1
|
Rabago-Barajas BV, Macías-Islas MÁ, Saldaña-Cruz AM, Arana-Yepez JE, Olivas-Flores EM, Aguayo-Arelis A. Association of the Val66Met Polymorphism of the BDNF Gene with the Depression in a Mexican Population with Multiple Sclerosis. Life (Basel) 2025; 15:213. [PMID: 40003622 PMCID: PMC11856127 DOI: 10.3390/life15020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune pathology that affects the nervous system. It is characterized by inflammatory lesions that cause axonal damage with neurodegeneration. The signs and symptoms present in this pathology include among others, psychiatric disorders. In MS, depression is the most frequent psychiatric disorder, with prevalence levels of 40 to 60%; to date, the cause is unknown. The brain-derived neurotrophic factor (BDNF) is a neurotrophin related to neuroplasticity. The single-nucleotide polymorphism Val66Met, encoded by the BDNF gene, has been associated with various effects, including the presence of neuropsychiatric disorders. The purpose of our study was to evaluate the association between the BDNF Val66Met polymorphism and depression in MS patients. METHODS Study design, cases, and controls: Mexican mestizo MS patients. CASES Patients diagnosed with depression. CONTROLS Patients without depression diagnosis. MEASUREMENTS For depression, the Beck Depression Inventory; for polymorphism, real-time PCR. RESULTS No statistically significant differences were found in sociodemographic and disease variables between the case and control groups. qPCR analysis showed that 68% of the participants were Val/Val wild-type homozygotes, 29% were Val/Met polymorphism heterozygotes, and 3% were Met/Met polymorphism homozygotes. The presence of the BDNF gene rs6265 polymorphism was associated with a 5.6-fold increase in the probability of depression in the cases compared to the controls. CONCLUSIONS The BDNF Val66Met Polymorphism is associated with depression in Mexican mestizo patients diagnosed with MS.
Collapse
Affiliation(s)
- Brenda Viridiana Rabago-Barajas
- Department of Applied Psychology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Miguel Ángel Macías-Islas
- Department of Neurosciences, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Miriam Saldaña-Cruz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Jesús Emmanuel Arana-Yepez
- Pharmacology and Behavior Laboratory, Neuroscience Institute, University Center for Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Guadalajara 44130, Jalisco, Mexico;
| | - Eva Maria Olivas-Flores
- Department of Anesthesiology, Specialty Hospital, National Medical Center of the West, IMSS, Guadalajara 44340, Jalisco, Mexico;
| | - Adriana Aguayo-Arelis
- Department of Applied Psychology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
2
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
3
|
Roldán M, Caballé N, Sainz C, Pérez-Rico C, Ayuso L, Blanco R. Assessing the visual afferent pathway with the multifocal visual evoked potentials in the radiologically isolated syndrome. Sci Rep 2024; 14:20169. [PMID: 39215058 PMCID: PMC11364532 DOI: 10.1038/s41598-024-68825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The early identification of individuals with radiologically isolated syndrome (RIS) who are at an elevated risk of progressing to multiple sclerosis (MS) is essential for making informed treatment decisions. This study aimed to evaluate the predictive potential of multifocal Visual Evoked Potentials (mfVEP) measures in individuals with RIS with respect to their conversion to MS. A prospective observational cohort study was conducted, involving 21 individuals with RIS recruited from a MS center. Baseline assessments, including mfVEP, magnetic resonance imaging (MRI), and clinical examinations, were performed, and participants were longitudinally followed for up to 24 months. The primary outcome measures were the conversion to MS. Over a clinical follow-up period of 24 months, five individuals (5/21) with RIS progressed to MS. MfVEP amplitude responses (interocular and monocular probability analysis) demonstrated abnormal cluster visual field defects in 47.6% of RIS eyes at baseline, whereas multifocal VEP latency analysis showed significant delays in 38.4%. A reduction in interocular amplitude [OR = 0.036, (95% CI 0.003-0.503); P = 0.014], monocular amplitude [OR = 0.083, (95% CI 0.007-0.982); P = 0.048], and a prolonged interocular latency [OR = 0.095, (95% CI 0.009-0.972); P = 0.047] were associated with a higher relative risk of clinical conversion at the 2-year follow-up. Multifocal VEP may serve as a novel and independent risk factor for predicting the conversion to MS in individuals with Radiologically Isolated Syndrome.
Collapse
Affiliation(s)
- M Roldán
- Department of Ophthalmology, Príncipe de Asturias University Hospital, Madrid, Spain
| | - N Caballé
- Department of Geography, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - C Sainz
- Department of Radiology, Príncipe de Asturias University Hospital, Madrid, Spain
| | - C Pérez-Rico
- Department of Ophthalmology, Clínica la Antigua, Guadalajara, Spain
| | - L Ayuso
- Department of Neurology, Príncipe de Asturias University Hospital, Madrid, Spain
| | - Roman Blanco
- Department of Surgery, Medical and Social Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
4
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Kreiter D, Postma AA, Hupperts R, Gerlach O. Hallmarks of spinal cord pathology in multiple sclerosis. J Neurol Sci 2024; 456:122846. [PMID: 38142540 DOI: 10.1016/j.jns.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
A disparity exists between spinal cord and brain involvement in multiple sclerosis (MS), each independently contributing to disability. Underlying differences between brain and cord are not just anatomical in nature (volume, white/grey matter organization, vascularization), but also in barrier functions (differences in function and composition of the blood-spinal cord barrier compared to blood-brain barrier) and possibly in repair mechanisms. Also, immunological phenotypes seem to influence localization of inflammatory activity. Whereas the brain has gained a lot of attention in MS research, the spinal cord lags behind. Advanced imaging techniques and biomarkers are improving and providing us with tools to uncover the mechanisms of spinal cord pathology in MS. In the present review, we elaborate on the underlying anatomical and physiological factors driving differences between brain and cord involvement in MS and review current literature on pathophysiology of spinal cord involvement in MS and the observed differences to brain involvement.
Collapse
Affiliation(s)
- Daniel Kreiter
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Raymond Hupperts
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
6
|
Thümmler K, Wrzos C, Franz J, McElroy D, Cole JJ, Hayden L, Arseni D, Schwarz F, Junker A, Edgar JM, Kügler S, Neef A, Wolf F, Stadelmann C, Linington C. Fibroblast growth factor 9 (FGF9)-mediated neurodegeneration: Implications for progressive multiple sclerosis? Neuropathol Appl Neurobiol 2023; 49:e12935. [PMID: 37705188 DOI: 10.1111/nan.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
AIMS Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Katja Thümmler
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Claudia Wrzos
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Franz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Daniel McElroy
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John J Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Lorna Hayden
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Diana Arseni
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Friedrich Schwarz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Junker
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia M Edgar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sebastian Kügler
- Institute for Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | | |
Collapse
|
7
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Gentile G, Mattiesing RM, Brouwer I, van Schijndel RA, Uitdehaag BMJ, Twisk JWR, Kappos L, Freedman MS, Comi G, Jack D, Barkhof F, De Stefano N, Vrenken H, Battaglini M. The spatio-temporal relationship between concurrent lesion and brain atrophy changes in early multiple sclerosis: A post-hoc analysis of the REFLEXION study. Neuroimage Clin 2023; 38:103397. [PMID: 37086648 PMCID: PMC10300577 DOI: 10.1016/j.nicl.2023.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND White matter (WM) lesions and brain atrophy are present early in multiple sclerosis (MS). However, their spatio-temporal relationship remains unclear. METHODS Yearly magnetic resonance images were analysed in 387 patients with a first clinical demyelinating event (FCDE) from the 5-year REFLEXION study. Patients received early (from baseline; N = 258; ET) or delayed treatment (from month-24; N = 129; DT) with subcutaneous interferon beta-1a. FSL-SIENA/VIENA were used to provide yearly percentage volume change of brain (PBVC) and ventricles (PVVC). Yearly total lesion volume change (TLVC) was determined by a semi-automated method. Using linear mixed models and voxel-wise analyses, we firstly investigated the overall relationship between TLVC and PBVC and between TLVC and PVVC in the same follow-up period. Analyses were then separately performed for: the untreated period of DT patients (first two years), the first year of treatment (year 1 for ET and year 3 for DT), and a period where patients had received at least 1 year of treatment (stable treatment; ET: years 2, 3, 4, and 5; DT: years 4 and 5). RESULTS Whole brain: across the whole study period, lower TLVC was related to faster atrophy (PBVC: B = 0.046, SE = 0.013, p < 0.001; PVVC: B = -0.466, SE = 0.118, p < 0.001). Within the untreated period of DT patients, lower TLVC was related to faster atrophy (PBVC: B = 0.072, SE = 0.029, p = 0.013; PVVC: B = -0.917, SE = 0.306, p = 0.003). A similar relationship was found within the first year of treatment of ET patients (PBVC: B = 0.081, SE = 0.027, p = 0.003; PVVC: B = -1.08, SE = 0.284, p < 0.001), consistent with resolving oedema and pseudo-atrophy. Voxel-wise: overall, higher TLVC was related to faster ventricular enlargement. Lower TLVC was related to faster widespread atrophy in year 1 in both ET (first year of treatment) and DT (untreated) patients. In the second untreated year of DT patients and within the stable treatment period of ET patients (year 4), faster periventricular and occipital lobe atrophy was associated with higher TLVC. CONCLUSIONS WM lesion changes and atrophy occurred simultaneously in early MS. Spatio-temporal correspondence of these two processes involved mostly the periventricular area. Within the first year of the study, in both treatment groups, faster atrophy was linked to lower lesion volume changes, consistent with higher shrinking and disappearing lesion activity. This might reflect the pseudo-atrophy phenomenon that is probably related to the therapy driven (only in ET patients, as they received treatment from baseline) and "natural" (both ET and DT patients entered the study after a FCDE) resolution of oedema. In an untreated period and later on during stable treatment, (real) atrophy was related to higher lesion volume changes, consistent with increased new and enlarging lesion activity.
