast FW. High-current galvanic vestibular stimulation impairs working memory span, but not other executive functions. Neuropsychologia 2023; 188:108617. [PMID: 37302752 DOI: 10.1016/j.neuropsychologia.2023.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Patients with peripheral vestibular dysfunction (PVD) suffer not only from physical problems such as imbalance or vertigo but also from neuropsychological difficulties, including executive deficits. However, it is unclear whether the PVD directly causes executive problems. To examine the causal vestibular influence on executive functions, we induced either high-current (2 mA), low-current (0.8 mA), or sham current (0 mA) galvanic vestibular stimulation (GVS) in 79 healthy participants. Participants solved three tasks, measuring the core executive components (working memory, inhibition, cognitive flexibility) before and during GVS. High-current GVS impaired working memory span, but not inhibition and cognitive flexibility performance. Low-current GVS did not influence executive performance. Results indicate a causal vestibular influence on working memory span. Joint cortical areas of vestibular and working memory processing are discussed. Since high-current GVS in healthy participants serves as a model for an artificial vestibular dysfunction, our results could improve the diagnostics and therapy of patients with PVD.
Collapse
Affiliation(s)
- Corina G Schöne
- Department of Psychology, University of Bern, Bern, Switzerland; Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Doctoral Program for Brain and Behavioral Sciences, University of Bern, Bern, Switzerland.
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Van Hecke R, Danneels M, Deconinck FJA, Dhooge I, Leyssens L, Van Acker E, Van Waelvelde H, Wiersema JR, Maes L. A cross-sectional study on the neurocognitive outcomes in vestibular impaired school-aged children: are they at higher risk for cognitive deficits? J Neurol 2023; 270:4326-4341. [PMID: 37209128 DOI: 10.1007/s00415-023-11774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
This study aimed to assess if children with a vestibular impairment (VI) are more prone to have neurocognitive deficits compared to typically developing (TD) peers, taking into account important confounding factors with hearing loss being the most important. The neurocognitive performance of fifteen VI children (6-13 years old) was compared to that of an age-, handedness- and sex-weighted group of TD peers (n = 60). Secondly, their performance was also compared to matched groups of TD and hearing impaired (HI) children to evaluate the involvement of HI. The protocol comprises cognitive tests assessing response inhibition, emotion recognition, visuospatial memory, selective and sustained attention, visual memory and visual-motor integration.Based on the results, the VI group had significantly reduced scores on 'social cognition' (p = 0.018), 'executive functions' (p < 0.01), and 'perceptual-motor functioning' (p = 0.020) compared to their TD and HI peers. For the categories 'complex attention' and 'learning and memory' no differences could be observed. Analogous to the findings of previous literature, the symptoms of a VI are often not limited to the primary functions of the system, but also comprise an impact on emotional and cognitive performance. Therefore, more holistic rehabilitation approaches should be encouraged, with a screening and attention for cognitive, emotional and behavioral dysfunctions in the vestibular population. Since this is one of the first studies to investigate the involvement of a VI in a child's cognitive development, these findings support the need for studies further characterizing the impact of a VI, the underlying pathophysiology and the effect of different rehabilitation procedures.
Collapse
Affiliation(s)
- Ruth Van Hecke
- Department of Rehabilitation Sciences-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium.
| | - Maya Danneels
- Department of Rehabilitation Sciences-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium
| | - Frederik J A Deconinck
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Otorhinolaryngology-Corneel, Ghent University Hospital, Heymanslaan 10, 9000, Ghent, Belgium
- Department of Head and Skin-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium
| | - Laura Leyssens
- Department of Rehabilitation Sciences-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium
| | - Emmely Van Acker
- Department of Rehabilitation Sciences-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium
| | - Hilde Van Waelvelde
- Department of Rehabilitation Sciences-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology-Henri, Ghent University, Dunantlaan 2, 9000, Ghent, Belgium
| | - Leen Maes
- Department of Rehabilitation Sciences-Corneel, Ghent University, Heymanslaan 10, 9000, Ghent, Belgium
- Department of Otorhinolaryngology-Corneel, Ghent University Hospital, Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
47
|