Collapse
Affiliation(s)
- Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy.
| | - Rozemarijn M Mattiesing
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Iman Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Ronald A van Schijndel
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Jos W R Twisk
- Epidemiology and Data Science, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology, and Neuroscience Basel (RC2NB), University Hospital Basel, CH-4031 Basel, Switzerland; Neurology Departments of Head, Spine and Neuromedicine, Biomedical Engineering and Clinical Research, University of Basel, Basel, Switzerland
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, Ottawa ON, K1N 6N5, Ontario, Canada; Ottawa Hospital Research Institute, Ottawa ON, K1H 8L6, Ontario, Canada
| | - Giancarlo Comi
- Università Vita Salute San Raffaele, Casa di Cura del Policlinico, 20132 Milan, Italy
| | - Dominic Jack
- Merck Serono Ltd, Feltham, TW14 8HD, UK, an affiliate of Merck KGaA
| | - Frederik Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands; UCL Institutes of Neurology and Healthcare Engineering, London, WC1E 6BT, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Hugo Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| |
Collapse
|
9
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
10
|
Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain. Neurobiol Dis 2022; 175:105921. [DOI: 10.1016/j.nbd.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
11
|
Ramos-Vega M, Kjellman P, Todorov MI, Kylkilahti TM, Bäckström BT, Ertürk A, Madsen CD, Lundgaard I. Mapping of neuroinflammation-induced hypoxia in the spinal cord using optoacoustic imaging. Acta Neuropathol Commun 2022; 10:51. [PMID: 35410629 PMCID: PMC8996517 DOI: 10.1186/s40478-022-01337-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.
Collapse
|
12
|
Microstructural white matter abnormalities in multiple sclerosis and neuromyelitis optica spectrum disorders: Evaluation by advanced diffusion imaging. J Neurol Sci 2022; 436:120205. [DOI: 10.1016/j.jns.2022.120205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022]
|
13
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Oliviero S, Del Gratta C. Impact of the acquisition protocol on the sensitivity to demyelination and axonal loss of clinically feasible DWI techniques: a simulation study. MAGMA (NEW YORK, N.Y.) 2021; 34:523-543. [PMID: 33417079 DOI: 10.1007/s10334-020-00899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To evaluate: (a) the specific effect that the demyelination and axonal loss have on the DW signal, and (b) the impact of the sequence parameters on the sensitivity to damage of two clinically feasible DWI techniques, i.e. DKI and NODDI. METHODS We performed a Monte Carlo simulation of water diffusion inside a novel synthetic model of white matter in the presence of axonal loss and demyelination, with three compartments with permeable boundaries between them. We compared DKI and NODDI in their ability to detect and assess the damage, using several acquisition protocols. We used the F test statistic as an index of the sensitivity for each DWI parameter to axonal loss and demyelination, respectively. RESULTS DKI parameters significantly changed with increasing axonal loss, but, in most cases, not with demyelination; all the NODDI parameters showed sensitivity to both the damage processes (at p < 0.01). However, the acquisition protocol strongly affected the sensitivity to damage of both the DKI and NODDI parameters and, especially for NODDI, the parameter absolute values also. DISCUSSION This work is expected to impact future choices for investigating white matter microstructure in focusing on specific stages of the disease, and for selecting the appropriate experimental framework to obtain optimal data quality given the purpose of the experiment.
Collapse
Affiliation(s)
- Stefania Oliviero
- Department Neurosciences, Imaging, and Clinical Sciences, Institute for Advanced Biomedical Technologies, ITAB, Gabriele D'Annunzio University, Chieti, Italy.
| | - Cosimo Del Gratta
- Department Neurosciences, Imaging, and Clinical Sciences, Institute for Advanced Biomedical Technologies, ITAB, Gabriele D'Annunzio University, Chieti, Italy
| |
Collapse
|
15
|
Pajouhan-Far H, Qaemian N, Hajian-Tilaki K, Nabahati M, Saadat P, Mehraein R. Delayed phases of contrast MRI, can it be valuable in multiple sclerosis active phase diagnosis? CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 11:432-436. [PMID: 33680386 PMCID: PMC7911766 DOI: 10.22088/cjim.11.4.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Observing the enhancing plaques in magnetic resonance imaging (MRI) is one of the most valuable diagnostic modalities in confirming the diagnosis of multiple sclerosis (MS), its recurrence and for better detection of active disease. Since active lesions discovery can improve designating diffusion in time diagnosis of MS and controlling disease activity, and there is not any definite time for delay image acquisition, therefore, the aim of the current study was to evaluate the enhancement of MS plaques in different delayed phases. Methods: In this interventional study, after receiving written consent, 40 MS patients with at least one enhancing plaque in a previous MRI were evaluated in Babol Ayatollah Rouhani Hospital. Gadolinium was injected to all patients at the dose of 0.1 mg/kg, and MRI was taken at 5 and 15 minutes. The results were analyzed using SPSS 23. A p<0.05 was considered as significant level. Results: The mean of plaque signal intensity was 1190.20 and 1349.60 at 5 and 15 min, respectively, and this difference was significant (p<0.001). Moreover, the mean of plaque total size was 5.16 cm and 7.04 cm at 5 and 15 min with significant difference, respectively (p<0.001). The mean of plaque number was 1.92 and 2.58 at 5 and 15 min, respectively, which was significantly different (P<0.001). Conclusion: The results indicated improvement in detection of MS plaques in images taken in the delayed phase compared to those in the early phase. The plaque intensity, size and number were significantly higher in the delayed phase (15 min), than early phase (5 min).
Collapse
Affiliation(s)
| | - Naser Qaemian
- Department of Radiology, Babol University of Medical Sciences, Babol, Iran
| | - Karimollah Hajian-Tilaki
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Nabahati
- Department of Radiology, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Raheleh Mehraein
- Department of Radiology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Halder SK, Milner R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 2021; 144:402-410. [PMID: 33351069 PMCID: PMC8453297 DOI: 10.1093/brain/awaa427] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past 50 years, intense research effort has taught us a great deal about multiple sclerosis. We know that it is the most common neurological disease affecting the young-middle aged, that it affects two to three times more females than males, and that it is characterized as an autoimmune disease, in which autoreactive T lymphocytes cross the blood-brain barrier, resulting in demyelinating lesions. But despite all the knowledge gained, a key question still remains; what is the initial event that triggers the inflammatory demyelinating process? While most research effort to date has focused on the immune system, more recently, another potential candidate has emerged: hypoxia. Specifically, a growing number of studies have described the presence of hypoxia (both 'virtual' and real) at an early stage of demyelinating lesions, and several groups, including our own, have begun to investigate how manipulation of inspired oxygen levels impacts disease progression. In this review we summarize the findings of these hypoxia studies, and in particular, address three main questions: (i) is the hypoxia found in demyelinating lesions 'virtual' or real; (ii) what causes this hypoxia; and (iii) how does manipulation of inspired oxygen impact disease progression?
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| |
Collapse
|
17
|
Kerbrat A, Gros C, Badji A, Bannier E, Galassi F, Combès B, Chouteau R, Labauge P, Ayrignac X, Carra-Dalliere C, Maranzano J, Granberg T, Ouellette R, Stawiarz L, Hillert J, Talbott J, Tachibana Y, Hori M, Kamiya K, Chougar L, Lefeuvre J, Reich DS, Nair G, Valsasina P, Rocca MA, Filippi M, Chu R, Bakshi R, Callot V, Pelletier J, Audoin B, Maarouf A, Collongues N, De Seze J, Edan G, Cohen-Adad J. Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain 2020; 143:2089-2105. [PMID: 32572488 DOI: 10.1093/brain/awaa162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 11/12/2022] Open
Abstract
Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.
Collapse
Affiliation(s)
- Anne Kerbrat
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Elise Bannier
- CHU Rennes, Radiology department, Rennes, France.,Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Francesca Galassi
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Benoit Combès
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Raphaël Chouteau
- CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Pierre Labauge
- MS Unit, Department of Neurology, CHU Montpellier, Montpellier, France
| | - Xavier Ayrignac
- MS Unit, Department of Neurology, CHU Montpellier, Montpellier, France
| | | | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada.,University of Quebec in Trois-Rivieres, Quebec, Canada
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | | - Masaaki Hori
- Toho University Omori Medical Center, Tokyo, Japan
| | | | - Lydia Chougar
- Department of Neuroradiology, La Pitié Salpêtrière Hospital, Paris, France
| | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Renxin Chu
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Rohit Bakshi
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Virginie Callot
- AP-HM, Pôle d'imagerie médicale, Hôpital de la Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jean Pelletier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Adil Maarouf
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 67 000 Strasbourg, France.,Département de Neurologie, Centre Hospitalier Universitaire de Strasbourg, 67200 Strasbourg, France.,Centre d'investigation Clinique, INSERM U1434, Centre Hospitalier Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Jérôme De Seze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 67 000 Strasbourg, France.,Département de Neurologie, Centre Hospitalier Universitaire de Strasbourg, 67200 Strasbourg, France.,Centre d'investigation Clinique, INSERM U1434, Centre Hospitalier Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Gilles Edan
- CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| |
Collapse
|
18
|
Behrangi N, Lorenz P, Kipp M. Oligodendrocyte Lineage Marker Expression in eGFP-GFAP Transgenic Mice. J Mol Neurosci 2020; 71:2237-2248. [PMID: 33346907 PMCID: PMC8585802 DOI: 10.1007/s12031-020-01771-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, orchestrate several key cellular functions in the brain and spinal cord, including axon insulation, energy transfer to neurons, and, eventually, modulation of immune responses. There is growing interest for obtaining reliable markers that can specifically label oligodendroglia and their progeny. In many studies, anti-CC1 antibodies, presumably recognizing the protein adenomatous polyposis coli (APC), are used to label mature, myelinating oligodendrocytes. However, it has been discussed whether anti-CC1 antibodies could recognize as well, under pathological conditions, other cell populations, particularly astrocytes. In this study, we used transgenic mice in which astrocytes are labeled by the enhanced green fluorescent protein (eGFP) under the control of the human glial fibrillary acidic protein (GFAP) promoter. By detailed co-localization studies we were able to demonstrate that a significant proportion of eGFP-expressing cells co-express markers of the oligodendrocyte lineage, such as the transcription factor Oligodendrocyte Transcription Factor 2 (OLIG2); the NG2 proteoglycan, also known as chrondroitin sulfate proteoglycan 4 (CSPG4); or APC. The current finding that the GFAP promoter drives transgene expression in cells of the oligodendrocyte lineage should be considered when interpreting results from co-localization studies.
Collapse
Affiliation(s)
- Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Peter Lorenz
- Institute of Immunology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
19
|
Leguy S, Combès B, Bannier E, Kerbrat A. Prognostic value of spinal cord MRI in multiple sclerosis patients. Rev Neurol (Paris) 2020; 177:571-581. [PMID: 33069379 DOI: 10.1016/j.neurol.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis [MS] is a common inflammatory, demyelinating and neurodegenerative disease of the central nervous system that affects both the brain and the spinal cord. In clinical practice, spinal cord MRI is performed far less frequently than brain MRI, mainly owing to technical limitations and time constraints. However, improvements of acquisition techniques, combined with a strong diagnosis and prognostic value, suggest an increasing use of spinal cord MRI in the near future. This review summarizes the current data from the literature on the prognostic value of spinal cord MRI in MS patients in the early and later stages of their disease. Both conventional and quantitative MRI techniques are discussed. The prognostic value of spinal cord lesions is clearly established at the onset of disease, underlining the interest of spinal cord conventional MRI at this stage. However, studies are currently lacking to affirm the prognostic role of spinal cord lesions later in the disease, and therefore the added value of regular follow-up with spinal cord MRI in addition to brain MRI. Besides, spinal cord atrophy, as measured by the loss of cervical spinal cord area, is also associated with disability progression, independently of other clinical and MRI factors including spinal cord lesions. Although potentially interesting, this measurement is not currently performed as a routine clinical procedure. Finally, other measures extracted from quantitative MRI have been established as valuable for a better understanding of the physiopathology of MS, but still remain a field of research.
Collapse
Affiliation(s)
- S Leguy
- CHU de Rennes, Neurology department, 2, Rue Henri-le-Guilloux, 35000 Rennes, France; University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France
| | - B Combès
- University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France
| | - E Bannier
- University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France; CHU de Rennes, Radiology department, Rennes, France
| | - A Kerbrat
- CHU de Rennes, Neurology department, 2, Rue Henri-le-Guilloux, 35000 Rennes, France; University Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1228, Rennes, France.
| |
Collapse
|
20
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
21
|
Moccia M, van de Pavert S, Eshaghi A, Haider L, Pichat J, Yiannakas M, Ourselin S, Wang Y, Wheeler-Kingshott C, Thompson A, Barkhof F, Ciccarelli O. Pathologic correlates of the magnetization transfer ratio in multiple sclerosis. Neurology 2020; 95:e2965-e2976. [PMID: 32938787 DOI: 10.1212/wnl.0000000000010909] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify pathologic correlates of magnetization transfer ratio (MTR) in multiple sclerosis (MS) in an MRI-pathology study. METHODS We acquired MTR maps at 3T from 16 fixed MS brains and 4 controls, and immunostained 100 tissue blocks for neuronal neurofilaments, myelin (SMI94), tissue macrophages (CD68), microglia (IBA1), B-lymphocytes, T-lymphocytes, cytotoxic T-lymphocytes, astrocytes (glial fibrillary acidic protein), and mitochondrial damage (COX4, VDAC). We defined regions of interest in lesions, normal-appearing white matter (NAWM), and cortical normal-appearing gray matter (NAGM). Associations between MTR and immunostaining intensities were explored using linear mixed-effects models (with cassettes nested within patients) and interaction terms (for differences between regions of interest and between cases and controls); a multivariate linear mixed-effects model identified the best pathologic correlates of MTR. RESULTS MTR was the lowest in white matter (WM) lesions (23.4 ± 9.4%) and the highest in NAWM (38.1 ± 8.7%). In MS brains, lower MTR was associated with lower immunostaining intensity for myelin (coefficient 0.31; 95% confidence interval [CI] 0.07-0.55), macrophages (coefficient 0.03; 95% CI 0.01-0.07), and astrocytes (coefficient 0.51; 95% CI 0.02-1.00), and with greater mitochondrial damage (coefficient 0.31; 95% CI 0.07-0.55). Based on interaction terms, MTR was more strongly associated with myelin in WM (coefficient 1.58; 95% CI 1.09-2.08) and gray matter (GM) lesions (coefficient 0.66; 95% CI 0.13-1.20), and with macrophages (coefficient 1.40; 95% CI 0.56-2.25), astrocytes (coefficient 2.66; 95% CI 1.31-4.01), and mitochondrial damage (coefficient -12.59; 95% CI -23.16 to -2.02) in MS brains than controls. In the multivariate model, myelin immunostaining intensity was the best correlate of MTR (coefficient 0.31; 95% CI 0.09-0.52; p = 0.004). CONCLUSIONS Myelin was the strongest correlate of MTR, especially in WM and cortical GM lesions, but additional correlates should be kept in mind when designing and interpreting MTR observational and experimental studies in MS.