Danneels M, Van Hecke R, Leyssens L, van de Berg R, Dhooge I, Cambier D, Delrue S, Van Rompaey V, Maes L. The impact of vestibular function on cognitive-motor interference: a case-control study on dual-tasking in persons with bilateral vestibulopathy and normal hearing. Sci Rep 2023; 13:13772. [PMID: 37612342 PMCID: PMC10447548 DOI: 10.1038/s41598-023-40465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Bilateral vestibulopathy (BV) is a chronic vestibular disorder, characterized by bilaterally absent or significantly impaired vestibular function. Symptoms typically include, but are not limited to, unsteadiness and movement-induced blurred vision (oscillopsia). This prospective case-control study aimed to elucidate the impact of BV on cognitive and motor performance and on cognitive-motor interference. Cognitive and motor performance, as well as cognitive-motor interference were measured in persons with BV and normal hearing using the 2BALANCE dual-task protocol. The experimental group was matched to a healthy control group based on age, sex, and educational level. The 2BALANCE protocol comprises cognitive tests assessing visuospatial memory, mental rotation, visual and auditory response inhibition, visual and auditory working memory, and processing speed. The cognitive tests were performed in single-task condition (while seated), and in dual-task condition (during a static and a dynamic motor task). The static motor task consisted of balancing on a force platform with foam pad. The dynamic motor task consisted of walking at a self-selected speed. These motor tasks were also performed in single-task condition. A generalized estimating equations model was used to investigate group differences for all cognitive and motor outcome measures. The estimated marginal means, as well as the odds ratios (OR), and their 95% confidence intervals (CI) were calculated. For the backward digit recall test, a baseline measurement was performed and analyzed using a student-t test. A total of 22 patients with BV and normal hearing and 22 healthy control subjects were assessed [mean age (SD), BV = 53.66 (13.35) and HC = 53.21 (13.35), 68% male]. The BV group had poorer mental rotation skills in single-task condition, compared to the control group [odds ratio (OR) = 2.30, confidence interval (CI) = 1.12-4.73, P = 0.024]. Similarly, auditory and visual working memory were also poorer in the BV group in single-task condition (P = 0.028 and P = 0.003, respectively). The BV group also performed poorer on the mental rotation task and the visual response inhibition task in dual-task condition (OR = 2.96, CI = 1.57-5.59, P < 0.001 and OR = 1.08, CI = 1.01-1.16, P = 0.032, respectively). Additionally, an interaction effect, indicating increased cognitive-motor interference in the BV group, was observed for mental rotation, response inhibition, and auditory working memory (P = 0.003 to 0.028). All static motor outcome parameters indicated more postural sway in the BV group compared to the control group for all test conditions (P < 0.001 to 0.026). No group differences were noted for the dynamic motor task. These findings suggest a link between vestibular function and cognitive performance, as well as a greater interference between cognitive and motor performance in BV, compared to healthy controls.
Collapse
Affiliation(s)
- Maya Danneels
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Ruth Van Hecke
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Laura Leyssens
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State Research University, Tomsk, Russia
| | - Ingeborg Dhooge
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Dirk Cambier
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Stefan Delrue
- Department of Otorhinolaryngology and Head and Neck Surgery, Sint Lucas Hospital, Ghent, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Leen Maes
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
48
|
Smith PF. Interpreting the meaning of changes in hippocampal volume associated with vestibular loss. Front Integr Neurosci 2023; 17:1254972. [PMID: 37608860 PMCID: PMC10440551 DOI: 10.3389/fnint.2023.1254972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Many studies have documented cognitive deficits, especially spatial cognitive deficits, in patients with some form of vestibular loss. Almost 20 years ago, hippocampal (HPC) atrophy was reported to be correlated with spatial memory deficits in such patients and the idea has gradually emerged that HPC atrophy may be causally responsible for the cognitive deficits. However, the results of studies of HPC volume following vestibular loss have not always been consistent, and a number of studies have reported no evidence of HPC atrophy. This paper argues that HPC atrophy, if it does occur following vestibular loss, may not be directly, causally responsible for the cognitive deficits, and that it is more likely that rapid functional changes in the HPC are responsible, due to the interruption of the transmission of vestibular information to the HPC. The argument presented here rests on 3 tranches of evidence: (1) Cognitive deficits have been observed in humans even in the absence of HPC atrophy; (2) HPC atrophy has not been reported in animal studies following vestibular loss, despite cognitive deficits; and (3) Animal studies have shown that the interruption of the transmission of vestibular information to the HPC has immediate consequences for HPC place cells, far too quickly to be explained by HPC atrophy. It is possible that HPC atrophy, when it does occur, is related to the longer-term consquences of living with vestibular loss, which are likely to increase circulating cortisol.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- The Brain Research New Zealand Centre of Research Excellence, Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Danneels M, Van Hecke R, Leyssens L, van de Berg R, Dhooge I, Cambier D, Van Rompaey V, Maes L. Association of Bilateral Vestibulopathy With and Without Hearing Loss With Cognitive-Motor Interference. JAMA Otolaryngol Head Neck Surg 2023; 149:670-680. [PMID: 37318799 PMCID: PMC10273132 DOI: 10.1001/jamaoto.2023.1275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023]
Abstract