Collapse
Affiliation(s)
- Marcello Moccia
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Steven van de Pavert
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Arman Eshaghi
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Lukas Haider
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Jonas Pichat
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Marios Yiannakas
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Sebastien Ourselin
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Yi Wang
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Claudia Wheeler-Kingshott
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Alan Thompson
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Frederik Barkhof
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK
| | - Olga Ciccarelli
- From the Department of Neuroinflammation, Queen Square MS Centre, NMR Research Unit, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences (M.M., S.v.d.P., A.E., L.H., M.Y., Y.W., C.W.-K., A.T., F.B., O.C.), Centre for Medical Image Computing, Department of Medical Physics and Bioengineering (J.P., S.O.), and Translational Imaging Group, UCL Institute of Healthcare Engineering (F.B.), University College London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences (M.M.), Federico II University, Naples, Italy; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research University College London Hospitals Biomedical Research Centre (A.T., F.B., O.C.), UK.
| |
Collapse
|
22
|
Oligodendrocyte Physiology and Pathology Function. Cells 2020; 9:cells9092078. [PMID: 32932835 PMCID: PMC7563511 DOI: 10.3390/cells9092078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
|
23
|
Rohowetz LJ, Vu Q, Ablabutyan L, Gratton SM, Kunjukunju N, Wallace BS, Koulen P. Microperimetry as a diagnostic tool for the detection of early, subclinical retinal damage and visual impairment in multiple sclerosis. BMC Ophthalmol 2020; 20:367. [PMID: 32917153 PMCID: PMC7488495 DOI: 10.1186/s12886-020-01620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A majority of multiple sclerosis patients experience visual impairment, often as the initial presenting symptom of the disease. While structural changes in the retinal nerve fiber layer and optic nerve have demonstrated correlations with brain atrophy in multiple sclerosis using magnetic resonance imaging, a non-invasive, cost-effective, and clinically efficacious modality to identify early damage and facilitate prompt therapeutic intervention to slow the progression of multiple sclerosis and its ocular manifestations, is still urgently needed. In this study, we sought to determine the role of macular sensitivity measured by microperimetry in the detection of subclinical multiple sclerosis-related retinal damage and visual dysfunction. METHODS This cross-sectional observational case-control study involved population-based samples of multiple sclerosis patients and age-, race-, and gender-matched healthy control subjects. Among the key criteria for the multiple sclerosis patients were diagnosis by the McDonald criteria, visual acuity greater than 20/25, and no history of optic neuritis. Macular sensitivity and average macular thickness were measured in all subjects using microperimetry and spectral-domain optical coherence tomography, respectively. Pearson correlation coefficients were measured using bivariate correlations. Sample means, mean differences, and 95% confidence intervals were calculated using independent sample t-tests. RESULTS Twenty-eight eyes from 14 MS patients and 18 eyes from 9 control subjects were included. Mean macular sensitivity of control subjects and multiple sclerosis patients in decibels was 18.2 ± 0.4 and 16.5 ± 0.4, respectively, corresponding to a mean difference of 1.7 (95% CI, 1.1-2.4; P < 0.001). Macular sensitivity was positively correlated with macular thickness in multiple sclerosis patients (r = 0.49, P = 0.01) but not control subjects (r = 0.15, P = 0.55). CONCLUSIONS Macular sensitivity as measured by microperimetry was decreased in multiple sclerosis patients with normal visual acuity and no history of optic neuritis. Furthermore, macular sensitivity demonstrated a positive correlation with macular thickness as measured by optical coherence tomography. As such, microperimetry may represent a non-invasive and efficient method to identify signs of subclinical visual dysfunction that correspond with early macular architectural changes characteristic of multiple sclerosis.
Collapse
Affiliation(s)
- Landon J Rohowetz
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Qui Vu
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Lilit Ablabutyan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Sean M Gratton
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Nancy Kunjukunju
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Billi S Wallace
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA.,Harry S Truman Memorial Veterans' Hospital, Department of Surgery (Ophthalmology section), 800 Hospital Drive, Columbia, MO, 65201, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St, Kansas City, MO, 64108, USA.
| |
Collapse
|
24
|
Zhou Z, Tong Q, Zhang L, Ding Q, Lu H, Jonkman LE, Yao J, He H, Zhu K, Zhong J. Evaluation of the diffusion MRI white matter tract integrity model using myelin histology and Monte-Carlo simulations. Neuroimage 2020; 223:117313. [PMID: 32882384 DOI: 10.1016/j.neuroimage.2020.117313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Quantitative evaluation of brain myelination has drawn considerable attention. Conventional diffusion-based magnetic resonance imaging models, including diffusion tensor imaging and diffusion kurtosis imaging (DKI),1 have been used to infer the microstructure and its changes in neurological diseases. White matter tract integrity (WMTI) was proposed as a biophysical model to relate the DKI-derived metrics to the underlying microstructure. Although the model has been validated on ex vivo animal brains, it was not well evaluated with ex vivo human brains. In this study, histological samples (namely corpus callosum) from postmortem human brains have been investigated based on WMTI analyses on a clinical 3T scanner and comparisons with gold standard myelin staining in proteolipid protein and Luxol fast blue. In addition, Monte Carlo simulations were conducted to link changes from ex vivo to in vivo conditions based on the microscale parameters of water diffusivity and permeability. The results show that WMTI metrics, including axonal water fraction AWF, radial extra-axonal diffusivity De⊥, and intra-axonal diffusivity Dawere needed to characterize myelin content alterations. Thus, WMTI model metrics are shown to be promising candidates as sensitive biomarkers of demyelination.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Lei Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuping Ding
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Hui Lu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Junye Yao
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China.
| | - Keqing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China; Department of Imaging Sciences, University of Rochester, United States
| |
Collapse
|
25
|
Becquart P, Johnston J, Vilariño-Güell C, Quandt JA. Oligodendrocyte ARNT2 expression is altered in models of MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e745. [PMID: 32439712 PMCID: PMC7251514 DOI: 10.1212/nxi.0000000000000745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We examined expression of aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), a basic-loop-helix transcription factor implicated in neuronal development and axonal health, in oligodendrocyte (OL) cultures and over the course of chronic experimental autoimmune encephalomyelitis (EAE), the murine model of multiple sclerosis (MS). METHODS We assessed OL ARNT2 expression in EAE compared with sham-immunized controls and also in OL primary cultures and over the course of dibutyryl cyclic adenosine monophosphate (dbcAMP)-mediated maturation of the immortalized Oli-neu cell line. We also tested the functional role of ARNT2 in influencing OL characteristics using small interfering RNA (siRNA). RESULTS ARNT2 is localized to Olig2+ cells in healthy spinal cord gray and white matter. Despite a significant expansion of Olig2+ cells in the white matter at peak disease, ARNT2 is reduced by almost half in OLs, along with a reduction in the percentage of ARNT2+/Olig2+ cells. Mature OLs in mixed cortical cultures or OLs matured from embryonic progenitors express negligible ARNT2. Similarly, Oli-neu cells express high levels of ARNT2, which are reduced following dbcAMP maturation. siRNA-mediated knockdown of ARNT2 affected OL viability, which led to an enrichment of myelin-producing OLs. CONCLUSION The analysis of ARNT2 expression in OLs demonstrates that OL ARNT2 expression is altered in EAE and during OL maturation. Findings point to ARNT2 as an important mediator of OL viability and differentiation and warrant further characterization as a target for intervention in demyelinating disorders such as MS.
Collapse
Affiliation(s)
- Pierre Becquart
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada
| | - Jake Johnston
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada
| | - Carles Vilariño-Güell
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- From the Department of Pathology and Laboratory Medicine (P.B., J.J., J.A.Q.), University of British Columbia, Vancouver, BC, Canada; and Department of Medical Genetics (C.V.-G.), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Reali C, Magliozzi R, Roncaroli F, Nicholas R, Howell OW, Reynolds R. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol 2020; 30:779-793. [PMID: 32243032 PMCID: PMC8018043 DOI: 10.1111/bpa.12841] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Increased inflammation in the cerebral meninges is associated with extensive subpial cortical grey matter pathology in the forebrain and a more severe disease course in a substantial proportion of secondary progressive multiple sclerosis (SPMS) cases. It is not known whether this relationship extends to spinal cord pathology. We assessed the contribution of meningeal and parenchymal immune infiltrates to spinal cord pathology in SPMS cases characterized in the presence (F+) or absence (F-) of lymphoid-like structures in the forebrain meninges. Transverse cryosections of cervical, thoracic and lumbar cord of 22 SPMS and five control cases were analyzed for CD20+ B cells, CD4+ and CD8+ T cells, microglia/macrophages (IBA-1+), demyelination (myelin oligodendrocyte glycoprotein+) and axon density (neurofilament-H+). Lymphoid-like structures containing follicular dendritic cell networks and dividing B cells were seen in the spinal meninges of 3 out of 11 F+ SPMS cases. CD4+ and CD20+ cell counts were increased in F+ SPMS compared to F- SPMS and controls, whilst axon loss was greatest in motor and sensory tracts of the F+ SPMS cases (P < 0.01). The density of CD20+ B cells of the spinal leptomeninges correlated with CD4+ T cells and total B and T cells of the meninges; with the density of white matter perivascular CD20+ and CD4+ lymphocytes (P < 0.05); with white matter lesion area (P < 0.05); and the extent of axon loss (P < 0.05) in F+ SPMS cases only. We show that the presence of lymphoid-like structures in the forebrain is associated with a profound spinal cord pathology and local B cell rich meningeal inflammation associates with the extent of cord pathology. Our work supports a principal role for B cells in sustaining inflammation and tissue injury throughout the CNS in the progressive disease stage.
Collapse
Affiliation(s)
- Camilla Reali
- Department of Brain SciencesFaculty of MedicineImperial CollegeLondonUK
- Merck Healthcare KGaADarmstadtGermany
| | - Roberta Magliozzi
- Department of Brain SciencesFaculty of MedicineImperial CollegeLondonUK
- Department of Neuroscience, Biomedicine and MovementUniversity of VeronaVeronaItaly
| | - Federico Roncaroli
- Department of Brain SciencesFaculty of MedicineImperial CollegeLondonUK
- Division of Neuroscience and Experimental PsychologyFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Manchester Academic Health Science CentreManchesterUK
| | - Richard Nicholas
- Department of Brain SciencesFaculty of MedicineImperial CollegeLondonUK
| | - Owain W. Howell
- Department of Brain SciencesFaculty of MedicineImperial CollegeLondonUK
- Institute for Life SciencesSwansea University Medical SchoolSwanseaUK
| | - Richard Reynolds
- Department of Brain SciencesFaculty of MedicineImperial CollegeLondonUK
| |
Collapse
|
27
|
Libner CD, Salapa HE, Levin MC. The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. Int J Mol Sci 2020; 21:E4571. [PMID: 32604997 PMCID: PMC7369711 DOI: 10.3390/ijms21134571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.
Collapse
Affiliation(s)
- Cole D. Libner
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Hannah E. Salapa
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Michael C. Levin
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| |
Collapse
|
28
|
Development of type I/II oligodendrocytes regulated by teneurin-4 in the murine spinal cord. Sci Rep 2020; 10:8611. [PMID: 32451386 PMCID: PMC7248063 DOI: 10.1038/s41598-020-65485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/29/2020] [Indexed: 11/08/2022] Open
Abstract
In the spinal cord, the axonal tracts with various caliber sizes are myelinated by oligodendrocytes and function as high-velocity ways for motor and sensory nerve signals. In some neurological disorders, such as multiple sclerosis, demyelination of small caliber axons is observed in the spinal cord. While type I/II oligodendrocytes among the four types are known to myelinate small diameter axons, their characteristics including identification of regulating molecules have not been understood yet. Here, we first found that in the wild-type mouse spinal cord, type I/II oligodendrocytes, positive for carbonic anhydrase II (CAII), were located in the corticospinal tract, fasciculus gracilis, and the inside part of ventral funiculus, in which small diameter axons existed. The type I/II oligodendrocytes started to appear between postnatal day (P) 7 and 11. We further analyzed the type I/II oligodendrocytes in the mutant mice, whose small diameter axons were hypomyelinated due to the deficiency of teneurin-4. In the teneurin-4 deficient mice, type I/II oligodendrocytes were significantly reduced, and the onset of the defect was at P11. Our results suggest that CAII-positive type I/II oligodendrocytes myelinate small caliber axons in the spinal cord and teneurin-4 is the responsible molecule for the generation of type I/II oligodendrocytes.
Collapse
|
29
|
Raeesmohammadi L, Esmaeili S, Abbasi MH, Mehrpour M, Mirzaasgari Z, Baradaran HR, Deilami P, Motamed MR. Transbulbar B-mode sonography in multiple sclerosis without optic neuritis; clinical relevance. Brain Res 2020; 1734:146723. [PMID: 32057807 DOI: 10.1016/j.brainres.2020.146723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Trans bulbar B-mode sonography (TBS) is a recently proposed method but there is little known about its diagnostic accuracy in patients with multiple sclerosis without acute optic neuritis. Therefore we assessed the correlation between OND, ONSD and OND/ONSD ratio with clinical/para clinical parameters. METHODS In a comparative study, we intended to examine possible differences in optic nerve diameter (OND) and optic nerve sheath diameter (ONSD) between 60 patients with multiple sclerosis (MS) and 60 individuals as matched healthy controls. RESULTS The OND, ONSD and OND/ONSD ratio in both eyes showed significantly lower amounts in patients compared to healthy controls (p < 0.05). There were no correlations, between either OND or ONSD and factors including gender, age, P100 amplitude, disease duration, history of optic neuritis and number of T2 lesions in MRI (P ≥ 0.05). Expanded disability status scale (EDSS) and p100 Latency were correlated with both OND and ONSD values (P < 0.05). CONCLUSIONS TBS showed significantly lower amounts of OND, ONSD and OND/ONSD ratio in MS patients without current attack compared to their healthy controls indicating a subclinical axonal loss over time. It is suggested that TBS could be an applicable tool for early detection of optic nerve damages along with clinical and para-clinical findings.
Collapse
Affiliation(s)
- Leila Raeesmohammadi
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sara Esmaeili
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Hossein Abbasi
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoud Mehrpour
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Mirzaasgari
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Baradaran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences(IUMS), Tehran, Iran
| | - Parvaneh Deilami
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Motamed
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
30
|
Villoslada P, Steinman L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opin Investig Drugs 2020; 29:443-459. [DOI: 10.1080/13543784.2020.1757647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pablo Villoslada
- Department of Psychiatry and Behavioural Sciences & Department of Neurology and Neurological Sciences, Stanford University, California, CA, USA
| | - Lawrence Steinman
- Department of Psychiatry and Behavioural Sciences & Department of Neurology and Neurological Sciences, Stanford University, California, CA, USA
| |
Collapse
|
31
|
Yin P, Liu Q, Pan Y, Yang W, Yang S, Wei W, Chen X, Hong Y, Bai D, Li XJ, Li S. Phosphorylation of myelin regulatory factor by PRKG2 mediates demyelination in Huntington's disease. EMBO Rep 2020; 21:e49783. [PMID: 32270922 PMCID: PMC9336218 DOI: 10.15252/embr.201949783] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
Demyelination is a common pathological feature of a large number of neurodegenerative diseases including multiple sclerosis and Huntington's disease (HD). Laquinimod (LAQ) has been found to have therapeutic effects on multiple sclerosis and HD. However, the mechanism underlying LAQ's therapeutic effects remains unknown. Using HD mice that selectively express mutant huntingtin in oligodendrocytes and show demyelination, we found that LAQ reduces the Ser259 phosphorylation on myelin regulatory factor (MYRF), an oligodendrocyte-specific transcription factor promoting the expression of myelin-associated genes. The reduced MYRF phosphorylation inhibits MYRF's binding to mutant huntingtin and increases the expression of myelin-associated genes. We also found that PRKG2, a cGMP-activated protein kinase subunit II, promotes the Ser259-MYRF phosphorylation and that knocking down PRKG2 increased myelin-associated protein's expression in HD mice. Our findings suggest that PRKG2-regulated phosphorylation of MYRF is involved in demyelination and can serve as a potential therapeutic target for reducing demyelination.
Collapse
Affiliation(s)
- Peng Yin
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Qiong Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongcheng Pan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weili Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Su Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenjie Wei
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Physiology and Pathophysiology, Brain and Cognition Research Institute, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Hong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dazhang Bai
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Melero-Jerez C, Alonso-Gómez A, Moñivas E, Lebrón-Galán R, Machín-Díaz I, de Castro F, Clemente D. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiol Dis 2020; 140:104869. [PMID: 32278882 DOI: 10.1016/j.nbd.2020.104869] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/28/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple Sclerosis (MS) is the second cause of paraplegia among young adults, after all types of CNS traumatic lesions. In its most frequent relapsing-remitting form, the severity of the disease course is very heterogeneous, and its reliable evaluation remains a key issue for clinicians. Myeloid-Derived sSuppressor Cells (MDSCs) are immature myeloid cells that suppress the inflammatory response, a phenomenon related to the resolution or recovery of the clinical symptoms associated with experimental autoimmune encephalomyelitis (EAE), the most common model for MS. Here, we establish the severity index as a new parameter for the clinical assessment in EAE. It is derived from the relationship between the maximal clinical score and the time elapsed since disease onset. Moreover, we relate this new index with several histopathological hallmarks in EAE and with the peripheral content of MDSCs. Based on this new parameter, we show that the splenic MDSC content is related to the evolution of the clinical course of EAE, ranging from mild to severe. Indeed, when the severity index indicates a severe disease course, EAE mice display more intense lymphocyte infiltration, demyelination and axonal damage. A direct correlation was drawn between the MDSC population in the peripheral immune system, and the preservation of myelin and axons, which was also correlated with T cell apoptosis within the CNS (being these cells the main target for MDSC suppression). The data presented clearly indicated that the severity index is a suitable tool to analyze disease severity in EAE. Moreover, our data suggest a clear relationship between circulating MDSC enrichment and disease outcome, opening new perspectives for the future targeting of this population as an indicator of MS severity.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Aitana Alonso-Gómez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Esther Moñivas
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
33
|
Smirnova LP, Mednova IA, Krotenko NM, Alifirova VM, Ivanova SA. IgG-Dependent Dismutation of Superoxide in Patients with Different Types of Multiple Sclerosis and Healthy Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8171020. [PMID: 32089782 PMCID: PMC7025067 DOI: 10.1155/2020/8171020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
This work is the first to demonstrate that class G immunoglobulins (IgGs) in patients with multiple sclerosis and healthy individuals have the ability to catalyze the dismutation reaction of the superoxide anion radical. Thus, superoxide dismutase (SOD) activity is an intrinsic property of antibodies, which is confirmed by a number of stringent criteria. SOD activity of IgGs in patients with multiple sclerosis statistically significantly exceeds such activity in healthy individuals by 2-4 times. Moreover, the maximum activity has been registered in patients with relapsing remitting multiple sclerosis. The kinetic characteristics of the SOD reaction of IgGs are several orders of magnitude lower than those for the SOD enzyme but do not differ between patients with multiple sclerosis and healthy individuals. Consequently, abzymes with SOD activity have a lower catalysis rate than that of the enzymes and form a stronger complex with the substrates. Inhibitory analysis showed that this activity is inhibited by classical metal-dependent SOD inhibitors. The activity of IgGs was inhibited by classical metal-dependent inhibitors EDTA and TETA (triethylenetetramine). Also, high catalase activity of IgGs was detected in these patients. We suggest that these abzymes help protect the body from oxidative stress.