Importance The past years, evidence suggested that the primary symptoms traditionally associated with bilateral vestibulopathy (BV) do not represent the full picture of this patient population. Recent literature also demonstrated cognitive impairment. However, although multitasking and dual-tasking are widely present in everyday activities, most of these studies assessed cognitive function only in single-task conditions. Objective To uncover the association of BV with and without hearing loss with cognitive and motor performance and cognitive-motor interference. Design, Setting, and Participants This prospective case-control study assessed persons with an isolated BV and persons with BV and a concomitant hearing loss compared with a healthy control group. Data were analyzed in December 2022. The study was conducted at Ghent University (Ghent, Belgium). Data collection took place between March 26, 2021, and November 29, 2022. Main Outcomes and Measures All participants completed the 2BALANCE dual-task protocol, comprising a static and a dynamic motor task that was combined with 5 visual cognitive tasks. These cognitive tasks assessed mental rotation, visuospatial memory, working memory, response inhibition (executive function), and processing speed. All cognitive tasks were performed in a single-task condition (while seated) and in a dual-task condition (combined with a static and a dynamic motor task). The static task comprised balancing on a force platform with foam pad, and the dynamic task comprised walking at a self-selected speed on the GAITRite Walkway. Both motor tasks were performed in the single-task and dual-task condition. Results Nineteen persons with BV and hearing loss (mean [SD] age, 56.70 [10.12] years; 10 women [52.6%]), 22 persons with an isolated BV (mean [SD] age, 53.66 [13.35] years; 7 women [31.8%]), and 28 healthy control participants were included (mean [SD] age, 53.73 [12.77] years; 12 women [42.9%]). Both patient groups had mental rotation and working memory impairment in a single-task condition and slower processing speed when walking (ie, during the dynamic dual-task condition). Additionally, the patient group with hearing loss had impaired visuospatial memory and executive function deficits in single-task and dual-task conditions, while this could only be elicited when performing a motor task in persons with isolated BV (ie, when dual-tasking). Conclusion and Relevance The findings of this case-control study suggest an association between vestibular function and cognitive and motor performance, even greater in persons with a concomitant hearing loss than in persons with an isolated BV.
Collapse
Affiliation(s)
- Maya Danneels
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Ruth Van Hecke
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Laura Leyssens
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Raymond van de Berg
- Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht, the Netherlands
- Faculty of Physics, Tomsk State Research University, Tomsk, Russia
| | - Ingeborg Dhooge
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
- Ghent University Hospital, Department of Otorhinolaryngology, Ghent, Belgium
| | - Dirk Cambier
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Leen Maes
- Ghent University, Department of Rehabilitation Sciences, Ghent, Belgium
- Ghent University Hospital, Department of Otorhinolaryngology, Ghent, Belgium
| |
Collapse
|
50
|
Stahn AC, Bucher D, Zu Eulenburg P, Denise P, Smith N, Pagnini F, White O. Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases. NPJ Microgravity 2023; 9:59. [PMID: 37524737 PMCID: PMC10390562 DOI: 10.1038/s41526-023-00295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Space exploration objectives will soon move from low Earth orbit to distant destinations like Moon and Mars. The present work provides an up-to-date roadmap that identifies critical research gaps related to human behavior and performance in altered gravity and space. The roadmap summarizes (1) key neurobehavioral challenges associated with spaceflight, (2) the need to consider sex as a biological variable, (3) the use of integrative omics technologies to elucidate mechanisms underlying changes in the brain and behavior, and (4) the importance of understanding the neural representation of gravity throughout the brain and its multisensory processing. We then highlight the need for a variety of target-specific countermeasures, and a personalized administration schedule as two critical strategies for mitigating potentially adverse effects of spaceflight on the central nervous system and performance. We conclude with a summary of key priorities for the roadmaps of current and future space programs and stress the importance of new collaborative strategies across agencies and researchers for fostering an integrative cross- and transdisciplinary approach from cells, molecules to neural circuits and cognitive performance. Finally, we highlight that space research in neurocognitive science goes beyond monitoring and mitigating risks in astronauts but could also have significant benefits for the population on Earth.
Collapse
Affiliation(s)
- A C Stahn
- Unit of Experimental Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany.
| | - D Bucher
- IZN-Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - P Zu Eulenburg
- Institute for Neuroradiology & German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University Munich, Munich, Germany
| | - P Denise
- Normandie Univ. UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - N Smith
- Protective Security and Resilience Centre, Coventry University, Coventry, United Kingdom
| | - F Pagnini
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - O White
- Université de Bourgogne INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Dijon, France.
| |
Collapse
|