Collapse
Affiliation(s)
- Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Irina A. Mednova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Nina M. Krotenko
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
- Department of Neurology and Neurosurgery, Siberian State Medical University, Tomsk 644050, Russia
| | - Valentina M. Alifirova
- Department of Neurology and Neurosurgery, Siberian State Medical University, Tomsk 644050, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
- Department of Neurology and Neurosurgery, Siberian State Medical University, Tomsk 644050, Russia
| |
Collapse
|
34
|
Junker A, Wozniak J, Voigt D, Scheidt U, Antel J, Wegner C, Brück W, Stadelmann C. Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol 2020; 30:641-652. [PMID: 31916298 PMCID: PMC8018087 DOI: 10.1111/bpa.12813] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Cortical demyelinated lesions are frequent and widespread in chronic multiple sclerosis (MS) patients, and may contribute to disease progression. Inflammation and related oxidative stress have been proposed as central mediators of cortical damage, yet meningeal and cortical inflammation is not specific to MS, but also occurs in other diseases. The first aim of this study was to test whether cortical demyelination was specific for demyelinating CNS diseases compared to other CNS disorders with prominent meningeal and cortical inflammation. The second aim was to assess whether oxidative tissue damage was associated with the extent of neuroaxonal damage. We studied a large cohort of patients diagnosed with demyelinating CNS diseases and non‐demyelinating diseases of autoimmune, infectious, neoplastic or metabolic origin affecting the meninges and the cortex. Included were patients with MS, acute disseminated encephalomyelitis (ADEM), neuromyelitis optica (NMO), viral and bacterial meningoencephalitis, progressive multifocal leukoencephalopathy (PML), subacute sclerosing panencephalitis (SSPE), carcinomatous and lymphomatous meningitis and metabolic disorders such as extrapontine myelinolysis, thus encompassing a wide range of adaptive and innate cytokine signatures. Using myelin protein immunohistochemistry, we found cortical demyelination in MS, ADEM, PML and extrapontine myelinolysis, whereby each condition showed a disease‐specific histopathological pattern. Remarkably, extensive ribbon‐like subpial demyelination was only observed in MS, thus providing an important pathogenetic and diagnostic cue. Cortical oxidative injury was detected in both demyelinating and non‐demyelinating CNS disorders. Our data demonstrate that meningeal and cortical inflammation alone accompanied by oxidative stress are not sufficient to generate the extensive subpial cortical demyelination found in MS, but require other MS‐specific factors.
Collapse
Affiliation(s)
- Andreas Junker
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Department of Neuropathology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jadwiga Wozniak
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - David Voigt
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uta Scheidt
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Jack Antel
- Montreal Neurological Institute, McGill University Health Centre, 2155 Guy Street, Montreal, Canada
| | - Christiane Wegner
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Department of Child and Adolescent Psychiatry/Psychotherapy, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
35
|
Martinez B, Peplow PV. Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014-2019. Neural Regen Res 2020; 15:1220-1234. [PMID: 31960801 PMCID: PMC7047782 DOI: 10.4103/1673-5374.272572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The disability caused by inflammatory demyelination clinically dominates the early stages of relapsing-remitting MS and is reversible. Once there is considerable loss of axons, MS patients enter a secondary progressive stage. Disease-modifying drugs currently in use for MS suppress the immune system and reduce relapse rates but are not effective in the progressive stage. Various animal models of MS (mostly mouse and rat) have been established and proved useful in studying the disease process and response to therapy. The experimental autoimmune encephalomyelitis animal studies reviewed here showed that a chronic progressive disease can be induced by immunization with appropriate amounts of myelin oligodendrocyte glycoprotein together with mycobacterium tuberculosis and pertussis toxin in Freund's adjuvant. The clinical manifestations of autoimmune encephalomyelitis disease were prevented or reduced by treatment with certain pharmacological agents given prior to, at, or after peak disease, and the agents had protective effects as shown by inhibiting demyelination and damage to neurons, axons and oligodendrocytes. In the cuprizone-induced toxicity animal studies, the pharmacological agents tested were able to promote remyelination and increase the number of oligodendrocytes when administered therapeutically or prophylactically. A monoclonal IgM antibody protected axons in the spinal cord and preserved motor function in animals inoculated with Theiler's murine encephalomyelitis virus. In all these studies the pharmacological agents were administered singly. A combination therapy may be more effective, especially using agents that target neuroinflammation and neurodegeneration, as they may exert synergistic actions.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Medicine, St. Georges University School of Medicine, True Blue, Grenada
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
37
|
Salapa HE, Libner CD, Levin MC. Dysfunctional RNA-binding protein biology and neurodegeneration in experimental autoimmune encephalomyelitis in female mice. J Neurosci Res 2019; 98:704-717. [PMID: 31755578 DOI: 10.1002/jnr.24554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Altered stress granule (SG) and RNA-binding protein (RBP) biology have been shown to contribute to the pathogenesis of several neurodegenerative diseases, yet little is known about their role in multiple sclerosis (MS). Pathological features associated with dysfunctional RBPs include RBP mislocalization from its normal nuclear location to the cytoplasm and the formation of chronic SGs. We tested the hypothesis that altered SG and RBP biology might contribute to the neurodegeneration in experimental autoimmune encephalomyelitis (EAE). C57BL/6 female mice were actively immunized with MOG35-55 to induce EAE. Spinal cords were examined for mislocalization of the RBPs, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and TAR-DNA binding protein-43 (TDP-43), SGs, neurodegeneration (SMI-32), T cells (CD3), and macrophages (CD68). In contrast to naive mice, mice with EAE showed SG formation (p < 0.0001) and mislocalization of hnRNP A1 (p < 0.05) in neurons of the ventral spinal cord gray matter, which correlated with clinical score (R = 0.8104, p = 0.0253). In these same areas, there was a neuronal loss (p < 0.0001) and increased SMI-32 immunoreactivity (both markers of neurodegeneration) and increased staining for CD3+ T cells and IFN-gamma. These findings recapitulate the SG and RBP biology and markers of neurodegeneration in MS tissues and suggest that altered SG and RBP biology contribute to the neurodegeneration in EAE, which might also apply to the pathogenesis of MS.
Collapse
Affiliation(s)
- Hannah E Salapa
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cole D Libner
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
38
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
39
|
Mitochondrial Dysfunction and Multiple Sclerosis. BIOLOGY 2019; 8:biology8020037. [PMID: 31083577 PMCID: PMC6627385 DOI: 10.3390/biology8020037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
In recent years, several studies have examined the potential associations between mitochondrial dysfunction and neurodegenerative diseases such as multiple sclerosis (MS), Parkinson’s disease and Alzheimer’s disease. In MS, neurological disability results from inflammation, demyelination, and ultimately, axonal damage within the central nervous system. The sustained inflammatory phase of the disease leads to ion channel changes and chronic oxidative stress. Several independent investigations have demonstrated mitochondrial respiratory chain deficiency in MS, as well as abnormalities in mitochondrial transport. These processes create an energy imbalance and contribute to a parallel process of progressive neurodegeneration and irreversible disability. The potential roles of mitochondria in neurodegeneration are reviewed. An overview of mitochondrial diseases that may overlap with MS are also discussed, as well as possible therapeutic targets for the treatment of MS and other neurodegenerative conditions.
Collapse
|
40
|
Huang SY, Fan Q, Machado N, Eloyan A, Bireley JD, Russo AW, Tobyne SM, Patel KR, Brewer K, Rapaport SF, Nummenmaa A, Witzel T, Sherman JC, Wald LL, Klawiter EC. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann Clin Transl Neurol 2019; 6:882-892. [PMID: 31139686 PMCID: PMC6529828 DOI: 10.1002/acn3.760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To evaluate alterations in apparent axon diameter and axon density obtained by high‐gradient diffusion MRI in the corpus callosum of MS patients and the relationship of these advanced diffusion MRI metrics to neurologic disability and cognitive impairment in MS. Methods Thirty people with MS (23 relapsing‐remitting MS [RRMS], 7 progressive MS [PMS]) and 23 healthy controls were scanned on a human 3‐tesla (3T) MRI scanner equipped with 300 mT/m maximum gradient strength using a comprehensive multishell diffusion MRI protocol. Data were fitted to a three‐compartment geometric model of white matter to estimate apparent axon diameter and axon density in the midline corpus callosum. Neurologic disability and cognitive function were measured using the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Minimal Assessment of Cognitive Function in MS battery. Results Apparent axon diameter was significantly larger and axon density reduced in the normal‐appearing corpus callosum (NACC) of MS patients compared to healthy controls, with similar trends seen in PMS compared to RRMS. Larger apparent axon diameter in the NACC of MS patients correlated with greater disability as measured by the EDSS (r = 0.555, P = 0.007) and poorer performance on the Symbol Digits Modalities Test (r = ‐0.593, P = 0.008) and Brief Visuospatial Memory Test–Revised (r = −0.632, P < 0.01), tests of interhemispheric processing speed and new learning and memory, respectively. Interpretation Apparent axon diameter in the corpus callosum obtained from high‐gradient diffusion MRI is a potential imaging biomarker that may be used to understand the development and progression of cognitive impairment in MS.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Natalya Machado
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Ani Eloyan
- Department of Biostatistics School of Public Health Brown University Providence Rhode Island
| | - John D Bireley
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Andrew W Russo
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Sean M Tobyne
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Kevin R Patel
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Kristina Brewer
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Sarah F Rapaport
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Janet C Sherman
- Psychology Assessment Center Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Eric C Klawiter
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| |
Collapse
|
41
|
Comparison of Reported Spinal Cord Lesions in Progressive Multiple Sclerosis with Theiler's Murine Encephalomyelitis Virus Induced Demyelinating Disease. Int J Mol Sci 2019; 20:ijms20040989. [PMID: 30823515 PMCID: PMC6413032 DOI: 10.3390/ijms20040989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/10/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spinal cord (SC) lesions in Theiler's murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) resemble important features of brain lesions in progressive multiple sclerosis (MS) including inflammation, demyelination, and axonal damage. The aim of the present study was a comparison of SC lesions in MS and TMEV-IDD focusing on spatial and temporal distribution of demyelination, inflammation, SC atrophy (SCA), and axonal degeneration/loss in major descending motor pathways. METHODS TMEV and mock-infected mice were investigated clinically once a week. SC tissue was collected at 42, 98, 147, and 196 days post infection, and investigated using hematoxylin and eosin (HE) staining, immunohistochemistry targeting myelin basic protein (demyelination), Mac3 (microglia/macrophages), phosphorylated neurofilaments (axonal damage) and transmission electron microscopy. RESULTS Demyelination prevailed in SC white matter in TMEV-IDD, contrasting a predominant gray matter involvement in MS. TMEV-infected mice revealed a significant loss of axons similar to MS. Ultrastructural analysis in TMEV-IDD revealed denuded axons, degenerative myelin changes, axonal degeneration, as well as remyelination. SCA is a consistent finding in the SC of MS patients and was also detected at a late time point in TMEV-IDD. CONCLUSION This comparative study further indicates the suitability of TMEV-IDD as animal model also for the investigation of progressive SC lesions in MS.
Collapse
|
42
|
Saiga R, Hoshino M, Takeuchi A, Uesugi K, Naitou K, Kamijo A, Kawabe N, Ohtsuka M, Takizawa S, Mizutani R. Synchrotron radiation microtomography of brain hemisphere and spinal cord of a mouse model of multiple sclerosis revealed a correlation between capillary dilation and clinical score. J Comp Neurol 2018; 527:2091-2100. [PMID: 30291810 DOI: 10.1002/cne.24544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/13/2018] [Indexed: 11/07/2022]
Abstract
Multiple sclerosis is a neurological disorder in which the myelin sheaths of axons are damaged by the immune response. We report here a three-dimensional structural analysis of brain and spinal cord tissues of a mouse model of multiple sclerosis, known as experimental autoimmune encephalomyelitis (EAE). EAE-induced mice were raised with or without administration of fingolimod, which is used in the treatment of multiple sclerosis. Brains and spinal cords dissected from the EAE mice were lyophilized so as to reconstitute the intrinsic contrast of tissue elements, such as axons, in X-ray images. Three-dimensional structures of the brain hemispheres and spinal cords of the EAE mice were visualized with synchrotron radiation microtomography. Microtomographic cross sections reconstructed from the X-ray images revealed dilation of capillary vessels and vacuolation in the spinal cord of the EAE mice. Vacuolation was also observed in the cerebellum, suggesting that the neuroinflammatory response progressed in the brain. The vessel networks and vacuolation lesions in the spinal cords were modelled by automatically tracing the three-dimensional image in order to analyze the tissue structures quantitatively. The results of the analysis indicated that the distribution of vacuolations was not uniform but three-dimensionally localized. The mean vessel diameter showed a linear correlation with the clinical score, indicating that vasodilation is relevant to paralysis severity in the disease model. We suggest that vasodilation and vacuolation are related with neurological symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Rino Saiga
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Katsuko Naitou
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, Japan
| | - Akemi Kamijo
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, Japan
| | - Noboru Kawabe
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ryuta Mizutani
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
43
|
Boyko AN, Boyko OV. Cladribine tablets' potential role as a key example of selective immune reconstitution therapy in multiple sclerosis. Degener Neurol Neuromuscul Dis 2018; 8:35-44. [PMID: 30050387 PMCID: PMC6053904 DOI: 10.2147/dnnd.s161450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is one of the most important, disabling, and prevalent neurological disorders of young adults. It is a chronic inflammatory and neurodegenerative disease when autoreactive B and T cells have downstream effects that result in demyelination and neuronal loss. Anti-inflammatory disease-modifying therapies do have proven efficacy in delaying disease and disability progression in MS. While the progress in MS treatments has already improved the prognosis and quality of patients’ lives overall, there are some clear shortcomings and unmet needs in the current MS treatment landscape. The most promising means of MS treatment is selective immune reconstitution therapy (SIRT). This therapy is given in short-duration courses of immunosuppression, producing durable effects on the immune system and preventing nervous tissue loss. This review discusses the mechanisms of action and the data of clinical trials of cladribine tablets as an example of SIRT in MS. The clinical benefits of cladribine tablets in these studies include decreased relapse rate and disability progression with large reductions in lesion activity, and protection against brain volume loss. Whether all of these neurological findings are direct results of lymphocyte depletion, or if there are downstream effects on other, unknown, neurodegenerative processes are yet to be determined, but these clearly point to an interesting area of research.
Collapse
Affiliation(s)
- Alexey N Boyko
- Pirogov's Russian National Research University, Department of Neurology, Neurosurgery and Medical Genetics, .,Neurological Department, Usupov's Hospital, Moscow, Russia,
| | - Olga V Boyko
- Pirogov's Russian National Research University, Department of Neurology, Neurosurgery and Medical Genetics, .,Neurological Department, Usupov's Hospital, Moscow, Russia,
| |
Collapse
|
44
|
Petrova N, Carassiti D, Altmann DR, Baker D, Schmierer K. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol 2018; 28:334-348. [PMID: 28401686 PMCID: PMC8028682 DOI: 10.1111/bpa.12516] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023] Open
Abstract
Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area, reduced by about 20%, appears to be a poor predictor of axonal density.
Collapse
Affiliation(s)
- Natalia Petrova
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
| | - Daniele Carassiti
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
| | | | - David Baker
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
| | - Klaus Schmierer
- Blizard Institute (Neuroscience), Barts and the London School of Medicine & DentistryQueen Mary University of LondonLondonUK
- Neurosciences Clinical Academic Groupthe Royal London Hospital, Barts Health NHS TrustLondonUK
| |
Collapse
|
45
|
Lee LW, Lin HJ, Huang ST. Management of IFN-beta-induced flu-like symptoms with Chinese herbal medicine in a patient with multiple sclerosis: A case report. Complement Ther Med 2018; 36:123-128. [PMID: 29458918 DOI: 10.1016/j.ctim.2017.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The purpose of this case report was to elucidate how Chinese herbal medicine (CHM) was used safely in this patient undergoing interferon beta (IFNβ-1a) treatment and was associated with reduction in the side effects the patient had experienced when using IFNβ-1a treatment alone. CLINICAL FEATURES AND OUTCOME A 30-year-old man was diagnosed with MS in December 2014. For two years, he suffered from severe flu-like symptoms as side effects of IFNβ-1a treatment. He subsequently received treatment with Chinese herbal medicine. During a two-month period of treatment with CHM, the patient responded well, with most of the symptoms induced by IFNβ-1a ameliorated. The fever subsided. Incidence rates of dizziness and headaches were reduced. The health condition compared to the prior year increased by 50%. According to CCMQ and SF-36 assessments, CHM had the beneficial effects of recovering the yin-yang balance, harmonizing the qi, and regulating the blood state; essentially, improving the patient's comfort level and quality of life. CONCLUSIONS IFNβ-1a injections will damage qi and cause blood stasis in MS patients, thereby causing various side effects and weakening the body's immune system. Bu-Zhong-Yi-Qi-Tang, associated with Salvia miltiorrhiza, Ligusticum chuanxiong, Angelica dahurica and Polygonum multiflorum Thunb., is an effective prescription to ameliorate such symptoms and signs in patients with MS.
Collapse
Affiliation(s)
- Li-Wen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
46
|
Guarnieri FC, Bellani S, Yekhlef L, Bergamaschi A, Finardi A, Fesce R, Pozzi D, Monzani E, Fornasiero EF, Matteoli M, Martino G, Furlan R, Taverna S, Muzio L, Valtorta F. Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain Behav Immun 2018; 68:197-210. [PMID: 29066310 DOI: 10.1016/j.bbi.2017.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022] Open
Abstract
The classical view of multiple sclerosis (MS) pathogenesis states that inflammation-mediated demyelination is responsible for neuronal damage and loss. However, recent findings show that impairment of neuronal functions and demyelination can be independent events, suggesting the coexistence of other pathogenic mechanisms. Due to the inflammatory milieu, subtle alterations in synaptic function occur, which are probably at the basis of the early cognitive decline that often precedes the neurodegenerative phases in MS patients. In particular, it has been reported that inflammation enhances excitatory synaptic transmission while it decreases GABAergic transmission in vitro and ex vivo. This evidence points to the idea that an excitation/inhibition imbalance occurs in the inflamed MS brain, even though the exact molecular mechanisms leading to this synaptic dysfunction are as yet not completely clear. Along this line, we observed that acute treatment of primary hippocampal neurons in culture with pro-inflammatory cytokines leads to an increased phosphorylation of synapsin I (SynI) by ERK1/2 kinase and to an increase in the frequency of spontaneous synaptic vesicle release events, which is prevented by SynI deletion. In vivo, the ablation of SynI expression is protective in terms of disease progression and neuronal damage in the experimental autoimmune encephalomyelitis mouse model of MS. Our results point to a possible key role in MS pathogenesis of the neuronal protein SynI, a regulator of excitation/inhibition balance in neuronal networks.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Serena Bellani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Latefa Yekhlef
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Andrea Bergamaschi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Eugenio F Fornasiero
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Milan, Italy; CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luca Muzio
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
47
|
Schmierer K, McDowell A, Petrova N, Carassiti D, Thomas DL, Miquel ME. Quantifying multiple sclerosis pathology in post mortem spinal cord using MRI. Neuroimage 2018; 182:251-258. [PMID: 29373838 DOI: 10.1016/j.neuroimage.2018.01.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/04/2018] [Accepted: 01/21/2018] [Indexed: 11/26/2022] Open
Abstract
Multiple sclerosis (MS) is a common inflammatory, demyelinating and degenerative disease of the central nervous system. The majority of people with MS present with symptoms due to spinal cord damage, and in more advanced MS a clinical syndrome resembling that of progressive myelopathy is not uncommon. Significant efforts have been undertaken to predict MS-related disability based on short-term observations, for example, the spinal cord cross-sectional area measured using MRI. The histo-pathological correlates of spinal cord MRI changes in MS are incompletely understood, however a surge of interest in tissue microstructure has recently led to new approaches to improve the precision with which MRI indices relate to underlying tissue features, such as myelin content, neurite density and orientation, among others. Quantitative MRI techniques including T1 and T2, magnetisation transfer (MT) and a number of diffusion-derived indices have all been successfully applied to post mortem MS spinal cord. Combining advanced quantification of histological features with quantitative - particularly diffusion-based - MRI techniques provide a new platform for high-quality MR/pathology data generation. To more accurately quantify grey matter pathology in the MS spinal cord, a key driver of physical disability in advanced MS, remains an important challenge of microstructural imaging.
Collapse
Affiliation(s)
- K Schmierer
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK; Barts Health NHS Trust, Clinical Board Medicine (Neuroscience), The Royal London Hospital, London, UK.
| | - A McDowell
- UCL Great Ormond Street Institute of Child Health, Developmental Imaging and Biophysics Section, London, UK
| | - N Petrova
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK
| | - D Carassiti
- Queen Mary University of London, Barts and The London School of Medicine & Dentistry, Blizard Institute (Neuroscience), London, UK
| | - D L Thomas
- UCL Institute of Neurology, Leonard Wolfson Experimental Neurology Centre, Department of Brain Repair and Rehabilitation, Queen Square, London, UK
| | - M E Miquel
- Barts Health NHS Trust, Clinical Physics, London, UK
| |
Collapse
|
48
|
Affiliation(s)
- Daniel S Reich
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda (D.S.R.), and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore (P.A.C.) - both in Maryland; and the Department of Neurology, Mayo Clinic, Rochester, MN (C.F.L.)
| | - Claudia F Lucchinetti
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda (D.S.R.), and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore (P.A.C.) - both in Maryland; and the Department of Neurology, Mayo Clinic, Rochester, MN (C.F.L.)
| | - Peter A Calabresi
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda (D.S.R.), and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore (P.A.C.) - both in Maryland; and the Department of Neurology, Mayo Clinic, Rochester, MN (C.F.L.)
| |
Collapse
|
49
|
Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond) 2017; 131:2503-2524. [PMID: 29026001 DOI: 10.1042/cs20170981] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
The deep and periventricular white matter is preferentially affected in several neurological disorders, including cerebral small vessel disease (SVD) and multiple sclerosis (MS), suggesting that common pathogenic mechanisms may be involved in this injury. Here we consider the potential pathogenic role of tissue hypoxia in lesion development, arising partly from the vascular anatomy of the affected white matter. Specifically, these regions are supplied by a sparse vasculature fed by long, narrow end arteries/arterioles that are vulnerable to oxygen desaturation if perfusion is reduced (as in SVD, MS and diabetes) or if the surrounding tissue is hypoxic (as in MS, at least). The oxygen crisis is exacerbated by a local preponderance of veins, as these can become highly desaturated 'sinks' for oxygen that deplete it from surrounding tissues. Additional haemodynamic deficiencies, including sluggish flow and impaired vasomotor reactivity and vessel compliance, further exacerbate oxygen insufficiency. The cells most vulnerable to hypoxic damage, including oligodendrocytes, die first, resulting in demyelination. Indeed, in preclinical models, demyelination is prevented if adequate oxygenation is maintained by raising inspired oxygen concentrations. In agreement with this interpretation, there is a predilection of lesions for the anterior and occipital horns of the lateral ventricles, namely regions located at arterial watersheds, or border zones, known to be especially susceptible to hypoperfusion and hypoxia. Finally, mitochondrial dysfunction due to genetic causes, as occurs in leucodystrophies or due to free radical damage, as occurs in MS, will compound any energy insufficiency resulting from hypoxia. Viewing lesion formation from the standpoint of tissue oxygenation not only reveals that lesion distribution is partly predictable, but may also inform new therapeutic strategies.
Collapse
|
50
|
Salapa HE, Lee S, Shin Y, Levin MC. Contribution of the Degeneration of the Neuro-Axonal Unit to the Pathogenesis of Multiple Sclerosis. Brain Sci 2017; 7:E69. [PMID: 28629158 PMCID: PMC5483642 DOI: 10.3390/brainsci7060069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. In recent years, it has become more evident that neurodegeneration, including neuronal damage and axonal injury, underlies permanent disability in MS. This manuscript reviews some of the mechanisms that could be responsible for neurodegeneration and axonal damage in MS and highlights the potential role that dysfunctional heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and antibodies to hnRNP A1 may play in MS pathogenesis.
Collapse
Affiliation(s)
- Hannah E Salapa
- Department of Anatomy and Cell Biology, CMSNRC (Cameco MS Neuroscience Research Center), University of Saskatchewan, Saskatoon, SK S7N0Z1, Canada.
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
| | - Michael C Levin
- Department of Anatomy and Cell Biology, CMSNRC (Cameco MS Neuroscience Research Center), University of Saskatchewan, Saskatoon, SK S7N0Z1, Canada.
- Veterans Administration Medical Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Saskatchewan, Saskatoon, SK S7N0Z1, Canada.
| |
Collapse
|